@

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Event structures and orthogonal term graph rewriting

J.R. Kennaway, J.W. Klop, M.R. Sleep, F.-J. de Vries

Computer Science/Department of Software Technology

Report CS-R9347 July 1993

CWI is the National Research Institute for Matk
the Stichting Mathematisch Centrum (SMCJ, the
and computer science and their applications.

SMC is sponsored by the Netherlands Organiz
member of ERCIM, the European Research Cons

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 Sj Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

‘ of
tics

5 Q

Event Structures
and
Orthogonal Term Graph Rewriting

{ennaway !, J.W. Klop 2, M.R. Sleep 3 & F.J. DE Vries 4

ys.uea.ac.uk, (2) jwk@cwi.nl, (3) mrs@sys.uea.ac.uk, (4) ferjan@cwi.nl

School of Information Systems, University of East Anglia,

Norwich, NR4 7TJ, UK
(2,4) CwI,
P.O. Box 4079, 1009AB Amsterdam, The Netherlands

Abstract

very normalisable term in an orthogonal term graph rewrite
1, we construct an elementary event structure. lts events are the
tially different redexes which must be reduced to reach the
| form of the term. The associated state domain is the set of Lévy
llence classes of needed reduction sequences starting from the
Various properties of the event structure and state domain are
1 to properties of the term. The problems arising in extending this
0 term &ewrite systems and non-orthogonal rewrite systems are
iscussed.

dathematics Subject Classification: 68Q42
CR Categories: F4.1,F4.2.

ords and Phrases: Concurrency, event structure, orthogonal
awriting, graph rewriting, functional programming.

All authors were partially sponsored by SEMAGRAPH, ESPRIT
Research Action 3074. The first author was also partially
rted by a SERC Advanced Fellowship, and by SERC grant no.
91582. An earlier abstract was presented at the SemaGraph
10p, Nijmegen, December 1991.

ents

MPOAUCHION.......eenereiietreereresrsrerees s anreestestsssesescosestsssessssnsnsanssssssasasnassrasatassasens
‘erm graph rewriting eeeteaserests ettt n SRR SRR s as b AR

leduction graphs ... e s snens s

...........

......

évy-equivalence........coninencees ersmresersssssessassaasnaronss

VENT STUCIUMES ...oevvereercerrcsiesorsssisssasisestsssasanssassssnsssepsasasassssssssssasssensssarsassosss
‘vent structures for orthogonal term graph rewriting S

telated work and further developments.oieemenees

JONCIUSION. eiiiiieieereseeeiessssressecasssessaessnnssnssssssrsnsesessasanassnesssssssssssssennasnssssass

[1o7= 18- ToT 0 1= 2 To [QUN PR

CS-R9347
)169-118X

ox 94079, 1090 GB Amsterdam, The Netherlands

..........

........

..........

Event structures and orthogonal term graph rewriting

1. Introduction

Several authors [Hue91, Sta89, and others] have hinted at a connection between
transition systems such as are used to describe concurrency, and the reduction
sequences that arise in term rewriting and lambda calculus. Here we make such a
connection precise in the context of term graph rewriting. We construct for every
normalisable term graph in an orthogonal term graph rewrite system, an elementary
event structure. The events of this structure correspond to the different possible
reduction steps that are required to reduce the term graph to normal form. The
elements of the associated domain correspond to the possible needed reduction
sequences which begin from the given term graph.

Similar connections have been remarked on for orthogonal term rewriting and
lambda calculus, but in those contexts, the possibility of one reduction duplicating
another redex makes it more complicated to derive any sort of event structure, and
the resulting events are less closely related to physical computations.

In proving the results of this paper, we found the category-theoretic definition of
graph rewriting which we introduced in [Ken91a] very useful in avoiding irrelevant
technicalities. In particular, it casts further light on the physical meaning of Lévys
equivalence relation on reduction sequences, which definitions in terms of tiling
diagrams or permutation of reduction steps fail to do. Concrete definitions such as
those of [Sta80,Bar87] would make these proofs much more complicated, and
restrict them to one particular form of graph, while the more abstract definition may
have application to other categories of graphs.

Proofs of theorems, where omitted here, will be found in the appendix.

2. Term graph rewriting

By term graph rewriting we mean, informally, one of the usual methods of
implementing rewrite rules such as appear in functional languages such as ML or
Miranda. The essential feature is that when a rewrite rule is applied whose right hand
side contains multiple occurrences of a free variable, the corresponding subterm of
the expression being evaluated is not duplicated; instead multiple pointers are created
to the original copy. The expression is therefore no longer a string or a tree, but a
graph of a particular sort: a term graph. It is technically convenient to represent these
as hypergraphs that is, graphs in which each edge may have any positive number of
vertexes.

