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JTION

go a certain size structured cell cycle model, originally due to Bell & Anderson (1967)
Streifer (1971), was analysed by Diekmann, Heijmans & Thieme (1984), Heijmans (1985,
), Metz & Diekmann (1986), Greiner & Nagel (1988). The model was formulated as the
1ogorov functional partial differential equation

z) = —z%(g(w)n(t, z)) = uz)n(t, ) — bz)n(t, ©) + 4b(2z)n(t, 2z) (1.1)

tes time, = denotes cell size and n(t,-) is the cell size density function at time . The
4 and b have the following interpretation:

he size-specific individual growth rate
he size-specific per capita death rate

he size-specific probability per unit of time of division.
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f equation (1.1) reflects the assumption that a dividing cell produces two daughters,
s exactly half the size of the mother. (For completeness we note that Bell & Andersson
”? as an additional structuring variable.) -

2 of the cited mathematical papers is to write (1.1) abstractly in the form

lo + B)n (1.2)

wtor Ag incorporates the first three terms at the right-hand side (the “local” terms)
r B corresponds to the non-local last term. The fact that Ay generates a semigroup
1 be checked by explicit integration. Next perturbation theory (the Phillips-Dyson
ied to show that Ay + B generates a semigroup as well. Finally the spectral theory
igroups (see Nagel et al., 1986 or Clément, Heijmans et al., 1987, for systematic
ds strong results concerning the asymptotic behaviour for t — oo.

iors have made different assumptions concerning g, ¢ and b as well as different choices
;ion) state space, ranging from Ly (with or without a weight function related to g
race of finite Borel measures considered as the dual space of the space of continuous
rs (preprint) shows how the model fits into the framework of multi-type branching
: obtains strong conclusions from the general theory of such processes.

‘cle models have been formulated by Arino & Kimmel (1987) as integral equations; in
1 (preprint) these authots have elaborated in detail the relationship between various
e Kimmel (1982, 1983) for early work in the spirit of the present paper. See Tyson &
i) for an application to actual data.

imann, Gyllenberg & Thieme (1993, preprint) and Diekmann, Gyllenberg, Metz &
ear) argued that abstract Stieltjes renewal equations are an attractive alternative
wrtial differential equations, like (1.1), to formulate structured population models.
] strength of the alternative manifests itself only in time-dependent linear and in
ms, some of the advantages are evident in the context of autonomous linear problems.
present paper is two-fold:

2 the cell cycle model in the new setting as a concrete example of the general approach
rate that within the new framework one can work with measures and yet require very

rity for the coefficients.

5 AT THE INDIVIDUAL LEVEL

exceed a maximal size, which we normalize to be 1
: divide before reaching a threshold size a > 0 and consequently § is the minimal size
of an individual cell is adequately described by its size

ell produces two daughter cells, each of which has exactly half the size of the mother.
gredients suffice to describe the behaviour of individual cells:

e time a cell needs to grow from size § to size .
e probability that a cell of size § will neither die nor divide before reaching size z.

e expected number of daughter cells that a cell of size § will produce before reaching
e T.



‘hese ingredients we make the following technical assumptions:

ontinuous and strictly increasing. G(§) =0.

trictly positive for £ < 1, continuous and non-increasing. F (52"-) =1.
ontinuous and non-decreasing. L(z) =0 for § <z < o and L(1) < 2.
%(ﬂ —0forz T1.

4, the logic of these assumptions should be clear from the biological interpretation of
We shall discuss A4 below.
»asic ingredients we construct the following composite ingredients:

= the size of a cell at time ¢, given that the size is x at time zero.

) =67 (t+6(2)), =23

convention that X (¢,z) =1 for t > G(1) — G(z); note that this possibility does not occur
| = 00, i.e. when it takes infinite time to reach the maximal size).

e probability that a cell of size z will neither die nor divide before reaching size y > z.

= the expected number of daughter cells that a cell of size z will produce before reaching
» we can now understand what (A4) means in biological terms.)

') := the expected number of daughter cells with birth size in w (a measurable subset of
at a cell of size zg produces before reaching size z.

