2

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Perpetual reductions in orthogonal combinatory
reduction systems

Z. Khasidashvili

Computer Science/Department of Software Technology

Report C5-R9349 July 1993

CWI is the National Research Institute for Mathematics and Computer Science. CWI is pc
the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathem
and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scientific Research (NWO). CWI
member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 S) Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Perpetual Reductions in Orthogonal Combinatory Reduction Systems

Zurab Khasidashvili

cwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

We design a strategy that for any given term ¢ in an Orthogonal Combinatory Reduction System (OCRS) (that is, a
Term Rewriting System with bound variables and substitutions) constructs a longest reduction starting from £ if ¢ is
strongly normalizable, and constructs an infinite reduction otherwise. We develop a method for finding the least upper
bound of lengths of reductions starting from a strongly normalizable term. We study properties of pure substitutions
and several kinds of similarity of redexes. We apply these results to construct an algorithm for finding lengths of

longest reductions in “strongly persistent” OCRSs. As a corollary, we have an algorithm for finding lengths of longest
developments in orthogonal CRSs.

AMS Subject Classification (1991): 68Q42.
CR Subject Classification (1991): Fa.2, F4.1.

Keywords € Phrases: orthogonal combinatory reduction systems, perpetual reductions, strong normalization,
reduction strategies, strongly persistent combinatory reduction systems.
Note: Part of this work was completed during an enjoyable visit of the author at CWI in the summer of 1993.

1. INTRODUCTION

A strategy is perpetual if, given a term ¢, it constructs an infinite reduction starting from ¢ whenever
such a reduction exists, that is, whenever ¢ is not strongly normalizable. Perpetual strategies
are mostly interesting because termination of a perpetual reduction (constructed according to a
perpetual strategy) implies strong normalization of the initial term. For orthogonal (left-linear
and non-overlapping) TRSs a very simple perpetual strategy exists — just contract any innermost
redex [20]. In fact, any complete strategy, i.e., a strategy that in each term contracts a redex that
does not erase any other redex, is perpetual. Moreover, one can even reduce redexes all erased
arguments of which are strongly normalizable [15].

It is easy to see that in any infinite reduction a redex that itself has an infinite reduction, called
an infinite redex, is contracted. Thus in order to construct an infinite reduction one should try
to retain at least one “potential” infinite redex — a subterm that can become an infinite redex
(more precisely, that has a descendant under some reduction that is an infinite redex). Thus any
strategy that does not erase potential infinite redexes is perpetual. In OTRSs, any potential infinite
redex necessarily has an infinite reduction. That is why all the above strategies are perpetual. In
orthogonal Combinatory Reduction Systems (that is, TRSs with bound variables and substitution
mechanism [14, 8, 19, 10]) a strongly normalizable subterm may also be a potential infinite redex —
after contraction of an outer redex a term can be substituted in it that makes the subterm no more
strongly normalizable. Thus innermost reductions and complete reductions are no more perpetual
in OCRSs. Therefore one can erase only strongly normalizable arguments in which no substitution

of external subterms is possible. For the lambda-calculus, such a strategy was found by Barendregt
et al. [3].

Report CS-R9349
ISSN 0169-118X
Cwi

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2. Orthogonal Combinatory Reduction Systems 2

In this paper, we design a perpetual strategy for all orthogonal combinatory reduction systems.
Our aim is not only to construct an infinite reduction of any given term ¢t whenever it exist, but also
to construct a longest possible one if ¢ is strongly normalizable. Thus we will be able to characterize
the complexity of computations of terms. The idea is that, as mentioned above, in order to construct
perpetual reductions one should try to avoid erasure of redexes in which substitution of terms is
possible during reductions of outer redexes. On the other hand, in order to construct the longest
possible reductions one should delay contraction of a redex until it will no more be possible to
copy it by reducing an outer redex. The two conditions agree if in each term s one contracts a
limit redex, which is defined as follows: choose in s an unabsorbed redex uy, i.e., a redex whose
descendants never appear inside redex-arguments; choose an erased argument s; of u; that is not
in normal form; choose in s; an unabsorbed redex us, and so on, as long as possible. The last
chosen redex is a limit redex of s.

An unabsorbed redex exists in any term not in a normal form, but there is no general algorithm
to find one. So we define some classes of OCRSs, such as non-absorbing, non-left-absorbing, and
non-right-absorbing systems, for which the unabsorbed redexes are easy to find. For example, in
non-left-absorbing systems, no subterm can be absorbed to the left of the contracted redex, so the
leftmost-outermost redexes are unabsorbed. (In particular, the A-calculus and the combinatory
logic are non-left-absorbing.)

We develop a method for proving that the reductions constructed according to our perpetual
strategy are indeed the longest, and for finding their lengths. Our method is similar to the Neder-
pelt’s method [18], invented to reduce proofs of strong normalization to proofs of weak normalization
(i.e., existence of a normal form). For any OCRS R, we define the corresponding non-erasing OCRS
Ry, called the u-extension of R. We add fresh function symbols p™ of arity n (n = 0,1,...) in the
alphabet of R. For any R-rule r : t — s, we keep the erased arguments of ¢ in the right-hand side
of each corresponding R,-rule r, : t' — s’ as “u-erased” arguments of s'. Since this transformation
affects the structure of redex-creation in R, and since erasure of arguments of a redex depends
not only on the rule, but the arguments themselves, we have to introduce infinitely many R,-rules
for each R-rule. This helps to have a natural translation of R-reductions into R,-reductions and
vice-versa. Finally, we keep also all y-symbols of ¢’ as u-erased symbols in ¢/, since they can be
used as “counters” of steps in longest normalizing reductions. We then show that a term o in
an OCRS R is strongly normalizable if it is weakly normalizable in R,, and that the least upper
bound of lengths of R-reductions starting from o coincides with the number of y-occurrences in the
R,-normal form of o.

To find this number, sometimes it is not necessary to do actual transformation of 0. We show
this for the case of strongly persistent CRSs, where creation of redexes is not possible during “pure
substitution steps”; creation is only possible during the “TRS part” of reduction steps, and the
arguments of a contracted redex and the context in which the reduction takes place do not take part
in the creation. This kind of creation we call generation. We define several notions to characterize
similarity of redexes in OCRSs. The above results relay on the fact that strongly similar redexes
generate the same number of strongly similar redexes.

2. ORTHOGONAL COMBINATORY REDUCTION SYSTEMS

Combinatory Reduction Systems have been introduced in Klop [14] to provide a uniform framework
for reductions with substitutions, as in the A-calculus and its extensions [2]. Different formalisms
are proposed in Kennaway and Sleep [8] ((Functional) Combinatory Reduction Systems), Khasi-
dashvili [9] (Expression Reduction Systems), and Nipkow [19] (Higher-order Rewrite Systems).

2. Orthogonal Combinatory Reduction Systems 3

They are extensions of Term Rewriting Systems [5, 15] by means of variable binding and sub-
stitution mechanisms. Restricted notions of CRSs were first introduced in Pkhakadze [22] and
Aczel [1]. A comparison of some formalisms of rewriting systems with bound variables and substi-
tution mechanism (referred to also as higher order rewrite systems), can be found in van Oostrom
and van Raamsdonk [21]. A survey paper is Klop et al. [16]. Here we describe a system of higher
order rewriting as defined in Khasidashvili [10]; it is based on the syntaxs of [22].

Definition 2.1 (1) Let X be an alphabet, comprising variables vy, vy,...; function symbols, also
called simple operators; and operator signs or quantifier signs. Each function symbol has an arity
k € N, and each operator sign ¢ has an arity (m,n) with m,n # 0 such that, for any sequence
Z1,...,Tm of pairwise distinct variables, oz ...z, is a compound operator or a quantifier with arity
n. Occurrences of x1,...,%m in 021 ...z, are called binding variables. Each quantifier o1 ... Ty,
as well as corresponding quantifier sign o and binding variables z; ...z, has a scope indicator
(k1,..., k) to specify the arguments in which oz ...z, binds all free occurrences of z1, ..., Zm.
Terms are constructed from variables using functions and quantifiers in the usual way.