2.1 DEFINITION. Given a set X of function symbols, each having some arity (a
nonnegative integer), a term graph over X consists of a tuple (N,E,str), where N and
E are sets, and str (structure) is a function from E to ZXNXN*. If str(e) = (F,n,s),

Event structures and orthogonal term graph rewriting

rertexes of e are n and the members of s. n is the principal vertex of e.
s subject to the following conditions:

‘e) = (F,n,s) then the arity of F is the length of s.
ict hyperedges have distinct principal vertexes.

Je is empty if it is not the principal vertex of some hyperedge. A graph is
t contains no empty nodes. We use empty nodes to represent free variables.
sparate alphabet of variable symbols is a convenient means of writing term
textual form, it is only a notational device and not a part of the underlying

ited term graph is a graph together with one of its nodes. It is garbage-free
»de in the graph is accessible from the root. Accessibility is defined thus: n'
ole from n if either n=n', or str(n) = (F,n",s), and n' is accessible from n"
yme member of s.

/A ppei 7T
Cons Cons Cons \
NN 7N\

Cons 3 Nil 2 Cons

N 7N
3 Nil 3 Nil

Figure 1: Terms and term graphs.

e 1 illustrates a term represented as a term graph. On the left is the term
a tree. In the middle is a visual representation of the hypergraph, where
e shaded ares is a hyperedge. On the right is an equivalent representation,
for its similarity to the tree picture. Instead of drawing the hyperedges
the function symbol of each hyperedge is attached to its principal vertex,
ch arrows proceed to all the other vertexes of the hyperedge. In this
the term graph has multiple references to the subgraph Cons(3,Nil) where
as multiple occurences of that subterm. However, a hypergraph is allowed
distinct isomorphic subgraphs — we do not require “maximal sharing” as
g. in [HofP88].

Event structures and orthogonal term graph rewriting

vl AN
.

'm graph rewrite: ~ Cons Append
7 ()
ons A
VRN PN
3 Nil 3 il

aph rewrite rule: Append(Cons(x,y),z) —> Cons(x, Append(y,z))

Figure 2

lefinitions of term graph 'rewriting have appeared in [Sta80, Bar87,
1is extended abstract we shall take the notion to be sufficiently intuitive
further explanation beyond Figures 1 and 2. However, the particular
which we gave in [Ken91a] making use of category theory turns out to
fy certain of the concepts and technical arguments which we shall later
re shall briefly describe this.

ot require any advanced concepts of category theory, just the basic
egory, functor, subobject, limit and colimit (in fact the only limits and
ieed are pullbacks and pushouts). The hypergraphs we have defined
ory when a notion of homomorphism is given. This notion is the
a mapping of the nodes and edges of one graph to another which
ction symbols and the connectivity of nodes and hyperedges. This
all J (for jungle, a term coined in [HofP88]).

ns preserve structure, but rewrites are intended to change the structure
'e therefore represent rewrite rules not as morphisms of J, but as the
a derived category g (J), the category of partial morphisms of J.

ON. In a category C, a partial morphism from A to B is a pair of
A«<X—B where X— A is a monomorphism. (We may indicate
ms by <> or «=.) More precisely, it is an equivalence class of such
»B and A<=Y—B are equivalent if there is an isomorphism between X
Figure 3 commute.

Figure 3: Equivalence of partial morphisms.

artial morphism from A to B as A = B. It is fotal if XS5 A is an
It is a restriction if X—B is an isomorphism.

Event structures and orthogonal term graph rewriting

sume that C has the pullback of any pair of arrows of which at least one is a
orphism. Then the composition of two partial morphisms AEX B and
.C is the partial morphism A<2X«=Z—-Y—C given by Figure 4, in which the
’XYB is a pullback.

nposmon of partial morphisms is associative, and the partial morphism A
9A, Aisan identity for it. Thus the objects of C and partial morphisms form
ry, which we denote by #(C).

S A

0 = &N
VAN
o P4

Figure 4: Composition of partial morphisms.

INITION. A term graph rewrite rule is a partial morphism LEX—-R of J,
at X is the subgraph of L obtained by omitting the root hyperedge (but
g all the nodes), and such that every empty node of R is in the range of
\ redex of this rule in a closed graph G is a total morphism from L to G. The
ges of G in the range of this morphism are pattern-matched by the redex. The
uct of this redex is the graph H obtained as the pushout of L. => R and L =
may show that this graph always exists (although g (J) does not have all

S).

1,

Append ! Cons

2Cons ¢ 2Cons —_ %Cons Append®

VA JxX

4 o5

* L

Figure 5: A term graph rewrite rule as a partial morphism

ure 2 exhibited a term graph rewrite by the rule Append(Cons(x,y),z) —
, Append(y, z)). Figure 5 displays the formulation of this rule as a partial
sm of J. The attached numbers indicate the actions of the morphisms on
Jotice how empty nodes represent variables — we do not need a separate set
ole symbols.

r definition of rewriting as a pushout of partial morphisms is not yet
e, hence the name pre-reduct. It omits the notion of garbage collection. To
1is we must introduce the notion of a rooted graph.