L(d¢) 1 /

: = = — 20,23 &) L(d

0)("") / }'-(23()) .7:((30) Xlza, )(E) ( 6)
2wn{€izg<E<a} 2w

lenotes the characteristic function of the set I.

ted number of daughter cells, and their distribution with respect to birth size, that a cell
produces in a time interval of length ¢, is described by the measure A(X (¢, o), zo) with

%3]

mt, as an interlude, the relationship between the present ingredients G, F and L on the
1 the rates g, 4 and b occuring in (1.1) on the other hand. Formally we have

)= (g(=)™

D riz) = Bt uE)
!:::'7:( ) g(z)

1 I(z) = 22
!:cL( ) 2g(:z:)

these relations can only be made precise under additional regularity assumptions on
Che inverse relations are




@(/MHM%) . o

o 9(8)

b(€) ‘
4@;wa (22)
[
é 9(&) (23)

iiven nonnegative and integrable rates b, p and strictly positive rate g, the functions
ned by, respectively, (2.1)—(2.3), satisfy the assumptions A1-A3. In conclusion of this
o relate the biological interpretation of A4 to its mathematical function.

means that a very large cell (i.e. a cell with size close to the maximum observed size,
lized to be one) will with high probability not produce any daughter cells. Actually
5 not satisfied in the setting of Diekmann, Heijmans & Thieme (1984). These authors
. is bounded while b(z) tends to infinity as = tends to one in such a way that the
s (i.e. F(z) | 0asx T 1) and in that case ﬂ%;%(ﬂ — 2 for z 7 1, which means
will, with high probability, divide before dying. We think that A4 is probably better
in real cell populations an extremely large cell has usually, for some reason, failed
“normal” way so it seems reasonable to assume that such a cell will not be able to
ter instant. Mathematically, the behaviour of individual cells near the singular point
self at the population level in the continuity properties of the orbits, in particular at
nake assumption A4 in order to stay in the realm of (adjoints of) strongly continuous
the remark following Lemma 3.2). This is, of course, not a real necessity and various
sent themselves: work with integrated semigroups, accept discontinuities and analyse
»an invariant subspace that attracts all orbits and on which we have strong continuity,
wurn to such approaches in a later publication, but at this moment we have chosen to
n A4,

JOCKS AT THE POPULATION LEVEL

a perturbation approach. That is, we begin by neglecting births.

time tg, the population size and composition be described by a measure m on the
Chen m qualifies as the population state at time £y. A time interval of length t later,
itate is given by the measure T (t)m defined as follows (cf. points 4 and 5 of section

@= [ xtxt 2L m). (3.1)

(%1

is justified by the observation that indeed the linear operator so defined is the adjoint
To(t) acting on Co([5,1); C), respectively Co([5,1); R), according to

wwwmmﬂggﬁ (3.2)

omplex valued functions since later on we use spectral theory. For completeness we
‘0([%,1); C) denotes the space of complex-valued functions on the interval [§,1) which
nd tend to zero when the argument tends to 1, equipped with the supremum norm.
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ively we can think of elements of this space as continuous functions defined on [$,1] which
1. As is well known, the dual space can be represented by the space of complex regular
ares m on [$,1), provided with the total variation norm. The pairing is given by

1
o> = / o(z)m(dz).

af2

ly one can think of elements of the dual space as normalized bounded variation functions
iich are continuous at z = 1, but we will not do so in this paper.)

Ty(t) defined by (3.2) constitutes a Cy-semigroup of bounded linear operators on

).
te that X (¢,z) > z for t > 0. So the expression (3.2) implies at once that

is a continuous function on [§,1) which tends to zero as z 1 1;

I%D <1, Ty(t) is a bounded linear operator of norm less than or equal to one;
I

(8) = To(t +s), since X (¢t + s,z) = X (¢, X (s,2));

Y ¢ € Co([5,1); C) we have that

() —pl| > 0ast |0 o

5 describe births we recall point 8 of section 2 and introduce the reproduction operators

1
ym)(w) = /A(X(t, ), 2){w)m(dz) (3.3)
of2
>-adjoints
1 1
) = [ PAX ()2 = 5 [ PO O, (3.4
: af2 a

