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Abstract

The simultaneous replacement transformation operation� is here de�ned and studied wrt normal

programs� We give applicability conditions able to ensure the correctness of the operation wrt the

set of logical consequences of the completed database� We consider separately the cases in which

the underlying language is in�nite and �nite� in this latter case we also distinguish according to the

kind of domain closure axioms adopted� As corollaries we obtain results for Fitting�s and Kunen�s

semantics� We also show how simultaneous replacement can mimic other transformation operations

such as thinning� fattening and folding� thus producing applicability conditions for them too�
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� Introduction

��� The Language Problem

In this paper we consider as semantics for a normal logic program P the set of logical consequences
of its completion Comp�P �� the consistency problem is avoided by using three valued logic instead of
the classical two valued� Yet these choices still lead to possibly di�erent approaches� the reason is that
Comp�P � depends strongly on the underlying language L� and when L is �nite �that is� when it contains
only a �nite number of functions symbols� the equality theory which is incorporated in Comp�P � is not
complete� This problem can be solved by adding to Comp�P � some domain closure axioms �DCA�� which
are intended to restrict the quanti�cation to the universe of L	terms� Again in the literature we �nd two
di�erent kind of such axioms
 the strong �DCA� and the weak �WDCA� ones� It follows that we have
three di�erent approaches are possible� namely we may


a� Consider an in�nite language� with no domain closure axioms� This is the approach followed by
Kunen ���
�

b� Consider a �nite language and adopt the strong domain closure axioms �DCA�� This was studied by
Fitting in the case that L coincides with the language of the program L�P �� this semantics is commonly
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known as Fitting�s Model semantics� His results can also be applied in the case in which L is larger than
L�P ��

c� Consider a �nite language and adopt the weak domain closure axioms �WDCA�� This has been
studied by Shepherdson ���
� and the results are similar to the ones found for the case of an in�nite
language �case �a� above��

What these three approaches have in common is that the semantics can always be characterized via
the Kleene sequence of the operator �P � the three	valued counterpart of the usual immediate consequence
operator TP � In this paper we consider the three cases separately� we also characterize the equivalence
of two programs P and P � by referring solely to the Kleene sequence of the operators �P and �P � �

��� The Replacement Operation

The replacement operation has been introduced for transforming de�nite programs by Tamaki and Sato
in ���
 and after that it has been rather neglected by people working on program transformations apart
from Sato himself ���
� Maher ���
 and Gardner and Shepherdson ��
� Replacement consists in substi	
tuting a conjunction of literals� in the body of a clause� with another conjunction� It is a very general
transformation able to mimic many other operations� such as thinning� fattening ��
 and folding� which
can be seen as particular instances of replacement�

A basic requirement for the applicability of replacement is that the replaced and replacing parts are
equivalent with respect to the considered semantics� But this is not su�cient� it is also necessary that
this equivalence still holds in the transformed program� in fact replacement could introduce in�nite loops
through the modi�ed clause� In case of normal programs� the problem is further complicated by the
presence of negation�

A few proposals have been given� For de�nite programs� Tamaki and Sato in ���
 give an applicability
condition which compares the smallest proof trees of the two considered conjunctions� Gardner and
Shepherdson� in ��
� give conditions for preserving both the procedural �SLDNF� semantics and the
declarative one� Such conditions are based on Clark�s �two valued� completion of the program ��
� Sato�
in ���
� considers replacement of tautologically equivalent formulas in �rst order programs� Maher ���� ��

restricts the applicability of replacement to the case in which the replaced literals are independent from
the clause where the replacement is applied�

Here we study simultaneous replacement which consists in performing many replacements all at the
same time� and de�ne applicability conditions able to guarantee the correct application of the operation
in normal programs with respect to the three semantics mentioned above� This will allow us to draw
conclusions for Fitting�s and for Kunen�s semantics as well�

In some previous papers also the Well	Founded Model semantics for normal programs �in ��
� and the
S	semantics for de�nite programs �in ��
� have been considered and similar results have been obtained�

Our approach is based on two concepts
 The semantic delay between two conjunctions of literals
and the dependency degree of a conjunction of literals wrt a clause� The �rst corresponds to compare a
measure of complexity of predicates� namely the number of applications of the �xpoint operator which
are necessary for determining their truth or falsity� The second corresponds to the length of the shortest
path reaching a clause in the derivation tree of a conjunction of literals� Our applicability conditions for
replacement compare the semantic delay between the two conjunctions of literals and the dependency
degree of the replaced part with the clause to be transformed� In this way it is possible to characterize
when �there is no space to introduce a loop�� Such applicability conditions� are undecidable in general�
but other decidable� syntactic conditions can be derived for special cases� In ��
 we consider two such
cases when replacement simulates folding�

��� Structure of the Paper

In Section � the main de�nitions related to the semantics we use are brie�y recalled� and the de�nition
of simultaneous replacement is given� We also de�ne equivalence among programs and correctness of a
transformation operation wrt a general �rst order theory� In Section � we characterize these de�nitions
via the three valued operator �P for the case in which the theory corresponds to the program�s completion
together with the DCA closure axioms� �nally we state and prove the results on the correctness of the
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replacement operation wrt to the semantics just mentioned� Section � contains the same results of
Section � for the case of the WDCA closure axioms� In Section � we also take into account the case
of an in�nite language� with no closure axioms� In Section � some examples are provided and it is
shown also how thinning and fattening can be seen as special cases of replacement� thus yielding� as a
consequence� conditions for a safe application of these operations to normal programs� Reversible folding
is also considered and its safeness is proved by assimilating it to the replacement operation� A short
conclusion follows� Part of the proofs is given in the Appendices�

� Preliminaries

We assume that the reader is familiar with the basic concepts of logic programming� throughout the paper
we use the standard terminology of ���
 and ��
� We consider normal programs� that is �nite collections
of normal rules� A� L�� � � � � Lm� where A is an atom and L�� � � � � Lm are literals� Symbols with a � on
top denote tuples of objects� for instance �x denotes a tuple of variables x�� � � � � xn� and �x � �y stands for
x� � y� � � � �� xn � yn� We also adopt the usual logic programming notation that uses ��� instead of ��
hence a conjunction of literals L� � � � �� Ln will be denoted by L�� � � � � Ln or by eL�

In this paper we work with Kleene�s three valued logic ���
 where the truth values are true� false and
unde�ned� The usual logical connectives have value true �or false� when they have that value in ordinary
two valued logic for all possible replacements of unde�ned by true or false� otherwise they have the value
unde�ned�

Three valued logic allows us to de�ne connectives that do not exist in two valued logic� For example�
in the sequel we use the � � Lukasiewicz�s operator of �having the same truth value�� a� b is true if a
and b are both true� both false or both unde�ned� in any other case a� b is false� By contrast� the usual
� is unde�ned when one or both its arguments are unde�ned�

In some cases we restrict our attention to formulas which we consider �well	behaving� in the three
valued semantics� Next de�nition is intended for characterizing such formulas�

De�nition ���

� A logic connective � is allowed if the following property holds
 when a � b is true or false then its
truth value does not change if one of its argument is changed from unde�ned to true or false�

� A �rst order formula is allowed if it contains only allowed connectives� �

Note that any formula containing the connective � is not allowed� while formulas built with the
usual logic connectives are allowed�

Allowed formulas can be seen as monotonic functions over the lattice on the set funde�ned � true� falseg
which has unde�ned as bottom element and true and false are not comparable�

��� Completion for Normal Programs

A language L is determined by a set of function and predicate symbols of �xed arities� Constants are
treated as �	ary function symbols� We say that a language is in�nite if it contains in�nitely many function
symbols �including those of arity ��� otherwise we say that it is �nite� If P is a program then L�P � denotes
the �nite language of the functions and predicate symbols actually occurring in the program�

The usual Clark�s completion de�nition� Comp�P �� ��
 is extended to three valued logic by replacing
� � in the completed de�nitions of the predicates� with � � This saves Comp�P � from the inconsistencies
that it can have in two valued logic� For example the program P � fp��p�g has Comp�P � � fp��pg
which has a model with p unde�ned�

De�nition ��� Let P be a program and p��t��� eB�� � � � � p��tr�� eBr be all the clauses which de�ne
predicate symbol p in P � The completed de�nition of p is

p��x��
r�

i��

	�yi ��x � �ti� � eBi�

�



where �x are new variables and �yi are the variables in p��ti�� eBi�
If P contains no clause de�ning p� then the completed de�nition of p is

p��x�� false�

�

The completed de�nition of a predicate is a �rst order formula that contains the equality symbol�
hence� in order to interpret ��� correctly� we also need an equality theory�

De�nition ��� CETL� Clark�s Equality Theory for the language L� consists of the axioms


� f�x�� � � � � xn� 
� g�y�� � � � � ym� for all distinct f � g in L�

� f�x�� � � � � xn� � f�y�� � � � � yn� � �x� � y�� � � � �� �xn � yn� for all f in L�

� x 
� t�x� for all terms t�x� distinct from x in which x occurs�

together with the usual equality axioms� that are needed in order to interpret correctly ��� � which
are re�exivity� symmetry� transitivity� and ��x � �y� � �f��x� � f��y�� for all functions and predicate
symbols f in L� �

Note that ��� is always interpreted as two valued�

De�nition ��� The Clark�s completion of P wrt the language L� CompL�P � consists in the conjunction
of the completed de�nition of all the predicates in P together with CETL� �

��� Domain Closure Axioms

Consider the following example� which is borrowed from ���
�

P � f p��q�X��
q�a�� g

The completed de�nition is

p � 	X �q�X� � q�X� �X � a�

That is� CompL�P � j� p � 	X X 
� a� If L � fag then neither p nor �p is a logical consequence of
CompL�P �� The problem in this case is due to the fact that L is a �nite language and for this reason
CETL is not a complete theory�

The two main approaches used in Logic Programming in order to obtain a complete theory out of
CETL are the following


� adopting an in�nite language �that is a language with in�nitely many functions symbols��

� adopting a �nite language together with some domain closure axioms�

For a extended study of the subject� we refer to ���
�

De�nition ��� Let L be a �nite language�
The Domain Closure Axiom� DCAL� is

x � t� � x � t� � � � �

where t�� t�� � � � is the sequence of all the ground L	terms�

The Weak Domain Closure Axiom� WDCAL� is

	�y� �x � f���y��� � � � �� 	��yr x � fr��yr���

where f�� � � � � fr are all the function symbols in L and �yi are tuples of variables of the appropriate arity�
�
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Assuming DCAL is equivalent to a restriction to models and interpretations over the Herbrand Universe
of L� Note that when L contains functions of arity greater than zero� then DCAL is an in�nite disjunction
and hence it is not a �rst	order formula� As opposed to DCAL� being L �nite� WDCAL is a �rst	order
formula�

Example ��	 Let P be the following program


P � f n����
n�s�X�� � n�X��
q ��n�X�� g

And let L � L�P �
The completion of P is

n�x� � �x � �� � �	y �x � s�y�� � n�y�� � q � 	y �n�y�

together with CETL�
On one hand� when we use DCAL we have that

CompL�P � 
DCAL j� �x n�x��

In fact assuming DCAL is equivalent to restric ourselves to L	Herbrand models� and the formula �x n�x�
is true in the only Herbrand model of P � It follows that


CompL�P � 
DCAL j� �q�

On the other hand� if we use WDCAL we have that

CompL�P � 
WDCAL 
j� �x n�x��

In fact WDCAL allows a model which contains� besides the natural numbers� also in�nite terms ti such
that for each i� ti � s�ti���� In such a model each n�ti� can be false� It follows that


CompL�P � 
WDCAL 
j� �q�

�

Assuming WDCAL we obtain a semantics which is stronger than the one that adopts DCAL� In fact
DCAL j� WDCAL� and hence if CompL�P � 
WDCAL j� �� then also CompL�P � 
DCAL j� ��

CompL�P � 
DCAL and CompL�P � 
WDCAL are two di�erent theories that can express the �in	
tended meaning� of the program P � Since we are going to refer to them quite often in the sequel� to
simplify the notation we will use the following shorthand


� T L
� �P � � CompL�P � 
DCAL�

� T L
� �P � � CompL�P � 
WDCAL�

��� Three valued semantics for normal programs

De�nition ��
 Let L be a language� A three valued �or partial� L�interpretation� I� is a mapping from
the ground atoms of L into the set ftrue� false� unde�nedg� �

A partial interpretation I is represented by an ordered couple� �T� F �� of disjoint sets of ground atoms�
The atoms in T �resp� F � are considered to be true �resp� false� in I� T is the positive part of I and is
denoted by I�� equivalently F is denoted by I�� Atoms which do not appear in either set are considered
to be unde�ned�

If I and J are two partial L	interpretations� then I � J is the three valued L	interpretation given by
�I� � J�� I� � J��� I 
 J is the three valued L	interpretation given by �I� 
 J�� I� 
 J�� and we say
that I � J i� I� � J� and I� � J��

�



The underlying universe of an L	interpretation is the universe of L	terms� Accordingly when we say
that a �rst order formula � is trueL in I� I j�L �� we mean that the quanti�ers of � are ranging over the
Herbrand Universe of L�

We now give a de�nition of Fitting�s operator ��
� In the sequel of the paper we write 	yB� as
a shorthand for �	yB��� that is� unless explicitly stated� the quanti�cation applies always before the
substitution� We denote by V ar�E� the set of all the variables in an expression E�

De�nition ��� Let P be a normal program� L a language that contains L�P �� and I a three valued
L	interpretation� �P �I� is the three valued L	interpretation de�ned as follows


� A ground atom A is true in �P �I�� �A � �P �I���

i� there exists a clause c 
 B� eL� in P whose head uni�es with A� � � mgu�A�B�� and

	W eL� is trueL in I
where W is the set of local variables of c� W � V ar�eL�nV ar�B� �

� A ground atom A is false in �P �I�� �A � �P �I���

i� for all clauses c 
 B� eL in P for which there exists � � mgu�A�B� we have that

	W eL� is falseL in I
where W is the set of local variables of c� W � V ar�eL�nV ar�B� � �

Note that �P depends on the language L� It would actually be more appropriate to write �L
P instead

of �P � but then the notation would become more cumbersome�
We adopt the standard notation


� ��
P �I� � I�

� ����
P �I� � �P ���

P �I���

� ��
P �I� � 
�����

P �I�� when � is a limit ordinal�

When the argument is omitted� we assume it to be the empty interpretation ��� ��
 ��
P � ��

P ��� ���
�P is a monotonic operator� that is I � J implies �I

P � �J
P � it follows that the Kleene�s sequence ��

P �
��
P � � � �� �k

P � � � �� ��
P � � � � is monotonically increasing and it converges to the least �xpoint of �P � Hence

there always exists an ordinal � such that lfp��P � � ��
P � Since �P is monotone but not continuous� �

could be greater than ��

The �P operator characterizes the three valued semantics ofCompL as stated in the following theorem�

Theorem ��� Let P be a normal program� L a �nite language� � any allowed �rst order formula� Then

�a� T L
� �P � j� � i� lfp��P � j�L ��

�b� T L
� �P � j� � i� for some integer n� �n

P j�L ��

Proof� The �rst statement follows from theorem �b in ���
� The second from theorem ��� in ���
� �

Note that statement �a� could be restated as follows
 T L
� �P � j� � i� for some ordinal �� ��

P j�L ��

Example ���
 Let us refer to the program in example ���� If L � L�P �� we have that

��
P � ��� ���

��
P � �fn���g� ���

��
P � �fn���� n�s����g� ���

� � �
��
P � �fn���� � � � � n�sk����� � � �g� ���

lfp��P � � ����
P � �fn���� � � � � n�sk����� � � �g� fqg��

Hence q is false in lfp��P � but not in any �n
P � this coincides with the fact that T L

� �P � j� �q while
T L
� �P � 
j� �q� �

�



��� The Simultaneous Replacement Operation

The replacement operation has been introduced by Tamaki and Sato in ���
 for de�nite programs� Syn	

tactically it consists in substituting a conjunction� eC� of literals with another one� eD� in the body of
a clause� Similarly� simultaneous replacement consists in substituting a set of conjunctions of literals
f eC�� � � � � eCng� occurring in the bodies of clauses fcl�� � � � � clpg� with another corresponding set of con	

junctions f eD�� � � � � eDng� Note that the order of literals is irrelevant for the semantics we are interested
in�

De�nition ���� �simultaneous replacement� Let P be a normal program and fcl�� � � � � clpg a set of

clauses of P such that for each i� cli � Ai� eCi� � � � � � eCir�i� �
eEi� where eCi� � � � � � eCir�i� are conjunctions

of literals we want to replace with eDi� � � � � �
eDir�i� � Now let f eC�� � � � � eCng be the set of conjunctions to be

replaced in all the clauses� and f eD�� � � � � eDng be the corresponding set of replacing conjunctions�

� The simultaneous replacement of f eC�� � � � � eCng with f eD�� � � � � eDng in fcl�� � � � � clpg produces the
program P � � Pnfcl�� � � � � clpg 
 fcl��� � � � � cl

�
pg� where for each i�

cl�i � Ai� eDi� � � � � �
eDir�i� �

eEi�

replace �P� fcl�� � � � � clpg� f eC�� � � � � eCng� f eD�� � � � � eDng�
def
� Pnfcl�� � � � � clpg 
 fcl��� � � � � cl

�
pg� �

Note that each eCi may occur in only one of the clauses fcl�� � � � � clpg� this is not restrictive since even

if i 
� j� eCi and eCj may actually represent identical literals�

Some applicability conditions are necessary in order to ensure the preservation of the semantics through
the transformation� Such conditions depend on the semantics we associate to the program� In the
literature some applicability conditions for ordinary replacement are given� In ���
 de�nite programs
are considered� the applicability condition requires the replaced atom C and the replacing atom D to
be logically equivalent in P and that the size of the smallest proof tree for C is greater or equal to
the size of the smallest proof tree for D� Gardner and Shepherdson� in ��
� give di�erent conditions for
preserving procedural �SLDNF� semantics and the declarative one� Such conditions are based on Clark�s
�two valued� completion of the program� Also Maher� in ���� ��
� studies replacement wrt Success set�
Finite Failure Set� Ground Finite Failure Set and Perfect Model semantics� Sato� in ���
� considers also
replacement of tautologically equivalent formulas in �rst order programs� Bossi et al� have studied the
correctness of this operation wrt the S	semantics for de�nite programs ��
� Fitting�s semantics ��
 and the
Well	Founded semantics for normal programs ��
� In this paper we consider the replacement operation for
normal programs and state some applicability conditions for both the three valued semantics mentioned
in theorem ���� Later on we also consider the case in which the language L is in�nite�

��� Equivalences

We give the de�nition of equivalence of formulas wrt an arbitrary theory T � With FV �	� we denote the
free variables in a formula 	� We say that a substitution � � ��t
�x� is ground if all the terms in the tuple
�t are ground� Given the formulas �� 	 and �� we denote by ���
	
 is the formula obtained from � by
substituting all occurrences of 	 as a subformula with ��

De�nition ���� �equivalence of formulas� Let 	� � be �rst order formulas and T be a theory� We
say that

� 	 is less de�ned or equal to � wrt T � 	 �T �� i�

for each closed allowed formula � and for each ground substitution ��

T j� ���� implies T j� �������
	�
�

� 	 is equivalent to � wrt T � 	 ��T �� i� 	 �T � and � �T 	� �

�



Note that� in the above de�nition� since the domain of � could be smaller than FV �	�� 	� is not
necessarily a closed formula�

As far as we are concerned in this paper� a semantics is a theory T �P � that we associate to the normal
program P � Hence two programs P and P � are considered semantically equivalent i� the set of logical
consequences of T �P � and T �P �� coincide�

De�nition ���� Let T �P � and T �P ��� be the semantic theories associated with the normal programs P
and P �� We say that P and P � are equivalent wrt T i� for each allowed formula �

� T �P � j� � i� T �P �� j� �� �

In the case that P � was obtained by transforming P � the above de�nition is used to de�ne the
correctness of a transformation operation�

De�nition ���� Let P � P � be normal programs and T �P �� T �P �� the associated semantic theories�
Suppose that P � is obtained by applying a transformation operation to P � We say that the transformation
is

� T �Partially Correct if for each allowed formula ��
when T �P �� j� � then also T �P � j� ��

� T �Complete if for each allowed formula ��
when T �P � j� � then also T �P �� j� ��

� T �Totally Correct or Safe if it is both partially correct and complete� This is the case in which P
and P � are equivalent wrt T � �

Here and in the sequel we assume that the language L of the theories T �P �and T �P �� contains
both L�P � and L�P ��� This is obviously a necessary condition for the correctness of the transformation
operation� Note that the transformation is partially correct if all the information contained in �the
semantics of� P � was already present in �the semantics of� P � that is if no new knowledge was added
to the program during the transformation� On the other hand the transformation is complete if no
information is lost during the transformation�

� Correctness Results wrt CompL�P � �DCAL �L �nite�

In this Section we refer to the semantics given by Comp�P �L 
DCAL� where we assume L to be �nite�
Adopting DCAL is equivalent to restricting our attention to Herbrand models �on the language L� and
in this particular case we have that


a� there always exists a minimal Herbrand model �wrt ���
b� an allowed formula is true in all Herbrand models i� it is true in the minimal one�

Moreover the minimal model coincides with the interpretation given by lfp��P �� So to check if an allowed
formula is a logical consequence of T L

� it is su�cient to check if it is true in lfp��P �� These properties are
proved in ��
� and ���
 and are summarized in statement �a� of theorem ���� In the case that L � L�P ��
this semantics is called Fitting�s model semantics ��
�

By Theorem ��� and De�nition ����� we can easily characterize the correctness of the transformation
by referring to the least �xed point of the �P operator�

Lemma ��� Let P � P � be normal programs and L be a �nite language� Suppose that P � is obtained by
applying a transformation operation to P � Then the operation is

� T L
� 	Partially Correct i� lfp��P � � lfp��P � ��

� T L
� 	Complete i� lfp��P � � lfp��P � ��

� T L
� 	Totally Correct i� lfp��P � � lfp��P � �� �

�



��� Partial Correctness

When we replace the conjunction eC with eD� the ��rst requirement� we ask for is the equivalence of eC
and eD wrt T L

� �P �� After all it would make no sense to replace eC with something which has a di�erent
meaning�

By Theorem ��� and De�nition ���� we can characterize the equivalence of formulas in T L
� �P � by

referring to the least �xed point of the operator �P � First we introduce the three valued operator � �
which is �one side� of � and is de�ned as follows
 �� 	 is true i� 	 is more de�ned than �� that is if
� and 	 are both true �or both false� or if � is unde�ned� In any other case �� 	 is false�

Proposition ��� Let 	� � be �rst order allowed formulas and P be a normal program� The following
statements are equivalent


�a� 	 �T L

� �P � ��

�b� lfp��P � j�L 	� ��

Proof�
�a� implies �b��
By the de�nition of the operator � � �b� is equivalent to

for each tuple of L	terms �t� lfp��P � j�L ���	��t
�x� implies lfp��P � � j�L ������t
�x��
By Theorem ��� this is equivalent to

for each tuple of L	terms �t� T L
� �P � j� ���	��t
�x� implies T L

� �P � j� ������t
�x��
This is immediate by De�nition �����

�b� implies �a��
Let � be any allowed formula such that T L

� j� �� � be any ground substitution� we have to prove that
T L
� j� ����
	�
�

If � does not contain 	� as a subformula then the result holds trivially� so let us suppose that � contains
	� as a subformula� The proof proceeds by induction on the structure of ��

Base step
 � � 	�� By Theorem ���� T L
� j� 	� implies that lfp��P � j�L 	��

By �b� this implies that lfp��P � j�L ��� and� by Theorem ���� that T L
� j� ���

Since �� � ����
	�
� this implies the thesis�
Induction step
 we have to consider four cases

�� � � � ��� where � is any allowed unary connective� The result holds trivially� since by the

inductive hypothesis� T L
� j� ����� implies T L

� j� ��������
	�
�
�� � � �� � ��� where � is any allowed binary connective� For i � f�� �g� either �i does not contain an

instance of 	 as a subformula� in which case the result holds trivially� or the inductive hypothesis applies
to �i�

�� � � �w ���w��
Suppose that T L

� j� �w ���w��
This is equivalent to
 for any L	term t� T L

� j� ���t��
For each L	term t� let 
t be the substitution �t
w�� by the inductive hypothesis� we have that for any
L	term t� T L

� j� ���t����
t
	�
t
�
Since DCAL forces the quanti�cation to be over L	terms� and DCAL is included in T L

� � this implies that
T L
� j� �w ���w����
	�
�

On the other hand� for the case when T L
� j� ��w ���w�� a similar reasoning applies�

�� � � 	w ���w�
This falls into the previous case� since 	w ���w� � ��w ����w�� �

Example ��� Let us consider the following program


m��El� �El j Tail
� s�����
m��El� �X j Tail
� s�N �� �m��El� Tail� N ��
m��El� �El j Tail
��
m��El� �X j Tail
� �m��El� Tail��

d 
 intersect�L�� L�� �m��El� L�� N���m��El� L�� N���

�



Predicates m� and m� behave like �member� predicates� The only di�erence between the two is that
m� �reports�� as third argument� the location where element El has been found� As far as the de�nition of
intersect goes� this is totally unnecessary� and we can replace the conjunctionm��El� L�� N���m��El� L�� N��
with the new conjunction m��El� L���m��El� L�� in the body of d� without a�ecting the semantics of
the program� In practice we want to replace clause d with

d� 
 intersect�L�� L���m��El� L���m��El� L���
Now observe that the completed de�nition of intersect before the transformation is

intersect�L�� L���	N� M� m��El� L�� N ��m��El� L��M �� ���

while after the transformation it is

intersect�L�� L���m��El� L���m��El� L��� ���

When applying a replacement we want the replacing conjunction to be semantically equivalent to the
replaced one� In this particular case� by Proposition ��� we can formalize this statement by requiring the
equivalence of the two �bodies�� ��� and ���� of the completed de�nition of intersect� that is� we require
that

	N� M� m��El� L�� N ��m��El� L��M � ��T L

� �P � m��El� L���m��El� L���

In this example we have speci�ed two existentially quanti�ed variables
 N and M � In the sequel�
when replacing� say� eC with eD� we will always specify a set X of �local� variables� namely variables
which can appear in either eC or eD �or both� but cannot occur in the rest of the clause where eC is found�

Consequently� our �rst requirement will be the equivalence of 	X eC and 	X eD� Such an equivalence is
weaker than the equivalence between eC and eD� while being still su�cient for our purposes� �

We now formalize this concept of local variables for simultaneous replacement�

De�nition ��� �Locality Property� Refer to the notation of De�nition ����
 f eC�� � � � � eCng is the set

of conjunctions to be replaced with f eD�� � � � � eDng in the clauses fcl�� � � � � clpg� Let i � ��� n
� and let clj
be the clause in which eCi occurs� A set of variables Xi satis�es the Locality Property with respect to eCi

and eDi if the following holds


� Xi � V ar� eCi� 
 V ar� eDi� and the variables in Xi do not occur anywhere else neither in the clause

clj � where eCi is found� nor� after replacement� in cl�j � where eDi is found� �

Note that the locality property is trivially satis�ed when Xi is empty� Note also that the locality
property implies� that if eCh and eCk occur in the same clause then the corresponding Xh and Xk are
disjoint�

Next we give the theorem on partial correctness of the replacement operation we were aiming at�
It shows that the equivalence between the replacing and the replaced literals is su�cient to ensure the
partial correctness of the replacement operation�

Theorem ��� �partial correctness� Let L be a �nite language� In the hypothesis of De�nition �����

if for each eCi � f eC�� � � � � eCng� there exists a �possibly empty� set of variables Xi satisfying the locality

property wrt eCi and eDi such that
	Xi

eDi �T L

� �P � 	Xi
eCi�

then lfp��P � � lfp��P � ��

Proof� Let us �rst recall the notation adopted�
P is the original program�
fcl�� � � � � clpg is the set of clauses of P which will be a�ected by the simultaneous replacement operation�
each cli has the form

cli � Ai � eCi� � � � � �
eCir�i� �

eEi�

P � is the transformed program� obtained by replacing each eCi by eDi� P � � Pnfcl�� � � � � clpg 
 fcl��� � � � � cl
�
pg

where each cl�i has the form

��



cl�i � Ai � eDi� � � � � �
eDir�i� �

eEi�

The proof is by contradiction� Let us suppose lfp��P � 
� lfp��P � �� Since the sequence ��
P � ���

P � � � � � is
monotonically increasing and ��

P � � ��� �� � lfp��P �� there has to be an ordinal � such that

lfp��P � � ��
P � and lfp��P � 
� ����

P � � �P � ���
P � ��

Hence lfp��P � 
� �P � �lfp��P ��� and since � is monotone� from the �rst inclusion it follows that

�P ��lfp��P �� � �P ����
P � ��

Since �P �lfp��P �� � lfp��P � we have that

�P �lfp��P �� 
� �P � �lfp��P ��� ���

Let Xi be any set of variables which satis�es the locality property� Note that with the exception of
clauses fcl�� � � � � clpg� P is just like P �� Hence if for each i� 	Xi

eCi and 	Xi
eDi have the same meaning in

a given interpretation I� that is if I j�L 	Xi
eCi�	Xi

eDi� then �P �I� � �P � �I�� It follows that whenever

�P �I� 
� �P � �I�� then there exists an integer j such that 	Xj
eCj and 	Xj

eDj have di�erent meanings in
I�

This idea is formalized and extended in the following Claim� whose proof is given in the Appendix A�

Claim � Let I� I� be two partial interpretations� If I� � I but �P � �I�� 
� �P �I�� then there exist a

conjunction eCj � f eC�� � � � � eCng and a ground substitution � such that


� either I� j�L 	Xj
eDj� while I 
j�L 	Xj

eCj��

� or I� j�L �	Xj
eDj� while I 
j�L �	Xj

eCj��

From this Claim and ��� it follows that there exists an integer j and a ground substitution � such that

	Xj
eDj� is trueL �or falseL� in lfp��P �� while 	Xj

eCj� is not� This� by Proposition ��� �c�� contradicts
hypothesis �ii�� �

��� Semantic Delay and Dependency Degree

As we proved in the previous Section� if X is a set which satis�es the locality property� the equivalence
of 	X eC and 	X eD is su�cient to guarantee the partial correctness of the replacement of eC with eD�
Unfortunately this may not be enough to obtain total correctness� For that we need the equivalence to
hold also after the transformation and the equivalence can be destroyed when eD depends on the modi�ed
clause� This is shown by the next example�

Example ��	 Let P be the following de�nite program


P � f p� q�
cl 
 q� r�

r� g

Let also L � L�P �� In this case lfp��P � � �fp� q� rg� ��� p� q and r are all equivalent wrt T L
� �P �� but if

we replace r with p in the body of cl we obtain

P � � f p� q�
cl� 
 q� p�

r� g

which is by no means equivalent to the previous program� In fact lfp��P � � � �frg� ��� We have introduced
a loop and p and q are no more true� �

��



In order to obtain the desired completeness results we introduce two more concepts
 the semantic
delay and the dependency degree� They are meant to express relations between �rst order formulas� such
as conjunctions of literals� in terms of their semantic properties�

Consider the following de�nite program


P � f m�X� � n�s�X���
n����
n�s�X�� � n�X�� g

The predicates m and n have exactly the same meaning� but in order to refute the goal �m�s����� we
need four resolution steps� while for refuting � n�s����� two steps are su�cient� Each time � n�t�� has
a refutation �or �nitely fails� with j resolution steps� �m�t�� has a refutation �or fails� with k resolution
steps� where k � j � �� By transposing this idea into the three valued semantics we are adopting� we
have that each time n�t� is true �or false� in �j

P � m�t� is true �resp� false� in �j��
P � We can formalize this

intuitive idea by saying that the semantic delay of m wrt n is 	�

De�nition ��
 �semantic delay in lfp��P �� Let P be a normal program� 	 and � be �rst order
formulas� and �x � fx�� � � � � xkg � FV�	� 
 FV���� Suppose that � �T L

� �P � 	�

� The semantic delay of 	 wrt � in lfp��P � is the least integer k such that� for each ordinal � and
each k	uple of L	terms �t
 if ��

P j�L ������t
�x�� then ���k
P j�L ���	��t
�x�� �

Since we are assuming that � �T L

� �P � 	� if ���t
�x� is true in some ��
P � then there exists an ordinal � such

that 	��t
�x� is true in ��
P �

Intuitively� ���t
�x� is trueL in ��
P i� its truth has been proved from scratch in at most � steps� The

semantic delay of 	 wrt � shows how many steps later than ���t
�x�� we determine the truth value of
	��t
�x� �at worse��

Example ��� Let P be the following program


P � f p���� q����
p�s����� q�s�X�� � q�X��
p�s�s�X��� � p�X�� g

Let L � L�P �� p and q both compute natural numbers� p�X� ��T L

� �P � q�X�� but while q�sk���� is true

starting from �k��
P � p�sk���� is true starting from �

�k�����
P � The delay of p�X� wrt q�X� in lfp��P � is

zero� in fact if for some ground term t and ordinal �� q�t� is true �resp� false� in ��
P � then p�t� is also

true �resp� false� in ��
P � Vice versa� the delay of q�X� wrt p�X� is not de�nable in fact there exists no

integer m � � such that if� for some ground term t and ordinal �� p�t� is true �resp� false� in ��
P � then

q�t� is true �resp� false� in ���m
P � �

A simple property of semantic delay which will be used in the sequel is the following�

Lemma ��� If d 
 A� eL� is the only clause in a program P whose head uni�es with an atom A� and
W is the set of variables local to the body of d� W � V ar�eL�nV ar�A�� then

� lfp��P � j�L �A�	W eL�� that is� A ��T L

� �P � 	W
eL�

� the delay of A wrt 	W eL in lfp��P � is one�

Proof� It is a straightforward application of the de�nition of Fitting�s operator� since� by De�nition ����
for all integers r and substitution �� �	W eL�� is trueL �falseL� in �r

P i� A� is true �false� in �r��
P � �

Now we want to introduce one further concept
 the dependency degree� Let us consider the following
normal program


��



P � f c� 
 p � �q� s�
c� 
 q � r�
c� 
 r�
c� 
 s � q� g

The de�nitions of the atoms p� q� s and r� all depend from clause c�� Informally we could say that the
dependency degree of the predicate p over clause c� is two� as the shortest derivation path from a clause
having head p to c� contains two arcs
 the �rst from c� to c�� through the negative literal �q� the second
from c�� to c�� through the atom r� Similarly� the dependency degree of q and s on c� are respectively
one and two and the dependency degree of r on c� is zero� The next de�nition formalizes this intuitive
notion� The atom A and the clause cl are assumed to be standardized apart�

De�nition ���
 �dependency degree� Let P be a program� cl a clause of P and A an atom� The
dependency degree of A �and �A� on cl� depenP �A� cl�� is

� if A uni�es with the head of cl�

n�� if A does not unify with the head of cl and n is the least integer such that there exists a clause
C�C�� � � � � Ck� in P � whose head uni�es with A via mgu� say� �� and� for some i� depenP �Ci�� cl� �
n�

� when there exists no such n� In this case we say that A is independent from cl�

Now let eL � L�� � � � � Ln be a conjunction of literals� The dependency degree of eL on cl is equal to the least
dependency degree of one of its elements on cl� depenP �eL� cl� � inffdepenP �Li� cl�� where � � i � ng�

Similarly� eL is independent from cl i� all its components are independent from cl� �

Example ���� Consider the following normal program


P � f d 
 p�X� � �q�X��
cl 
 r � � � � ��q�t�� � � �

� � � g

where d is the only clause de�ning the predicate symbol p� Let also L � L�P �� By Lemma ���
p�X� ��T L

� �P � �q�X�� Now� if we replace �q�t� with p�t� in cl� we obtain the following program


P � � f d 
 p�X� � �q�X��
cl 
 r � � � � � p�t�� � � �

� � � g

which has the same semantics of the previous one� that is lfp��P � � lfp��P � �� This holds even if the
de�nition of p is not independent from cl� that is� even if we are exposed to the risk of introducing a
loop� losing completeness� But in this case we can show that �there is no room for introducing a loop��
in fact replacing �q�t� by p�t� in cl preserves the semantics of the initial program if

� either p does not depend on cl �in this case no loop can be introduced� or

� the dependency level of p on cl �this is how big the loop would be� is greater or equal to the semantic
delay of p�X� wrt �q�X� �this is the space where the loop would be introduced��

By lemma ��� the delay of p�X� wrt �q�X� in lfp��P � is one� moreover� since d is the only clause de�ning
predicate p and d 
� cl� depenP �p�X�� cl� � �� thus satisfying the above conditions� �

��� Completeness

We want a completeness result which formalizes the idea outlined in the previous example and that
matches with Theorem ����

Let us �rst establish the notation and state a few simple remarks


��



Notation�
P is the original program�
fcl�� � � � � clpg is the set of clauses of P which will be a�ected by the simultaneous replacement operation�
each cli has the form

cli � Ai � eCi� � � � � �
eCir�i� �

eEi�

P � is the transformed program� obtained by replacing each eCi by eDi
 P
� � Pnfcl�� � � � � clpg 
 fcl

�
�� � � � � cl

�
pg

where each cl�i has the form

cl�i � Ai � eDi� � � � � �
eDir�i� �

eEi� �

The �rst remark states that when a conjunction of literals eL is independent from clauses fcl�� � � � � clpg
then its meaning does not change when replacing fcl�� � � � � clpg with fcl��� � � � � cl

�
pg�

Remark ���� Let eL be a conjunction of literals independent from the clauses fcl�� � � � � clpg in P � Let

W � V ar�eL�� Then� for each ordinal ��

� ��
P j�L ���	W eL i� ��

P � j�L ���	W eL�

Consequently

� lfp��P � j�L ���	W eL i� lfp��P � � j�L ���	W eL� �

The following lemma represents an important step in the proof of the completeness result�
Let I be an L	interpretation and B a ground atom that can be proved true �or false�� starting from

