(o

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Comparing curried and uncurried rewriting

J.R. Kennaway, J.W. Klop, M.R. Sleep, F.J. de Vries

Computer Science/Department of Software Technology

Report CS-R9350 July 1993

3
1

CWI is the National Research Institute for Mathematics and ¢
the Stichting Mathematisch Centrum (SMC), the Dutch founda
and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scie
member of ERCIM, the European Research Consortium for Infc

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam [NL)
Kruislaan 413, 1098 S) Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

ice. CWI is part of
ion of mathematics

(NWO). CWi is a

athematics.

Comparing Curried and Uncurried Rewriting

Richard Kennaway!, Jan Willem Klop?, Ronan Sleep® and Fer-Jan de Vries*

1.3 School of Information Systems,
University of East Anglia,
Norwich NR} 7TJ, UK

240w,
P.O. Boz 4079,
1009 AB Amsterdam, The Netherlands

lirk@sys.uea.ac.uk, 2jwk@cwi.nl, *nrs@sys.uea.ac.uk, ‘ferjanQcwi.nl

Abstract

The properties WN, SN, WCR and completeness of functional term rewriting systems are
preserved if we curry these systems into applicative term rewriting systems. Under the con-
dition of left-linearity the properties CR, NF, UN, UN™ and semi-completeness are also
preserved by currying. By a counterexample we show that the latter set of properties, with
the possible exception of semi-completeness, are in general not preserved for non-left-linear
gystems.

1991 AMS Mathematics Subject Classification: 68Q42.
1991 CR Categories: 4.2, F4.1.

Keywords & Phrases: term rewriting, preservation by currying, Church-Rosser property,
confluence, strong normalisation, weak normalisation, termination.

Note. The authors are partially sponsored by SEMAGRAPH II, ESPRIT working group
6345. The first author was also partially supported by a SERC Advanced Fellowship and by
SERC grant no. GR/F 91582.

Dedicated to Dirk van Dalen
on the occasion of his 60°* anniversary.

1 Introduction

Rewriting of various kinds is used as both a theoretical and a practical computational mechanism?.
Term rewriting is an attractive, simple form of rewriting: only terms from a first order language
without bound variables are rewritten. :

The modern theory of term rewriting is mainly concerned with functional rewriting (cf.
[DJ89, Klo92]), where terms are constructed from function symbols of various arities, and vari-
ables. However, Curry and Feys originally introduced term rewriting in [CF58] in the applicative

This is a revision of a paper that appeared in the Dirk van Dalen Festschrift [KKSdV93].

Report CS-R9350

ISSN 0169-118X

CWiI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

form (or in their terminology, quasi-applicative). In this form, terms are built from variables,
nullary function symbols, and a binary application (often suppressed in notation).

From the modern perspective, applicative term rewriting is just a special case of functional
term rewriting. The main example of an applicative term rewrite system, Combinatory Logic
(CL), was developed by Schénfinkel and rediscovered by Curry ([CF58]). Applicative term
rewriting systems related to CL play an important role in the design and implementation of
functional programming languages such as Miranda (cf. [FH88]).

Any functional term rewrite system can be transformed into an applicative term rewrite
system by the well-known method of currying credited to Schénfinkel (e.g. in [CF58]). So, it
seems natural to ask which properties of term rewrite systems are preserved under currying.
This question has not been studied before.

In this paper we show that strong normalisation (SN), weak normalisation (WN), weak
Church-Rosser (WCR) and completeness are preserved by currying. For left-linear term rewrite
systems we show that currying also preserves the Church-Rosser property, or confluence (CR),
the normal form property (NF), semi-completeness and two properties UN and UN™ concerning
unique normal forms. The properties CR, NF, UN and UN™ are not always preserved for non-
left-linear systems, as demonstrated by a counterexample.

2 Preliminaries

2.1 Term Rewriting

In this section we give a brief description of term rewriting. Ample introductions to the subject
are [DJ89, K1092]. A Term Reuwriting System (TRS) is a pair (X, R) of a signature ¥ and a set
of rewrite rules R. A signature X is a pair < |X|, arity >, where |X| is a set of function symbols
whose arity is given by the function arity : |X| — N which maps function symbols into natural
numbers. Often we will leave the signature implicit in examples. The set Ter(X) of terms over
Y is built in the usual way from |X| and a countably infinite set of variables V, disjoint from
|Z|: Ter(X) is the smallest set such that

o V C Ter(X),
e for any f € |Z[if t; € Ter(X), ..., aniy(s) € Ter(X) then f(t1,. .., tarity(s)) € Ter(E).

We will write F instead of F() if the arity of F happens to be 0.
A rewrite rule is a pair (I, r) of terms € Ter(X) denoted by ! — r and subject to the following
two conditions:

o the left hand side [is not a variable,
o the variables in the right-hand side r are already contained in I.

The non-variable part of the left or right hand side of a rule is sometimes called pattern. A
rewrite rule [— r is called collapsing if r is a variable. The rule | — r is duplicating if the right
hand side r contains more occurrences of some variable than the left hand side I.

Contexts are ‘terms’ containing one occurrence of a special symbol O, denoting an empty
place. A context is generally denoted by C[]. If t € Ter(X) and t is substituted in O, the result
is C[t] € Ter(Z); t is said to be a subterm of C[t], notation ¢ < C[t]. Since O is itself a context,
the trivial context, we also have t < ¢.

A substitution o : Ter(X) — Ter(X) is a map satisfying o(F(t1,...,tn)) = F(o(t1),...,0(tn))
for every n-ary function symbol F' (here n > 0). So, o is determined by its restriction to the set
of variables. We also write ¢t7 instead of o(t).

A term s is contained in (or encompassed by) a term ¢ (notation s<it) if there is a context
C[] and a substitution ¢ such that ¢t = C[s°]. (Examples: f(z)<g(f(a)) and zdy.)

The set of rewrite rules determines a reduction relation — on Ter(X). The term t reduces
to s by contracting redex [(notation t — s) if ¢ is of the form C[I°] and s is of the form
C[r°] for some rule | — r, context C[] and substitution ¢. Concatenating reduction steps we
obtain (possibly infinite) reduction sequences to — t; — tz — --- or reductions for short. If
tg — -+ — t, we also write tg —* £,.

Two terms t,s are convertible (notation ¢t = s) if they belong to the transitive, reflexive
closure of — U «.

A term t in Ter(X) is a normal form if it does not contain a redex. t has a normal form n,
if t —* n and n is a normal form.

We will often consider pairs of reduction sequences having the same initial or final term. A
fork is a pair of reduction sequences of the form t; «* t —* t2. A join is a pair of reduction
sequences of the form ¢; —* t' «* t. It is a join of the above fork if ¢t} = ¢; and t) = t9, and
the four reduction sequences together are then called a tile.

TRSs can be joined together provided the union of their alphabets is a well-formed alphabet
(that is, provided each symbol common to both systems has the same arity in both). If so, then
we denote by R; + R the TRS obtained by taking the union of the alphabets and the sets of
rewrite rules of R; and Rs. If the alphabets are disjoint we write R; & Rp.

The set of positions O(t) of a term ¢t in a TRS R is defined inductively by:

e O(t) = A, if t is a variable,
e O(t)={\}U{i-u|l1<i<nand u€O)}, ift= f(t1,...,tn).

Positions are partially ordered by prefiz order, i.e., u < v if there exists a (necessarily unique)
w such that u-w = v. The subterm of ¢ at position u € O(t) is denoted by ¢}, and defined
inductively by:

d tp\:t,

oty = (ti){u, ift= f(t1,..-,tn)-

2.2 Applicative Term Rewriting

An Applicative Term Rewriting System (ATRS) is a TRS (T, R) where ¥ =< |Z|U{Ap}, arity >
in which arity : |X| U {Ap} — N is defined by

. 0 ifzxelX],
“”ty(“"”)={ 2 if;c:lAzll

The set of terms we denote by ATer(X). The standard example of an ATRS is Combinatory
Logic based on the combinators S, K, I with the following rewrite rules:

Ap(Ap(Ap(S,x),y),z) — Ap(Ap(z,z), Ap(y,z))
Ap(Ap(K,x),y) - T
Ap(1,z) — T

The presence of only one binary operator allows for the usual notational conventions:

3

e use infix notation ¢ - s for Ap(t, s)
e as in ordinary algebra, suppress the dot
e associate to the left in order to use as few brackets as possible.

Following these notational conventions the above rewrite rules for Combinatory Logic become:

Szyz — zz(yz)
CL={ Kry — =z
Iz — T

It is a convenient fiction to view the S, K, I in the last three equations as “operators with variable
arity”. .

3 Currying

Currying is a well-known construction that given a TRS R produces a corresponding applicative
TRS R*". It is usually credited to Schonfinkel, cf. [CF58]. Let us demonstrate currying with
an easy example. Consider the TRS R given by the following rules:

_) M(z,z) — 0
M_{ M(Suce(z),z) — 1

Its currying M°*" will be the ATRS given by the rules:

Mzzx - 0
cur __
M= = { M(Succz)z — 1

So the curried TRS is constructed with the same set of function symbols, together with ap-
plication, but we have “forgotten” about their arity and treat the former function symbols as
constants.

The definition of currying is as follows:

DEFINITION 3.1

e The function cur:Ter(X) —ATer(X) is defined by induction on the structure of the terms
in Ter(X) by the clauses:

- cur(z) =z
= cur(f(ts,...,tn)) = (f cur(ty) ... cur(ty))

e Let R be a TRS. The currying R°*" of R is the applicative TRS with alphabet ¥ and set
of rewrite rules {cur(l) — cur(r) |l — r € R}.

The function cur :Ter(X) —ATer(X) is not surjective: e.g., in the example M the terms zz,
M, Mz and Mzyz are not in the image of cur: M — Mev,
The following observation is important, its proof trivial:

LEMMA 3.2 Currying preserves redezes and reductions: let R be a TRS.

¢ % is a redex for R in t, if and only if cur(l)°*"° is q redez for R in to*r.

R, if and only if cur(t) — cur(s) in R*".
normal form in R, then t°*" is a normal form,

norphic to a subTRS of R°“", where a morphism f : Ry — Ry between TRSs is
on preserving mapping (t — s implies f(t) — f(s)), and a subTRS of R is a set
of R closed under reduction. In other words: R is a conservative extension of
‘RS. .]

nce are the fragments of a term in a curried TRS in which all function symbols
the right number of arguments.

3 Let ¢ be a term of a curried TRS R¢¥",
ed position of ¢ is

er the position of a variable

- position of the form w].--1 such that ¢,1...1 is a function symbol in R of
k M

ynand 0<k < n.

if balanced positions Bal(t) of t is the set of balanced positions of t.

anced positions in a term falls into zero or more patches: maximal connected
sets of balanced positions.

4 Let t be a term in a curried TRS R,
imal common prefiz of two positions u,v € O(t) is denoted by u A v.
P C O(t) is connected if uAv € P for all u,v € P.

P C O(t) is called a patch of ¢ if it is a maximal connected non-empty subset of
positions.

v patch P of a term t of R®*" determines a partial subterm of t. If we complete it
wriables, we get a completely balanced term, which corresponds uniquely (modulo
uming of variables) with an uncurried term in R. By abuse of terminology we will
tch P with this term in the original TRS R. The possibility of non-left-linear rules
ipletion procedure a bit subtle: we use as many variables as there are different
rms of the patch, taking care that we replace identical principal subterms of the
ical variables.

here is a one-one correspondence between patches of a term t in a curried TRS
alence classes of terms p which are mazimal for the property p°*" <dt, the equiva-
ijective renaming of variables. O

me more terminology. An example will follow the definitions.
6

n R°*" is called balanced if all its positions are balanced.

ot

e If t = C[P[t,...,t,]] for some t1,...,t, in R context C[] and patch P, then the
subterms t; are called the principal subterms of the patch P in ¢.

DEFINITION 3.7 Let ¢y, = f for some u € O(t). Let n = arity(f).

o f at u is underbalanced if 1---1 is not a suffix of u,
| S

n

o f at u is overbalanced if 1---1 is a suffix of ,
n+1

e otherwise, f at u is balanced, i.e., when the maximal suffix of u of the form 1...1 has
length n.

As an example consider the ATRS constructed from the TRS consisting of the single rule
g(z,y) — y. Consider the term gg(gz)(ggy), or if we make all application symbols explicit:
Ap(Ap(Ap(g,), Ap(g,z)), Ap(Ap(g, 9),y)). Balanced positions are: {1,11,111,122,2,21,211,22}.
The following set of positions are patches: {{1,11,111},{122}, {2,21,211,22}}. The function
symbol g at 111 is overbalanced, the ones at 112 and 121 are underbalanced, whereas g at 211
is balanced. We picture all possible derivations of the term gg(gz)(gg9y):

99(9z)(99y) — 9z(99y) — 99y

l l |

99(gz)y - gy -y

If we colour the balanced positions, we can observe the dynamics of the patches during reduction.
The terms in the left column contain three patches, the others one.

Finally it is useful to observe that the pattern of any rewrite rule in any term ¢ of a curried TRS
R is entirely contained in a patch, since then {[“*"4C[(I¢*")°] = ¢ for suitable C[],! and o.

arties preserved by currying arbitrary term rewriting
ns

n we will show that currying preserves the following properties of TRS: weak
. strong normalisation, the weak Church-Rosser property and completeness. Let
the definitions of the properties for TRSs which play a role in this section.

ninary facts and definitions

t.1
R is weakly normalising (WN) if every term of R has a normal form.

R is strongly normalising (SN) if there are no infinite reduction sequences t; —
— -+ of elements of R.

R is locally confluent or weakly Church-Rosser (WCR) if every fork of the form
— to (that is, where the two reduction sequences each contain exactly one step)
in t1 —* g " ta.

t — 1

| .

! %,

. v

t2 v 8

R is confluent or Church-Rosser (CR) if every fork t; «* t —* t, has a join

—* to.

t— 1

«| *.
J:*;

ty > g
is complete if it is both SN and CR.

pleteness is equivalent to the combined properties SN and WCR. by the well-known
rman:

Newman’s Lemma) If a TRS is SN and WCR, then it is CR {e.g. see [Klo92]).

e following modularity result of the property SN, conjectured by Rusinowitch and
1deldorp.