INITION. A rooted graph is a (total) morphism — G, where ¢ is the graph
: node and no edges. It is garbage-free if every node of G is accessible from
» which is the image of the morphism +—G. The result of garbage-collecting

Event structures and orthogonal term graph rewriting

graph, GC(~—Q), is a garbage-free rooted graph +—G' such that there is
rphism G'—G such that +—G'—>G = «—G, and such that G' is the
zraph of G for which this is so. (Category theorists may note that this
an adjoint to the inclusion of the category of garbage-free rooted graphs
ory of rooted graphs, the latter being the comma category s{J.)

1at when G is closed, GC(*—G) = *—G' where G' is the unigue closed
' G for which «—G' is garbage-free.

>G factors through G'. In g (J), we can also factor «—G' through +—G
', where G=>G' is the restriction morphism G«G'=G'.

TION. Given a rooted graph *—G, the result of reducing a redex L = G
R is depicted in Figure 6. The square LRGH is a pushout, performing
tion as above. *—>G=>H is in fact total, since the domain of G=>H

the nodes of G. We can therefore apply garbage-collection to it and
ted graph «—H=>H'. This is the reduct of the redex.

L = R
3 3

©« 5 G = H > H

Figure 6: Reduction step.

fines a single reduction step. A reduction sequence can be constructed by
>cessive reductions together as in Figure 7. One important feature of this
‘rewriting is that it gives additional information besides the final graph: it
partial morphism from the initial graph to the final graph which has a
1 intuitive meaning. Let the morphism be Gy¢—X—G,,. Consider X as a
"Gy. Then the nodes and hyperedges of Gy outside X are those which
> erases. Hyperedges in X are preserved by the reduction. Nodes which
-X but nonempty in G are changed. Other nodes of X are preserved. The
hyperedges of G, outside the range of X— G, are created by the

Lo = Rg Ly = Rg
)
¢ —> GO =» G'() = G1 = G’l = G2 T Gn

Figure 7: Reduction sequence
TON. Let there be given two distinct redexes Ly => G and L, = G of

% and Ly => R,. They are disjoint if there is no hyperedge of G which
‘eduction of one redex but pattern-matched by the other.

ystem is orthogonal if no graph contains non-disjoint redexes.

Event structures and orthogonal term graph rewriting
In the remainder of the paper we restrict attention to orthogonal systems.

3. Reduction graphs

Besides the graphs with whose rewriting we are concerned, we deal with
another sort of graph.

A reduction graph of a term graph t is a rooted directed graiph labelled as
follows. Each node is labelled with a term graph. Each arc is labelled with a redex r
of the term labelling its source, such that reduction of the redex yields the term
labelling its target. Distinct out-arcs of a node bear distinct labels. The root of the
graph is labelled with t, and all nodes are acessible from the root.

Note that different nodes may be labelled with the same term. We can consider
several different reduction graphs of a term graph t. Firstly, there is the reduction tree
of t, denoted RT(t). As its name implies, it is a tree. The out-arcs of each node are in
1-1 correspondence with the set of all the redexes of the term graph labelling that
node. These two properties uniquely identify RT(t). Its nodes are in 1-1
correspondence with the set of finite reduction sequences starting from t.

The minimal reduction graph of t, MG(t), is obtained from RT(t) by identifying
together all nodes bearing the same label, and identifying together their
corresponding out-arcs. With each node of MG(t), labelled with t', we can associate
the set of all paths in the graph from the root to that node. Each such path can be read
as a reduction sequence from t to t'. Thus MG(t) can be represented by an
equivalence relation on reduction sequences starting from t: s = s' iff s and s' have
the same final term.

A third reduction graph concerns us here: the Lévy graph of t, or LG(t). This
stands mid-way between RT(t) and MG(t). Like MG(t), it identifies certain nodes of
RT(t) together, but to a lesser extent, in general, than MG(t). It arises from an
equivalence relation on reduction sequences finer than that associated with MG(t): the
relation of Lévy-equivalence. ‘

4. Lévy-equivalence

Consider the rewrite rule A(B) — C and the graph D(A(x:B),A(x)). The graph
contains two redexes. There is an obvious sense in which we can reduce them both,
in either order, and it is clear that the result is the same: D(C,C). See Figure 8. This
notion is formalised as Lévy-equivalence. Lévy originally defined this for lambda
calculus [Lév78, Lév80], but it applies to orthogonal rewriting in general [HueL91].
For term graph rewriting, it is rather simpler than for lambda calculus or term
rewriting, and our categorical formulation of rewriting makes it trivial to define.

Event structures and orthogonal term graph rewriting

D D
) - &
4 ¥
D D
c/ - c/ \‘c
Figure 8.

4.1 DEFINITION. On finite reduction sequences, Lévy equivalence is the equivalence
relation = generated by the following axioms:

1) r@'fr) = r'@h)
2) sz s = ss"= 88" As"szp s"s. L

4.2 THEOREM. [IL&v78,Lév80] The above definition is equivalent to: s=s' iff s/s'
and s'/s are both the empty sequence. L[]

4.3 THEOREM. Lévy-equivalent sequences determine the same partial
morphism. []

Note that the converse does not hold. By the above theorem, Lévy-equivalent
sequences do the same thing to each node and hyperedge of their common initial
graph, but in addition, they also do the same thing to each node or hyperedge they
create. Sequences determining the same partial morphism need not do the latter.

5. Event structures

We now define event structures. These were invented by Winskel
[Nie81,Win80] to give a semantics for Petri nets.

There are several types of event structure. We will only require the simplest of
them.

5.1 DEFINITION. An elementary event structure is a finite or countable set E and a
partial ordering < of E. <is called the causality relation.

A left closed subset of E is a subset X such that ese' A e'e X = eeX.
Ev(E) denotes the set of left closed subsets of E, ordered by inclusion.

5.2 THEOREM . [Win80] L(E) is a prime algebraic complete lattice. []

Event structures and orthogonal term graph rewriting

; intuition behind these definitions is that E is the set of events that can
in the course of a computation. < is a relation of dependency or causality:
< ¢, then €' cannot happen unless e has already happened. The members of
Is represent possible computational states: a state is the set of events which
pened so far.

mt structures for orthogonal term graph rewriting

; intuition underlying the following construction is that given a redexr of a
, and a reduction sequence s:G—G', if /s is nonempty then it is in some
= same piece of work as r, deferred to a later time.

INITION. A pre-event of a term graph G is a pair (s,r), where s:G—H s a
n sequence and r is a redex of H. Pre(G) is the set of all pre-events of G. For
iction sequence s, the pre-events of s, denoted Pre(s), are the events (s',1)
t s"r is an initial segment of s.

INITION. Two pre-events are equivalent if they can be proved so by the
g axioms:

)= (s if s = s\
) = (s-8',1/s") if 1/s' exists.

now arrive at a theorem which is fundamental to the interpretation of term
S event structures.

EOREM. No two distinct pre-events of a reduction sequence are
:nt. [

yrmally, this theorem means that it is not possible for a reduction sequence to
ame piece of work twice. This theorem also shows the distinction between
tph rewriting and term rewriting. Mutatis mutandis, it is false for the latter,
of the possibility that reduction of one redex can make multiple copies of
, which may all be later reduced. By the definitions we have given, the
ns of each of these copies, considered as pre-events, would be equivalent.
;g more than one of them would give a reduction sequence containing two or
uivalent pre-events, defeating the construction of an event structure, in which
:is something which can only happen once.

INITION. An event of G is an equivalence class of pre-events of G. Ev(G) is
of events of G. Ev(s) is the set of events which are represented by the
's of Pre(s).

s pre-events of a graph have an immediate computational interpretation as the
. steps which may be executed by a reduction machine evaluating the graph.
theorem implies that the more abstract events may be interpreted in the same

Event structures and orthogeonal term graph rewriting

way. Furthermore, if we consider a machine capable of executing distinct redexes
concurrently, without necessarily any definite total ordering of its reductions beyond
that implied by causality, then events precisely correspond to the steps which may be
made by such a machine.

Ev(s) does not quite describe “the work done by s”, since it is possible for some
steps of s to erase parts of the graph in which some previous steps were performed,
making those steps unnecessary.

6.5 DEFINITION. An event ¢ of a graph G is needed if ee Ev(s) for every reduction s
of G to normal form. Ev0(G) is the set of needed events of G. A needed reduction
sequence is one, all of whose events are needed. LGY(G) is the subgraph of LG(G)
obtained by restricting to needed reduction steps.

EvO(s) is the description we seek, as shown by the next theorem.
6.6 THEOREM. s =p s iff EvO(s) = Ev0(s). [

We now show that the notion of one redex creating another gives rise to a partial
ordering of Ev(t).

6.7 DEFINITION. For e and €' in Ev(G), define e < ¢' if for every reduction sequence
S starting from G, if e'e Ev(s) then ec Ev(s). (It is immediate that this is indeed a
partial order.) Define e —< ' if e<e' and there is no e" such that e<e"<e'. [

The partial order has a concrete meaning.

6.8 DEFINITION. In a sequence s--s'1', the pre-event (s,r) contributes to the pre-
event (s-r-s',r') if there is a node n which is either the root of the contractum of r or
is created by r, which is preserved by ', and such that n/s' is matched by r'.

(s,1) is needed for (s-r-s',r'") if it contributes to (s-r-s',r') or if it contributes to a
later step of s-r-s' which is needed for (s--s',1').

6.9 THEOREM. e < e, iff there is a sequence of the form sy-Ty-s;-r; such that
(So:To) is needed for (syTg-s;,r7), and these two pre-events represent e and e,
respectively.

Finally, we have the required event structure and its associated configuration
domain.
6.10 THEOREM. EvO(G) with the partial ordering inherited from Ev(G) (of which it
is a lower section) is an elementary event structure. Its associated domain of
configurations is isomorphic to LGY(G). The resulting partial ordering of LGO(G) is

identical to the ordering defined by Huet and Lévy [HueL91]: s<s' iff s/s' is
empty. [

Thus a Lévy-equivalence class of needed reductions starting from G is
equivalent to a lower section of the set of needed events of G.

10

Event structures and orthagonal term graph rewriting

ited work and further developments.

ta89], Stark defines a notion of ‘concurrent transition system’. This takes
1 notion of an abstract residual operation on abstract transitions. However,
iry concern is the study of process networks. His paper only mentions in
he possibility of constructing event structures from concurrent transition
and that orthogonal term rewriting and lambda calculus reduction can give
kamples of such structures. However, finding such structures in these
requires taking the basic transitions to be not ordinary reductions, but
developments, which amounts to considering term graph reduction without
. The construction — which is the purpose of the present paper — is still
.

>xpect that the construction of event structures can also be applied in the
of infinite graphs and transfinite rewriting, as set out in [Ken91b]. The set
generalised to the set of Bohm-needed redexes of t — those redexes which
educed in any reduction of t which obtains every part of its Bshm tree (a
orrowed from lambda-calculus).

ctend this work to non-orthogonal systems, we would have to deal with the
y of conflicts among events. While event structures with a notion of conflict
<nown, all such structures in the literature depend on a conflict relation
symmetric: if event e; conflicts with e,, then e, conflicts with e;. This is in
ot the case for conflicts among redexes. Consider the rules F(A) — B, A —
is a conflict between these rules. The graph F(A) may be reduced either to
C). In this case, the conflict between the two redexes is symmetric. If one
sither redex, the other no longer exists. However, consider the graph
\),y). This again contains two conflicting redexes. Reducing the redex at y
s redex at x. But reducing the redex at x gives the graph D(x:B,y:A), in
redex aty is still present. A type of event structure based on an asymmetric
lation is therefore required.

clusion.

ny normalisable term graph t in an orthogonal term graph rewrite system,
ially different pieces of work which are required in the evaluation of t to
rm form an elementary event structure. The partial ordering embodies the
f one redex contributing to another. Redexes can be reduced in any order
¢ with the dependency relation.

issociated state domain is the set of Lévy-equivalence classes of needed
sequences starting from t. The top element corresponds to the reduction of
I form. The height of the partial ordering of Ev0(t) implies a lower bound

11

Event structures and orthogonal term graph rewriting

e required to reach the normal form by reduction, and the width implies an
nd on the amount of useful parallelism that can be employed.

:al appendix

'vy-equivalence and partial morphisms.

EM. Lévy-equivalent sequences determine the same partial morphism.

t is sufficient to establish this for the case where the two sequences have
>f those in the first axiom of Definition 2.2.1. That is, they are the two
smplete developments of a pair of redexes. The following lemmas do this.

MMA. In Figure 9, let the squares L;R,GH,; and L,R,GH, be pre-
; of disjoint redexes of G. Then H; and H, both pre-reduce to the same
vhich is obtained as the pushout of G=>H; and G=>H,. [J

L; = R
i ¥
L, > G = H,
)

R, » H, - H

Figure 9.

This is immediate from the fact that if L;R,GH; and GH;H,H are
so is LyR;H,H (and similarly interchanging 1 and 2). Disjointness of the
>xes ensures that the partial morphisms L;=>G=>H, and L,=>G=>H, are
es. U

MMA. Let *—>G pre-reduce to —H. Then GC(s— G) reduces to
b

t is enough to show this for a single step pre-reduction. Let GC(+—G) =
' and GC(*—H) = «—>G=>H". If the root of L is not in the domain of
', then the node changed by the reduction of L=>G, and all nodes added
:duction, are garbage in H. Thus G=H, and GC(— G) reduces to
by the empty reduction.

wise, take the pushout H" of G=>H and G=>G' (see Figure 10). H" is
ushout of L=*R and L=>*G=>G'. Since G=>G' is a restriction morphism,
>H". Therefore H=>H' factors through H=>H". Therefore
>G'=>H") = GC(¢—G=>H). [

12

Event structures and orthogonal term graph rewriting

d
T =%

= H'
A

l
Q «Q &t
2
PO

Figure 10.

A.1.3 LEMMA. In Figure 11, let G reduce to H; and H, by reduction of the redexes
ry =L;=»G and 1, = L,=>G. Then H; and H, both reduce to the same graph H,
which is obtained by garbage-collecting the pushout H' of G=>G, and G=>G,.

PROOF. From the preceding lemmas. []

. Ll =» Rl

x ¢ Y
L, > G = G; = H
4 7 \

R, » G, » G’

Y S
H, H
Figure 11.

This establishes the theorem. [

A.2. Non-equivalence of distinct steps of a sequence.

This section proves Theorem 6.3. We proceed by establishing properties of pre-
events which are of minimal length in their equivalence class. Equivalent minimal
pre-events are found to satisfy a much stronger equivalence relation. From this
Theorem 6.3 will then follow.