(0) = 0 and that Ug(t)m gives the expected total number of daughter cells, produced in
al of length ¢, by the cells collectively described by m, as well as their distribution with
‘e at birth. ’

nder of this section is devoted to certain technical properties of the operators Uy (®).

a function Q = Q(¢,z) by

L(X(t,z)) — L(z) a
)= { () for 3 <z<l1 (3.5)
0 for z2=1

. guarantees that Q(¢,-) is a continuous function. We claim that ¢ — Q(t, -) is continuous
» Co([§,1); C). To prove the claim we choose € > 0 and then Z < 1 such that



2%-(:3:%(—9—:2 < % forall ze€lz,1).
We can subsequently choose 4 > 0 such that

|L(X (t1,2)) — L(X (22, z))| < eF(Z)
for all z € [£,7] and |t; — t2| < 8. Then, provided [t; — ta| < 6, we have, for z € [J, 7], the estimate

1Q(t1,2) — Qt2,2)| < |L(X (t1, a,,-);r ZE;:(X(tz, Q)

while for all 1,23 and Z <z <1

|Q(t1,2) — Q(t2,2)] < Q(t1,2) + Q(t2,2) < 2% <e

LEMMA 3.2. Formula (3.4) defines bounded linear operators Up(t) on Cy([$,1);C) and the mapping
t > Up(t) is continuous from R, into L(Cyp({§,1); C)).
PRrOOF. From the estimate

[(To(t)p)(=)] < llellQ(2: )

we infer that.Ug(t) is a bounded linear operator on Cy([§,1); C), with norm L(1) < 2. Likewise the
estimate

To(t1)e — Uo(t)ell < llellliQ(ty, <) — Q(t2, )l
and the observations above show that t — Up(t) is continuous. |

Tt should now be clear why we made assumption A4: it guarantees that (Up(t)p)(z) tends to zero
for 11, i.e. that Up(t) maps Cy([%,1); C) into itself.

LEMMA 3.3. U is locally of bounded semi-variation, i.e. for given t > 0
Vi(Us) :=sup || Y_(Uo(t:) = Uo(ti-1))ill < 00
i=1

where the supremum is taken over all partitions 0 =ty < t; < --- < t, =t and all p; € Co([£,1);C)
with Jlgi]| < 1.

PROOF. | 3 (Un(t:) ~ Ui(ti-1))e() € 055 S (BX (1) = L(X (te-s,2))
i=1 i=1
_ L(X(tn,2)) ~ L(z)

- F(z) = Q(t",.’L‘) = Q(ta .’L‘)

since ||y;]| < 1 and L is non-decreasing. ]

LEMMA 3.4. V;(Up) | Ofort | 0.

ProoF. Combine the estimate in the proof of Lemma 3.3 with the continuity of ¢ — Q(%,-) and the
fact that Q(0,-) is identically zero. O




4. THE ABSTRACT RENEWAL EQUATION

The reproduction operators tell us how many (and what kind of) daughter cells are produced by
some given group of cells, which we might call the zeroth generation. In other words, applying the
reproduction operators to the zeroth generation we find the first generation. In order to find all births
we should iterate this procedure indefinitely and sum the results. So let us define for n > 0

Ut () = / U3 (t - 1)U (dr) » (4.1)
0
and
Uty =Y _Ux(t) (4.2)
n=0

then U*(t) deserve to be called the {accumulated) birth operators. Note that in our situation the sum
in (4.2) is actually finite (though the number of terms depends on t and tends to infinity for £ — co)
since, after one or more divisions, a newborn cell has a size less than o and so needs time before being
able to divide.

Alternatively and equivalently we can write (4.1)-(4.2) as the renewal equation

U(8) = U2 (t) + / Uz (t — I)U*(dr) (4.3)
0

which states that the births fall into two categories: those produced by cells present at time zero and
those produced by cells which themselves were born after time zero. It is easier to study (4.3) in its
pre-adjoint form

U(t) = U(t) + / U(dr)Us (t — ) (4.4)

In Diekmann, Gyllenberg & Thieme (1993, preprint) it is shown that the Stieltjes convolution product
is well-defined on the set A of all uniformly continuous families U .of bounded linear operators which
are locally of bounded semi-variation and satisfy U(0) = 0, and that the equation (4.4) admits a unique
solution U € A for given Uy € A with limsj Vi(Up) = 0. In this context U is called the resolvent
kernel for Uy and U is given by the appropriate series of iterated convolutions of Uy with itself (with,
in general, convergence on R, with respect to some exponentially weighted norm). Recalling Lemmas
3.2, 3.3 and 3.4 and taking adjoints we arrive at the following conclusion:

THEOREM 4.1. The renewal equation (4.3) admits a unique solution, which is given by (4.2) with
Ux(t) defined by (4.1). ’

5. POPULATION DEVELOPMENT

The operators T (t) tell us how the zeroth generation changes in number (due to death and division)
and in cell size (due to cell growth). In order to obtain this information for the whole population, we
have to take newborns and their subsequent fate into account. So we introduce operators

T*(t) =Ty (t) + /Tg’(t —7)U*(dr) (5.1)
0



djoints
w(t) + / U(dr)To(t - 7). ‘ 6

ion guarantees that these operator families have the semi-group property. Distrustful
s are, we shall now verify this formally. As a bonus we pinpoint the crucial relationst
. Us.

) is a step response for Ty, i.e.
) = Uo(s) + To(s)Uo(t)
s a cumulative output family for Ty, i.e.

) =Ug(s) + U (1)T5 (s)

1
]O(t)(p)(m) = f(;{gi,)$)) f(X:(lS,il,‘)) /90(%g)X[X(.s,m),X(t,X(a,z)))(é)L(dE)

[+3

1
= ;_%;5/<p(-21-§)x[x(,,z),x(z+a,z))(f)L(df)

a

1

/ so(%é){ Xl X (t+5,2)) (€) = X[z,X(s,z))(f)}L(dﬁ) = (Uo(t + s)p) () — (Uo(s)p)(z)

X

U is a step response for T and {T'(t)}+>0 is a Cp-semigroup.

'4.4) and the fact that Uy is a step response for Ty we can write

it+s
= Up(t+3) + / Udr)Up(t + 5 — ) = Up(t) + To(£)Uo(s)
0

U(dr){Us(t — *r) + To(t — T)Us(s)} +/dT[U(t +7) = U@t)]Uo(s — 1) = Up(t)

U(dr)Up(t — 7) + {To(t) + /U(dT)To(t —7)}0(s) + /dT[U(t +71) = U@)Us(s —
0 0

ud set
It+s)-U(®)
T'(t)Uo(s)




Wq+W*Uo

wotes the Stieltjes convolution product. Since U is the resolvent kernel corresponding to
“that (cf. Gripenberg et al., 1990, section 9.3)

Wo +WoxU

rms of the original variables, reads
-8) = U(t) =T(t)Us(s) + /T(t)Un(da)U(s —0)= T(t)U(s).
i

= T5(0) = I and the strong continuity of Tj follows from the strong continuity of t ~» U ().
o verify that T'(¢t + s} = T'(t)T'(s), which we do by formula manipulation:

t+s t

8)=To(t+s) + / U(dr)To(t + s — ) = Ty(H)Th(s) + / U(dr)Th(t — 7)To(s)
0 0
i-/dr[U(T +t) ~ U(t)]To(s — 7) = [To(t) +/U(d7')To(t - 7)|To(s)
0 0

! / TU(dr)To(s — 7) = T(t)[To(s) + / U(dr)To(s — 7)) = T(£)T(s) o
[ 0

)TIC BEHAVIOUR

d approach in the analysis of the large time behaviour of a semigroup of operators is to

spectrum of the infinitesimal generator. So it may seem that one has to determine this

d, in particular, characterize its domain of definition. This task is aflicted with technical

lated to regularity matters. Therefore we prefer to avoid it. And indeed, as we now show,
to determine the resolvent of the generator more or less directly by applying the Laplace
the defining equations of the semigroup. Subsequently it only remains to analyse the

of the resolvent.

1t this section we concentrate on the case G(1) < co. In most of this section we assume

:he identity

A)"l == / e—;\TT('r)d’r, Re) sufficiently large, (6.1)
? /

1 applying the Laplace transform to (5.2) and (4.4), the equations

A)™t = (A = Ag)" L+ UM — Ag)! (6.2)
=0o(N) + TN To(2) (6.3)

wy definition, the Laplace-Stieltjes transform of U, i.e.



(>}

/ e—*TU(dr) (6.4)

cal definitions for the objects with index zero (see Diekmann, Gyllenberg & Thieme,
o 3.2.d. for the proof that U and Uy are necessarily exponentially bounded). Com-
1 (6.3) we deduce at once that

=1 = (I = Up(A))"H(AT — Ag)™! (6.5)

) is to derive explicit representations for the operators at the right hand side of (6.5).
), with index zero, and (3.2) we find

€

96 f —I\G('E)
o / 9O F(E)p(€)0(d). 66)

0) T ')(z) =

the function A = (A — Ap)7! is entire and, as far as singularities are concerned, we
on (I —Up(N))~L.

.4), with index zero, and (3.4) we find after a simple computation that

ekg(z) 1
(@) = Sy [ H(E - 2500 Lt (67)

, H denotes the Heaviside function. Note that the image of ¥ under Up()\) depends

a 1

siction of 4 to the interval [, 5]. This can be exploited when studying the invertibility

ider of this paper we restrict our attention to the relatively simple case a > -;— while
wided one adds some notation and a bit of linear algebra, essentially the same ideas
lle any case a > 2%, k € N (see in particular Heijmans, 1985).

£ > a and z < %, necessarily £ > z and the Heaviside function in (6.7) always takes

s a consequence Up()\), considered as an operator on C (1%, 3];©), has one-dimensional
ig this fact we derived the following explicit representation for the inverse of I — (7'0()\).

t,for A€ C, V(A): X = C, W(A) € X and k()) € C be defined by

1 .
() / ¢(%§)E—Ag(5) L{d¢) (6.8)
F(z) 5 F (38 ’ "
. e;\(g(lif)—g(f))
potose (6.10)

F(38)
ficiently large
D)7 =T+ To(N) + (1 - Q)W NV (A) (6.11)
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onsider elements of C as the corresponding multiplication operators on X).
" 6.2. 0(4) = Po(A) ={A e C: k) =1}. -

e assumption G(1) < oo guarantees that V and W are entire functions of A. The same is
—4o)~ ~1, see (6.6). So combining (6.5) with (6.11) we see that the resolvent of A is regular
h k(A) # 1 and that it has (non-removable) singularities at those A for which E(A) = 1.
n analytic function of A, these singularities are necessarily isolated poles of finite order.
ied projection operator has finite rank, hence all points in the spectrum are eigenvalnes.O

justify the suggestive notation and for future use we introduce functions of time V(¢) :
t) € X and k(t) € C:

G (t+G()) 1 1 1
= [ wGOLd = [ He+ 0 - 6OWGOLE (612)
1 H( — )
©) = 75 / Fan M
{¢€[a,1):6(£)~G(36)<t+G(=)~G(a)} (6.13)
_ 1 [H(+G() - 6(a) —9(©) + GREOVHE —z)
=7/ e £
H(t+6(8) - 6(3¢)
f( 5" / 1D L(dg) (6.14)

{¢€la,1):G(£)-G(3€)<1t}

sither Theorem C on page 163 of Halmos (1950) or, alternatively, apply the inverse Laplace
the functions of A, cf. Widder (1946), to verify the assertion of the next lemma that f
: Laplace-Stieltjes transform of f for f = V,W and k. Note that we have incorporated
«) in V(}), compensated by a factor e*"g(") in W(/\), in order that V has support in
without “destroying” that property for W, since G(z) — G(a) + G(3£) — G(£) < O for

))-

e MV (dt)

\8

e MW (dt)

\80‘

e Mk (dt)

O\SQ

10w two cases to be distinguished:
2 case.
ittice case.