3 The disjoint sum of two strongly normalising TRSs is strongly normalising, when
ontains neither collapsing rules nor duplicating rules [Mid90].

vation of WN by currying
t If R is WN, then R*" is WN.

he TRS R be WN. By induction on the structure of terms we will prove that R
are three cases to distinguish for a term ¢ in R*".

¢ { is a single variable. Then it is already in normal form.

e Suppose ¢ is a function symbol. Then either it is a normal form, or balanced. If it is
balanced then it is a 0-ary term also occurring in R. Hence it has a reduction to normal
form. If we curry this reduction we get a reduction to normal form in R*".

e Otherwise, ¢t = t;¢5. By induction both ¢; and £ have normal forms, say T} and T5.

If 7175 is a normal form, then ¢ reduces to normal form. If 7175 is not a normal form, then
it contains a single redex, necessarily at the root. Therefore it is balanced at the root, and
T1T; is of the form Psi,...,s,], where P is a patch, and the s; are normal forms which
are unbalanced at their roots.

We now replace each s; by a new identifier z;, choosing the identifiers such that z; = x; if

and only if s; = s;. The term P[z,,...,z,] corresponds to a term in R, which has a normal
form. Hence P[z,,...,zy] reduces to normal form Q[z,...,%,]. Likewise P[si,...,]
reduces to Q[s1, ..., s,] which is now a normal form, whether or not P has collapsed. O

4.3 Preservation of SN by currying

In this section we will prove that if a TRS R is strongly normalising, then its currying R is
strongly normalising as well. ‘

The natural way of proving this seems to be via a minimal counterexample argument based
on size. However, the possibility that the minimal counterexample has the form P[ts,...,t,] for
some patch P can not so easily be refuted.

Let us see what happens. For ¢; it holds that they all are SN. So if P[ti,...,t,] can perform
an infinite reduction, it must be caused by the patch P. But, the patch P is just a curried
term from R, which is strongly normalising, even if we take all variables of the patch the same
(to ensure that non-left-linear rules applied to P in ¢ can also be applied when the subterms
t1,...,tn are omitted). Now we would like to conclude that the compound Plt,...,t,] is
strongly normalising because all its parts are. Unfortunately this conclusion is flawed: some
of the ¢; might despite initially being overbalanced terms reduce by collapse steps to balanced
terms, thus extending the area of the root patch with fresh symbols. For SN we have to consider
all possible reductions of the subterms £;, not just one normalising reduction as for WN.

The next idea is to modify unbalanced terms of the curried TRS into balanced terms that
correspond to terms of the original uncurried TRS. The modification should be such that reduc-
tion is preserved: an infinite reduction in the curried TRS can then be modified into an infinite
reduction in the original uncurried TRS.

In case of TRSs which do not contain collapsing rules this is straightforward—but note that
for these the above proof attempt would work as well. The general situation is harder and
requires an additional construction.

4.3.1 The non-collapsing case

The simplest way of balanéing an unbalanced term is the following. To the alphabet of the
original TRS R we add two new function symbols: a nullary function symbol A and a binary
function symbol B. We do not add new rules. Let us denote the new TRS by R & {4, B}.

LEMMA 4.5 A TRS R is strongly normalising if and only R® {A, B} is.

8

is SN, the extension R @ {4, B} is also SN by an appeal to Theorem 4.3.]

d function symbols A and B take care that residuals of patches present in the
cannot be glued together.

1.6 Let t be a term of R°*". From this term we construct a term a(t) by balanc-
rms occurring at maximal unbalanced positions (¢ > 0 in all following clauses)
their form: '

ftl T tarity(f)-i—k int by B(vt B(ftl tot ta.n'ty(f))tarity(f)+1 v ')tarity(f)+k)

ftie tomty(p)—k iDL DY ft1toriypy- A 4,
k

Tty -+t int by B(--- B(zty)ta -)tk
1 to see that
Let R be a TRS. For any t in R°*" the term a(t) is balanced.

sence of collapse rules the a-construction does not preserve reduction. Consider
he following collapse rule:

— .

CC — KzC — z, but a(K(Kz)CC) = B(K(KzA)C)C — B(KzA)C 4 z =
it collapse rules the a-construction is easily seen to be reduction preserving, since
ositions can only become balanced by a collapsing reduction.

Let R be a TRS without collapsing rules. If t — s in R then a(t) — a(s) in

cur

srve that when a patch P is contained in a term ¢, then the patch P is also contained
re also that the pattern [of a redex [is always contained in a patch. Non-left-
> problem: if t — s via a non-left-linear rule, then the subterms substituted at
ables at different positions in the left hand side of the rule are identical, and this
sserved by the a-construction. 0O

4.9 Let R be a TRS without collapsing rules. Then if R is SN, then R®*" is SN.

»ose R is not SN, that is, suppose tg in R*" has an infinite reduction. Applying
iction we obtain an infinite reduction of balanced terms a(ty) — a(ti) — ... in
°uT by the previous Lemma 4.8. We can reinterpret this infinite reduction as an in-
n in R&{A, B}. Hence R®{A, B} is not SN. By Lemma 4.5 R is not SN either. O

neral case we will apply the a-construction only to terms without overbalanced
would have been sufficient if we had defined o only to balance the underbalanced
bols). For such terms it holds that reduction can not make underbalanced function
nced. Hence:

Let R be a TRS. Let t be a term of R without any overbalanced positions. If
", then a(t) — a(s) in R, a

4.3.2 The general case

In the presence of collapsing rules it is possible that an underbalanced function symbol becomes
balanced such that lemma 4.8 no longer holds. Thus we need to modify this baiancing trans-
formation . The modification is based on two constructions, which we will explain first. First
we will define a second balancing operation 3, which will remove all overbalanced positions by
pushing them down as far as possible. This is a rather rough procedure, in which information
can get lost. However, with help of a third construction, essentially a variant of nested multi-
sets, we will define the final modified balancing transformation v which is suited to prove the
preservation of SN by currying.

We will now define a new balancing operation § :Ter(R*") —Ter(R*"). Given a term this
balancing operation will push the “excess” arguments of each patch down to its unbalanced
principal subterms. This mimics the possibility that by a total collapse of the patch the excess
arguments are added to an underbalanced principal subterm.

Given a term t of the curried TRS we determine an outermost overbalanced subterm. Such
an overbalanced term is of the form P[t,...,tn]s1--- s, where P[,...,] is a patch, K > 0 and
n > 0, or of the form z8;...sr where £ > 0. Then we “push the excess arguments down”
by replacing these subterms respectively by P[t181--- Sky...,tn81-+8k) and z. Note that the
excess arguments are “pushed over the edge” if the patch does not contain unbalanced subterms,
i.e. when n = 0. Now repeat this rewrite procedure until no subterms at overbalanced positions
are left. This reduction process is both WCR and SN?, hence CR by Newman’s Lemma.

DEFINITION 4.11 On the set of terms Ter(R°*") of a curried TRS we define the rewrite relation
—p: any term of the form C(Plty,...,t,]s) —g-rewrites to C(Pt1s,...,t,8]), and any term
of the form C(zs) —g-rewrites to C(z), where C[] is a context, Plzi,...,z,] is a patch and
t1,--.,tn, s are terms in Ter(R*"). By ((t) we denote the unique normal form of the term ¢
under this G-rewriting.

By the previous remarks the outcome, 3(t), of the “pushing excess terms down” procedure is
well defined. The following properties hold.

LEMMA 4.12 Let t,s € R,
e if t — s in R then B(t) —* B(s) in (R® {A, B})**,
o ift — s in R then o(B(t)) —* a(B(s)) in (R® {A, B}).

PRrROOF. Pushing down excess terms only copies or extends patches, hence it leaves redexes
intact, or removes them entirely. Non-left-linearity is not a problem.

By construction ((¢) removes all overbalanced nodes. So we can apply o and appeal to 4.10
to find that a o B preserves the transitive reflexive closure of reduction. O

Note that the actual number of steps in B(t) —* ((s) may be 0. A simple example of
this phenomenon is found in the TRS consisting of the single collapse rule K(y, z) — y. Here,
e.g., we see that B(z(Kyz)) = B(zy) = z. Hence, the B-construction is not strong enough to
conclude the preservation of SN by currying. This is where we need the RTLT-construction: we
will collect copies of excess arguments in a tree, so that no information gets lost by the pushing
down process. :

The next construction is a variant of nested multisets (cf. references in [DM79, DJ89]).

?Use the well-founded multiset extension of the subterm embedding relation (cf. [DM79, DJ89]): observe that
the rewrite procedure replaces an overbalanced principal subterm of the form Pl[ti,...,t,}s by various “smaller”
unbalanced principal subterms of the form ¢;s.

10

.13 Given an TRS R, we will define a new rewrite system RTZT. The elements
nite trees labelled by terms of R. Let T, S be term-labelled trees. We define that
S (notation: T — S) if S is obtained from T in either of the following ways:

proper subtree.

1 node labelled by t such that ¢ — s. Relabel the node with s, and replace each of
ediate subtrees of the node by any finite number of copies of themselves.

If the TRS R is SN, then so is RTLT,

r one recognises that we have defined a disguised nested multiset order over R, or
hat this reduction relation on trees is contained in the recursive path order® on
LT In any case, if the TRS R we started with is SN, then so is RTZT by classical
M79, DJ89] and [Gal92)). O

w ready for the final construction. We wil transform a term t from the curried
rm-labelled tree v(t), in such a way that when ¢ — s then y(t) =% ~(s). The
10f ¢ into y(t) will take some steps: We start from a tree having one node labelled
each stage in the transformation we choose a node (it will always be a leaf, by
labelled with a term ~y(s). We reconstruct the tree by adding for each subterm s
at an excess position a new node labeled by «(s'), at descendant position of the
Replace the label v(s) by cur™! o a0 B(s).

, by a similar argument as for 3, this procedure terminates in a unique result.
b y(¢).

5 Consider a signature of a TRS R containing {f, g, h} being respectively unary,
rary function symbols. We will calculate v(t) where t = h(y(fz))(z9)(zf) in R.
* excess subterms of t: (fz), g, (zf), and f. cur~! o a o B(t) is the term h(y, 2).
first step of the diagram below.

te trees labelled by terms of some strictly ordered (i.e., transitive, irreflexive order), well-founded
s larger in the recursive path order than S if either of the following holds:

>btained from 7" by one of the following rules:

ace a proper subtree by any number of smaller trees (including zero),

»se a node labelled by ¢ such that ¢ is greater than s in R. Relabel the node with s, and replace
. of the immediate subtrees of the node by any finite number of trees smaller than T

ubtree of T is greater than or equal to S.

»

version of [Gal92]’s definition 11.21; a friendly version of the recursive path order in a slightly
n be found in [Klo92].

11

h(y, z)

1Ry (f2)(29) () / / \\

v(fz) ~(9) Yzf) ()

h(y, z)
// \\ NN
fz) g(AA) T f(A) === f(z) g(4,4) z f(4)
f(iA) | v(f)

LEMMA 4.16 Let t — s in R°*". Then v(t) —% v(s) in (R® {4, B})TLT.

PRrROOF. By induction on the level of occurrence of the redex in the nesting of excess terms
(e.g., the redex occurs at level 2 in an excess term which occurs in some other excess term in
the original term) we will describe a reduction from ~(t) to y(s) in RTT,

Level 0: The redex is in the root patch of ¢, and must be contained in the term labelling
the top node of the tree. Relabel the top node by reducing the redex there. This takes one
step of RTLT. By already proved properties of o and B(t), this transforms cur~! o a0 8(t) into
cur~! oa o f(s), and hence gives the tree the same root label as ¥(s). In order to transform the
rest of the tree into y(s), it is sufficient to duplicate subtrees arising from subterms of ¢ which
the redex duplicated, and erase those arising from subterms which were erased. This takes zero
or more steps of RTLT,

Level n+1: Locate every node of the excess term at level 1 which contains the redex at level
n. There must be at least one. By induction, we can transform each of these subtrees of v(t) as
required to obtain (s). o
The proof of the preservation of SN by currying now follows easily:

THEOREM 4.17 If the TRS R is SN, then its currying R*" is SN..

PROOF. Let R°*" be not SN. Let t € R have an infinite reduction sequence. Then, by
Lemma. 4.16, the term ~v(t) has an infinite reduction sequence in (R® {A, B})T*7, implying that

(R={A, B})TLT is not SN. Therefore R ® {4, B} is not SN by Lemma 4.14. Hence R is not
SN by Lemma 4.5.]

Let us finish this section with a minor application of Theorem 4.17. The reader might have
thought about a possibility of rescuing the a-construction by extending R & {A, B} with some
rules. For each function symbol f in the signature of R we add n rules to R ® {4, B}, where n
is the arity of f. E.g., if the arity of f is 3, we add:

B(B(B(f(A: A,A),LL’), y),Z) - f(mvyv Z)

B(B(f(z,A,A),y,,2) — f(z,y,2)

12

B(f(z,y,A),2z) = f(z,y,2)

Let us denote this extension of R by R4p. One can easily verify the following improvement of
Lemma 4.8:

LEMMA 4.18 Let R be a TRS. Ift — s in R then a(t) —»* a(s) in (Rap)*". O

It now holds that if R is strongly normalising then R4p is strongly normalising. This fact
does not follow straightforwardly from any known modularity result for SN, as these modularity
results for SN typically require disjointness of the two systems. It does follow however as a direct
corollary of Theorem 4.17 and the next lemma:

LEMMA 4.19 Let R be some TRS. Then Rap is strongly normalising if and only if R is
sirongly normalising.

PROOF. Suppose R°*" has an infinite reduction ¢t — t; — ---. Applying the a-construction
and Lemma 4.18 we obtain an infinite derivation a(ty) = a(t;) =% --- in Rap.

If on the other hand R4p allows for an infinite reduction tg — ¢; — - -+ then we can curry it
into an infinite reduction t§*" — t{*" — ... in R, with a slightly modified curry-procedure: we
curry A and B by deleting them, e.g., (B(f(z,y, A4), 2))*" becomes fzyz. That this procedure
is sound follows from the observations that an infinite reduction in R4p must contain an infinite
number of applications of rules from R which are preserved by currying, and that an infinite
reduction in Rp does not contain a term consisting of A’s and B’s only. a

4.4 Preservation of WCR by currying

The preservation of WCR, by currying can be proved in a straightforward and easy way:
THEOREM 4.20 If R is WCR, then R is WCR.

PROOF. Let t; «— t — ty be a fork in R by respectively reducing redexes R; and Ry. Now
there are three cases:

e If R) and R, belong to the same patch, then using WCR for R there exists a term s such
that t; —* s «* {5 in R,

e If R, and R belong to different patches (hence the redexes are non-overlapping) and one
is below the other. Say R is below R;. If R is left-linear then there contracting R; first
and then the copies of Ry or contracting Ry first and then R; results in the same term.
The variant of this argument in case of non-left-linear rules is straightforward.

e If neither of the previous cases hold, let s be the term obtained by contracting both R;
and Ry. Then clearly t; — s — ts. O

4.5 Preservation of completeness by currying
The preservation of completeness is a corollary of the two preceding preservation theorems.
COROLLARY 4.21 If R is complete, then so is R°%",

Proor. A TRS is complete if and only if it is both WCR and SN. By Theorems 4.20 and 4.17,
both properties are preserved by Currying, therefore so is completeness. 0O

13

5 Properties preserved by currying left-linear term rewriting
systems

Throughout this section we will consider the currying R*" of a left-linear TRS R. We will prove
that the currying of a left-linear TRS preserves the Church-Rosser property and the Normal
Form property as well as two versions of the unique normal form property. A counterexample
will demonstrate that these properties may not be preserved for non-left-linear systems. The
preservation of semi-completeness follows for left-linear systems from the preservation results of
WN and CR. It remains an open question whether semi-completeness is preserved for non-left-
linear systems as well.
We start with a recollection of definitions and facts.

5.1 Preliminary facts and definitions

DEFINITION 5.1

e A TRS R satisfies the normal form property (NF) if for any term ¢ in R with a reduction
to normal form ¢ —* n in R and any reduction ¢ — s in R, there exist a reduction s —* n
also in R:

Note that ¢t — s is a single step. The definition would be equivalent if the reduction of
t to s were allowed to be of any finite length, but the formulation above will be more
technically convenient.

e A TRS R has unique normal forms (UN) if convertible normal forms are identical.
o A TRS R has unique normal forms with respect to reduction (UN™") if all normal forms of

a term are identical. ;

ny = ng
o A TRS is semi-complete if it is WN and CR.
DEeFINITION 3.2 A TRS (X1, B;) is a conservative extension of a TRS (2o, Ry) if
° X C Xy
e Ry C Ry

e For any t,s €Ter(%,), if t =g, s then t =g, s. (or just — instead of =)

Our definition of the normal form property differs from the usual one as presented, e.g., in
[Klo92]:

LEMMA 5.3 A TRS R is NF if and only if for all s,t € R whenever s is a normal form and t
s convertible to s, then t is reducible to s.

14

PROOF. By induction on the length of the convertibility sequence from s to t. a

We will use the following facts:

LEMMA 5.4 CR = NF = UN = UN™ (cf. e.g. [Klo92]).

THEOREM 5.5 The disjoint sum of two confluent TRSs is confluent. [Toy87]

5.2 Preservation of CR by currying for left-linear TRSs

We will show that the Church-Rosser property will be preserved by currying for left-linear TRSs.

As a tool in the proof we will need coloured versions Regonr and RS, . of a given TRS R
and its currying R°*". The alphabet of Repiour 15 Tcotour = L U X X Colours, where ¥ is the
alphabet of R. The rules of Ry are all uniformly coloured versions of rules of R: i.e., for
each rule [— r of R we now have as many coloured versions as there are colours, in such a way
that all function symbols of the patterns of the left and the right hand side of a rule are labelled
with the same colour.

Let us denote by RZY" ~ the subset of (Reoiour)™" consisting of well-coloured terms only: a
term is well-coloured if only balanced positions are coloured and moreover two positions have
the same colour if they belong to the same patch. It is clear that coloured reduction preserves
well-colouredness.

Terms in RS, . can be thought of as terms of R°“" provided with a colouring, a partial
function from the set of positions of the term to the set of colours. A patch-colouring is a
colouring of a term such that all balanced function symbols are coloured and function symbols
have the same colour if and only if they belong to the same patch. Reductions starting from a
patch coloured term will be called patch-coloured reductions. Every patch-colouring is a well-
colouring, and so a patch-coloured reduction contains only well-coloured terms, but only the
starting term need be patch-coloured.

LEMMA 5.6 Let t be a term of a curried TRS RS If R has the Church-Rosser property,

colour"’
then all reductions from a given patch-colouring of t are confluent.

PROOF. Sketch. We use the balancing operation o again. If R is confluent then both R& {4, B}
and Roour are confluent by Toyama’s modularity theorem for confluence. Hence, given a fork
in RZy,. we translate it using a into a fork in Reyiour @ {4, B}. The latter TRS inherits CR
from R, and so contains a join of that fork. That join translates back again into a join of the
given fork in RS .. O

If we now start with a reduction ty —* ¢, then we will replace it by a sequence of patch
colour reductions. We construct such a sequence as follows. Starting from a patch-colouring of
to we redo in colour a longest possible initial segment of the given reduction g —* t,. There
is a strictly positive number of initial reduction steps which can be lifted to a patch reduction
(note that this lifting requires left-linearity). Say, the last term of the initial segment is ¢, for
some k£ > 0. Now either n = k or the step t; — tx4; could not be lifted to into a coloured
reduction. This can happen when somewhere in the reduction a collapse has taken place such
that an initially uncoloured (because unbalanced) function symbol became part of a patch. Now
we repeat the process on fx, and so on, and so on.

Here we need a definition and a lemma:

DEFINITION 5.7 Let t,s be terms of REY . We say that t is better coloured than s (notation
t>s)

e if s and ¢ derive from the same uncoloured term,
e every position which is coloured in s is coloured in ¢,

e whenever two positions in s have the same colouring and belong to the same patch then
they have the same colouring in ¢ as well.

LEMMA 5.8 Let R be a left-linear TRS.

o Let ty,s, be terms of RS . If ty is better coloured than s,, then, whenever s; contains
a redex at some position u, so does t1 at the same position. Contraction of these redezes
results in terms ty and sq, respectively, such that ty is again better coloured than ss.

s1 <
.
512 < tiz
o Let tog —* tp+xr be some patch reduction for some n,k > 0 in e our. Then tn, —* to1i

can be recoloured into a patch reduction. The recolouring makes t,, better coloured.
PROOF.
e Trivial. But note that left-linearity is essential!

e With a fresh patch colouring the intermediate term t, becomes better coloured. Now
apply the previous item. O

We are now equipped to prove the preservation of CR by currying for left-linear TRSs.
THEOREM 5.9 If a left-linear TRS R is CR, then so is its currying R°“".

PRrOOF. The proof of the preservation of CR by currying can be summarised by the diagram
in figure 1. In this figure, each tile represents a commuting reduction diagram in the patch-
colouring of the term in left-upper corner of the tile.

Let a fork t; «* tg —* tp in R°*" be given. If we lift both reductions to a sequence of
patch-colourings (starting with the same patch colouring for tg) in RSY ., we obtain the left
edge and top row of the figure 1. From left to right and from top to bottom we construct the
tiles the figure consists of. Given the left hand side and the upper side of an unfinished tile we
complete it using CR of R via lemma 5.6. We construct the left hand side for the next tile on
the right from the right hand side of the just found tile, using lemma 5.8. In a similar way we
construct a new upper edge for the next tile below from the just constructed bottom edge.

When in the so constructed diagram we finally bleach the colours then the constructed
bottom reduction and right hand reduction are the sought for join. Hence R*" has the Church-
Rosser property. O

16

- * * ! *
* VY * l 4 *
° <) sl R e ——" o
% % i ES
* x|] * *| | % *| | % ®
v * 12 * L * 1
® <) Y R o " ¢
: * : * *
. * . * *
® > 9 < R e ——— > g
‘ * i * *
‘* 3 * * * * * %
' * ‘ * ¥ *
® >~ 9 > @ cre e ® —> @
Figure 1:

5.3 Preservation of NF by currying for left-linear TRSs

By a minimal counterexample argument we will prove the preservation of NF by currying for
left-linear TRSs.

Before we give this proof we will introduce root-colouring. Assume we have some term ¢ in
some left-linear curried TRS R°“". Suppose this term has a patch at the root: i.e. suppose the
head symbol is a balanced function symbol. We colour ¢ with two colours: one, say root, for the
root patch P and another colour, say transparent, for the remaining function symbols outside
P. Let t —* s be some reduction in R°*". Observe first that this reduction is a valid reduction
under the proposed colour scheme. One proves this by induction on the length of the reduction.
The result is that we have coloured only the steps that take place in the root patch with the
colour “root”.

Secondly observe using left-linearity that all root-coloured reduction steps can be moved to
the front, because whenever t1 —iransparent 2 —root 13 then t1 —root t4 —fansparent t3, Since a
transparent redex never overlaps with and always is below a root redex. Summarising:

LEMMA 5.10 Let R be a left-linear TRS. Let t be a term in R*". Suppose the head symbol of ¢
is a balanced function symbol. Then any reduction t —* s factors into a root-reduction sequence
followed by a reduction sequence in which no reductions take place in a root patch descending
from the root patch in t.

THEOREM 5.11 If a left-linear TRS R is NF, then so is its currying R,

PROOF. Suppose NF holds for R but does not hold for R°*". Then there exists a term ¢ in B°*"
that contradicts NF and is minimal wrt the number of symbols it consists of. Let us inspect as
in the case of WN the four possible forms ¢ can have. In each case we will derive a contradiction.

e t is variable or a function symbol. Then ¢ is either a normal form or a balanced term.
Since R is NF, in neither case can t be a counterexample to NF for R,

17

e t is of the form ft;---t, with 0 < k < arity(f). The only possible normal forms for ¢
have the form ft|---¢, wheret] ... & are normal forms of ¢; - - - t;. Therefore if ¢ were a
counterexample to NF, at least one of the ¢; would have to also be a counterexample to
NF, contradicting the minimality of ¢.

* Suppose ¢ is of the form P[ty,...,t], where P[---] is the root patch of ¢.. Being a coun-
terexample to NF, P[t;,...,%] has a reduction to normal form, say n, and reduces in
one step to a term s which cannot reduce to n. The subterms ¢; are smaller than t, and
therefore satisfy NF. Every variable instance of the patch P is a curried term of R, and
therefore satisfies NF.

Using 5.10 we can factor the reduction of ¢ to n into a root reduction entirely taking place
in P followed by a tail containing no reduction steps from P. The last term m of the initial
root reduction contains the residue 6f P, which is either nothing (in case the context P
has reduced to one of its holes) or some patch in normal form. In either case the root
reduction reduces P to normal form. Consider now the place of the redex in the reduction
step to s. If this redex is in P, then using the NF-property of R for the patch P, we can
reduce s to this intermediate term m, and then to n. If the redex is in one of the t;, then
in s we copy the reduction of the patch P in ¢ —* m to a term m’' which differs only in
the leaf corresponding to ¢; of the residue of P from m. In the reduction m —* n this leaf
gets reduced to normal form, so we can apply the NF property of ¢;, to obtain a reduction
from m' to n.

¢ Suppose that the minimal counterexample ¢ to NF is of the form Plty,...,txls1--- 5 for
some patch P and | > 0. By hypothesis, ¢t can be reduced to a normal form n, and can
also be reduced in a single step to a term s not reducible to n.

Now there are two possibilities: in the reduction of ¢ to n the root patch P collapses, or it
does not. If it collapses, then ¢ can be reduced to a term ¢;8; - - - ;. By an argument similar
to the previous case, s can also be reduced either to the same term, or (if the step from
t to s was performed within either ¢; or one of s;--- s;) to a term s’ such that t;81-- -5
reduces to s’ in one step. But then ¢;s; -+ 5 is a counterexample to the NF property but is
smaller than ¢, contradiction. If P does not collapse, then n must have the form Qsy s,
where @ is a normal form of Plty,...,t;] and each s; is a normal form of s;. But then
either P[t,...,] or one of the s; must be a counterexample to NF which is smaller than
t.

Thus all possible forms are impossible. Hence R°*" is NF. ' O

5.4 Preservation of UN by currying for left-linear TRSs

At first sight it is not clear how the preservation of UN by currying can be proved directly. We
can reduce however the preservation of UN to the preservation of CR or NF. The key idea is a
coustruction of Middeldorp (cf. [Mid90]), which given a TRS with the UN-property constructs
a conservative extension which is CR. It is rather easy to see that such conservative extensions
are preserved by currying.

LEMMA 5.12 Currying preserves conservative extensions.

18

PROOF. Trivial. Let Rj be a conservative extension of R;. Suppose ¢ —pgeur s for t,s € R{™.
Consider the patch in which the redex of this reduction gets contracted. In this patch we can
find subterms ', s' € R; such that ' — s’ in Ry. Hence also in R;. Thus we see that ¢ — peur s.

Thus R§™ is a conservative extension of R{* . a

Now instead of verifying that Middeldorp’s construction can be refined so that when pre-
sented with a left-linear TRS it produces another left-linear TRS, we will consider a simpler
variant: a construction which extends a left-linear TRS which is UN into a left-linear TRS
which is NF.

This extension comes down to: for each equivalence class with respect to conversion which
contains a necessarily unique normal form n add rules of the form t — n for each ¢ in the
equivalence class.

In [Mid90] Middeldorp discusses this method, and rejects it as being too weak to result in
a confluent TRS. It is however strong enough to give conservative extensions which are NF, as
we will show now.

LEMMA 5.13 Any left-linear TRS which is UN can be conservatively extended to a left-linear
TRS which is NF.

PROOF. Let the left-linear TRS R be given. Suppose it is UN. We extend it to a TRS RN¥
by adding some extra rules, as follows. Consider the equivalence classes of convertible terms
containing a (necessarily unique by UN) normal form. For each linear term ¢ in such a class [n],
where n is the normal form, add the rule ¢ — n provided ¢ is not identical to n.

First we have to show that the added rules are well formed rules: the free variables of the
left hand side of a rule must include the free variables of the right hand side. If n contained a
variable z not occurring in ¢, then in the conversion of ¢ to n one could replace all occurrences
of z by any other variable y not occurring in the conversion sequence, obtaining a conversion
of t to a normal form n’ distinct from n. But then n and n’ would be distinct but convertible
normal forms, contraducting the hypothesis of UN.

The next step is the observation that RNF is indeed a conservative extension of R with
respect to convertibility. This follows trivially from the construction.

Finally we observe that if R is UN then this extension RNF is also NF. This is easy as well:
if t —* n in RVF then clearly ¢ € [n]. If for some s we have t — s in RNF, then s € [t] = [n].
Now we would like to conclude that s — n is an instance of a rule we have added to R. This
is trivial if s is linear, but in general requires the observation that for any left-linear TRS R,
whenever t; — to and f; is non-linear, then are terms s, and sy and a substitution ¢ such that
sy is linear, s;1 — sg and s7 =t¢; for¢ = 1,2. 0

THEOREM 5.14 If a left-linear TRS R is UN, then so is its currying R°¥".

ProOF. Let the TRS R be UN and left-linear. By Lemma.5.13 we can construct a conservative
extension RMF of R which is left-linear and NF. By Theorem 5.11 we see that the currying of
RNF is also NF. Now suppose we have two convertible normal forms in R°*". These are convert-
ible normal forms in (RVF)°*" as well. By the NF-property of (R¥F)¢*" we obtain a reduction
sequence from one to the other. Since the extension of RN¥ by (RNF)°* is conservative, the
reduction takes place inside is valid in R**" as well. Being a reduction between normal forms it
has length 0, implying that the two normal forms are identical. Thus R*" is UN.]

19

5.5 Preservation of UN™ by currying for left-linear TRSs

By proving that a minimal counterexample (i.e., minimal in number of symbols) does not exist
we show that the property UN™ is preserved if we curry a left-linear TRS satisfying it. This proof
is based on the observation that such a minimal counter example must contain an innermost
overbalanced subterm. We will show this first.

LEMMA 5.15 Let R be a left-linear TRS satisfying UN™. Let t be a minimal counterezample
that shows that R°*" does not satisfy UN™. Then t contains an mnermost overbalanced subterm.
This overbalanced subterm can reduce to a balanced term.

PROOF. The term ¢ must contain an unbalanced subterm s. Otherwise it is balanced, in which
case it is the currying of a term in R, and hence must have the UN™ property. So, let t = C[s].
Inspecting the two given reductions to different normal forms of ¢, we note that in one of these
reductions a descendant of the root of s has to become part of a balanced patch in a derivative
of C[]. (If not, with an appeal to left-linearity, we can factor the reductions into a reduction
of C[] into normal form D[] and a reduction of s into normal form r. Both C[] and s are
smaller than ¢, hence their normal forms are unique. So that the resulting compound DI[r] is
normal form of both reductions, contradiction.) But this can happen only if s is overbalanced,
as'reduction preserves underbalancedness of a headsymbol.

So t contains an overbalanced subterm. Hence, t being a finite term, there is an innermost
overbalanced subterm in ¢. It can reduce to a balanced term. |

THEOREM 5.16 If a left-linear TRS R is UN™, then so is its currying R°".

PROOF. Let R be a TRS satisfying UN”. Suppose R°" is not UN™. Then there is a min-
imal counterexample ¢ with an innermost overbalanced subterm s of t. So, s is of the form

Plt1,...,tk]s1...8m for some patch P and terms t;, s; in R®". s can become balanced, so
Plt1,...,t;] must be able to collapse to one uniquely determined subterm, say t;.
We now claim that if ¢ = C[P[t1,...,t]s1 ... sm] can reduce to a normal form n then, the

- smaller term t' = C[t;81 ... sm] reduces to n as well. From this claim follows the existence of a
smaller counterexample, hence a contradiction to the existence of a minimal counterexample to
UN~—.

The claim follows from the fate of derivatives of P: the normal form n does not contain any
positions descending from a position of the original patch P. So either such a derivative just
gets reduced to another derative, or it is removed by some action above it, or it collapses to a
derivative of ¢;. 0

5.6 Preservation of semi-completeness by currying for left-linear TRSs
Preservation of semi-completeness has become an easy corollary of previous results:
COROLLARY 5.17 If a left-linear TRS is semi-complete, then so is its currying.

PrOOF. A TRS is semi-complete if and only if it is WN and CR. Both these properties are
preserved by currying for left-linear systems, therefore so is semi-completeness. O

In contrast to the properties CR, NF, UN and UN™, it is open whether this result holds for
all non-left-linear systems.

20

6 The counter example CL/*" @ M for non-left-linearity

For non-left-linear systems, currying does not always preserve the properties CR, NF, UN or
UNT. We will show this by exhibiting a TRS which satisfies CR (and hence also NF, UN and
UNT), but whose currying does not satisfy UN™ (and hence not UN, NF nor CR).

The counterexample will be derived from an extension of combinatory logic with a functional
TRS M such that CL@ M is CR and CL + M*°*" is not UN™ (cf. [Kl080, K1092]). This would
be easy if CL could be interpreted as the currying of some functional TRS. However, the right
hand side of the rule Szyz — zz(yz) makes this impossible. The next best we can do is to
construct a functional TRS CLf*" whose currying contains an isomorphic image of CL. For
this TRS we will prove:

e CL/*» @ M is CR (hence not NF, UN and UN™),
e UL+ M is not UN".

Then we will conclude that (CLf*» @ M)**" is not UN™ (hence not UN, NF or CR).
First some preliminaries.

DEFINITION 6.1 A TRS R is an embedding of a TRS S if there exists a injective function
¢ :Ter(R) —Ter(S) such that t — s in R if and only if ¢(t) — ¢(s) in S for all ¢,s in R.

The counterexample will be derived from the extension of CL with the following TRS M
used by Huet [Hue80] and Breazu-Tannen [BT88]:

_) M(z,z) - 0
M'—{ M(Succ(z),z) — 1 °

Its currying is

cur _ | Mzzx — 0
M —_{ M(Succz)z — 1 °

First we note that M and M have in combination with CL different properties.
LEMMA 6.2

1. CL& M is CR (hence NF, UN and UN™),

2. CL+ M°*" is not UN™ (hence not UN, NF nor CR).
PROOF.

1. Combinatory logic is CR (cf. e.g. [Bar84]). It is easy to see that M is both SN and WCR,
hence by Newmans Lemma 4.2 we find that M is CR. Toyama’s modularity theorem 5.5
for confluent TRSs implies that CL & M is CR.

2. Using the fixed point combinator? Yz — z(Yz) definable in CL we see that the term
M(Y Suce)(Y Succ) has two different normal forms:

M(Y Succ)(Y Succ) — 0

" “Define B = S(KS)K, E = B(SI)(SII) and Y = EE. Then Bzyz —* 2(yz) and Yz —* z(Yz).

21

M(Y Suce)(Y Suce) —* M(Suce(Y Suce))(Y Succ) — 1

Hence CL + M°*" is not UN™. O

We now construct a functional TRS whose currying contains CL. To explain the construction,
let us ignore the formalities for a while.
Consider the following reduction in CL:

Iz —z

Clearly this rule could be the currying of the following functional reduction:
I{z) >z

However, the I-rule has instances such as:
Izy — zy

and
I(zy)z — zyz

Their uncurried forms (ignoring problematic notation) would be:
I(z,y) — z(y)

and
I(z(y), 2) — z(y, z)

Clearly, this attempt to uncurry CL goes wrong, in two ways. The function symbol I occurs
with different arities, and the variables of the functional TRS are treated as if they have variable
arity.

We correct these defects by introducing for each arity ¥ > 0 a special symbol I, and for
each variable z a set of function symbols {X; | i > 0}, where the index indicates the arity. We
now transcribe the uncurried forms as: .

L(z) >z
I (Xo,y) = X1(y)
IL(X1(y), 2) — Xa(y, 2)

By transforming the rules for S and K in an analogous way we are led to the following definition
of CLfu»,

DEFINITION 6.3 The alphabet of CL*" consists of a set of variables, for each variable z a set of
function symbols { X}, | k¥ > 0} and for each F € {S, I, K} a set of function symbols {Fj | k£ > 0}.
The indices represent the arities. The rules of CLf¥" are:

S‘n.+3(am($l7-"1wm)’/6k(y11'--1yk)1z7ula""un) -
an+m+2($1,---axm’zaﬁk+1(yly"'3yk7z)7'u'1,--'7un)

Knto(@m (1« oo Zm)y Be(Uls ooy Uk)s ULy - o s Un) = Cmgn(T1ye e oy Tmy ULy e o+ 5 Un)

Lnt1(@m(Z1, - oy Zm)s ULy -« oy Un) = Qman(T1y- oy Tmy ULy vy Un)

22

where a, 3 € {S,K,I,X,Y,...} and n,m,k > 0.

This is the right concept: CL is embedded in the currying of CLf%", as we will show now. We
need some definitions. One caveat, in order to make the following definition work we take as
equivalent definition of Ter(CL) the following BNF definition:

bu=S|K|I|zx
t = (b)] (bt1) | (bt1ta)...

This means that as standard notation we put brackets around maximal subterms of the form
bty -ty e.g. (Sz(zyz)(Kz)z).

DEFINITION 6.4
e By simultaneous induction we define tmsn, tmaz :Ter(CL) -—+Ter(CLf un),

~ tmin(Z) = z, for z a variable

~ tmaz(z) = X, for z a variable

~ tmaz(F) = tmin(F) = F, for F € {S, K, I},

= tmin((ft1-* tn)) = tmaz()n(tmin(t1) - . - tmin(tn))
= tmaz((ft1++-tr)) = tmae(fn(tmaz(t1) - - - tmac(tn))

e By induction we define U :Ter(CLf*") — CL:

— U(z) = z, for = a variable,
= U(Fu(ty,...,tn)) = (w(F)U(t1) - - U(tn)), for F € {S,K,1,X,...}

where

- u(Xy) = z, for X, the n-ary “variable-function symbol” corresponding to z
— u(F,)=F, for F e {S,K,I}

Let us give some examples:
tmin((2y(Szy)) = Xa(y, S2(z,v))
tmaz((2y(Szy)) = Xa(Yo, S2(Xo, ¥0))
U(Xa(Yo, S2(z, 9))) = U(X2(Yo, S2(Xo, Y0))) = (zy(Szy))

It will be clear that these translations preserve patterns of redexes, i.e., in particular they
preserve reduction steps.

LEMMA 6.5

1.t = 8 in CL & tmin(t) = tmin(s) in CLf** & tmaz(t) = tmaz(s) in CLI* for all
t,s €Ter(CL),

2. U(t) = U(s) & t— s for all t,s € Ter(CL¥")) O

It now follows immediately that:

23

LEMMA 6.6 tmqg : CL — (CLF*™)* s an embedding. o

Since CLf¥" is not orthogonal we have to work a little to prove the CR property. However, via
the above translations we can derive it from the CR property of CL itself.

LEMMA 6.7 CLu" is CR.

ProoF. Consider a fork t; «* t —* ty in CLfu", Applying U we get a fork U(t;) «*
U(t) —* U(tz) in CL. By confluence of CL there exists a join U(t;) —* s «* U(ty) in
CL. Applying tmin we obtain the join tmin(U(t1)) —=* tmin(8) «* tmin(U (t2)) in CLf**. But
t = (tmin(U(t)))? for some substitution o which replaces some variables z,y, ... by Xo, Yo,
Hence &1 = (imin(U(£1)))” <" (tmin(8))” =" (tmin(U(t2)))” = to. o

LEMMA 6.8 CLf*» @ M is CR.

ProOF. CLf*" and M are CR and disjoint. Hence we can apply Toyama’s modularity theorem
5.5 for CR. O

LEMMA 6.9 (CL & M) is not UN".

PROOF. CL+ M is an embedding of (CLf¥n)<¥" 4 M ¥ = (CLf*" @ M) via t;neq. Since
CL+ M is not UN™ via Lemma 6.2, it follows that (CLf** @ M)°*" is not UN™.

0
These last two lemmas imply that CLf*" @ M is the sought for counterexample.

7 Acknowledgements

We would like to acknowledge the friendly help and criticism of Vincent van Oostrom, Aart
Middeldorp, Femke van Raamsdonk, Yoshihito Toyama and Hans Zantema. We used Paul
Taylors commutative diagram package.

References

[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntaz and Semantics. North-Holland,
2nd edition, 1984.

[BT88] V. Breazu-Tannen. Combining algebra and higher-order types. In Third Annual
Symposium on Logic in Computer Science, pages 82-90, Edinburgh, 1988. IEEE.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland, 1958.

[DJBQ} N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 15. North-Holland,
1989.

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Comm.

AM, 22(8):465-476, 1979.
[FH88] A.J. Field and P.G. Harrison. Functional programming. Addison-Wessley, 1988.

24

[Gal92]

[Hue80]

[KKSdV93]

[K1080]

[Klo92]

[Mid90]

[Toy87]

J.H. Gallier. What's so special about Kruskal’s theorem and the ordinal I'¢? A
survey of some results in proof theory. Technical report, University of Pennsylvania,

1992.

G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. JACM, 27(4):797-821, 1980.

J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Comparing curried and
uncurried rewriting. In H.P. Barendregt, M. Bezem, and J.W. Klop, editors, Dirk
van Dalen Festschrift, volume V of Quaestiones Infinitae. Department of Philoso-
phy, Utrecht University, 1993.

J.W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts Nr. 127.
CWI, Amsterdam, 1980. PhD Thesis.

J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, Volume II. Oxford University

Press, 1992.

A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije
Universiteit, Amsterdam, November 1990.

Y. Toyama. On the Church-Rosser property far the direct sum of term rewriting

systems. JACM, 34(1):128-143, 1987.

MS“

sl 35

5

R N

25