A.2.1 DEFINITION. A pre-event (s,r) is minimal if there is no (s',r') = (s,r) with
|s'] <|s].

A pre-event (s,1) is irredundant if every pre-event of s contributes to a later pre-

event of s-r. (Equivalently, if every pre-event of s is needed for the pre-event
(s,r).) Ul

A22LEMMA. Every minimal pre-event is irredundant.

PROOF. Let (s,r) be a counterexample of minimal lerigth. Let ry and r; be the first
two steps of s-r. By minimality of the counterexample, ry does not contribute to any
later step. Therefore ry does not create rq. Let r; = y/ry. If iy = s and r; =11, then
().rp) = (rg,11), contradicting minimality. Otherwise, s = 1yT;'s' =f, Iy (1g/ry)-s'. If
Io/Ty is empty, then (ry-s'.r) = (s,r) and ry-s' is shorter than s, contradicting
minimality. Finally, if ry/r; is nonempty, it does not contribute to any step of s'r,
and so ((rg/ry)-s',r) is a shorter counterexample. [

13

Event structures and orthogonal term graph rewriting

We can elaborate the above proof into an algorithm for transforming any pre-
event (s,r) into an equivalent irredundant pre-event.

A.2.3. THE MINIMISATION ALGORITHM. Firstly, note that if s is empty, (s,r) is
irredundant.

For nonempty s, we will deal with each step of s, from the last backwards. At
each stage, we will have transformed (s,r) into an equivalent pre-event'(so-ro-sl,rl),
where (s;,r;) is minimal. Initially, sq-ry = s and s; is empty (making (s;,ry)
irredundant).

If ((),ro) contributes to some later step of ry-s;-r;, then (rp-s;,rp) is
irredundant. Otherwise, we need the following lemma.

A24LEMMA. If (()r) does not contribute to any later pre-event of a sequence r-s,
then there is a sequence s' such that s = s'/rand [s] = |s'|.

PROOF. If s is empty this is trivial. Otherwise s = r'-s', where r does not create r'.
Then 1' = r"/r for some 1", and in the sequence (r/r")-s', if r/r" is nonempty, it does
not contribute to any later pre-event of the sequence. s' is shorter than s, so by
induction we may assume that there is an s" such that s' = s"/(t/r") and |s']| = |s"].
Then s = @"/1)-(s"/(t/™)) = (t"s")/r and |s| = |r"s"| O

Applying this lemma to the situation where ({),ry) does not contribute to any
later step of ry-s;-ry, we find that there is an s,r, such that s;-r; = (s5-1,)/ry and
|syry| = |syr;|. This implies that projection over ry does not erase any step of
$9:Ty, and that in particular 1y = 1,/(r¢/sy). Therefore (rg-s1,r7) = (s5,15). Since
(81,17) is irredundant, by Theorem A.3.2 (s,,15) is also. Furthermore (sy-Tg-$,1y) =
(sp°S2.T3).-

By continuing in this way, we process each member of s, obtaining in the end
an equivalent irredundant pre-event (s',r'). [

Notice that the above construction also provides us with a reduction sequence s"
such that s"r'-s"/s-r is empty. s" consists, roughly speaking, of the parts of s that
were not needed for (s,1).

A.2.5 DEFINITION. The number of steps of s which are needed for (s,r) is the
needed length of (s,1).

A.2.6 LEMMA. If the minimisation algorithm transforms (s,r) into (s',r), then |s'|
is the needed length of (s,1).

PROOF. Clear from the construction.]

A.2.7 DEFINITION. Two pre-events (s,r) and (s';r') are strongly equivalent if s =y
standr=r. [

14

Event structures and orthogonal term graph rewriting

A.2.8 LEMMA. If (s,r) = (s',1') then the needed lengths of the two pre-events are
equal. Furthermore, the respective results of applying the minimisation algorithm to
both are strongly equivalent.

PROOCF. It is sufficient to prove this when (s,r) and (s',r') are related by either of the
axioms of Definition 6.2. Since the second part of the theorem implies the first, it is
sufficient to prove only the second part.

For the second axiom, it is clear that the minimisation algorithm will produce
identical results given either (s,r) or (s-s',1/s").

For the first axiom, it is sufficient to take the case where r =r' and s =
o To (r1/19)-81 =, 8’11+ (ro/r1)+51 = §'. For s to be distinct from s', at least one of
r1/rp and 1y/r; must be nonempty. Assume r,/ry is nonempty.

Applying the minimisation algorithm, we may assume without loss of generality
that (s,,r) is minimal. We must show that the results of applying the algorithm on the
one hand to r;/ry and then 1y, and on the other hand to ry/r; (if nonempty) and 1y,
have the same length, and that this equality of length is preserved when we apply the
algorithm to sy. We shall prove these by induction on the length of s;.

For the base case, let s; be empty. Then the results of minimising ry-(r;/rp) and
11+(re/r1) will be either both 1y, (if ry erases 1), both ry (if 1; erases 1), or the same
two sequences (which are Lévy equivalent).

Let s; =1,:85. If 15 is not created by rq-(ry/rg), then there is an r,' such thatr, =
15'/(rg:(r1/19)) = 15'/(r1-(rp/ry)). The minimisation algorithm applied to ro-(r;/rg)-s,
will first move r,/ry past r,, and then into the rest of s;, and then do the same with
ro. The result will be equal to the result of applying the algorithm to
(1o/12)-((r1/r2)/(xo/T2))85, and prefixing ry'. Minimising r;-(rg/r;)-s; will produce
the same result as minimising (ry/ry")-((rg/1)/(r1/15)-s,, and prefixing ry'. Since s,
is smaller than s, the result follows by induction.

If r1/rg contributes to r, but 1y does not, then the minimisation algorithm applied
to 1g-(ry/rg)-s; will leave ry/ry where it is, and move ry past r,, giving
11Ty (1p/(r1°15))-8,, Where 1y =1,/(1rp/ry). It will then move the residual of ry into
S9, but we do not need to follow its subsequent fate. Applied to r;-(rg/r;)-s;, the
algorithm will move ry/r; pastr, to give ry-1y"-(ro/(r; 15))-s,, as before.

If ry contributes to r; but ry/ry does not, then ro/r; contributes to r, and r; does

not, which is equivalent to the preceding case.

If 1y and r;/ry both contribute to r,, then so do r; and rg/r;. The results of
minimising ry-(ry/rp)-s; and ry-(re/rq)-s; are therefore the respective results of
minimising 1y+(ry/rp) and r;-(rg/r;), each suffixed by s;, from which the theorem
follows. [J

15

Event structures and orthogonal term graph rewriting

MMA. (i) An irredundant pre-event is minimal.

nct redexes of the same term, considered as pre-events with empty history,
[uivalent.

@) If (s,r) = (s',r') and (s,r) is irredundant, then from Lemmas A.2.6 and
-r| <|s"r'|, ie. (s,r) is minimal.

nct redexes are minimal pre-events, yet not strongly equivalent. Hence (ii)
rom Lemma A.2.8. [

EMMA. If (sg,ro) = (s1,r7) and both (sg.1g)/s and (sy,r1)/s exist, then they
alent. '

t is sufficient to show this for the two cases of the definition of equivalence
ents. Each of these in turn follows from the Cube Lemma; see Figure

S1
S
\ " (Sg.1)/s \

Figure 12

% ro)/s’ — " burh

r)/s

REM. No two distinct pre-events of a reduction sequence are equivalent.
(sgrg) = (5¢:Tg-81:17)

> (SpsTg)/sg = (SpTges1,T1)/sg (Lemma A.2.10)

> ((te) = (xo°51,11)

> minimisation algorithm to (rg's;,r;). This must yield a pre-event of the
T5), such that r; =ry/(rg-s1). But ({},rg) and ({),r;) must be strongly
it, hence 1 = Iy, and 1,/(ry's;) cannot exist. []

évy-equivalent reductions have the same needed events.
REM. s; =1 s, iff Ev0(s;) = EvO(sp). O

The forwards implication is immediate from the definition of Ev0.

the converse, suppose §; ;é so. Choose sequences s'y and s'y Lévy-
tto s; and s, respectively and of minimal length. At least one of s';/s'; and

16

Event structures and orthogonal term graph rewriting

s'5/s'y must be nonempty. Supposing it is the first, consider the sequence
§'5:(s'1/s'y). By Theorem 6.3, no step in the second segment can be equivalent to
any step of s',. But every step of the second segment is equivalent to a step of s';.
Therefore Ev(s';) # Ev(s'y). But Ev0(s;) = Ev0(s';) = Ev(s,), and similarly for s,,
hence the theorem. [

A.4. The event structure of needed events.

6.9 THEOREM. ¢, < e; iff there is a sequence of the form sy-ry's;-r; such that
(sp,ro) is needed for (syry-8;,r7), and these two pre-events represent e and e,
respectively. ¢

PROOF. Let ¢; < e,. By the definition of the ordering, there must be a sequence
So'To S1:T; Where (sg,rg) and (sg1gsq,1;) represent ey and e, respectively. If (sg.rg)
were not needed for (sg'ry'sy,rq), then applying the minimisation algorithm to
(sp°Tps1,r1) would begin by transforming it to a form (sgrg-s'y,r';) with (s'1.1'y) a
minimal pre-event, and then eliminate ry. The final result would be a pre-event
(85,15) equivalent to (syry-81,17), and in which Ev(s,) is a subset of Ev(syTy+s;) not
containing e, (since by Theorem 6.3, no other pre-event of syry's; can be equlvalent
to (sg,rp)). But this contradicts eg < e;.