I� in m steps� that is� B is true in �m
P �I�� The lemma states that if the dependency level of B on

fcl�� � � � � clpg is greater or equal to m� then the clauses fcl�� � � � � clpg cannot have been used in the proof
of B� hence B is true in �m

P ��I� too�

Lemma ���� Let B be a ground atom� m a natural number such that depenP �B� fcl�� � � � � clpg� � m�
then

� B is true �resp� false� in �m
P �I� i� B is true �resp� false� in �m

P � �I��

Proof� The proof is by induction on m�
The base of the induction �m � �� is trivial� since ��

P � �I� � ��
P �I� � I�

Induction step
 m � �� We will now proceed as follows
 in a� we show that if B is true �resp� not
false� in �m

P �I�� then it is also true �resp� not false� in �m
P � �I�� That is� we show that if B is true in

�m
P �I�� then it is also true in �m

P � �I�� and� by contradiction� that if B is false in �m
P � �I�� then it is also

false in �m
P �I�� In b� we consider the converse implications� This will be su�cient to prove the thesis�

a� Let us assume B true �resp� not false� in �m
P �I�� There has to be a clause c � P and a ground

substitution 
 such that head�c�
 � B and body�c�
 is true �resp� not false� in �m��
P �I�� It follows that�

for each literal L belonging to body�c�


	 L is true �resp� not false� in �m��

P �I��
	 depenP �L� fcl�� � � � � clpg� � m � ��

Then� from the inductive hypothesis each L is true �resp� not false� in �m��
P � �I��

Since depenP �B� fcl�� � � � � clpg� � m � �� B does not unify with the head of any clause in fcl�� � � � � clpg�
that is c 
� fcl�� � � � � clpg� Hence c � P � and B is true �not false� in �m

P � �I��
b� Now we have to prove that if B is true �not false� in �m

P � �I�� then it is also true �not false� in
�m
P �I�� This part is omitted as it is perfectly symmetrical to the previous one� �

The previous lemma leads to the following generalization�

Lemma ���� Let eL be a conjunction of literals� W � V ar�eL� and I be an L	interpretation� Suppose

that� for some integer m� depenP �eL� fcl�� � � � � clpg� � m� then�

� �m
P �I� j�L ���	W eL i� �m

P � �I� j�L ���	W eL�

��



Proof� Let eL � L�� � � � � Lj � Observe that depenP �eL� fcl�� � � � � clpg� � m implies that for i � ��� j
�
depenP �Li� fcl�� � � � � clpg� � m�

Suppose �rst that 	W eL is trueL in �m
P �I�� Then for some ground substitution �� Dom��� � W � eL�

is true in �m
P �I�� Then for i � ��� j
� Li� is true in �m

P �I�� and by Lemma ����� it is true also in �m
P ��I��

Hence the conjunction eL� is true in �m
P � �I�� It follows that 	W eL is trueL in �m

P � �I��

Now suppose that 	W eL is falseL in �m
P �I�� Then for each ground substitution �� Dom��� � W � eL� is

false in �m
P �I�� That is� for each of the above �� there exists an i � ��� j
 such that Li� is false in �m

P �I��

By Lemma ���� Li� is also false in �m
P � �I�� Hence eL� is false in �m

P � �I�� It follows that 	W eL is falseL in
�m
P � �I�� �

Now we can prove the result we were looking for�

Theorem ���� �completeness� In the hypothesis of De�nition ���� for simultaneous replacement� if

for each eCi � f eC�� � � � � eCng� there exists a �possibly empty� set of variables Xi satisfying the locality

property wrt eCi and eDi such that
	Xi

eCi �T L

� �P � 	Xj
eDj �

and if one of the following two conditions holds


�a� f eD�� � � � � eDng are all independent from the clauses fcl�� � � � � clpg� or

�b� there exists an integer m such that� for each eCi � f eC�� � � � � eCng� and each clj � fcl�� � � � � clpg


	 the delay of 	Xi
eDi wrt 	Xi

eCi in lfp��P � is less or equal to m� and

	 depenP � eDi� clj� � m�

then lfp��P � � lfp��P � ��

Proof� First we need to establish a Claim similar to the one in the proof of Theorem ����

Claim � Let I� I� be two partial interpretations� If I � I� but �P �I� 
� �P � �I��� then there exist a

conjunction eCj � f eC�� � � � � eCng and a ground substitution � such that


� either I j�L 	Xj
eCj� while I� 
j�L 	Xj

eDj��

� or I j�L �	Xj
eCj� while I� 
j�L �	Xj

eDj��

Proof
 The proof is identical to the one given in the Appendix A for Claim � in Theorem ���� and it is
omitted here� �

The proof of the Theorem� is by contradiction�
Let us suppose lfp��P � 
� lfp��P � �� By the same argument used in the proof of ���� it follows that there
exists an ordinal � such that


lfp��P � � � ��
P and lfp��P � � 
� ����

P �

Since �P � �lfp��P � �� � lfp��P � �� it follows that �P � �lfp��P � �� � �P ���
P ��

From Claim � there exists an integer j and a ground substitution � such that


	Xj
eCj� is trueL �or falseL� in ��

P � while 	Xj
eDj� is not trueL �resp� not falseL� in lfp��P � �� ���

Let us distinguish two cases�

�� Condition �a� of the hypothesis applies� and eDj is independent from fcl�� � � � � clpg�

Since ��
P � lfp��P �� from the left hand side of ��� it follows that 	Xj

eCj� is also trueL �resp� falseL� in
lfp��P ��

Hence� by the hypothesis and Proposition ���� also 	Xj
eDj� is trueL �resp� falseL� in lfp��P �� Because of

��



condition �a� and Remark ���� it follows that 	Xj
eDj� is trueL �resp� falseL� in lfp��P � �� This contradicts

the left hand side of ����

�� Condition �b� of the hypothesis applies� The delay of 	Xj
eDj wrt 	Xj

eCj is not greater that m�

hence from the left hand side of ��� it follows that 	Xj
eDj� is trueL �or falseL� in ���m

P �

that is� 	Xj
eDj� is trueL �resp� falseL� in �m

P ���
P ��

Since by �b�� depenP � eDj�� fcl�� � � � � clpg� � m� from lemma ���� it follows that

	Xj
eDj� is trueL �resp� falseL� in �m

P � ���
P ��

Now ��
P � lfp��P � � and �P � is monotone� then

	Xj
eDj� is trueL �resp� falseL� in �m

P � �lfp��P � ��

But since �m
P � �lfp��P � �� � lfp��P � �� this contradicts the right hand side of ��� � �

From Theorems ��� and ���� we obtain the following�

Corollary ���	 �applicability conditions wrt CompL 
DCAL with L �nite� Let L be a �nite

language� In the hypothesis of De�nition ���� for simultaneous replacement� if for each eCi � f eC�� � � � � eCng�

there exists a �possibly empty� set of variables Xi satisfying the locality property wrt eCi and eDi such
that

	Xi
eDi

��T L

� �P � 	Xi
eCi�

and one of the following two conditions holds


�� f eD�� � � � � eDng are all independent from the clauses in fcl�� � � � � clpg� or

�� there exists an integer m such that� for each eCi � f eC�� � � � � eCng� and each clj � fcl�� � � � � clpg


	 the delay of 	Xi
eDi wrt 	Xi

eCi in lfp��P � is less or equal to m� and
	 depenP �Di� clj� � m�

then P is equivalent to P � wrt T L
� � �

� Correctness Results wrt CompL�P � �WDCAL �L �nite�

The aim of this Section is to reformulate the results on the correctness of the replacement operation given
for T L

� �P � in order to adapt them to T L
� �P �� We always assume L to be a �nite language�

We are just replacing the DCAL closure axioms with WDCAL� The next example shows how pro	
gram�s equivalence may be a�ected from such a change�

Example ��� Consider the three programs


P� � f n����
n�s�X�� � n�X�� g

P� � f n����
n�s�X��� g

P� � f n�X�� g

Let L � L�P���

If we assume DCAL � for all three the programs

T L
� �P � j� �x n�x�� P � fP�� P�� P�g�

Then� all the programs are pairwise equivalent wrt this semantics�

��



If we assume WDCAL� for P�
T L
� �P�� 
j� �x n�x��

while for P � fP�� P�g
T L
� �P � j� �x n�x�� ���

and P� and P� are equivalent wrt this semantics�

Finally if we assume that L strictly contains L�P��� then P� is the only program for which ��� holds� In
this case no program is equivalent to any of the other ones� �

This example shows that two programs may be equivalent wrt T L
� and not equivalent wrt T L

� � But
there are also cases in which the converse of this statement is true� So even though the semantics obtained
by assuming WDCAL is stronger than the one obtained by assuming DCAL� no program�s equivalence
is stronger than the other one�

As before� we characterize equivalence of programs by the �P operator� But in the previous Section
this task was quite straightforward through Lemma ���� Here� since we are assuming WDCAL� things
are slightly more complicated� We need a lemma �rst�

Lemma ��� Let P be a normal program� L an arbitrary language� and 	 an allowed formula with free
variables �x� For each integer n� there exists two formulas in the language of equality Tn

� and Fn
� � with

free variables �x such that� for any tuple �t of ground terms�

� Tn
� ��t
�x� is trueL in �n

P i� 	��t
�x� is�

in any other case Tn
� ��t
�x� is falseL in �n

P �

� Fn
� ��t
�x� is trueL in �n

P i� 	��t
�x� is falseL in �n
P �

in any other case Fn
� ��t
�x� is falseL in �n

P �

Proof� From lemma ��� in ���
 it follows that Tn
� ��t
�x� is trueL in �n

P i� 	��t
�x� is� and that Fn
� ��t
�x� is

trueL in �n
P i� 	��t
�x� is falseL in �n

P � From the completeness of CETL in the case that the underlying
universe is the Herbrand Universe� we have that when Tn

� ��t
�x� �resp� Fn
� ��t
�x�� is not trueL in �n

P � it has
to be falseL in �n

P � �

To give the intuitive idea of how such formulas are built� let us consider the simple case in which
	 � n�x�� and P is the program

P � f n����
n�s�x�� � n�x�
� � � g�

We have that
T �
n�x� � x � ��
T �
n�x� � x � � � x � ��
� � �

On the other hand�
F �
n�x� � x 
� � � �	y x � s�y��

F �
n�x� � �x 
� � � �	y x � s�y�� � �	y x � s�y� � �y 
� � � �	z y � s�z����

� � �

Theorem ��� Let L be a �nite language� P� and P� be two normal programs� The following statements
are equivalent


�a� for all �� T L
� �P�� j� � implies T L

� �P�� j� ��

�b� �n 	m �n
P�
� �m

P�
�

��



where � ranges over the set of allowed formulas and n and m are quanti�ed over natural numbers�

Proof�
�a� implies �b�

This part is proved by contradiction�
Assume �a� holds and that there exists a �xed n such that

for all m� �n
P�

� �m

P�
���

For each predicate symbol p let Tn
p�	x� and Fn

p�	x� be the equality formulas described in Lemma ���� Hence

Tn
p�	x��

�t
�x� is trueL in �n
P i� p��t
�x� is� and that Fn

p�	x��
�t
�x� is trueL in �n

P i� p��t
�x� is falseL in �n
P � Let

also
	 �

�
p�pred�P��

��x �Tn
p�	x�� p��x� � Fn

p�	x���p��x��

where p ranges over the �nite set of predicate symbols occurring in P�� From lemma ��� it follows that
�n
P�
j�L 	� and� by theorem ���

T L
� �P�� j� 	�

By �a� we have that T L
� �P�� j� 	� and� by theorem ��� there exists an integer r such that

�r
P�
j�L 	�

By ��� �n
P�

� �r

P�
� hence there exists a ground atom q��t� such that

either �n
P�
j�L q��t� and �r

P�

j�L q��t� or �n

P�
j�L �q��t� and �r

P�

j�L �q��t��

We consider only the �rst possibility� the other case is perfectly symmetrical� So we assume that

�n
P�
j�L q��t� and �r

P�

j�L q��t� ���

By the left hand side of this and the de�nition of Tn
q�	x� in Lemma ����

�n
P�
j�L Tn

q�	x���t
�x�

Tn
q�	x���t
�x� is a formula of the equality language and contains no predicate symbols other than ���� so if

it is trueL in �n
P�

it must be trueL also in ��
P�

� i�e� ��
P�
j�L Tn

q�	x���t
�x�� But ��
P�

� ��� �� � �r
P�

� hence

�r
P�
j�L Tn

q�	x���t
�x��

Since� �r
P�
j�L 	� from the de�nition of 	� follows that also �r

P�
j�L ��x �Tn

q�	x���x�� q��x��� hence that

�r
P�
j�L Tn

q�	x���t
�x�� q��t�� and� from the above statement�

�r
P�
j�L q��t�

which contradicts the right hand side of ����

�b� implies �a�
Let us assume �b�� and let � be any allowed formula such that T L