(2) Metaterms are constructed from terms, term metavariables A, B, ..., which range over terms,
and object metavariables a, b, ..., which range over variables. Apart from the usual rules for term-
formation, one is allowed to have metasubstitutions — expressions of the form (A1 /ay, ..., An/an) Ao,
where a; are object metavariables and A; are metaterms. Metaterms that do not contain metasub-
stitutions are called simple metaterms. An assignment maps each object metavariable to a variable
and each term metavariable to a term over X. If ¢t is a metaterm and @ is an assignment, then the
6-instance t0 of ¢ is the term obtained from ¢ by replacing metavariables with their values under 6,
and by replacing subterms of the form (t;/z1,...,tn/Zn)to by the result of substitution of terms
t1,...,t, for free occurrences of z1,...,z, in t.

Definition 2.2 (I) A Combinatory Reduction System (CRS) is a pair (£, R), where ¥ is an al-
phabet, described in Definition 2.1, and R is a set of rewrite rules r : ¢ — s, where ¢t and s are
metaterms such that ¢ is a simple metaterm and is not a metavariable, and each term metavariable
that occurs in s occurs also in t. Further,

(1) The metaterms ¢ and s do not contain variables, and each occurrence of an object metavariable
in ¢t and s is bound. The metaterm s may contain occurrences of object metavariables that do not
occur in t. They are called additional object metavariables.

(2) Each rule r : t — s has a set of admissible assignments AA(r) such that, for any assignment
6 € AA(r), ‘

(a) occurrences of variables in sf that correspond to additional object metavariables of s do not
bind variables in subterms that correspond to term metavariables of s.

(b) For any term metavariable A and any object metavariable a occurring in ¢ or s, an occurrence
of A in s is in the scope of an occurrence of af in s6 iff any occurrence of A6 in @ is in the scope
of an occurrence of af in t6.

(c) For any rule r : t — s in R and any assignment § € AA(r), t4 is an r-redex or an R-redex,
and sf is the contractum of t6. Redexes that are instances of the left-hand side of the same rule
(i.e., with the same set of admissible substitutions) are called weakly similar.

(I) R is simple if right-hand sides of R-rules are simple metaterms.

Example 2.1 Operator signs 3 and 3! for “there exists” and “there exists exactly one”, having the
arity (1,1) and the scope indicator (1), can be defined using Hilbert’s operator (sign) 7 as follows:

daA — (raAfa)A

2. Orthogonal Combinatory Reduction Systems 4

JlaA — JaA AVaVb(AA (bfa)A = a = b)

where V is the quantifier sign with arity (1,1) and scope indicator (1) for “for any”. Any assign-
ment is admissible for the 3-rule. An assignment 6 is admissible for the J!-rule iff b0 ¢ FV(Af).
Obviously, b is an additional object metavariable.

[}

Remark 2.1 Terms o and e are called congruent, notation o £ e, if o is obtained from e by
renaming bound variables. The conditions in Definition 2.2 imply that, for any rule r : t — s, if
,8' € AA(r), then t6 = t0' implies s6 = s6’. Below we identify all congruent terms.

Notation We use a,b for object metavariables, A, B for term metavariables, c¢,d for constants,
t, 8,¢,0 for terms and metaterms, u, v, w for redexes, o for operators and operator signs, and P, Q
for reductions. We write s C t if s is a subterm of . A one-step reduction in which a redex u in a
term ¢ is contracted is written as t — s or t — 5. We write P : t —» s if P denotes a reduction of
t to s. |P| denotes the length, i.e., the number of steps, of P. If the last term of P coincides with
the initial term of @), then P + Q denotes the concatenation of P and Q. @, or simply §, denotes
the empty reduction of a term t; the symbol 0 is also used to denote the empty set.

Definition 2.8 A term ¢ in a CRS R is said to be in normal form (nf) or to be a nf if it does
not contain redexes. If s — ¢ and ¢ is a nf, then ¢ is called a normal form of s. A term is called
weakly normalizable if it has a nf and is called strongly normalizable if it does not possess an infinite
reduction. A CRS R is called weakly normalizing (resp. strongly normalizing) if each term in R is
weakly normalizable (resp. strongly normalizable).

Definition 2.4 Let t — s be a rule in a CRS R and 6 be an assignment. Subterms of a redex
v = 6 that correspond to term metavariables of ¢ are the arguments of v, and the rest is the pattern
of v. Subterms of v rooted at the pattern are called the pattern-subterms of v. If R is a simple CRS,
then arguments, pattern, and pattern-subterms are defined analogously in the contractum sf of v.

Definition 2.5 A rewrite rulet — sin a CRS R is left-linearif ¢ is linear, i.e., no term metavariable
occurs more than once in ¢. R is left-linear if each rule in Risso. R = {r;|i € I} is non-ambiguous
or non-overlapping if in no term redex-patterns can overlap, i.e., if r;-redex u contains an r;-redex
u' and i # j, then v’ is in an argument of u, and the same holds if 7 = j and v/ is a proper subterm of
u. R is orthogonal (OCRS) if it is left-linear and non-overlapping, and if v and w are any R-redexes
such that w is in an argument of v and v 5 ¢/, then v' is also a redex weakly similar to v.

Definition 2.6 The CRS S is a CRS comprising rules of the form
S”’Ha,l .. .anAl e AnA — (Al/al, e ,An/an)A, n= 1, 2, ey

where S™t! is the operator sign of substitution with arity (n,n + 1) and scope indicator (n + 1),
and ai,...,a, and Aj,..., Ay, A are pairwise distinct object and term metavariables, respectively.
Each assignment is admissible for any rule in S. We call A;,..., A, the mobile arguments of S**!
and call A immobile. (In the sequel we omit the superscript in S™*1.)

Definition 2.7 Let R = {r;: t; — s; | i € I} be an OCRS. If R is simple, then Rfg =gef Rf =gef
R, and otherwise Rfg =45 Ry U S, where

1. S = {Sai...an41... AL A — (A1/a1,...,Anfan)A | n = 1,2,...}. All assignments are ad-
missible for S-rules. (We assume that symbols 8™ do not occur in the alphabet of R. The
arity and the scope indicator of S**! coincide with that of S™t1).

2. Orthogonal Combinatory Reduction Systems 5

2. Ry = {r} : t; — 8|1 € I}, where s} is obtained from s; by replacing all metasubstitutions
(t1/a1, ..., tn/an)t with S™lay ... a,t1 ... tat, respectively.

3. An assignment 6 is admissible for an Ry-rule r} iff the assignment fg that to each term
metavariable A assigns the S-normal form of A8 and that coincides with 6 on object metavari-
ables is admissible for r;.

4. For each step e = C[t;§] = Cls;f] = o in R (corresponding to the rule r; and an admissible
assignment @) there is a reduction P : e = C[t;0] — C[sif] - C[sf] = o in Ryg, where
C[s'6] — C[sf] is the rightmost innermost normalizing S-reduction. We call P the ezpansion
of u and denote it by Ez(u). The notion of expansion generalizes naturally to arbitrary
R-reductions.

Definition 2.8 1. Let t = s in a simple OCRS and e be the contractum of » in s. For each
argument t* of u there are 0 or more arguments of e. We call them (u—)descendants of t*.
Correspondingly, subterms of t* have 0 or more descendants. The descendant of each pattern-
subterm of u that is not a variable is e. (We do not define descendants of “variable pattern-
subterms”, which are binding variables). It is clear what is to be meant under descendants of
subterms that are not in u. The notion of descendant extends naturally to arbitrary reductions
in simple OCRSs.

2. Let t -5 s, where u = Sz1...Znt1...tnto, and let e be the contractum of u in s. For each
mobile argument ¢; of u (= 1,...,n) there are substituted occurrences of ¢; in e. We call
them wu-descendants of t;. By definition, they also are u-descendants of corresponding free
occurrences of the variable z; in tp. Subterms in ¢; have the same number (possibly none) of
descendants in s. The descendant of u is e. It is clear what is to be meant under descendants
of subterms that are not in u, or are in ¢y and are not free occurrences of variables z1,...,Zn,.
The notion of descendant extends naturally to S-reductions with 0 or more steps.

3. Let P:t - sin an OCRS R and let @ = Ex(P). It is clear from (1) and (2) what is to be
meant under @)-descendants of subterms in t. We call a subterm o' € s a P-descendant of a
subterm o € ¢ if o' is a @-descendant of o, and call o in this case a P-ancestor of o'.

4. Let t = s. Descendants of all redexes of ¢t except u are also called residuals. By definition, u
does not have residuals in s. A redex v C s is a (u)-new redex or a created redex if it is not
a residual of a redex in ¢t. The notion of residual of redexes extends naturally to reductions
with O or more steps.

Definition 2.9 We call the co-initial reductions P : t —» s and Q : t —» e strictly equivalent (written
P =4 Q) if s = e and P-descendants and @-descendants of any subterm of ¢ are the same in s
and e.

Notation If F is a set of redexes in ¢t and P : t - s, then F/P denotes the set of all residuals
of redexes from F in s. If F = {u}, then we write w/P for {u}/P. In the following, F' will also
denote a complete F-development, where the residuals of redexes from F' are contracted as long as
possible. Similarly, if u € ¢, then u will also denote the reduction ¢t = s.

Definition 2.10 Let Q : t -» s and t = e. Then the residual Q/u of Q by u is defined modulo
permutation of non-overlapping steps by induction on |Q)| as follows. If @ = @, then Q/u = 0. If

Q=Q +v, then Q/u=Q'/u+v/(u/Q").

3. Properties of S-reductions 6

Definition 2.11 Let P:t-» s and Q : t —» e. Then the residual P/Q of P by @ and the residual
Q/P of @ by P are defined modulo permutation of non-overlapping steps by induction on |P| as
follows.

(1) If P = 0;, then P/Q =0, and Q/P = Q.

(2) If P= P' +u, then P/Q = P'/Q +u/(Q/P') and Q/P = (Q/P)/u.
We write PUQ for P+ Q/P.

Theorem 2.1 (Strict Church-Rosser [10]) Let R be an OCRS, and P and Q be co-initial
reductions in R. Then PUQ ~,; QU P.

3. PROPERTIES OF S-REDUCTIONS

In this section, we study some properties of substitutions. In particular, we prove a strengthéned
version of the Replacement Lemma [12].

Definition 3.1 Let ¢ be a term in an OCRS. We call a subterm s in ¢ essential (written ES(s, t))
if s has at least one descendant under any reduction starting from ¢ and call it inessential (written
IE(s,t)) otherwise.

The notion of essenf:iality is a generalization of the notion of neededness [7, 17] in a way that it
works for all subterms, bound variables in particular. The following two lemmas are valid for all
OCRSs; the proofs are similar to the case of orthogonal TRSs [11].

Lemma 3.1 Let sp,...,s; C ¢ be such that IFE(s;,t) for all i = 0,...,k. Then there exists a
reduction P starting from ¢ such that none of the subterms sg, ..., s; have P-descendants.

Proof Let P; be a reduction starting from t such that s; does not have P;-descendants (P; exists
since IE(s;,t)). Then, by Theorem 2.1, one can take P = (... (PLUP)U...UR,).

Lemma 3.2 Let P: ¢ —»t' and s C t. Then IE(s,t) iff any P-descendant s’ of s is inessential in
t'. In particular, if ¢ is a normal form, then ES(s, t) iff s has a P-descendant.

Proof (=) Let IE(s,t). Then there is some reduction Q starting from ¢ such that s does not have
@-descendants. By Theorem 2.1, P+Q/P =, Q+ P/Q. Hence, s' does not have P/Q-descendants,
ie., IE(8,t'). («) If all u-descendants of s are inessential in ¢, then, by Lemma. 3.1, there is some
reduction P’ starting from ¢' under which none of them have descendants. Thus s does not have
P + P'-descendants, i.e., IE(s,t).

Notation Below EFVp(t) denotes the set of variables having R-essential free occurrences in ¢ and
FV(s) denotes the set of variables having free occurrences in s. We write t = (£,/ /e, ..., tx //ex)e
if ¢ is obtained from e by replacing non-overlapping proper subterms ey,..., e, in e with ¢;,. .. s by
respectively. For any s C t, BVg(s) denotes the set of free occurrences of s bound by quantifiers
belonging to patterns of R-redexes that are outside s.

Definition 3.2 Let u = Sz;...z,t1...tyto and tp be an S-normal form of #g. A subterm e in u
is called u-inessential (written IE(u;e)) if e is in ¢; for some (1 <4 < n) and z; ¢ FV(t}).

Lemma 3.3 Let u = Sz1...%4l1...tatg C t. Then IEg(u;t;) iff ; ¢ EFVs(tg).
Proof By Lemma 3.2, if t; is the S-normal form of ¢, then EFVs(to) = FV (t}).

Lemma 3.4 Let s C t. Then IEg(s,t) iff IEs(u; s) for some S-redex u in t.
Proof sketch One can take for u the redex whose residual erases all descendants of s in the
rightmost innermost normalizing S-reduction. '

4. Perpetual strategies in OCRSs 7

Lemma 3.5 Let e C s Ct. Then ESg(e,t) iff ESs(e, s) and ESg(s, t).
Proof (=) From Definition 3.1. (<) By Lemma 3.4, the redex that would make e inessential can
neither occur in s nor contain s in its argument.

Lemma 3.6 Let s = (s1//t1,...,8,//ts)t, where s; and t; do not contain S-redexes, and let
ESs(siys) = BVs(t;) € BVs(s;) (i = 1,...,n). Further, let s’ and ¢ be any corresponding
subterms in s and ¢ that are not in replaced subterms. Then IEg(s/,s) = IEg(t', t).

Proof By induction on the length of s. If ¢ and s are not S-redexes, then the lemma follows
easily from Lemma 3.4 and the induction assumption. So suppose that ¢t = Sz;...Zme1...emeo,
8§ = 8T1...Zm01...0m00, 8' C o, and IEg(s,8). If IEg(s',0;), then by the induction assump-
tion IEs(t',e;) and hence IEg(t',t). Otherwise, by Lemma 3.5, we have IEg(o;,s). Hence, by
Lemma 3.4, IE5(s;0;). Thus, by Lemma 3.3, z; ¢ EFVs(0p). Let us show that z; ¢ EFVs(eg).
By Lemma 3.4, if s; C op, then ESg(s;,s) iff ESg(s;,00). Hence, for any S-essential subterm
8i, BVs(t;) C BVs(s;). By the induction assumption, if z; has an S-essential occurrence in eg
outside of replaced subterms, then the corresponding occurrence of z; in o is S-essential. If z;
has an S-essential occurrence in a subterm ¢; C eg, then, by Lemma 3.5, ESs(tj,ep). By the
induction assumption, ESg(sj,00). Hence BVs(t;) C BVs(s;). Thus Since t; <g s;, z; has a
free occurrence in s;. Since s; does not contain S-symbols, it follows from Lemma 3.4 that this
occurrence is S-essential in s; and hence, by Lemma 3.5 and ESs(s;,09), is S-essential in op.
Hence z; ¢ EFVg(ep) and, by Lemma 3.3, I Es(t; €;). Therefore, by Definition 3.2 and Lemma 3.4,
IEs(t;t') and IEg(t,t).

Remark 3.1 The above lemma is a strengthened version of the Replacement Lemma [12].

Definition 3.3 Let u = C[s;,...,s,] be a redex with context C[] and arguments sy,..., sp.
Further, let ji,...,jr be the maximal subsequence of 1,...,n such that sj,,.. .,8j, do not have
u-descendants, and i1, ..., imy, be the maximal subsequence of 1,...,n such that s;,,...,s;_ dohave
u-descendants. We call ji, ..., ji the erased sequence of u or the u-erased sequence, call 8j1yeees 84y
(u-)erased arguments, call i1,...,%, the (u-)main sequence, and s;,,...,s; (u-)main arguments.

Notation Let C[A,...,A,] be the left-hand side of a rule r in an OCRS R, where C[,...,]
is a context and Aj,..., A, are term metavariables. Sometimes we write Cla1Ay,...,a,4,)] for
C[Ay,..., An], where @; is the set of metavariables {aj,...,a;, } such that A4; is in the scope
of an occurrences of each object metavariable from @;. Correspondingly, an r-redex is written
Clzit1, ..., Tnts], where t1,...,t, are arguments and t; is in the scope of each variable from z; =
{.’Bil, e 7$in,-}'

Lemma 3.7 Let u = C[Zit1,...,Thts] and v = C[§7s1,...,Tnsn] be weakly similar redexes, let
mi,...,m; be the v-main sequence, ni,...,n; be the v-erased sequence, and let for each j =
Loyl 2 Ty N FV(tm;) © Tm; N FV(8m;). Then ty,,...,tn, are (not necessarily all) u-erased
arguments.

Proof Let u — t — 0 and v — s — e be expansions of u and v, respectively. Then s can be
obtained from ¢ by replacing descendants of t1, ... ,t, with 81, ..., 8, respectively. By Definition 3.3
all descendants of sp,,...,s,, are S-inessential. Therefore it follows from conditions (a)-(b) of
Definition 2.2 and the assumptions that if ¢; and &} are corresponding descendants of ¢; and s; in ¢
and s, then ESg(s],s) = BVg(t;) C BVg(s;). Thus the lemma follows from Lemma 3.6.

4. PERPETUAL STRATEGIES IN OCRSs
In this section, we design a strategy that for a term ¢ in an OCRS constucts a longest reduction
when ¢ is strongly normalizable, and constructs an infinite reduction otherwise. We give also a

4. Perpetual strategies in OCRSs 8

method to determine the lengths of longest reductions of strongly normalizable terms. Our method
is similar to Nederpelt’s method [18], by which proving strong normalization in a typed A-calculus
gets reduced to proving weak normalization. Nederpelt’s method was reinvented and used by
Klop [14] for orthogonal CRSs. Some of the results of this section can also be found in Klop [14];
our proofs are simpler.

Definition 4.1 The p-extension (X,, R,) of an OCRS (X, R) is defined as follows:

1. ¥, =2u{g"|n =0,1,...}, where u" is a fresh n-ary function symbol. For any subterm
8 = p"(t1,...,tn, to) of a term t over Z,, the arguments 3,...,%,, as well as subterms and
symbols in ti,...,t, and the head-symbol u itself, are called u-erased or more precisely u'-erased,
where y' is the occurrence of the head symbol of s in t. The argument tp is called y/-main. Symbols
and subterms in ¢ that are not u-erased are called p-main. We denote by [t], the term obtained
from ¢ by removing all u-erased symbols.

2. R, is the set of all rules of the form r, : t' — s’ such that

(a) there is a rule r : t — s in R such that [¢'], = ¢;

(b) the term ¢’ is linear (i.e., no term metavariable appears twice or more in t');

(c) the head symbol of ' is not a u-symbol, i.e., it coincides with the head symbol of ¢;

(d) the u-erased arguments of each occurrence ' of a p-symbol in ¢’ are term metavariables, and
the y/-main argument is not a term metavariable (i.e., is headed by a function symbol from ¥ or a
p-symbol);

(e) Let Ay,..., A, be the enumeration from left to right of all y-main term metavariables of
t', By,...,B; be the enumeration from left to right of all u-erased term metavariables of ¢/, let
Agy..., Ay be a subsequence of Ay, ..., A,, and let k be the number of occurrences of u-symbols
in £. Then

! 0 0
8 =/-l‘m(iu’ PRy 4 ,Bl,---,Bj,Ail,---,Ail,S)

wherem=k+j+1+ 1.

3. An assignment 6 is admissible for r, iff

(f) the arguments A;,6, ..., A; 0 of the redex ¢'6 do not have descendants under the reduction
step t — sf; and

(g) the assignment 6, such that A6, = [A6], and af, = af for any term metavariable A and
object metavariable a is admissible for T.

4. We call R, and R p-corresponding OCRSs, and call r, and r corresponding rules.

5. For any ru-redex u = t'8, we call arguments that correspond to A;,,...,A; quasi-erased
arguments of u, and call the arguments that correspond to other metavaria.bles from A,,..., A,
quasi-main.

Example 4.1 Let R = {r : f(c,z) — d}, where c and d are constants. Then R,-rules have the
form

f(uk(Al,'-'1Ak—1)ul(B1a-"1Bl—1"'-”m(01)' m—l:c)))1$)
M(”'Oa LR ,ll‘o, Ala SRR Ak—ly Bl Bl-—ls Cl Om—l: A7 d)

For example, r, : f(u2(B,p*(C,c),A) — pb(ul, % B,C, A,d) is an R,-rule. For any r,-redex
t = f(p?(o, 43(s,¢)),€), [t]u = f(c,€) is an r-redex, t' = p(u®, u°, 0,s,€,d) is the contractum of ¢,
and [t'], = d is the contractum of f(c,e).

4. Perpetual strategies in OCRSs 9

Example 4.2 Consider the S-rule of the A-calculus
B : Ap(AaA, B) — (B/a)A

On the picture below, two (,-rules with the same left-hand side and different right-hand sides are
shown.

/N 7N

pul w° A B C (E/a)D
I
VRN ~
/// / \\\\\
D ©®° A B C E (E/a)D

The arguments A and B are p-erased and E and D are y-main. An assignment 6 is admissible for
the first rule iff af € FV(D@) and is admissible for the second one iff af ¢ FV(D#).

Lemma 4.1 Let R be an OCRS, ¢ be a term in R,, let []u = t', let u be a p-main S-redex in ¢,

v’ be its p-corresponding S-redex in #/, let t—»s, and t'%s'. Then (8], =5

Proof Let e C s be the contractum of u and e’ C s’ be the contractum of «'. It is enough to show
that [e], = ¢'. Let u= Sz ...2pt1...tato. Then e = pt;, ... t;, th, where th = (t1/21,...,tn/Zn)to
and tzl, -1 by, are erased arguments of u. Thus [e], = [to]u, ¥ =[], = Sz1 ... zofti]s . . . [Erlultol s,
and ¢ = ([tl]”/zl, -s [tn)u/Zn)[to]u. An occurrence o in [e], = [th], is p-erased iff it is in a
substituted occurrence t; of ¢; and is p-erased in t{, or o is outside of substituted occurrences of
t1,...,tn in ¢y and there is a p-occurrence p' outside of these substituted occurrences such that o
is y'-erased. In the first case the ancestor of o is p-erased in ¢; and in the second case the ancestor
of 0 is p~erased in to. Thus [e], = [to], = ([t1lu/21, .- .) [Enlu/Zn)[to], =

Lemma 4.2 Let t be a term over ¥, the head-symbol of which is not a pu-symbol, and let [t], = s.
Then t is an ry-redex iff s is an r-redex, where r, and r are corresponding rules in R, and R,
respectively. Moreover, if t' is the contractum of ¢ in R, and ¢ is the contractum of s in R, then
[ty =¢"

Proof From Definition 4.1 and Lemma 4.1.

Corollary 4.1 Let R be an OCRS and sy =3 s; 2 ... be a reduction in R. Then, for any term £g
in Ry, such that [to], = so, there is a reduction o =3 ¢t; =3 ... in R, such that [t;], = s;, and u; and
v; are corresponding subterms in s; and ¢; (1 =0,1,...).

Notation |||/, denotes the number of occurrences of y-symbols in ¢.

Proposﬂ;mn 4.1 (1) Let R be an OCRS, u and v be R,-redexes such that u is in an argument of

v, and let v>w in R,. Then w is an R,-redex weakly s1m11ar to v, and quasi-main sequences of v
and w coincide.

4. Perpetual strategies in OCRSs 10

(2) Let u be a redex in an OCRS R and v be an R,-redex such that [v], = u and the sets of free
variables of quasi-main arguments of v coincide with that of corresponding arguments of u. Then
an argument of v is quasi-erased iff the corresponding argument of u is erased.

(3) Let u be a redex in an OCRS R and v be an R,-redex such that [v], = u. Then the
corresponding argument of any quasi-erased argument of v is u-erased.

Proof The proposition is a corollary of Lemma 3.7.

Lemma 4.3 If R is an orthogonal CRS, then so is R,,.

Proof Any overlap of patterns of two R,-redexes in a term ¢ over £, causes also an overlap of
patterns of corresponding R-redexes in [t],. Hence, since R is non-overlapping, so is R,. If u and
v are Ry-redexes such that v is in an argument of v and u->w, then, by Proposition 4.1.(1), w is
weakly similar to u. Therefore, R, is orthogonal (because it is left-linear).

Lemma 4.4 Let R be an OCRS. Then R, is Church-Rosser.
Proof From Lemma 4.3 and Theorem 2.1.

Lemma 4.5 Let t be a term in an OCRS R. If t is weakly normalizable in R,, then t is strongly
normalizable in R, and R.

Proof Let's bean R,-nfoftandt-—1¢; — ... bean R,-reduction. By Lemma 4.4, t; —» s for all
i=1,2,.... It is easy to see that ¢ < |[¢;||, < ||s]|,. Thus ¢ is strongly normalizable in R,,. Hence,
by Corollary 4.1, t is strongly normalizable in R.

Definition 4.2 A rule r : £ — s in an OCRS R is called non-erasing if each term-metavariable
occurring in ¢ has an occurrence in s that is not in a mobile subterm of a metasubstitution. R is
non-erasing if each R-rule is so.

It is easy to check that R is non-erasing iff, for any R-reduction step e-%0, each argument of u
has a descendant in o, and the latter holds iff F'V(e) = FV(o).

Lemma 4.6 Let R be a non-erasing OCRS, P : {g — t; — ... — t, be a reduction in R, and
Q:sy=1ty — 1 — ... — 8, be its y-corresponding reduction in R,. Then

(1) All redexes in s; are g-main (i = 1,...,n).

(2) If P is normalizing, then so is Q.
Proof (1) Since R is non-erasing, p-symbols in s; are occurrences of u'. Thus no subterms of s;,
and hence no redexes, are u-erased.

(2) From (1) and [sp], = tn.

Theorem 4.1 (Extension of Church’s theorem, Klop [14]) Let R be a non-erasing OCRS and ¢ be
a weakly normalizable term in R. Then ¢ is strongly normalizable.
Proof From Lemma 4.6 and Lemma, 4.5.

Definition 4.3 We call a subterm s of a term t unabsorbed in a reduction P : t —» e if the
descendants of s do not appear inside redex-arguments of terms in P, and call s absorbed in P
otherwise. We call s unabsorbed in t if it is unabsorbed in any reduction starting from ¢, and
absorbed in t otherwise.

Definition 4.4 1. Let u; be a redex in a term ¢ defined as follows: choose an unabsorbed redex
3 in t; choose an erased argument s; of u; that is not in normal form (if any); choose in s; an
unabserbed redex uz, and so on, as long as possible. Let uy, s1,ug, ..., be such a sequence.
Then we call u; a limit redez and call uy, 81,us, ..., u; a limit sequence of t.

4. Perpetual strategies in OCRSs 11

2. We call a reduction limit if each contracted redex in it is limit, and call a strategy limit if in
any term not in normal form it contracts a limit redex.

Similarly to the case of OTRSs [11], it can be shown that in any term not in normal form there
is an unabsorbed redex, hence a limit redex as well.

Lemma 4.7 Let u be a limit redex in £ and P : t - e. Then there is no new redex in e that
contains a descendant of v in its argument. '

Proof Let uj,s1,ua,...,u be the limit sequence of ¢ with u; = u. We prove by induction on
|P| that (a): descendants of redexes ui,...,w do not appear inside arguments of new redexes. If
|P| = 0, then (a) is obvious. Solet P :t —« e’ = e, let o be a descendant of u in e, and o be its
ancestor in €. It follows from the induction assumption that each redex u; (i = 1,...,1 — 1) has
exactly one residual u] in €' (because contraction of a residual of any of the redexes uy, ..., u_1
erases the descendant of u), there is no new redex in e’ that contains o in its argument, and o is
the only descendant of u. Thus if there is a new redex w in e that contains the residual u/ of some
u; in its argument, then it must be created by v. If v € uj, then w contains v in its argument iff
it contains the residual of «} in its argument, but this is impossible since u; is unabsorbed. Thus
v C uj. Let k be the maximal number such that v is in u}, and let s} be the descendant of sy
in ¢’. Then v is in s}, and contains uj;. Let @ : s, — sj consist of steps of P that are made in
descendants of sz. Then the residual of ug4 is in an argument of the new redex w C s. But this
is impossible since ug4; is unabsorbed in s,. Thus (a) is valid and the lemma, is proved.

Lemma 4.8 Let (&, R) be an OCRS, P : to3t;=3 ... — t,, be a limit reduction in R, and P, :
s = to—3t;-5 ... — 8, be its y-corresponding reduction in R,. Then

(1) for each k (0 < k < n), the following holds:

(@)k: lIskllu = ks

(b)k: each redex v}, C s is p-main in sg.

(c)k: in quasi-main arguments of any redex vj, in sj there are no y-symbols.

(2) if P is normalizing, then so is P,.

Proof (1) (a)o — (c)o are obvious. Suppose that (a)r — (¢)x hold and let us show (a)x+1 — (€)pt1-
Let up = Clo1,...,04] and vg = C'le1,...,eq,€,..., €},], where ey,...,e, are y-main arguments
of v (which correspond to arguments o1,...,04 of ug, respectively) and ef,..., e}, are y-erased
arguments of v;. Since u; and v are corresponding redexes in t; and sz, we have [vg], = us and
hence (a): [ej]y, = o; for all ¢ = 1,...,q. Let e;,...,e; be the vg-quasi-erased arguments and
€j1s- -+, €5, be the vg-quasi-main arguments. Then the contractum of vx in R, has the following
form: o' = ppP. ..l ... el ei, ... ;0. By Proposition 4.1.(3), o0;,,.. . ,0;, are uj-erased, and since
up is limit, (B): 04y,...,0; are in R-nf. By (c)k, (7): there are no occurrences of y-symbols in
€j;,--+1€5,,0. (Hence o coincides with the contractum of u). It follows from (), (8),(b)r, and
Lemma 4.2 that (6): e;,...,e; are in R,-nf.

By (1), 19 = floell + 1. Hence lsprll, = llsellu +1 = k+1, ice., ()1 holds.

If vj,; € 0, then (b)y implies that vy, is y-main. If vj, C 0, then by (b, V341 € €1,..., €}
(since ancestors of ef,...,e;, are y-erased arguments of v;) and by (6),v;,, € €i;,...,e;. Hence
Vi1 € 0 and by (), vi,, is p-main. Now (b)r41 is proved.

If o' Nvy,, =0, then (c)x41 follows immediately from (c). If vj,; C o/, then as we have shown
above (for v}), vj;; € 0 and (c)g41 follows from (). Suppose now that o' is a proper subterm
of v, and v, has an vz-ancestor v} in s for which v}, is a residual. Let u}, be corresponding
redex of v} in t;, (it exists because, by (b)x, v, is p-main). Obviously, uy is a proper subterm of uj,
and since uy is limit, it must be in an erased argument of u;. By (c), v;-quasi-main arguments

4. Perpetual strategies in OCRSs 12

do not contain p-symbols. Thus the sets of free variables of vi-quasi-main arguments coincide
with that of corresponding arguments of uj. Hence, by Proposition 4.1.(2), v} is in a quasi-erased
argument of vg. Therefore, by Proposition 4.1.(1), o is in a quasi-erased argument of v}l +1 and the
quasi-main arguments of v}, ; coincide with the corresponding quasi-main arguments of vg. Thus,
by (c)k, in the quasi-main arguments of Vg, +1 there are no occurrences of y-symbols. To prove cg41,
it remains to consider the case then o' is a proper subterm of v} 41 and vy, is created by vg. If in
quasi-main arguments of v}, there are y-symbols, then in main arguments of corresponding redex
uy +1 I0 8g41, which is also an ux-new redex, there are descendants of redexes contracted in P.
But each redex contracted in P is a limit redex. Thus, by Lemma 4.7, their descendants can not
occur in arguments of new redexes. Hence, also in this case, there are no p-symbols in quasi-main
arguments of vy ;, and (c)x41 is valid.
(2) By Lemma 4.2 and (b),,.

Theorem 4.2 A limit strategy is perpetual in OCRSs. Moreover, if a term ¢ in an OCRS R is
strongly normalizable, then a limit strategy constructs a longest normalizing reduction starting
from £, and its length coincides with the y-norm of R,-nf of ¢.

Proof If a limit R-reduction P starting from ¢ is normalizing, then by Lemma, 4.8 its corresponding
R, -reduction also is normalizing. Hence, by Lemma 4.5, ¢t is strongly normalizable in R. Thus,
the limit strategy is perpetual. Now, if ¢ is strongly normalizable, @ is a normalizing R-reduction,
and s is an R,-normal form of ¢, then |Q| =(by Corollary 4.1)= |Q,| < (by the CR property of
R,)< ||s||, =(by Lemma 4.8)= |P|. Thus, P has the maximal length among all reductions of ¢ to
normal form.

Proposition 4.2 (Klop [14]) A term ¢ in an OCRS R is strongly normalizable iff ¢ is weakly
normalizable in R,,.
Proof (=) From Lemma 4.8. (<=) From Lemma 4.5.

The following example shows that, despite the claim of Klop [14] (p. 181, Remark 6.2.5), if R is
strongly normalizing, then R, does not need to be strongly normalizing.

Example 4.3 Let R = {r : f(ra(c,A)) — g((ra(A, A)/a)A)}, where ¢ is a constant, a is an
object metavariable, and 7 is a quantifier sign of arity (1,2) and scope indicator (1,2). During
r-step creation inside contractum is only possible when, say in the case a = z, A has a subterm
f(s), ie, A = C[f(z)], and Ta(A, 4) = 7z(c,¢), i.e., A = ¢, or A = C[f(ryz)] with y # = and
Ta(A, A) = ¢, but this of course never happens. During r-step creation of a redex is not possible
also outside contractum, because in this case the outermost g of the contractum should belong to
the pattern of a new redex, but this is impossible because g is not a pattern-symbol. Thus no
redex creation is possible in R and hence R is strongly normalizing, while contraction of the redex
v = f(rz(u?(f(z), c), p2(f(z), ¢)) in R, creates itself: v — p2(f(z),g(12(v,c))), and it is easy to
see that v is not normalizable in R,. (Recall that, for the case of OTRSs, R is strongly normalizing
iff R,, is weakly normalizing [14, 12].)

Similarly to the case of OTRSs [12], one can define subclasses of OCRSs for which the unabsorbed
redexes can be found efficiently; hence the limit strategy is efficient.

Definition 4.5 (1) We call an OCRS non-absorbing if, for any reduction step ¢ = s, arguments of
any new redex in s are in the contractum of u.

(2) We call an OCRS non-left-absorbing (resp. non-right-absorbing) if, for any reduction step
t = s, any argument of a created redex in s is inside the contractum of u or to the right (resp. to
the left) of it.

5. Longest reductions in strongly persistent OCRSs 13

Proposition 4.3 (1) Let ¢ be a term in a non-absorbing OCRS. Then any outermost redex in ¢ is
unabsorbed.

(2) Let t be a term in a non-left absorbing (resp. non-right-absorbing) OCRS. Then the leftmost-
outermost (resp. the rightmost outermost) redex in ¢ is unabsorbed.
Proof From Definitions 4.3 and Definition 4.5.

Remark 4.1 It is easy to see that the leftmost redexes in A-terms are unabsorbed. Therefore the
perpetual strategy of Barendregt et al. [3] is a limit strategy. The proof presented in Barendregt [2]
uses only unabsorbness of the leftmost redexes and therefore generalizes easily to the case of OCRSs.
The proof of the Conservation Theorem [2] also remain valid for OCRSs: if a term ¢ has an infinite
reduction and s, where u is a non-erasing redex, then s has also an infinite reduction. Bergstra
and Klop [4] gave a characterization of erased redexes (i.e. K-redexes) for which the Conservation
Theorem in A-calculus still is valid. Another extension of the Conservation Theorem that can be
used for strong normalization proofs of several typed A-calculi can be found in de Groote [6]. We
leave this questions for OCRSs to a future investigation.

The direct proof of the fact that the perpetual reductions are the longest in OTRSs, presented
in [12], cannot be generalized to the case of OCRSs (complete redexes does not necessarily remain
complete because main arguments may become erased after some steps in the main arguments).

5. LONGEST REDUCTIONS IN STRONGLY PERSISTENT OCRSSs
In this section, we design an algorithm for finding the lengths of longest reductions in strongly
persistent CRSs; as a corollary we obtain an algorithm for finding exact upper bounds of lengths of
developments in orthogonal CRSs. To this end, we introduce and study strong similarity of redexes.
Without restricting the class of OCRSs, we can assume that in right-hand sides of rewrite rules
the immobile argument of each metasubstitution is a term-metavariable or a metasubstitution. For
example, we can replace the metasubstitution f((B/a)g(A)) by the "equivalent” metasubstitution
f(g((B/a)A)), and the metasubstitution (A;/a1, A2/as)cady, where o is a quantifier sign of arity
(1,1) and a # a1,4a9, by ga((A1/a1, As/az)Ag). (If a = a; or a = ag, then we first rename the
bound object metavariables). Hence, we can have the following definition.

Definition 5.1 (1) Let t-5s in an OCRS R, let t — t' — s be its expansion, and let v be a new
redex in s. We call v generated if v is a residual of a redex of ¢’ whose pattern is in the pattern of
the contractum of u in Ry.

(2) We call an OCRS R persistent (written PCRS) if, for any R-reduction step, each created
redex is generated.

(3) We call an OCRS R strongly persistent (written SPCRS) if Ryg is persistent.

(4) We call an OCRS R left-canonical if, for any R-rule t — s, the pattern of ¢ consists of one
operator, i.e., t has the form ga;...amA; ... An, where o is an operator sign of arity (m,n) (o is
a function iff m,n = 0).

(5) We call an OCRS R non-creating if no redex-creation is possible during reduction steps in R.

Remark 5.1 In [13], we call left-canonical CRSs Higher Order Recursive Program Schemes. It is
easy to see that a non-simple OCRS R is strongly persistent iff it is left canonical [13].

Lemma 5.1 If R is a strongly persistent OCRS, then so is R,.

Proof If R is simple, then the lemma is obvious. Otherwise, by the above remark, R is left
canonical and so is R,; thus R, is strongly persistent. '

5. Longest reductions in strongly persistent OCRSs 14

Remark 5.2 Example 4.3 shows that if R is persistent, then R,, does not need to be persistent (in
the reduction v = f(rz(u?(f(2),), u?(f(z),c))>u2(f(z), g(42(v,c)), the pattern of the created
v contains argument-symbols of the contracted v). On the other hand, a PCRS R such that R,
also is persistent does not need to be strongly persistent. For example, let R = {r; : JaAd —
f((raA/a)A), 7o : g(f(z)) — c}. Since {r;} is left-canonical, {riu} also is left-canonical, hence
persistent. Since {re} is simple and is persistent, {rau} is also persistent. Hence, because of
“independence” of r; and ry, R, is persistent. But R is not strongly persistent, since it is non-
simple and is not left-canonical.

Definition 5.2 Let C[a1As,...,a8,4y,) be the left-hand side of a rewrite rule r in an OCRS R and
let C[Z1t1,...,Tnts] be an r-redex.

(1) The characteristic system of u (written C'S(u)) is the set of pairs (a.ij,A,-) such that z;. €
FV(t;) (i =1,...,n,5 = 1,...,n;). In this case, u is an (r,CS(w))-redex. A characterized rule
(C-rule for short) is a pair (r,CS(r)), where C'S(r) is a characteristic system for some R-redex.
The main characteristic system MCS(u) of u is the subset of C'S(u) containing a pair (ai;, A;) iff
t-th argument of u is main.

(2) The strong characteristic system of u (written SCS(u)) is the set of triples of the form
(as;, As, ni;) such that (a;;, Ai, ni;) € SCS(u) iff z;; has n;; free occurrences in t;. In this case, u is
an (r, SCS(u))-redez. A strongly characterized rule (SC-rule for short) is a pair (r, SCS(r)), where
SCS(r) is a strong characteristic system for some R-redex. The main strong characteristic system
MSCS(u) of u is the subset of SCS(u) containing a triple (ai;, Ai, ni;) iff i-th argument of u is
main.

(3) We call weakly similar redexes u and v respectively similar, m-similar, strongly similar, or
strongly m-similar if CS(u) = CS(v), MCS(u) = MCS(v), SCS(u) = SCS(v), or MSCS(u) =
MSCS(v). :

Proposition 5.1 Let u and v be m-similar redexes in an OCRS R. Then an argument of u is
main iff its corresponding argument in v is main.
Proof The proposition is a corollary of Lemma 3.7.

Definition 5.3 Let u = C[Zit1,...,Zxts] and v = C[gisy,. .. s Tndn] with Z; = {z;,, ... »Zi,,, } and
% = {Yirs- - -+ Yin } be weakly similar redexes. We call u and v strongly S-essentially similar (resp.
strongly S-essentially m-similar if z;; and ¥:; have the same number of S-essential occurrences in
t; and s; forall ¢ = 1,...,m;5 = 1,...,n; (resp. for all 4 = 1,...,n;j = 1,...,n; such that ¢
and s; are main arguments of u and v, respectively). (Note that if the arguments of » and v do
not contain S-redexes, then strong S-essential (m-)similarity and strong (m-)similarity of u and v
coincide.)