For the converse, suppose we have a sequence sy1ys;-17 of the stateél form. To
establish the ordering of the events, we must show that for any pre-event (s,,15)
equivalent to (sg'rg-s;,rq), S, must contain a pre-event equivalent to (sg,rg). It is
sufficient to do this for the cases where (s,,1,) is related to (sg1y's;,r7) by one of the
axioms for equivalence.

Axiom (i): sy =, sp'To's;. We may assume that s, and sy-Tg-s; are related by an
application of part (1) of definition 2.2.1 to a part of syrys;. If this part does not
include ry, then s, will have a pre-event (s'y,rp) equivalent to (sg,rp). Otherw1se

e

there are two cases.
(a) There exist s3 and r3#rg such that s, = sT3-(Tg/r3)-s3, §; = (Tg/r3)-s3, and 1, = .
If ro/r3 is nonempty, then (s¢-13,(ro/13)) = (5,1p). Otherwise, r3 erases ry. But this
implies that r3/ry erases every node which ry changes or creates. Therefore ry cannot
contribute to any step of s;-1; later than r3/ry. It cannot contribute to ra/ry either,
since this is a residual of a redex existing before ry. This contradlcts the hypothesis
that (sg,rg) is needed for (sy1g:51.1)-

(b) There exist s3, r3 and r, such that sy = s3-r3, 1y = 14/r3, and s, =
$3:T4(r3/14)-51. Then (83,14) = (sg.1p).-
Axiom (ii): There are three subcases.

(a) There exists r3 such that s, = sy1gs;°r3 and ry = 1y/r3. Then s, contains the
pre-event (Sg,Tp)-

17

Event structures and orthogonal term graph rewriting

exist s3 and r3 such that s; = 8313, 1y = 1y/r3, and s, = syTy's3. Again, s,
> pre-event (sg,Ig).

apty, s; = sg, and there exists 1, such that I = Iyfry. But this implies that
“Tg*$1,T1), contradicting Theorem 6.3.

EM. Ev0(G) with the partial ordering inherited from Ev(G) (of which it
section) is an elementary event structure. Its associated domain of
ns is isomorphic to LGO(G). The resulting partial ordering of LGO(G) is
the ordering defined by Huet and Lévy [HueL91]: s<s' iff s/s' is empty.

s immediate that EVO(G) is a lower section of Ev(G). Nodes of LGO(G)
correspondence with Lévy-equivalence classes of needed reduction
which by Theorem 6.6 are in 1—1-correspondence with EvO(G).

nfiguration domain of EvO(G) is the set of lower sections, ordered by the
ion. Let s and s' be needed reduction sequences. If s/s' is empty, then s'
therefore Ev0(s) ¢ EvO(s'). Conversely, suppose EvO(s) ¢ EvO(s). In
e §'-(s/s"), every step in the s/s' segment is equivalent to some step of s,
ypothesis to some step of s'. But by Theorem 6.3 there can be no such
fore s/s' is empty, and s<s'. [

-es

endregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J R., Plasmeijer,
., and Sleep, M.R., Term graph rewriting, Proc. PARLE’87 Conference II, LNCS
', 141-158, (Springer-Verlag, 1987).

Tmann, B. and Plump, D., Jungle evaluation for efficient term rewriting, Proc. Int.
rkshop on Algebraic and Logic Programming, eds. J. Grabowski et al, Mathematical
earch, 49, 191-203, (Akademie-Verlag, 1988).

t, G. and Lévy, J.-J., Computations in orthogonal rewriting systems: I and II, in J.-
-assez and G.D. Plotkin, eds., Computational Logic: Essays in Honor of Alan
inson, 394-443 (MIT Press, 1991).

wmaway, J.R., Graph rewriting in some categories of partial morphisms, in Proc. Int.
‘kshop on Graph Grammars and their Application to Computer Science, Bremen,
S 532, 490-504, (Springer-Verlag, 1991).

naway, JR., Klop, J.W., Sleep, M.R., and de Vries, F.J., Transfinite reductions in
ogonal term rewriting systems, Proc. Conference on Rewriting Techniques and
lications, LNCS 488, 1-12, (Springer-Verlag, 1991).

¥, J.-J., Reductions correctes et optimales dans le lambda-calcul, These de doctorat
at, Université Paris VII, 1978.

¥, J.-J., Optimal reductions in the lambda calculus, pp.159-191 in To H.B. Curry:
iys on combinatory logic, lambda calculus and formalism, eds. J P. Seldin, and J.R.
Hey, (1980).

sen, M., Plotkin, G.D., and Winskel, G., Petri nets, event structures, and domains,
1, Th. Comp. Sci., 13, 1981.

o Jones, S.L., The Implementation of Functional Languages, (Prentice-Hall, 1987).

18

[Sta80]

[Sta89]
[Win80]

Event structures and

Staples, J., Computation on graph-
(1980).

Stark, E.W., Concurrent transition sy

Winskel, G., Events in Computati.
University of Edinburgh, (1980).

m graph rewriting
. Th. Comp. Sci., 10, 171-185,

. Sci., 64, 221-270, (1989).
3, Dept. of Computer Science,