case the kernel k is constant except for (finitely many) jumps which all occur at integer
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multiples of some number c. In other words, considered as a measure k is concentrated on a set of
points which are commensurable, with a greatest common factor which we call ¢ (since & has compact
support the set of points is actually finite). As a consequence, IE(A) is periodic along lines Rel =
constant, with period 277' Therefore the roots of I::(/\) = 1 occur in countably infinite groups on
vertical lines in the complex plane. Since k is a nontrivial non-decreasing function of ¢, there exists
precisely one real root, which we call A\;y. On the line ReA = A; we have roots A = )4 + 2k=¢ 2’"” ,k€Z,
which form a group under addition. All other roots have real part less than Ay (which expla,lns the
use of the index d, denoting “dominant”). ,

As we shall show below by explicit calculations for a special lattice case, asymptotically for ¢ — oo
we have

T(t)$ ~ e*tS(t) Po b (6.15)

where P, is a projection onto an infinite dimensional subspace which is isomorphic to the space of
c-periodic continuous functions and S(t) is a group of operators conjugate to translation as a group
acting on the c-periodic functions.

The argument which shows that there exists precisely one real root A4 of the characteristic equation
E()) = 1 does not require k to be lattice. In the non-lattice case there are no other roots on the line
Re) = Aq4 and all roots different from )4 satisfy Rel < A\y. We shall then find that

T(t)p ~ e*tP g, t— o0, (6.16)

where P, is a projection operator with one-dimensional range.

This dichotomy of two types of possible behaviour, (6.16) the rule and (6.15) the exception, is
a general phenomenon for positive semigroups, see Nagel (ed., 1986) section C-IV.2, Kerscher &
Nagel (1984), Greiner & Nagel (1988), where results are stated and proved for positive semigroups on
LP(X, u), 1 < p < 00; the same dichotomy is known in the theory of multi-type branching processes
(see, in particular, Theorems 1 and 2 in Jagers, preprint).

In order to gain some intuitive understanding of (6.15) and (6.16) we shall first analyse the problem
from the point of view of inverse Laplace transformation applied to (6.5), using (6.11). Since k is
a non-decreasing function of ¢, k' (Ad) # 0 or, in other words, A4 is a simple root of the equation
E()) = 1. Hence (AI — A)~ has a first order pole in A = Ay with residue

W)V (Aa)(Aal — Ag)~ (6.17)
—k'(Aq) .

P1 -
The range of this operator P; is spanned by W()\d). More precisely we have
Piyp = C($)W (Aa) (6.18)
where
PRYCIE IRI03)] _
e?9() f Fao f X900 F () (m)G(dm) L(d€)
C(¥)= n (6.19)

4\(9( £)—9(¢))

f(g(f) G(3 1) —Fa— L)

So either mvokmg general results about Dunford integrals (see Yosida, 1980, section VIIL.7,8) or
checking that k()\;) = 1 implies that C(W()\g)) = 1, we conclude that P is a projection operator

with one-dimensional range. .
When the real parts of all other roots of k(1) = 1 are uniformly bounded away from )\; one can
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'T(t)~ P =0 as t— oo (6.20)

ence in the operator norm) provided one can show that 1 — k()) is bounded away from
- £00, uniformly for Re) in some interval to the left of A4 (see e.g. Chapter V, written
,in Metz & Diekmann (eds.), 1986, Webb, 1987, and, in particular, Kaashoek & Verduyn
int, and the references given there). In the present generality, however, this need not be
e behaviour of I;:()\) for ImA — oo may be quite complicated if k has a non-discrete
(see Lyons, 1985, Rudin, 1962; also see section 4.4 in Gripenberg, Londen & Staffans,
sver, if, for instance, k is constant except for two jumps which occur in points which are
rable (i.e. rationally independent) then there must exist a sequence of roots A, such that
, ReA, T A4, essentially since I::(A) is almost periodic as a function of ImA (see the proof
m 4.1 in Gyllenberg, 1986; as far as we know this is the first paper dealing explicitly,
ion dynamical context, with the situation of a strictly dominant root without uniform
As we shall show below using a result of Feller, 1966, on the renewal equation, we then
: that (6.16) holds (i.e. strong convergence) but (6.20) is no longer true (indeed, Webb,
that uniform convergence implies exponential estimates for the remainder and these
in the situation described above; see Gyllenberg & Webb, 1992, for another example of
n-uniform convergence).
» have a lattice kernel k we should have that g(%g) — G(&) is constant on intervals on
rictly increasing. In order to simplify both the discussion and the calculations we shall
ttention to the case that G(£) — G(3€) = c for & < € < 1. It is then immediate that the

=X+ %C"i are of the form

() €29) / H( — =)
7@ | 5D

L(d¢) (6.21)

the ¢ are indeed the Fourier coefficients of a c-periodic function z, which depends on
wdition v, we find that one can associate with the whole group of poles the operator P,

_ P [ HE-2)
T @ )

L(d€) 2y (G (). (6.22)

[l derive, by explicit calculations, an expression for z, from which it then directly follows
projection operator. In addition these calculations will show that (6.15) holds. Under
sularity conditions on k& an alternative proof follows from the results of Kaashoek &
2], preprint,

g exposition about the singularities of the resolvent and their relation to the two types
either a stable distribution or periodic continuation of an infinite dimensional amount of
bout the initial condition), we shall now finally formulate and prove two theorems. The
»of is slightly different: we use the resolvent kernel r of the kernel k to translate (6.5) &
explicit representation for T'(t) and subsequently use results of Feller (1966) about the
1al renewal equation to deduce the asymptotic behaviour of T'(t) for ¢t — oo.

L. Assume that k is non-lattice. Let Ag be the unique real root of the equation k(}) = 1.
peX
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Jim [l T(6)p — P = 0.
where P, is defined by (6.18)-(6.19).
PROOF. Let r denote the resolvent kernel of k, i.e.

T= f: k™ (6.23)

n=0

where by definition r® = H, the Heaviside function, and #("+t1)* = ™ 47 n > 0. So equivalently r
is the unique solution of the renewal equation

r=H+kxr ' (6.24)
and from this we infer that
#(A) = (1— k()™ (6.25)

or, in words, (1 — k(A))~! is the Laplace-Stieltjes transform of r. Combining (6.5), (6.11) and (6.25)
we find the representation

t—7—0

T(t) = To(t) + / Up(dr)To(t — 1) + /r(dr) / W{do) / V(dn)To(t—1—0—7n) (6.26)
0 ) 0 )

Since G(1) < oo, the first two terms become zero in finite time whereas the operators V(t) and
W (t) are independent of t, once t is large enough. It follows that the asymptotic behaviour of T'(t) is
completely determined by the asymptotic behaviour of r(t). For this we consult Feller (1966), Chapter
XI. In order to adjust to the setting of that chapter we define

7(t) = / e~ XMTr(dr), k(t) = / e 27k(dT). (6.27)
o 0

Then k(co) = 1 and (6.24) can be reformulated as
F=H+kxF (6.28)

Since, by assumption, k is non-lattice (or non-arithmetic in the terminology of Feller) we deduce from
Feller’s first form of the Renewal Theorem that for every k> 0

F(t) = 7(t — ) — % as t— 00 (6.29)
where
o= /Te")“”'k(d'r). (6.30)
0

It follows that for any f with compact support



[>+]

—Aat tT o+ _ =}_ e—AdT
- _0/<d )it —7) #O/f(f) ar

reak version of) Feller’s alternative form of the Renewal Theorem. !

“XatT (1) = %W(Ad)f/(,\d)()\dI — Ao)14

plicit formulas for all factors we finally conclude that the right-han
P, is defined by (6.18)—(6.19).

.5. Assume that G(£) — G(3£) = c for @ < € < 1. For given ¢ €
R — R by the formulas

= 924 {4267 (0) F(267 (@)

267(o)
+H(G ) FG (o)) ;Ei?) L, 0<o<d()
2
= 67 MGG ) FGH o)), G(3) <o <e

continuation. Here

i L(de)
F(36)

iciently large ¢ we have explicitly

1
X9 [ H(E—3)

7@ | 7o 1

) () = X' z4(t + G(z))

t recall that G(%) = 0 and therefore ¢ = G(a) > G(}). Next recall
1at z is continuous in o = G(3) and z4(0) = z4(c).
assumption that G(£) — G(3£) = c we find that

G~ Ht+c)

(dn)To(t - ﬂ)fﬁ) (z) = $(G~E)F (G (1) / L(d£)

F(39)

mntly that

15

'6.31)

'6.26)

'6.32)

quals
O

riodic

'6.33)

6.34)

6.35)

6.36)

vhich

6.37)
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t—7

/ W (dr) / V(dn)To(t 7 —n)$) (&) =

1 ) Y 9“(t+9(z)—c)L , (6.38)
KO+ 0(0) ~ 2) 7004 00) -2 s [T Tnan [ 2
2 2

(where the expression should be interpreted as zero for t+G(z) < 2¢ and t+G(z) > 2c+ G(1)). Since
k(t) = 0H(t — c) we find for the resolvent r defined by (6.23) that

r(t) = i 07 H(t — jd) ' (6.39)

=0

Combining (6.26), (6.38) and (6.39) we see that for ¢ > 2G(1), when the first two terms at the right
hand side of (6.26) are zero, we have

1
TONE = 75 e L (6.40

D (Gt +G(2) — (2+ 1) F(G (¢ + G(2) — (2 + )c))

=0

G (t4+G(z)—(14+7)c))
L(

df)
F(36)

o

where the k-th term of the sum is different from zero if and only if

2+ k)e < t+G(x) < (2 + k) +G(1). (6.41)

Now note that at most two terms can contribute at the same time since G(1) = c+G(%) < c+G(a) = 2c.
In fact only the k-th term contributes for (k + 1)c + G(1) < t + G(z) < (k + 3)c, whereas both the
k-th and (k + 1)-th term contribute for (k + 3)e < t + G(z) < (k + 2)c+ G(1). It follows that we have
periodicity of period ¢ modulo multiplication by 6. It only remains to note that fe~24¢ = I::(/\d) =1
and to exploit the periodicity to rewrite (6.40) as (6.36) with z4 given by (6.33) & (6.34). O

COROLLARY 6.6. When G(&) — g(,i—,g) = ¢ for a < € < 1, the projection operator P, takes the form

(Poo®)(z) = ¢ ¥(2)

z 1
L (FG) [ L4 [L@e) o, [ L)
? (f(z) 73 ) 7Eo" / ; ‘b(‘“) et

F(39

(
Lz <L

o R
DN =

1 ( F(2z) T Lde)
(6 A e
z<a

MII-A

To conclude, let us try to understand in biological terms what the condmon G&) -G =¢
means. When a > 2, every newborn cell necessarily has to pass the size 1 5 before it can pos51bly
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divide. So we can base our book-keeping as well on the “traffic” of cells at z = -21- (actually this is
the biological “reason” for the “essentially one-dimensional range” property of ﬁg(A) and the fact
that the problem reduces to a one-dimensional renewal equation). Let us start a clock when a cell
passes ¢ = % and stop that clock when any of its daughters passes % Suppose the cell devides at
& > a. Then the clock shows time G(£) — G(). At that time the two daughters start to grow with
size 3£ and so they will reach size § after a time interval of length G(3) — G(1¢). Hence the clock

will stop at time G(§) — g(%g). Clearly when this time is independent of £, all cells that pass z = %

simultaneously will have offspring that pass z = %— simultaneously and likewise time differences are
preserved from generation to generation (in fact the renewal equation reduces to a difference equation
in this case; see also Metz & Diekmann (eds.), 1986, section V.11). So there is no “smoothing”, no
(eventual) compactness. Clearly any modification of our assumptions, however slight, may introduce
some smoothing and thereby change the “periodic” asymptotic behaviour into the “normal” (for
positive semigroups) one of convergence to a stable distribution. Such perturbations were studied by
Heijmans (1984), who considered asymmetric division, and Gyllenberg & Webb (1987, 1990), Rossa
(1991), who considered the effect of quiescence (see also Grabosch, preprint).

We hope that this section has convinced our readers that the formulation of structured population
models in terms of abstract renewal equations is very well suited for a subsequent study of the asymp-
totic behaviour, since we obtain an explicit expression for the resolvent of the generator in terms of
Laplace transforms of the building blocks at the population level. By inverse Laplace transformation
we then find a representation of the semigroup itself from which it is possible, or even easy, to deduce

the asymptotic behaviour for large time.
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