Lemma 5.2 Let R be a SPCRS, let u = Clz1t,...,Tht,] and v = Clz1s1,. .., Tnsn] be strongly
m-similar R, -redexes whose arguments are in nf and are not variables. Further, let P : u =
0050123 ... and Q:v=-ep>e13...be expansions of rightmost R,-reductions of u and v that are
infinite or end at normal forms. Then it is possible to define one-to-one correspondence between
the following occurrences of o; and e;:

(1) S-essential redexes and their arguments;

(2) S-essential descendants of redexes;

(8) S-essential descendants of arguments of u and v, called argument subterms; and

(4) S-essential descendants* of free occurrences of variables Zjint; and s; (j = 1,...,n), called
context variables, where notion of descendant* is defined similarly to that of descendant with

5. Longest reductions in strongly persistent OCRSs 15

the exception that, during S-steps Sz1...znt1...thto — (£1/71,. .., tn/Zn)to, free occurrences of
1,...,2Ty in tg do not have descendants™®.

Furthermore, for each ¢ (i =0,1,...), the following conditions hold:

(a)i: corresponding S-essential redexes in o; and e; are strongly S-essentially m-similar (in fact,
strongly S-essentially similar if m > 1), and u; and v; are corresponding S-essential redexes if one
of them is S-essential.

(b)i: if 0* and e*, as well as 0" and e, are corresponding S-essential occurrences in o; and e;,

then o* C 0" iff e* C €”.
Proof By induction on ¢. The case i = 0 is obvious from the assumptions. Suppose that we
have defined the corresponding S-essential occurrences in o, and e, in such a way that (a)m
and (b)m hold. Assume first that um = Syi...yxt]...thth and vm = Syi...Yks) ... sks) are
S-redexes. If u, and v, are S-inessential, then all S-essential occurrences of o,, and e,, are
outside U, and v, and each of them has exactly one S-essential descendant in 0p41 and epmy
respectively. Hence descendants of S-essential corresponding occurrences of o,, and v,, form pairs
of corresponding occurrences in 0y,+1 and e.,+1. So suppose that both u,, and v,, are S-essential.
It follows from (@) and (b)m that (@): y; has the same number of corresponding S-essential
occurrences in t; and sj and in each pair of corresponding S-essential subterms of ¢ and s}. It
follows from Corollary 3.5 and Definition 3.1 that descendants of S-essential occurrences of o,, and
U are S-essential in oy, and e, 4 iff they are substituted for S-essential context-variables. Thus
corresponding S-essential subterms in o,, and e,, have the same number of S-essential descendants,
and corresponding S-essential context-variables have the same number of S-essential descendants*
in Om41 and epy1; they form pairs of corresponding S-essential occurrences in 0,,4+1 and eq41. Since
argument-subterms in o,, and e,, are not variables, different subterms have different descendents.
Thus the correspondence between these subterms in 0y,+1 and ep+1 remains one-to-one. Since, by
Lemma 5.1, R, is persistent, no new redexes are created in these steps. Thus (a),,+1 follows from
(a)m and from the fact that the context-variables form pairs of corresponding occurrences. (b)p,41
follows from (&) and (b),.

Suppose now that ., and v, are R,p-redexes. In this case, there are no S-redexes in o,, and
ém. Obviously, the contractum of u,, can be obtained from the contractum of v, by replacing
descendants of arguments of v, with the corresponding arguments of u,,. Since, by Lemma 5.1,
R, is persistent, for each new redex w in o1 there is a unique new redex w' in en41. All the
descendants of the occurrences that are outside u,, and v,, are S-essential. Apart from these
occurrences, descendants of only occurrences that are in main arguments of u,, and v, can be
S-essential in 0p,11 and emt1. By (@)m, um and v, are strongly m-similar. Hence, it follows from
conditions (a)-(b) of Definition 2.2 and Lemma 3.6 that corresponding new redexes in 0,41 and
em+1 are either both essential or both are inessential, the same holds for corresponding arguments of
the corresponding redexes, and corresponding occurrences in oy, and e,, have the same number of S-
essential descendants in 01 and ep41; together with corresponding S-essential new redexes they
form pairs of corresponding S-essential occurrences in 0,41 and €,,+1; the correspondence remains
one-to-one. Since variables bound by quantifiers belonging to patterns of w and w’ can only occur
in the descendants of arguments of u,, and vy,, and S-essential (in 0,41 and en+1) occurrences of
context variables form pairs of corresponding S-essential occurrences in corresponding arguments
of w and w', it follows from Lemma 3.5 that w and w’ are strongly S-essentially similar. Hence
(@)m+1 follows from (a)m. (b)m+1 follows easily from (b)y,.

Definition 5.4 Let R be an SPTRS.
(1) Let ¢ be a term in R,, let s be a non-variable subterm of ¢, and let P : t —» e be the
rightmost innermost normalizing R,-reduction. Then, by definition, Mult,(s,t) is the number of

5. Longest reductions in strongly persistent OCRSs 16

P-descendants of s in e.

(2) Let u = Cley,...,e,] be an r-redex in R,, let s’ be a non-variable subterm in e;, let
v = Clo1,...,0,] be an r-redex strongly m-similar to u whose arguments o1,...,0, are in R,-
normal form and are not variables, and let @ : v —» 0 be the rightmost innermost normalizing R,,-
reductions. Then, by definition, mult,(u, 1) = mult,(u, s') = mult,(r, SCS(u), i) = Mult,(o;,v),
and mult,(u) = mult,(r, SCS(u)) is a number of y-subterms in o that appear during @, i.e., that
are not descendants of y-subterms from (the pattern and arguments of) v. Numbers mult,(u,)
and mult,(r, SCS(r), 1) are called proper u-indices of u and (r,SCS(u)), and numbers mult,(u)
and mult,(r, SCS(u)) are called p-indices of v and (r, SCS(u)).

The correctness of the above definition follows from Lemma 5.2.

Lemma 5.3 Let ¢ be a strongly normalizable term in a PCRS R,, e C s C t and e and s be
non-variable R,-nfs. Then Mult,(s,t) = Mult,(e,t).

Proof Lett =1ty — t; — ... — t, be the expansion of the rightmost normalizing R,-reduction.
Let us define pairs (s{, e{) of descendants of s and e in ¢; (if any) for e@ch i=1,...in such a way
that («);: there is no redex in ¢; that contains e] and does not contain s!. Obviously, the pair (s, e)
satisfies (a)p. Suppose that pairs of descendants of s and e are defined in t,, in such a way that
(0)m holds and let tmu—’>"tm+1. If u,, is not an S-redex or an S-redex, then it ie clear that for any
pair (s&, k) of corresponding descendants of s and e in t,,, %, and ¥, have the same number of
descendants, and these descendants form the pairs of corresponding occurrences in t,,+1. Since Ry, is
persistent, new redexes in t,,+1 (if any) are not inside the descendants of s&, in £,,+1. Hence (&)m+1
follows immediately from (), in this case. Suppose now that u,, = Szi...%;81...880 is an S-
redex or an S-redex. By (a)m, there is no pair (s&, ek) in t,, such that e, C u,, C s¥,. Thus either
both s¥, and ek, are in the same argument of u,, or non of them is in u,,. Hence s, and e, have the
same number of descendants and they form pairs of corresponding occurrences in 1. Since R,
is persistent, there are no new redexes in ¢;,4+1. Thus (&)m;,+1 follows immediately from (a)p,. Now
it is clear that s and e have the same number of descendants in ¢,, i.e., Mult,(s,t) = Mult,(e,t).

Notation L(t) denotes the length of a longest reduction starting from ¢.

Lemma 5.4 Let t be a strongly normalizable term in an SPCRS R and u3,...,u, be all redexes
in t. Then n
L(t) = Mult,(us, t)ymult,(u;)
i=1
Proof Let P:t - o be the rightmost innermost normalizing R,-reduction and let ui,...,u, be

the enumeration of redexes in ¢ from right to left. In the fragment of P in which (the residual
of) u; is reduced to R,-nf, mult,(u;) new p-symbols appear (in the beginning of the fragment,
all arguments of u; are already in R,-nf). By Lemma 5.3, during the rest of P each of these
p-occurrences is copied Mult, (u;,t)-times. Hence

llollp = i Mult, (u;, tymult,(u;)

=1

and the lemma follows from Theorem 4.2.

5. Longest reductions in strongly persistent OCRSs » 17

Lemma 5.5 Let ¢ be a strongly normalizable term in an PCRS R, and ui,...,u, be all redexes

in ¢ that contain a non-variable subterm s in their arguments. Suppose that s is in m;-th argument
of u; (i =1,...,n). Then

Mult,(s,t) = [] mult,(ui, s) = T mutt(ui, ms)

=1 =1

Proof Let P : ¢ — o be the rightmost innermost normalizing R,-reduction. It follows from
Lemma 5.3 that, in the fragment of P in which (the residual of) u; is reduced to R,-nf, each
descendant of s is copied mult,(u;, s) = mult,(u;, m;)-times. Thus the lemma follows from persis-
tency of R,,.

Lemma 5.6 Let u = Cley,...,ex] be an r-redex whose arguments e, ..., e, are not variables and
are in normal form, in an SPCRS R. Then, for all i = 1,...,k,

mj
multy,(u, §) = mult,(r, SCS(r),§) = > Mult,(ej;, 0),

t=1

m
mult,(u) = mult,(r, SCS(r)) = Y Mult,(u;, o)mult,(u;) + 1,
i=1
where o is the contraction of u in Ry, eji,... €jm,; BTE all descendants of e; in o0, and uy,...,Un
are all redexes in o.
Proof From Definition 5.4 and Theorem 4.2.

Lemma 5.7 Let u and v be strongly m-similar redexes in an SPCRS R, let u0 and v>e. Then
u and v create the same number of strongly similar redexes.

Proof Ifin the Lemma 5.2 one takes for P the expansion of u and for @ the expansion of v, then it
follows from Lemma 5.2 that for each u-new redex in o there is exactly one strongly similar v-new
redex in e.

Corollary 5.1 Let u and v be strongly m-similar redexes in an OCRS R, let u—>0 and v—>e. Then
u and v generate the same number of strongly similar redexes.

Definition 5.5 We call a sequence of SC-rules (rg, SCS(ry)), (r1,5CS(r1)),... an (rg, SCS(ry))-
chain if an (riy1, SCS(riy1))-redex is generated by contraction of any (r;, SCS(r;))-redex. For any
(ro, SCS(rp))-redex u, we also call an (rg, SCS(rg))-chain an u-chain.

The correctness of the above definition follows from Lemma 5.7. In [13], we used C-rules instead
of SC-rules to define chains of redexes, but it is easy to see that for each chain of C-rules there is
a chain of SC-rules with the same length, and vice versa. Therefore, the following theorem from
[13] remains valid for the above definition of chains of redexes.

Theorem 5.1 ([13]) A term ¢ in a PCRS R is strongly normalizable iff all chains of redexes in ¢
are finite. '

Theorem 5.2 Let ¢ be a term in an SPCRS R. Then the least upper bound L(t) of lengths of
reductions starting from ¢ can be found using the following

REFERENCES 18

Algorithm 5.1 Let (r1,SCS(r1)),...,(rn, SCS(ry)) be all strongly characterized rules such that
an (r;, SCS(r;))-redex has an occurrence in ¢ (¢ = 1,...,n). If an (r;, SCS(r;))-chain is infinite for
at least one i, then L(t) = co. Otherwise, using Lemmas 5.6 and 5.5, find the p-indices and the
proper p-indices of all rules (r;, SCS(r;)). Finally, using Lemmas 5.5 and 5.4, find L(t).

Proof From Theorems 5.1 and 4.2, and Lemmas 5.4-5.7.

Remark 5.3 It is easy to see that the above results remain valid if we use “main” u-indices and
“main” proper u-indices M SCS() instead of pu-indices and proper p-indices SCS().

5.1 The least upper bound of lengths of developments

Let R = {r;:t; — s;|i € I} be an OCRS and let R = {r; : t; — s;|i € I}, where ¢, is obtained
from ¢; by underlining its head-symbol. Terms in R are constructed in the usual way with the
restriction that underlined symbols may only occur as head-symbols of redexes. Then, for each
development P : eg — €; — ... — e, of eg in R (in which only residuals of redexes from eg are
contracted), there is a reduction P’ : ey — €} — ... — e, in R such that e/ is obtained from e; by
underlining head-symbols of residuals of redexes from ep. Obviously, R is persistent, since no cre-
ation of redexes is possible in it. Thus, to find least upper bounds of developments in R, one can use
Algorithm 5.1, which becomes simpler in this case: for any strongly characterized rule (r, SCS(r)),
mult,(r, SCS(r)) = 1, mult,(r,SCS(r),) = 1 if the i-th argument o; of an (R, SCS(r))-redex
does not have a descendant, and mult,(r, SCS(r),%) coincides with the number of descendants of
o; otherwise.

Acknowledgments I enjoyed discussions with H. Barendregt, J. W. Klop, J.-J. Lévy, L. Maranget,
G. Mints, V. van Oostrom, Sh. Pkhakadze, Kh. Rukhaia, and V. Sazonov. I also would like to
thank G. Gonthier, G. Tagviashvili, K. Urbaitis, and F. J. de Vries for their help in preparation of
this paper.

REFERENCES

1. Aczel P. A general Church-Rosser theorem. Preprint, University of Manchester, 1978.

2. Barendregt H. P. The Lambda Calculus, its Syntax and Semantics. North-Holland, 1984.

3. Barendregt H. P, Bergstra J, Klop J. W, Volken H. Some notes on lambda-reduction, in:
Degrees, reductions, and representability in the lambda calculus. Preprint no. 22, University of
Utrecht, Department of mathematics, p. 13-53, 1976.

4. Bergstra J. A., Klop J. W. Strong normalization and perpetual reductions in the Lambda
Calculus. J. of Information Processing and Cybernetics 18, 1982, p. 403-417.

5. Dershowitz N., Jouannaud J.-P. Rewrite Systems. In: J. van Leeuwen ed. Handbook of Theo-
retical Computer Science, Chapter 6, vol. B, 1990, p. 243-320.

6. De Groote P. The Conservation Theorem revisited. In: proc. of the International Conference
on Typed Lambda Calculi and Applications, Springer LNCS, vol. 664, M. Bazem, J. F. Groote,
eds. Utrecht, 1993, p. 163-178.

7. Huet G., Lévy J.-J. Computations in Orthogonal Rewriting Systems. In: Computational Logic,
Essays in Honor of Alan Robinson, ed. by J.-L. Lassez and G. Plotkin, MIT Press, 1991.

8. Kennaway J. R., Sleep M. R. Neededness is hypernormalizing in regular combinatory reduction
systems. Preprint, School of Information Systems, University of East Anglia, Norwich, 1989.

9. Khasidashvili Z. Expression Reduction Systems. Proceedings of 1. Vekua Institute of Applied
Mathematics of Tbilisi State University, vol. 36, 1990, p. 200-220.

REFERENCES 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Khasidashvili Z. The Church-Rosser theorem in Orthogonal Combinatory Reduction Systems.
Report 1825, INRIA Rocquencourt, 1992.

Khasidashvili Z. Optimal normalization in orthogonal term rewriting systems. In: Proc. of the
fifth International Conference on Rewriting Techniques and Applications, Springer LNCS, vol.
690, C. Kirchner, ed. Montreal, 1993, p. 243-258.

Khasidashvili Z. Perpetual reductions and strong normalization in orthogonal term rewriting
systems. CWI report, July 1993. '

Khasidashvili Z. Higher order recursive program schemes are Turing incomplete. CWI report,
July 1993.

Klop J. W. Combinatory Reduction Systems. Mathematical Centre Tracts n. 127, CWI, Ams-
terdam, 1980.

Klop J. W. Term Rewriting Systems. In: S. Abramsky, D. Gabbay, and T. Maibaum eds.
Handbook of Logic in Computer Science, vol. II, Oxford University Press, 1992, p. 1-116.

Klop J. W., van Oostrom V., van Raamsdonk F. Combinatory reduction Systems: introduction
and survey. In: To Corrado Bohm. To appear in J. of Theoretical Computer Science, 1993.
Available as a Free University report IR-327, Amsterdam, June 1993.

Maranget L. “La stratégie paresseuse”, These de I'Université de Paris VII, 1992.

Nederpelt R. P. Strong Normalization for a typed lambda-calculus with lambda structured
types. Ph.D. Thesis, Eindhoven, 1973.

Nipkow T. Higher order critical pairs. In: proc. of sixth annual IEEE symposium on Logic in
Computer Science, Amsterdam, 1991, p. 342-349.

O’Donnell M. J. Computing in systems described by equations. Springer LNCS 58, 1977.

Van Oostrom V., van Raamsdonk F. Comparing Combinatory Reduction Systems and Higher-
order Rewrite Systems. To appear as a CWI report, 1993.

Pkhakadze Sh. Some problems in the Notation Theory (in Russian). Proceedings of I. Vekua
Institute of Applied Mathematics of Tbilisi State University, Tbilisi 1977.