� �P�� j� �� By theorem ���� there
exists an integer n such that �n

P�
j�L �� by the hypothesis there exists an m such that �n

P�
� �m

P�
� hence

�m
P�
j�L ��

Again� by theorem ���� this implies that T L
� �P�� j� �� �

��



��� Partial Correctness

As in Proposition ���� we can characterize the equivalence of formulas wrt T L
� �P � by referring to the

Kleene sequence of the operator �P �

Proposition ��� Let L be a �nite language� P be a normal program and 	� � be �rst order allowed
formulas� The following statements are equivalent

�a� 	 �T L

� �P � ��

�b� �n 	m ��t �n
P j�L ���	��t
�x� implies �m

P j�L ������t
�x��

where n� m are quanti�ed over natural numbers� �x � fx�� � � � � xkg � FV�	� 
 FV���� and �t is quanti�ed
over k	tuples of L	terms�

Proof�
�a� implies �b�

This part is by contradiction� Let us assume there exists a �xed n� such that for each integer m there
exists a k	uple of L	terms �tm for which the following hold

�i� �n
P j�L ���	��tm
�x��

�ii� �m
P 
j�L ������tm
�x��

By Lemma ��� there exist two formulas Tn
� and Fn

� in the language of equality� such that FV�Tn
� � �

FV�Fn
� � � FV�	� and

�n
P j�L ��x �Tn

� � 	 � Fn
� ��	��

By Theorem ���
T L
� �P � j� ��x �Tn

� � 	 � Fn
� ��	��

By �a��
T L
� �P � j� ��x �Tn

� � � � Fn
� �����

This is an allowed formula� then by Theorem ��� there exists an r such that

�r
P j�L ��x �Tn

� � � � Fn
� ����� ���

But by �i� 	��tr
�x� is either trueL or falseL in �n
P � let us now consider just the �rst possibility� that is

�n
P j�L 	��tr
�x��

The other case is perfectly symmetrical and omitted here�
From this and the de�nition of Tn

� in Lemma ���� we have that �n
P j�L Tn

� ��tr
�x�� and since Tn
� ��tr� is

a formula in the language of equality� if it is trueL in �n
P it must be trueL already at stage �� that is

��
P j�L Tn

� ��tr
�x�� but ��
P � �r

P � hence

�r
P j�L Tn

� ��tr
�x��

But then� by ���� �r
P j�L �� �tr
�x�� contradicting �ii��

�b� implies �a�
We prove that for each n there exists an m such that for any closed allowed formula �� and for any ground
substitution ��

�n
P j�L � implies �m

P j�L ����
	�
� ���

By Theorem ��� this implies �a��
Let m be an integer that satis�es hypothesis �b� for some n� It is not restrictive to assume that

m � n� Let � be a closed allowed formula such that

�n
P j�L ��

��



If � does not contain any instance of 	� as a subformula then ��� follows immediately from the assumption
that m � n� In the case that � contains 	� as a subformula we proceed by induction on the structure of
��

Base step
 � � 	�� then ��� follows immediately from �b��
Induction step
 we consider three cases

�� If � � � ��� where � is any allowed unary connective� or � � �� � ��� where � is any allowed

binary connective� then we have that either �i does not contain 	� as a subformula �and the result holds
trivially� or the inductive hypothesis applies�

�� If � � �w ���w��
Since �n

P j�L �� we have that
for each L	term t��n

P j�L ���t��

For each L	term t� let 
t be the substitution �t
w�� by the inductive hypothesis there exists an m such
that

for each L	term t��m
P j�L ���t����
t
	�
t
�

Since the underlying universe of �m
P is the Herbrand universe on L� this implies that

�m
P j�L �w ���w����
	�
�

�� Finally� the case � � 	w ���w�� is treated as ��w ����w�� �

In the above Proposition� statement �b� di�ers from the corresponding one of Proposition ���� Let us
consider the two statements


�a� 	 ��T L

� �P � ��

�b� for each tuple of L	terms �t� T L
� �P�� j� 	��t
�x� i� T L

� �P�� j� ���t
�x��

�a� implies �b�� but not vice	versa� On the other hand� if we use T L
� instead of T L

� � we have that the two
statements are equivalent� and this is just a reformulation of Proposition ���� When we are assuming
WDCAL� the universe of a model of T L

� �P�� may contain non	standard elements� that is� elements which
are not L	terms� Hence the equivalence between all the closed instances of 	 and � is no longer su�cient
to ensure the equivalence between 	 and ��

For example� if we consider the following program


P � f n����
n�s�X�� � n�X��
m�X�� g

and we �x L � L�P �� we have that for each L	term t� both n�t� and m�t� are true in all models of T L
� �P ��

but n�X� ��T L

� �P � m�X�� In fact� let � � �x m�x�� then T L
� �P � j� �� while T L

� �P � 
j� ��n�x�
m�x�
 �see

Example �����

The equivalence de�ned as follows
 �	 is equivalent to � i� �b� holds� is too weak for our purposes� In
fact if we consider the following extension to program P 


P� � P 
 f q�� �n�X��
q�� �m�X�� g

and L � L�P��� n�X� is equivalent to m�X� while q� is not equivalent to q� and it would be impossible
to obtain an applicability condition similar to �����

Now� given a characterization of equivalent formulas� we can state the result on partial correctness of
the replacement operation wrt the T L

� �P � semantics�

��



Theorem ��� �partial correctness� Let L be a �nite language� In the hypothesis of De�nition ���� for

simultaneous replacement� if for each eCi � f eC�� � � � � eCng� there exists a �possibly empty� set of variables

Xi satisfying the locality property wrt eCi and eDi such that

	Xi
eDi �T L

� �P � 	Xi
eCi�

then �n 	m �m
P � �n

P � �

Proof� The proof is by contradiction� Let us suppose there exist two integers i and j such that


�i
P � �j

P � and for all integers l� �l
P 
� �j��

P � �

Clearly it also follows that
for all integers l� �l�i��

P 
� �j��
P � �

Since �j��
P � ��P � ��

j
P � �� �i

P � �j
P � and �P � is monotone� we have that �P � ��i

P � � �j��
P � � hence

for all integers l� �P ��l�i
P � 
� �P � ��i

P ��

Since �l�i
P � �i

P � from Claim � in the proof of Theorem ���� it follows that for each integer l there exist
an integer j�l� � f�� � � � � ng and a ground substitution �l such that


	Xj�l�
eDj�l��l is trueL �or falseL� in �i

P � while 	Xj�l�
eCj�l��l it is not trueL �resp� falseL� in �l�i

P � ����

By hypothesis 	Xi
eDi �T L

� �P � 	Xi
eCi� then we can apply Proposition ��� to the left hand side of ���� to

obtain that for each l� there has to be an integer r such that

	Xj�l�
eCj�l��l is trueL �resp falseL� in �r

P �

but when l satis�es l � i � r� we have that �l�i
P � �r

P and hence

for each l such that l � i � r� 	Xj�l�
eCj�l��l is trueL �resp falseL� in �l�i

P �

This contradicts ����� �

��� Completeness

In order to state the completeness result� we can use a de�nition of semantic delay slightly weaker than
the one given for T L

� �P ��

De�nition ��	 �semantic delay in ��
P � Let P be a normal program� 	 and � be �rst order formulas�

and �x � fx�� � � � � xkg � FV�	� 
 FV���� Suppose that � �T L

� �P � 	�

� The semantic delay of 	 wrt � in ��
P is the least integer k such that� for each integer n and each

k	uple of L	terms �t
 if �n
P j�L ������t
�x�� then �n�k

P j�L ���	��t
�x�� �

Theorem ��
 �completeness� In the hypothesis of De�nition ���� for simultaneous replacement� if

for each eCi � f eC�� � � � � eCng� there exists a �possibly empty� set of variables Xi satisfying the locality

property wrt eCi and eDi such that
	Xi

eCi �T L

� �P � 	Xj
eDj �

and if one of the following two conditions holds


�a� f eD�� � � � � eDng are all independent from the clauses fcl�� � � � � clpg� or

�b� there exists an integer m such that� for each eCi � f eC�� � � � � eCng� and each clj � fcl�� � � � � clpg


	 the delay of 	Xi
eDi wrt 	Xi

eCi in ��
P is less or equal to m� and

	 depenP � eDi� clj� � m�

��



then �n 	 m �n
P � �m

P � �

Proof� Again the proof is by contradiction� Let us suppose that there exist two integers i and j such
that


�i
P � � �j

P and for all integers l��i�l��
P � 
� �j��

P �

Since �j��
P ��P ��j

P �� from Claim � in the proof of Theorem ���� we have that

for each integer l there exists an integer j�l� � f�� � � � � ng and a ground substitution �l such that


	Xj�l�
eCj�l��l is trueL �or falseL� in �j

P � while 	Xj�l�
eDj�l��l is not trueL �resp� not falseL� in �i�l

P � �
����

Let us distinguish two cases�

�� Hypothesis �a� is satis�ed and each conjunction in f eD�� � � � � eDng is independent from fcl�� � � � � clpg�
From the left hand side of ����� the hypothesis and Proposition ��� it follows that for each l there has to
be an integer r such that

	Xj�l�
eDj�l��l is trueL �resp� falseL� in �r

P �

From remark ����� it follows that for each integer l� 	Xj�l�
eDj�l��l is trueL �resp� falseL� in �r

P � �

This contradicts ����� in fact� when i� l � r� by the monotonicity of �P � � we have that �r
P � � �i�l

P � and

since 	Xj�l�
eDj�l��l is trueL �resp� falseL� in �r

P � � it must be trueL �resp� falseL� in �i�l
P � �

�� Hypothesis �b� is satis�ed� We know that for each integer l� the delay of 	Xj�l�
eDj�l� wrt 	Xj�l�

eCj�l�

is not greater than m� hence from the left hand side of ���� it follows that�

for each l� 	Xj�l�
eDj�l��l is trueL or falseL in �j�m

P �

Since �j�m
P � �m

P ��j
P �� it follows that�

for each l� 	Xj�l�
eDj�l��l is trueL �resp� falseL� in �m

P ��j
P ��

depenP � eDj�l��l� fcl�� � � � � clpg� � m� then� from Lemma ���� it follows that�

for each l� 	Xj�l�
eDj�l��l is trueL �resp� falseL� in �m

P � ��
j
P ��

Now �j
P � �i

P � and �P � is monotone� then�

for each l� 	Xj�l�
eDj�l��l is trueL �resp� falseL� in �m

P � ��i
P � � � �m�i

P � �

this contradicts the right hand side of ����� �

From Theorems ��� and ��� we obtain the following�

Corollary ��� �applicability conditions wrt CompL 
WDCAL with L �nite� Let L be a �nite

language� In the hypothesis of De�nition ���� for simultaneous replacement� if for each eCi � f eC�� � � � � eCng�

there exists a �possibly empty� set of variables Xi satisfying the locality property wrt eCi and eDi such
that

	Xi
eDi

��T L

� �P � 	Xi
eCi�

and one of the following two conditions holds


�� f eD�� � � � � eDng are all independent from the clauses in fcl�� � � � � clpg� or

�� there exists an integer m such that� for each eCi � f eC�� � � � � eCng� and each clj � fcl�� � � � � clpg


	 the delay of 	Xi
eDi wrt 	Xi

eCi in lfp��P � is less or equal to m� and
	 depenP �Di� clj� � m�

then P is equivalent to P � wrt T L
� � �

��



� Correctness Results when L is In�nite

��� Correctness Results when L is In�nite

When the language is in�nite� that is when it contains in�nitely many function symbols� the domain
closure axioms are no longer needed since in this case CETL is already a complete theory�

Three valued program�s completion semantics in the case of an in�nite language has been studied by
Kunen ���
 and successively by Shepherdson ���
� As far as we are concerned the CompL�P � semantics
when L is in�nite behaves exactly as the CompL�P � 
WDCAL when L is �nite� This fact is due to the
following result


Theorem ��� Let P be a normal program� L an in�nite language and � an allowed formula�

� CompL�P � j� � i� for some integer n� �n
P j�L �

Proof� This is Theorem �b in ���
� �

Observe that this is identical to Theorem ��� �b�� which was the only result on the semantics that we
used in Section �� Consequently� the results that we can prove on program�s and formula�s equivalence
and on the replacement operation are identical to the ones given in the previous Section� Theorem ���
holds also for Comp�P � with L in�nite� the proof is identical as well� as Lemma ��� holds for an arbitrary
language� The same reasoning applies to Proposition ��� on the equivalence of formulas� Finally� the
results on the replacement operation� that is Theorems ���� ��� and Corollary ��� hold also for this
semantics�

Corollary ��� �applicability conditions wrt CompL with L in�nite� Let L be an in�nite language�

In the hypothesis of De�nition ���� for simultaneous replacement� if for each eCi � f eC�� � � � � eCng� there

exists a �possibly empty� set of variables Xi satisfying the locality property wrt eCi and eDi such that

	Xi
eDi is equivalent to 	Xi

eCi wrt CompL�P ��

and one of the following two conditions holds


�� f eD�� � � � � eDng are all independent from the clauses in fcl�� � � � � clpg� or

�� there exists an integer m such that� for each eCi � f eC�� � � � � eCng� and each clj � fcl�� � � � � clpg


	 the delay of 	Xi
eDi wrt 	Xi

eCi in lfp��P � is less or equal to m� and
	 depenP �Di� clj� � m�

then P is equivalent to P � wrt the three valued completion semantics� CompL� �

	 Replacement vs
 Other Operations


We now consider some other operations which are normally used in program�s transformation and show
how they can be seen as particular cases of replacement� This will also give us the opportunity of providing
some other examples�

��� Reversible Folding

The fold operation consists in substituting an atom for an equivalent conjunction of literals� in the body
of a clause� This operation is generally used in all the transformation systems in order to pack back
unfolded clauses and to detect implicit recursive de�nitions� In the literature we �nd di�erent de�nitions
for this operation� This is due to the fact that it is not generally safe even for de�nite programs and
declarative semantics and its application must be restricted by some conditions which depend on the
semantics we choose� The reversible folding corresponds to the kind of folding considered in ���� �
�

��



De�nition 	�� �reversible fold� Let cl 
 A� eL� eH�
� and d 
 B � eH� be distinct clauses in a program

P � let also W be the set of local variables of eH in d� W � V ar� eH�nV ar�B��

If there exists a substitution �� dom��� � V ar� eH�nW � such that eH�
� eH� and d is the only clause of

P whose head uni�es with B�� Then

� Folding eH �
in cl by using d as folding clause consists of substituting cl� for cl� where

cl� 
 A� eL�B��
fold�P� eH� cl� d� � Pnfclg 
 fcl� 
 A� eL�B��g �

Example 	�� Let us consider the following program


P � f cl 
 p�X� � q�X� b���s�X�� r�a�X��
d 
 r�Z� Y � � q�Y� Z���s�Y ��

r�a� Y � � p�Y ��
q�X� a��
q�X� b�� g

With � � fb
Z�X
Y g� we have body�d�� � �q�X� b���s�X�� and that d is the only clause of P whose
head uni�es with r�Z� Y ��� Hence we can fold clause cl� thus obtaining the program


P � f cl 
 p�X� � r�b�X�� r�a�X��
d 
 r�Z� Y � � q�Y� Z���s�Y ��

r�a� Y � � p�Y ��
q�X� a��
q�X� b�� g

�

This operation is always safe� Indeed we now show that it can be seen as a special case of replacement
in which the conditions of Corollaries ���� and ��� are always satis�ed�

Theorem 	�� �correctness of reversible folding� The reversible folding operation is safe wrt both
T L
� and T L

� �

Proof� Consider the notation as in De�nition ���� Recall that d is the only clause that uni�es with B��
By the de�nition of Fitting�s operator we have that� for all substitutions 
� B�
 is true �resp� false� at

step ��
P i� � is an ordinal greater than � and 	W eH�
 is trueL �resp� falseL� at step ����

P � This implies
that whichever semantics we consider


	 B� is equivalent to 	W eH�� and
	 the delay of B� wrt 	W eH� is one�

Since d 
� cl� we also have that depenP �B�� cl� � �� Hence� by Corollary ���� �resp� ����� the operation
is T L

� 	safe �resp� T L
� 	safe�� �

Now we need to de�ne the unfold operation which is widely used in transformations� We suppose
that all the clauses are disjoint� that is� they have no variable in common�

De�nition 	�� �unfold� Let cl 
 A� eL�H� be a clause of a normal program P � where H is an atom�

Let fH�� eB�� � � � �Hn� eBng be the set of clauses of P whose heads unify with H� by mgu�s f��� � � � � �ng�

� Unfolding an atom H in cl consists of substituting cl with fcl��� � � � � cl
�
ng� where� for each i�

cl�i � �A� eL� eBi��i�

unfold �P� cl�H�
def
� Pnfclg 
 fcl��� � � � � cl

�
ng� �

This operation is safe wrt all the semantics we consider in this paper��

�The proof of safeness will appear in a technical report and is now reported in the Appendix B�

��



Example 	�� �sorting by permutation and check� part I� The following program is borrowed from
���
� The transformation process is intentionally redundant in order to be more explanatory� For the sake
of simplicity� here we consider the semantics given by T L

� � The results hold also in the case we adopt T L
�

although� as we will point out� the proofs are more complicated�
Let P� be the following program


P� � f c� 
 perm�� 
� � 
��
c� 
 perm��A j Xs
� Y s� � perm�Xs�Zs�� ins�A�Zs� Y s��
c� 
 ins�A�Xs� �A j Xs
��
c� 
 ins�A� �B j Xs
� �B j Y s
� � ins�A�Xs� Y s��
c� 
 ord�� 
��
c� 
 ord��A
��
c� 
 ord��A�B j Xs
� � A � B� ord��B j Xs
��
c� 
 sort�Xs� Y s� � perm�Xs� Y s�� ord�Y s��
� � � g

�Step �� If we unfold perm�Xs� Y s� in the body of c�� the resulting program is

P� � fc�� � � � � c�g 


f c� 
 sort�� 
� � 
� � ord�� 
��
c�� 
 sort��A j Xs
� Y s� � perm�Xs�Zs�� ins�A�Zs� Y s�� ord�Y s��g

�Step �� By unfolding ord�� 
� in c�� we eliminate ord�� 
� from the body of that clause�
P� � fc�� � � � � c�g 
 fc��g 
 f c�� 
 sort�� 
� � 
��g
By the safeness of the unfold operation �Corollary ��� in the Appendix B� P�� P� and P� are equivalent
programs both wrt T L

� and T L
� � �

��� Thining and Fattening

The fatten operation consists in introducing redundant literals in the body of a clause� It is generally
used in order to make possible some other transformations such as folding�

De�nition 	�	 �fatten� Let cl 
 A� eL� be a clause in a program P and eH a conjunction of literals�

� Fattening cl with eH in P consists of substituting cl� for cl� where cl� 
 A� eL� eH�

fatten �P� c� eH�
def
� Pnfclg 
 fcl�g� �

The fatten operation is a special case of replacement� and then its applicability conditions can be
drawn directly from Corollaries ���� and ����

The next Lemma shows that for fattening� we actually need to check only part of the applicability
conditions�

Lemma 	�
 Let cl � A� eE� eG� be a clause in the normal program P � X be a set of variables not
occurring in �A� eE� and eH be another conjunction of literals� Then

�a� If for each �� lfp��P � j�L 	X eG� implies lfp��P � j�L �	X eG� eH���

then 	X eG �T L

� �P � 	X eG� eH�

�b� If for each �� lfp��P � j�L ��	X eG� eH�� implies lfp��P � j�L �	X eG�
then 	X eG� eH �T L

� �P � 	X eG�

�c� If m is an integer such that� for each � and �� ��
P j�L 	X eG� implies ���m

P j�L �	X eG� eH��� then

	 	X eG �T L

� �P � 	X
eG� eH�

��



	 the delay of 	X eG� eH wrt 	X eG in lfp��P � is less or equal to m�

If m is the least of such integers� then the delay of 	X eG� eH wrt 	X eG in lfp��P � is exactly m�

Proof� It is a straightforward application of Theorem ��� together with the fact that� for any interprtation
I� I j�L � eG� implies that I j�L �� eG� eH��� �

This Lemma applies as well to the semantics given by T L
� � as it is shown by Lemma ��� in the

Appendix A�

Example 	�� �sorting by permutation and check� part II�

�Step �� Now we can fatten clause c�� by adding ord�Zs� to its body�
Let P� be the resulting program

P� � fc�� � � � � c�g 


f c�� 
 sort�� 
� � 
��
c�� 
 sort��A j Xs
� Y s� � perm�Xs�Zs�� ord�Zs�� ins�A�Zs� Y s�� ord�Y s��g

This operation corresponds to a replacement of ins�A�Zs� Y s�� ord�Y s� with ord�Zs�� ins�A�Zs� Y s��
ord�Y s��

We now use Theorem ���� to prove that lfp��P� � � lfp��P���
Observe that if �ins�A�Zs� Y s�� ord�Y s��� is true in lfp��P�

� then Y s� is an ordered list and Zs� is a
sublist of Y s�� hence also Zs� is ordered and �ord�Zs�� ins�A�Zs� Y s�� ord�Y s��� is also true in lfp��P�

��
By Lemma ���� this is su�cient to state that


ins�A�Zs� Y s�� ord�Y s� �T L

� �P�� ord�Zs�� ins�A�Zs� Y s�� ord�Y s���

Notice also that the conjunction ord�Zs�� ins�A�Zs� Y s�� ord�Y s� is independent from clause c���
Hence by Theorem ���� lfp��P� � � lfp��P� �� by Lemma ��� this means that the operation is T L

� 	complete�

To show that the operation is also safe� that is� that lfp��P� � � lfp��P��� we could use Corollary �����
but it is easier to observe that lfp��P�� is already a total model �� namely nothing is unde�ned� hence
lfp��P�� � lfp��P� � implies that lfp��P� � � lfp��P��� and by ����� the operation is also safe�

�Step �� We can now fatten c�� with sort�Xs�Zs�� The resulting program is

P
 � fc�� � � � � c�g 


f c�� 
 sort�� 
� � 
��
c�� 
 sort��A j Xs
� Y s� � sort�Xs�Zs�� perm�Xs�Zs�� ord�Zs�� ins�A�Zs� Y s�� ord�Y s��g

This operation corresponds to a replacement of perm�Xs�Zs�� ord�Zs� with sort�Xs�Zs�� perm�Xs�Zs��
ord�Zs�� Using Corollary ���� we can prove that lfp��P�

� � lfp��P�
�� in order to apply the Corollary we

have to show that


�a� sort�Xs�Zs�� perm�Xs�Zs�� ord�Zs� ��T L

� �P�� perm�Xs�Zs�� ord�Zs��

�b� the delay of sort�Xs�Zs�� perm�Xs�Zs�� ord�Zs� wrt perm�Xs�Zs�� ord�Zs� in lfp��P�
� is zero�

To prove �a� we proceed as follows
 since sort�Xs�Zs� � perm�Xs�Zs�� ord�Zs�� is a clause of P��
by Lemma ���� we have that sort�Xs�Zs� ��T L

� �P�� perm�Xs�Zs�� ord�Zs�� this clearly implies that

�When usingWDCA instead of DCA� in order to establish the equivalence� computationsare in generalmore complicated�
In this example it is su�cient to observe that �ins�A�Zs� Y s�� ord�Y s��� is trueL in �n

P�
then also ord�Zs�� is trueL in

�n
P�

�
�This also follows from a result due to Apt and Bezem �	
� that states that the Fitting�s Model of an acyclic program is

always a total model�

��



sort�Xs�Zs�� perm�Xs�Zs�� ord�Zs� ��T L

� �P�� perm�Xs�Zs�� ord�Zs�� By Proposition ��� this implies

that lfp�P�� j� sort�Xs�Zs�� perm�Xs�Zs�� ord�Zs� � perm�Xs�Zs�� ord�Zs�� From the correctness of
the previous transformation�s steps we have that lfp�P�� � lfp�P��� hence

lfp�P�� j� sort�Xs�Zs�� perm�Xs�Zs�� ord�Zs�� perm�Xs�Zs�� ord�Zs��
and �a� follows from Proposition ����

We now prove �b�� Note that it is su�cient to show that the delay of sort�Xs�Zs� wrt perm�Xs�Zs��
ord�Zs� in lfp��P�

� is zero� By Lemma ���� it is su�cient to prove that


for all �� k� if �k
P�
j�L �perm�Xs�Zs�� ord�Zs��� then also �k

P�
j�L sort�Xs�Zs���

First we need to prove a few properties� In the following we denote jlj the length of a list l�

�i� ins�A�Zs� Y s�� becomes true at step �n
P�

� where n � jY s�j� in fact n is precisely the place where
A ends up in Y s�
For example
 ins�a� �t� s� � � �
� �a� t� s� � � �
� is true in ��

P�
�

ins�a� �t� s� � � �
� �t� a� s� � � �
� is true in ��
P�

�
ins�a� �t� s� � � �
� �t� s� a� � � �
� is true in ��

P�
� � � �

Moreover� when ins�A�Zs� Y s�� is true in lfp��P�
�� we have that

jY s�j � jZs�j � �� ����

�ii� perm�Xs�Zs�� becomes true in �
jZs	j��
P�

�
This can be proven by induction on the length of jZs�j�
perm�� 
� � 
� is true in ��

P�
�

if jZs�j � � then perm�Xs�Zs�� is true in ��
P i� there exists an instance of c��

�perm��A�jXs�
� Y s��� perm�Xs�� Zs��� ins�A�� Zs�� Y s�������
such that
	 perm��A�jXs�
� Y s���� � perm�Xs�Zs�� and
	 �perm�Xs� � Zs��� ins�A�� Zs�� Y s����� is true in ����

P �
Now we can apply the inductive hypothesis and the previous results in order to determine �� �


	 perm�Xs� � Zs���� is� by the inductive hypothesis� true in �
jZs�	�j��
P�

�
	 ins�A�� Zs�� Y s���� becomes true at step �n

P�
� where n � jY s���j�

By ����� jY s���j � jZs���j� �� hence the conjunction �perm�Xs� � Zs��� ins�A�� Zs�� Y s����� becomes

true exactly at step �jY s�	�j
P�

� But jY s���j � jZs�j� hence perm�Xs�Zs�� becomes true at step

�jZs	j��
P�

�

�iii� ord�Zs�� becomes true at step �max��
jZs	j�
P�

�
This can be proven by induction on jZs�j�

�iv� sort�Xs�Zs�� becomes true at step �
jZs	j��
P�

�
Again� this can be proven by induction on jZs�j�
sort�� 
� � 
� is trueL in ��

P�
� When jZs�j � �� sort�Xs�Zs�� is in ��

P i� there exists an instance of
c��
 �sort��A j Xs�
� Y s��� perm�Xs� � Zs��� ord�Zs��� ins�A�Zs�� Y s��� ord�Y s������ such that
	 sort��A j Xs�
� Y s���� � sort�Xs�Zs�� and
	 �perm�Xs� � Zs��� ord�Zs��� ins�A�Zs�� Y s��� ord�Y s������ trueL in ����

P �
Now to determine the value of �� �� we can use �i�� �ii� and �iii�


	 perm�Xs� � Zs���� is true in �
jZs�	�j��
P�

�

	 ord�Zs���� is true in �
max��
jZs�	�j�
P�

�
	 ins�A�Zs�� Y s���� is true in �n

P�
� where n � jY s���j�

	 ord�Y s���� is true in �
max��
jY s�	�j�
P�

�
Since jZs���j�� � jY s���j � jZs�j� �perm�Xs�� Zs��� ord�Zs��� ins�A�Zs�� Y s��� ord�Y s����� becomes

true exactly at step �
jY s�	j
P�

and sort�Xs�Zs� becomes true at step �
jZs	j��
P�

�

We can �nally prove �b�� By �iv�� whenever sort�Xs�Zs�� is true in lfp��P�
�� it is true in �jZs	j��

P�
�

but by �ii� and �iii�� whenever �perm�Xs�Zs�� ord�Zs��� is true in lfp��P�
�� it is true in �

jZs	j��
P�

� By

��



Lemma ��� the delay of sort�Xs�Zs� wrt perm�Xs�Zs�� ord�Zs� is zero� It follows that also the delay
of sort�Xs�Zs�� perm�Xs�Zs�� ord�Zs� wrt perm�Xs�Zs�� ord�Zs� is zero� �

The thinning operation is the converse of fattening� and allows one to eliminate super�uous literals
from the body of a clause�

De�nition 	�� �thin� Let cl 
 A� eL� eH� be a clause in a program P �

� Thinning cl of the literals eH in P consists of substituting cl� for cl� where cl� 
 A� eL�

thin�P� cl� eH�
def
� Pnfclg 
 fcl�g� �

As for fattening� thinning can be interpreted as a replacement and then its applicability conditions
can be inferred from Corollaries ���� and ���� Moreover Lemma ��� applies in a natural way also to this
operation� only statement �c� requires a symmetric formulation� We restate only this last point�

Lemma 	�� Let cl � A� eE� eG� eH� be a clause in P and X be a set of variables not occurring in �A� eE��
The following property holds


� If m is an integer such that� for each � and �� ��
P j�L ��	X eG� eH�� implies ���m

P j�L �	X eG�� then

	 	X eG� eH �T L

� �P � 	X eG�
	 the delay of 	X eG wrt 	X eG� eH in lfp��P � is smaller or equal to m�

If m is the least of such integers� then the delay of 	X eG� eH wrt 	X eG in lfp��P � is exactly m�

Proof� It is a straightforward application of the fact that for any interpretation I� if I j�L � eG� eH�� then

also I j�L
eG�� �

In the Appendix A �Lemma ���� we state a corresponding Lemma for the case in which we adopt T L
�

instead of T L
� �

Example 	�� �sorting by permutation and check� part III�

�Step ��� We can eliminate ord�Zs� from the body of c�� by thinning it� The resulting program is

P� � fc�� � � � � c�g 


f c�� 
 sort�� 
� � 
��
c�� 
 sort��AjXs
� Y s� � sort�Xs�Zs�� perm�Xs�Zs�� ins�A�Zs� Y s�� ord�Y s��g

This corresponds to replacing ord�Zs�� ins�A�Zs� Y s�� ord�Y s� with ins�A�Zs� Y s�� ord�Y s�� In order
to prove that the operation is T L

� 	complete we apply Theorem �����
First we have to prove that

if ord�Zs�� is false in lfp��P�
� then �ins�A�Zs� Y s�� ord�Y s��� is false in lfp��P�

� 
� ����

�When adopting WDCA instead of DCA� calculations are truly more complicated� in fact in order to ensure the equiv�
alence we have to show that for each j there is a k such that if ord�Zs�� is false in �j

P�
then �ins�A� Zs� Y s�� ord�Y s��� is

false in �k
P�

�

This can be proved by the following schema
 suppose that ord�Zs�� is false in lfp��P� � and let Ws� be the maximal

ordered pre�x of Zs�� then ord�Zs�� becomes false at step �
jWs�j
P�

� We have to distinguish two cases


� if there is no Xs� such that Xs� is a pre�x of Y s and ins�A�Ws�Xs�� is true in some �n
P�

� then ins�A� Zs� Y s�� becomes

false no later than ord�Zs�� does� and we have the desired result�
� otherwise� either Xs is not ordered or it is the maximal ordered pre�x of Y s�� in either cases� ord�Y s�� becomes false no

later than step �
jXsj
P�

�

In any case if ord�Zs�� is false in �j
P�

then �ins�A�Zs� Y s�� ord�Y s��� is false in �j��
P�

�

��



This is easy to prove
 if ins�A�Zs� Y s�� is false in lfp��P�
� then we have the thesis� Otherwise� since

lfp��P�
� is a total interpretation� ins�A�Zs� Y s�� cannot be unde�ned in it� and ins�A�Zs� Y s�� is true in

lfp��P�
�� but in this case it is easy to see that Zs� has one element less than Y s�� and hence if ord�Zs��

is false in lfp��P�
�� so is ord�Y s��� and ��� follows�

Now ���� implies that whenever �ord�Zs�� ins�A�Zs� Y s�� ord�Y s��� is false in lfp��P�
� then also

�ins�A�Zs� Y s�� ord�Y s��� is false in lfp��P�
�� and� by Lemma ���� that

ord�Zs�� ins�A�Zs� Y s�� ord�Y s� �T L

� �P�� ins�A�Zs� Y s�� ord�Y s��

Since we also have that ins�A�Zs� Y s�� ord�Y s� is independent from c��� from Theorem ���� it follows
that lfp��P�

� � lfp��P�
�� that is� that the operation is T L

� 	complete� As in �Step ��� since lfp��P�
� is a

total interpretation� this implies that lfp��P�
� � lfp��P�

� and that the operation is also T L
� 	safe�

�Step 	� Finally we can eliminate perm�Xs�Zs� from the body of c�� by a further thinning� obtaining

P� � fc�� � � � � c�g 


f c�� 
 sort�� 
� � 
��
c�� 
 sort��AjXs
� Y s� � sort�Xs�Zs�� ins�A�Zs� Y s�� ord�Y s��g

This is an O�n�� sorting program� while P� runs in O�n �� To prove the T L
� 	completeness of this last

step� we use Theorem ����� Let us distinguish two cases�

� If Xs� � � 
� then perm�Xs�Zs�� is false in ��
P�

i� Zs� 
� � 
� but in this case also sort�Xs�Zs�� is
false in ��

P�
�

� otherwise observe that the body of c�� which de�nes perm� is contained in the body of c��� de�ning
sort�

This implies that if some instance of body�c�� is false in some interpretation I� then the corresponding
instance of body�c��� is false in I� Hence� if perm��AjXs
� Zs�� is false in �j��

P�
then sort��AjXs
� Zs�� is

false in �j��
P�

� It follows that

if �sort�Xs�Zs�� perm�Xs�Zs��� is false in �j
P�

then sort�Xs�Zs�� is false in �j
P�

�

By Lemma ���� this is su�cient to show that sort�Xs�Zs�� perm�Xs�Zs� �T L

� �P�� sort�Xs�Zs� and

that the semantic delay of sort�Xs�Zs�� perm�Xs�Zs� wrt sort�Xs�Zs� is zero� and hence� by Theorem
����� lfp��P�

� � lfp��P	
�� Again� since lfp��P�

� is already a total interpretation� this implies that

lfp��P�
� � lfp��P	

�� and hence� by Theorem ��� that the operation is T L
� 	safe� �

� Conclusions

In this paper we study the simultaneous replacement operation wrt normal programs� Simultaneous
replacement is a transformation operation which consists in substituting a set of conjunctions of literals
f eC�� � � � � eCng in the bodies of some clauses� with a set of equivalent conjunctions f eD�� � � � � eDng� The set
of logical consequences of the program�s completion is taken as the semantics of the normal program�
In this way we obtain three di�erent semantics which depend on the domain closure axioms and on the
�niteness properties of the language we choose� More precisely� the semantics we consider are


� CompL�P � 
DCAL�
where L is a �nite language� namely it has a �nite number of function symbols and DCA is the set
of Domain Closure Axioms�

� CompL�P � 
WDCAL�
where L is a �nite language� namely it has a �nite number of function symbols and WDCA is the
set of Weak Domain Closure Axioms�

��



� CompL�P ��
where L is an in�nite language� this corresponds to Kunen�s semantics�

All these semantics can be characterized by means of the Kleene sequence of the three valued immediate
consequence operator �P �

For each of these semantics we de�ne formulas equivalence� programs equivalence and safeness of
program transformations� namely their correctness and completeness� and express them also in terms of
the �P operator�

Furthermore� we propose applicability conditions for simultaneous replacement which guarantee safe	
ness� that is the preservation of each semantics during the transformation� The equivalence between eCi

and eDi is obviously necessary but it is generally not su�cient� In fact� we also need the equivalence to
hold after the transformation� Such equivalence can be destroyed when a eDi depends on one of the clauses
on which the replacement is performed� Hence we establish a relation between the level of dependency of
f eD�� � � � � eDng over the modi�ed clauses and the di�erence in �semantic complexity� between each eCi andeDi� Such semantic complexity is measured by counting the number of the applications of the immediate
consequence operator which are necessary in order to determine the truth or falsity of a predicate�

By considering replacement as a generalization of other transformation operations such as thinning�
fattening and reversible folding� we show how applicability conditions can be used also for them�
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� Appendix A


Now we provide the proof of Claim � in Theorem ���� Let us �rst state a simple property of existentially
quanti�ed formulas�

Remark ��� Let L be any language� W and Z be sets of variables� eL be a conjunction of literals� I
a three valued L	interpretation and � any ground substitution� Suppose that W � Z � V ar�eL�� The
following properties hold


� If 	Z eL� is trueL in I then 	W eL� is trueL in I�

� If 	Z eL� is not falseL in I then 	W eL� is not falseL in I�

This is true in particular when Z is empty and 	Z eL� � eL�� �

Claim A�� �Claim � in Theorem ����� Notation as in ���� Let I� I� be two partial interpretations� If

I� � I but �P � �I�� 
� �P �I�� then there exist a conjunction eCj � f eC�� � � � � eCng and a ground substitution
� such that


� either I� j�L 	Xj
eDj� while I 
j�L 	Xj

eCj��

� or I� j�L �	Xj
eDj� while I 
j�L �	Xj

eCj��

Proof� Recall that �P � �I�� 
� �P �I� i� either �P � �I��� 
� �P �I�� or �P � �I��� 
� �P �I�� �or both�� We
have to distinguish the two cases�

Case �� Let us suppose that �P � �I��� 
� �P �I�� and let us take an atomB � �P � �I���n�P �I��� There
has to be a clause c � P �nP � a ground substitution �� such that
 head�c��� � B and body�c��� is true in I��

P �nP � fcl��� � � � � cl
�
pg� then there is an integer j such that
 c � cl�j and body�cl�j��

� � � eDj� � � � � � eDjr�j� �
eEj��

��
is true in I��
Hence the conjunctions eDj��

�� � � � � eDjr�j��
� are all true in I�� From remark ��� it follows that the formulas


	Xj�
eDj��

�� � � � � 	Xjr�j�
eDjr�j��

� are trueL in I�� ����

where the Xi are set of variables that satisfy the locality property wrt to eCi and eDi�
We know that B � head�cl�j��

� � head�clj��
�� but since B 
� �P �I�� � by de�nition ��� we have that

�	W body�clj���
� is not trueL in I� where W � V ar�body�clj��nV ar�head�clj��� that is�

�	W eCj� � � � � � eCjr�j� �
eEj��

� is not trueLinI�

For each k� W � Xjk � V ar�body�clj��� now let Y � WnXj� 
 � � � 
Xjr�j� and � be a ground extension
of �� whose domain contains Y � Then from Remark ��� it follows that

�	Xj� � � � � � Xjr�j�
eCj� � � � � �

eCjr�j� �
eEj�� is not trueL in I�

��



Since eEj� is true in I� and I� � I� then eEj� is true in I� by the locality property� the sets Xjk are pairwise

disjoint� hence one of the formulas in 	Xj�
eCj��� � � � � 	Xjr�j�

eCjr�j�� is not trueL in I�
Since ���� holds also for �� the thesis follows�

Case �� It is perfectly symmetrical to case �� except for the fact that it is proven by contradiction�
Let us suppose that �P � �I��� 
� �P �I��� and let us take an atom B � �P � �I���n�P �I��� There has to
be a clause c � PnP �� a ground substitution �� such that head�c��� � B and body�c��� is not false in I�

PnP � � fcl�� � � � � clpg� then there is an integer j such that
 c � clj � and then the conjunction � eCj� � � � � �eCjr�j� �
eEj��

� is not false in I�

Hence the conjunctions eCj��
�� � � � � eCjr�j��

� are all not false in I� From remark ��� it follows that


	Xj�
eCj��

� � � � 	Xjr�j�
eCjr�j��

� are not falseL in I� ����

We know that B � head�clj��
� � head�cl�j��

�� but since B � �P � �I���� by de�nition ��� we have that
�	W body�cl�j���

� is falseL in I�� with W � V ar�body�cl�j ��nV ar�head�cl�j��� that is�

�	W eDj� � � � � � eDjr�j� �
eEj��

� is falseLinI
��

For each k� W � Xjk � V ar�body�clj��� now let Y � WnXj� 
 � � � 
Xjr�j� and � be a ground extension
of �� whose domain contains Y � From remark ��� it follows that

�	Xj� � � � � � Xjr�j�
eDj� � � � � � eDjr�j� �

eEj�� is falseL in I��

Since eEj� is not false in I and I� � I� eEj� is not false in I�� By the locality property� the sets Xjk are

pairwise disjoint� then one of the formulas in 	Xj�
eDj�� � � �	Xjr�j�

eDjr�j�� is falseL in I��
Since ���� holds also for �� the thesis follows� �

Now we state two Lemmata which are the counterpart of Lemmata ��� and ���� for the case in which
the closure axioms adopted are WDCAL rather than DCAL�

Lemma ��� Let cl � A� eE� eG� be a clause in the normal program P � X be a set of variables not
occurring in �A� eE� and eH be another conjunction of literals� Then

�a� If for each j there exists a k such that� for each �� �j
P j�L 	X eG� implies �k

P j�L �	X eG� eH��� then

	X eG �T L

� �P � 	X eG� eH�

�b� If for each j there exist a k such that� for each �� �j
P j�L ��	X eG� eH�� implies �k

P j�L �	X eG��
then 	X eG� eH �T L

� �P � 	X eG�

�c� If m is an integer such that� for each n and �� �n
P j�L 	X eG� implies �n�m

P j�L �	X eG� eH�� then

	 	X eG �T L

� �P � 	X eG� eH�

	 the delay of 	X eG� eH wrt 	X eG in Comp�P � 
WDCAL is smaller or equal to m�

If m is the least of such integers� then the delay of 	X eG� eH wrt 	X eG in Comp�P � 
WDCAL is
exactly m�

Proof� It is a straightforward application of Theorem ��� together with the fact that� for any interpre	
tation I� I j�L � eG� implies that I j�L �� eG� eH��� �

Lemma ��� Let cl � A� eE� eG� eH� be a clause in P and X be a set of variables not occurring in A� eE�
The following property holds


� If m is an integer such that� for each integer n and substitution �� �n
P j�L �	X� eG� eH�� implies that

�n�m
P j�L �	X eG�� then

	 	X eG� eH �T L

� �P � 	X eG�
	 the delay of 	X eG wrt 	X eG� eH in ��

P is less or equal to m�

If m is the least of such integers� then the delay of 	X eG� eH wrt 	X eG in ��
P is exactly m�

��



Proof� It is a straightforward application of the fact that for any interpretation I� if I j�L � eG� eH�� then

also I j�L
eG�� �


 Appendix B �Safeness of the Unfolding Operation�

First we need the following technical Lemma�

Lemma ��� Let P � be the program obtained by unfolding an atom in a clause of program P � Then for
each integer i and limit ordinal ��

�a� �i
P � �i

P � and �i
P � � ��i

P �

�b� �i
P ���

P � � �i
P � ��

�
P � � and �i

P � ��
�
P � � � ��i

P ���
P ��

Proof� Here we adopt the same notation of de�nition ���� so cl 
 A�H� eK� is the clause of P to which
we apply the unfold operation� fH�� eB��� � � � �Hn� eBn�g are the clauses of P whose heads unify with

H� fcl��� � � � � cl
�
ng are the resulting clauses� where� for each i� cl�i 
 �A� eBi� eK��i� and �i � mgu�H�Hi��

We also suppose that all this clauses are disjoint�
The next Claim is crucial

Claim � Suppose that � is an ordinal such that� for each ground � �

�i� ��
P � ��

P � �

�ii� if H� � ��
P
� then there exist a substitution � and an integer i such that H� � Hi�i� and eBi�i�

is true in ��
P �

�iii� if H� � ��
P
� then for each substitution � and integer i if H� � Hi�i� then eBi�i� is false in ��

P �

Then� for each integer j�

� �j
P ���

P � � �j
P � ���

P � ��

� �j
P � ���

P � � � ��j
P ���

P ��

Proof� First we prove the �rst statement� and we show by induction that if a ground atom R is true or
false in �j

P ���
P � then it is also so in �j

P � ���
P � ��

The base case j � � is trivial� since ��
P ���

P � � ��
P � and from �i� we have the thesis�

Induction step� j � �� we have to distinguish two cases

�� Suppose R is true in �j

P ���
P �� then there exists a clause d � P and a substitution � such that

R � head�d�� and body�d�� is true in �j��
P ���

P ��

If d 
� cl then d belongs both to P and P �� by the inductive hypothesis body�d�� is true in �j��
P � ���

P � ��
and the result follows�
Otherwise� d � cl� R � A� and �H� eK�� is true in �j��

P ���
P �� So H� is true in �j��

P ���
P ��

If j � � this implies that for some integer i and substitution �� H� � H�i� � Hi�i� and eBi�i� is true in
�j��
P ���

P ��
On the other hand� if j � � the fact that H� is true in ��

P implies� by �ii�� that for some integer i and

some substitution �� eBi�i� is true in ��
P �

In any case� � eBi� eK��i� is true in �j��
P ���

P � and� by inductive hypothesis� in �j��
P � ���

P � �� Then body�cl�i��

is true in �j��
P � ���

P � �� it follows that� head�cl�i�� is true in �j
P � ���

P � ��
We can assume that �jV ar�d� � �i�jV ar�d�� and hence that A� � A�i��
As R � A� � A�i� � head�cl�i��� the result follows�

�� Suppose that R is false in �j
P ���

P �� we prove this part by contradiction�We assume that R is not

false in �j
P � ���

P � �� then there exists a clause d� � P � and a substitution � such that R � head�d��� and

body�d��� is not false in �j��
P � ���

P � ��
If d� 
� fcl��� � � � � cl

�
ng� then d� belongs both to P � and P � by the inductive hypothesis body�d��� is not false

��



in �j��
P ���

P �� and R � head�d��� is not false in �j
P ���

P �� which is a contradiction�
Otherwise� for some integer i and substitution �� d� � cl�i� R � head�cl�i�� � A�i�� and body�cl�i�� is not

false in �j��
P � ���

P � �� Recall that body�cl�i�� � � eBi� eK��i��

If j � �� the fact that eBi�i� is not false in �j��
P � ���

P � � implies that eBi�i� is not false in �j��
P � ���

P � �� and

since Hi� eBi� is a clause of P �� H�i� � Hi�i� is not false in �j��
P � ���

P � ��

On the other hand� if j � �� the fact that eBi�i� is not false in ��
P � implies by �ii� that H�i� is not false

in ��
P � �

In any case �H� eK��i� is not false in �j��
P � ���

P � �� and by the inductive hypothesis� in �j��
P ���

P �� Since

H� eK � body�cl� it follows that R � A�i� � head�cl��i� is not false in �j
P ���

P �� which gives a contradic	
tion�

Now we prove the second statement
 we show by induction that if a ground atom R is true or false
in �j

P � ���
P � � then it is also so in ��j

P ���
P ��

As above� the base case j � � is trivial�
Induction step j � �
 we have to distinguish two cases�

�� Suppose that R is true in �j
P � ���

P � �� then there exists a clause d� � P � and a substitution � such

that R � head�d��� and body�d��� is true in �j��
P � ���

P � ��
If d� 
� fcl��� � � � � cl

�
ng then d� belongs both to P � and P � by the inductive hypothesis body�d��� is true in

�j��
P ���

P �� R � head�d��� is true in �j
P ���

P � and the result follows�
Otherwise for some integer i and substitution �� d� � cl�i� R � head�cl�i�� � A�i�� and body�cl�i�� is true

in �j��
P � ���

P � ��

Recall that body�cl�i�� � � eBi� eK��i�� by inductive hypothesis� � eBi� eK��i� is also true in ��j��
P ���

P ��

Since eBi�i� is true in ��j��
P ���

P � and Hi� eBi� is a clause of P � Hi�i� is true in ��j��
P ���

P �� But

Hi�i� � H�i�� so �H� eK��i� � body�cl��i� is true in ��j��
P ���

P �� hence R � A�i� � head�cl��i� is true

in ��j
P ���

P ��

�� Let R be false in �j
P � ���

P � �� we prove this part by contradiction� so we assume that R is not false

in ��j
P ���

P �� Then there exists a clause d � P and a substitution � such that R � head�d�� and body�d��

is not false in ��j��
P ���

P ��
If d 
� cl then d belongs both to P and P �� by the monotonicity of the Kleene sequence� body�d�� is
not false in ��j��

P ���
P � either� hence� by the inductive hypothesis body�d�� is not false in �j��

P � ���
P � �� It

follows that head�d�� � R is not false in �j
P � ���

P � � which gives a contradiction�

Otherwise� d � cl� R � A� and �H� eK�� is not false in ��j��
P ���

P �� So H� is not false in ��j��
P ���

P ��

This implies that for some integer i and substitution �� H� � H�i� � Hi�i� and eBi�i� is not false in
��j��
P ���

P ��

Hence � eBi� eK��i� is not false in ��j��
P ���

P �� and by the inductive hypothesis� in �j��
P � ���

P � �� Since
eBi�i� � body�cl�i��� this implies that head�cl�i�� � A�i� � R is not false in �j

P � ���
P � � which is a

contradiction� �

Now� in order to prove �a� we observe that � � � is an ordinal that trivially satis�es the hypothesis
of Claim ��

In order to prove �b� we have to show that Claim � also applies when � is any limit ordinal�
First consider the case � � �� From �a� it follows that ��

P � ��
P � � moreover� if H� is true �resp� false� in

��
P � then� it is also true in some �m

P � �m � ��� By applying the de�nition of Fitting�s operator we have
that condition �ii� �resp� �iii�� hold for � � �� So � � � satis�es the requirements of Claim ��
It follows that� for each i� ���i

P � ���i
P � and that ���i

P � � ����i
P � By the same reasoning it turns out that

the ordinal ��� and iterating� all the other limit ordinals� satisfy the requirements of Claim �� �

This brings us to the desired conclusions�

Corollary ��� �safeness of the unfolding operation� Let P � be the result of unfolding an atom of
a clause in P� Then P is equivalent to P � wrt both T L

� and T L
�

Proof� By Lemmata ���� ��� and Theorem ���� �

��


