Simultaneous Replacement in Normal Programs

A. Bossi, N. Cocco, S. Etalle
Computer Science/Department of Software Technology

CS-R9357 1993

Simultaneous Replacement in Normal Programs

Annalisa Bossi
Dipartimento di Matematica Pura ed Applicata,
Universita di Padova,

Via Belzoni 7, 35131 Padova, Italy.

Nicoletta Cocco
TUAV,
Tolentini 191, S. Croce, Venezia.

Sandro Etalle
CWI,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.

Abstract

The simultaneous replacement transformation operation, is here defined and studied wrt normal
programs. We give applicability conditions able to ensure the correctness of the operation wrt the
set of logical consequences of the completed database. We consider separately the cases in which
the underlying language is infinite and finite; in this latter case we also distinguish according to the
kind of domain closure axioms adopted. As corollaries we obtain results for Fitting’s and Kunen’s
semantics. We also show how simultaneous replacement can mimic other transformation operations
such as thinning, fattening and folding, thus producing applicability conditions for them too.

1991 Mathematics Subject Classification: 68Q40, 68T15.

CR Categories: F.3.2., F.4.1, H.3.3, 1.2.3.

Keywords and Phrases: Program’s Transformation, Logic Programming, Semantics, Negation, Re-
placement.

Notes. Permanent address of the third author: Dipartimento di Matematica Pura ed Applicata,
Universita di Padova, Via Belzoni 7, 35131 Padova, Italy.

1 Introduction

1.1 The Language Problem

In this paper we consider as semantics for a normal logic program P the set of logical consequences
of its completion Comp(P); the consistency problem is avoided by using three valued logic instead of
the classical two valued. Yet these choices still lead to possibly different approaches; the reason is that
Comp(P) depends strongly on the underlying language £, and when £ is finite (that is, when it contains
only a finite number of functions symbols) the equality theory which is incorporated in Comp(P) is not
complete. This problem can be solved by adding to C'omp(P) some domain closure axioms (DCA), which
are intended to restrict the quantification to the universe of £-terms. Again in the literature we find two
different kind of such axioms: the strong (DCA) and the weak (WDCA) ones. It follows that we have
three different approaches are possible, namely we may:

a) Consider an infinite language, with no domain closure axioms. This is the approach followed by
Kunen [11].

b) Consider a finite language and adopt the strong domain closure axioms (DCA). This was studied by
Fitting in the case that £ coincides with the language of the program L£(P); this semantics is commonly

known as Fitting’s Model semantics. His results can also be applied in the case in which £ is larger than
L(P).

¢) Consider a finite language and adopt the weak domain closure axioms (WDCA). This has been
studied by Shepherdson [16], and the results are similar to the ones found for the case of an infinite
language (case (a) above).

What these three approaches have in common is that the semantics can always be characterized via
the Kleene sequence of the operator ®p, the three-valued counterpart of the usual immediate consequence
operator Tp. In this paper we consider the three cases separately; we also characterize the equivalence
of two programs P and P’ by referring solely to the Kleene sequence of the operators ®p and ®p,.

1.2 The Replacement Operation

The replacement operation has been introduced for transforming definite programs by Tamaki and Sato
in [17] and after that it has been rather neglected by people working on program transformations apart
from Sato himself [15], Maher [13] and Gardner and Shepherdson [9]. Replacement consists in substi-
tuting a conjunction of literals, in the body of a clause, with another conjunction. It is a very general
transformation able to mimic many other operations, such as thinning, fattening [3] and folding, which
can be seen as particular instances of replacement.

A basic requirement for the applicability of replacement is that the replaced and replacing parts are
equivalent with respect to the considered semantics. But this is not sufficient, it is also necessary that
this equivalence still holds in the transformed program; in fact replacement could introduce infinite loops
through the modified clause. In case of normal programs, the problem is further complicated by the
presence of negation.

A few proposals have been given. For definite programs, Tamaki and Sato in [17] give an applicability
condition which compares the smallest proof trees of the two considered conjunctions. Gardner and
Shepherdson, in [9], give conditions for preserving both the procedural (SLDNF) semantics and the
declarative one. Such conditions are based on Clark’s (two valued) completion of the program [6]. Sato,
in [15], considers replacement of tautologically equivalent formulas in first order programs. Maher [13, 14]
restricts the applicability of replacement to the case in which the replaced literals are independent from
the clause where the replacement 1s applied.

Here we study simultaneous replacement which consists in performing many replacements all at the
same time, and define applicability conditions able to guarantee the correct application of the operation
in normal programs with respect to the three semantics mentioned above. This will allow us to draw
conclusions for Fitting’s and for Kunen’s semantics as well.

In some previous papers also the Well-Founded Model semantics for normal programs (in [7]) and the
S-semantics for definite programs (in [4]) have been considered and similar results have been obtained.

Our approach is based on two concepts: The semantic delay between two conjunctions of literals
and the dependency degree of a conjunction of literals wrt a clause. The first corresponds to compare a
measure of complexity of predicates, namely the number of applications of the fixpoint operator which
are necessary for determining their truth or falsity. The second corresponds to the length of the shortest
path reaching a clause in the derivation tree of a conjunction of literals. Our applicability conditions for
replacement compare the semantic delay between the two conjunctions of literals and the dependency
degree of the replaced part with the clause to be transformed. In this way it is possible to characterize
when ”there is no space to introduce a loop”. Such applicability conditions, are undecidable in general,
but other decidable, syntactic conditions can be derived for special cases. In [5] we consider two such
cases when replacement simulates folding.

1.3 Structure of the Paper

In Section 2 the main definitions related to the semantics we use are briefly recalled, and the definition
of simultaneous replacement is given. We also define equivalence among programs and correctness of a
transformation operation wrt a general first order theory. In Section 3 we characterize these definitions
via the three valued operator ®p for the case in which the theory corresponds to the program’s completion
together with the DCA closure axioms; finally we state and prove the results on the correctness of the

replacement operation wrt to the semantics just mentioned. Section 4 contains the same results of
Section 3 for the case of the WDCA closure axioms. In Section 5 we also take into account the case
of an infinite language, with no closure axioms. In Section 6 some examples are provided and it is
shown also how thinning and fattening can be seen as special cases of replacement, thus yielding, as a
consequence, conditions for a safe application of these operations to normal programs. Reversible folding
is also considered and its safeness is proved by assimilating it to the replacement operation. A short
conclusion follows. Part of the proofs is given in the Appendices.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of logic programming; throughout the paper
we use the standard terminology of [12] and [1]. We consider normal programs, that is finite collections

of normal rules, A«— Ly,..., Ly,. where A is an atom and L1, ..., L, are literals. Symbols with a ~ on
top denote tuples of objects, for instance & denotes a tuple of variables x1, ..., x,, and & = y stands for
Ty =y1 A... ATy = ys. We also adopt the usual logic programming notation that uses “,” instead of A,

hence a conjunction of literals L1 A ... A L, will be denoted by Ly,..., L, or by L.

In this paper we work with Kleene’s three valued logic [10] where the truth values are true, false and
undefined. The usual logical connectives have value true (or false) when they have that value in ordinary
two valued logic for all possible replacements of undefined by true or false, otherwise they have the value
undefined.

Three valued logic allows us to define connectives that do not exist in two valued logic. For example,
in the sequel we use the <, Lukasiewicz’s operator of "having the same truth value”; a < b is true if a
and b are both true, both false or both undefined; in any other case a <> b is false. By contrast, the usual
— 1s undefined when one or both its arguments are undefined.

In some cases we restrict our attention to formulas which we consider “well-behaving” in the three
valued semantics. Next definition is intended for characterizing such formulas.

Definition 2.1

e A logic connective < is allowed 1if the following property holds: when a < b is true or false then its
truth value does not change if one of its argument is changed from undefined to true or false.

e A first order formula is allowed if it contains only allowed connectives. a

Note that any formula containing the connective < is not allowed, while formulas built with the
usual logic connectives are allowed.

Allowed formulas can be seen as monotonic functions over the lattice on the set {undefined , true, false}
which has undefined as bottom element and #rue and false are not comparable.

2.1 Completion for Normal Programs

A language L is determined by a set of function and predicate symbols of fixed arities. Constants are
treated as 0-ary function symbols. We say that a language is infinite if it contains infinitely many function
symbols (including those of arity 0), otherwise we say that it is finite. If P is a program then £(P) denotes
the finite language of the functions and predicate symbols actually occurring in the program.

The usual Clark’s completion definition, Comp(P), [6] is extended to three valued logic by replacing
— , in the completed definitions of the predicates, with < . This saves C'omp(P) from the inconsistencies
that it can have in two valued logic. For example the program P = {p — —p.} has Comp(P) = {p & —p}
which has a model with p undefined.

Definition 2.2 Let P be a program and p(f;) «— El, o p(t) — B, be all the clauses which define
predicate symbol p in P. The completed definition of pis

p(&)e \/ 3 (#=1) A B
i=1

where & are new variables and gy, are the variables in p(tNZ) — El
If P contains no clause defining p, then the completed definition of p is

p(Z) < false.
O

The completed definition of a predicate is a first order formula that contains the equality symbol,
hence, in order to interpret “=" correctly, we also need an equality theory.

Definition 2.3 CET,, Clark’s Equality Theory for the language L, consists of the axioms:
o f(x1,...,2n) # g(y1,...,ym) for all distinct f, g in L;
o fler,...,2n) = flyr,. sun) — (1 =y1)A .. A(2q =yn) forall fin L

o z#t(x) for all terms t(x) distinct from « in which z occurs;

together with the usual equality azioms, that are needed in order to interpret correctly “=" | which
are reflexivity, symmetry, transitivity, and (£ = §) — (f(&) = f(g)) for all functions and predicate
symbols f in L. a
Note that “=" is always interpreted as two valued.

Definition 2.4 The Clark’s completion of P wrt the language £, Comp,(P) consists in the conjunction
of the completed definition of all the predicates in P together with CET . a

2.2 Domain Closure Axioms

Consider the following example, which is borrowed from [16].

P={ p——q(X).
q(a). }

The completed definition is
p < IX q(X) A ¢X) X =a

That is, Comps(P) E p < IX X # a. If £ = {a} then neither p nor —p is a logical consequence of
Compg(P). The problem in this case is due to the fact that £ is a finite language and for this reason
CET, is not a complete theory.

The two main approaches used in Logic Programming in order to obtain a complete theory out of
CET, are the following:

e adopting an infinite language (that is a language with infinitely many functions symbols);
e adopting a finite language together with some domain closure axioms.
For a extended study of the subject, we refer to [16].

Definition 2.5 Let £ be a finite language.
The Domain Closure Aziom, DCA., 1s

l‘:tl\/l‘ztz\/...

where t1,¢2, ... 18 the sequence of all the ground L-terms.

The Weak Domain Closure Aziom, WDCA,, is

3y (= LGV V3G 2= ().

where fi,..., f, are all the function symbols in £ and g, are tuples of variables of the appropriate arity.
O

Assuming DCA, is equivalent to a restriction to models and interpretations over the Herbrand Universe
of £. Note that when £ contains functions of arity greater than zero, then DCA; 1s an infinite disjunction
and hence it 1s not a first-order formula. As opposed to DCA., being £ finite, WDCA, is a first-order
formula.

Example 2.6 Let P be the following program:

P=1{ n(0).
n(s(X)) —n(X).
q —n(X). }

And let £ = L(P)
The completion of P is

n(z) & (x=0)V(ETy (x=s)Anly) A ¢ <& Jy-n(y)

together with CET ..
On one hand, when we use DCA; we have that

Compg(P)UDCA,; EVz n(z).

In fact assuming DCA is equivalent to restric ourselves to £-Herbrand models, and the formula Va n(z)
is true in the only Herbrand model of P. It follows that:

Compg(P)UDCA, E —q.
On the other hand, if we use WDCA; we have that
Compz(PYUWDCA; £ Ve n(z).

In fact WDCA allows a model which contains, besides the natural numbers, also infinite terms ¢; such
that for each 4, t; = s(¢;41). In such a model each n(t;) can be false. Tt follows that:

Compz(P)UWDCA, £ —q.
a

Assuming WDCA ; we obtain a semantics which is stronger than the one that adopts DCA .. In fact
DCA; E WDCA,, and hence if Comp,(P)UWDCA, [¢, then also Comps(P)UDCA, [¢.

Compz(PYUDCA, and Compz(P)UWDCA, are two different theories that can express the “in-
tended meaning” of the program P. Since we are going to refer to them quite often in the sequel, to
simplify the notation we will use the following shorthand:

o T5(P) = Compg(P)UDCA,;
o T5(P)= Compg(P)UWDCA,.

2.3 Three valued semantics for normal programs

Definition 2.7 Let £ be a language. A three valued (or partial) L-interpretation, I, is a mapping from
the ground atoms of £ into the set {true, false, undefined}. a

A partial interpretation I is represented by an ordered couple, (T, F'), of disjoint sets of ground atoms.
The atoms in T (resp. F') are considered to be true (resp. false) in I. T is the positive part of I and is
denoted by IT; equivalently F is denoted by I~. Atoms which do not appear in either set are considered
to be undefined.

If 7 and J are two partial L-interpretations, then I N J is the three valued L-interpretation given by
(ITnJt,I-NJ7), IUJ is the three valued L-interpretation given by (I UJ* I~ UJ™) and we say
that I C Jiff It CJt and I~ CJ~.

The underlying universe of an L-interpretation is the universe of L-terms. Accordingly when we say

that a first order formula ¢ is {rueg in I, I =, ¢, we mean that the quantifiers of ¢ are ranging over the
Herbrand Universe of L.

We now give a definition of Fitting’s operator [8]. In the sequel of the paper we write JyBf as
a shorthand for (3yB)é, that is, unless explicitly stated, the quantification applies always before the
substitution. We denote by Var(E) the set of all the variables in an expression E.

Definition 2.8 Let P be a normal program, £ a language that contains £(P), and I a three valued
L-interpretation. ®p(7) is the three valued L-interpretation defined as follows:

e A ground atom A is true in ®(I), (A € ®p()t)
iff there exists a clause ¢ : B «— L. in P whose head unifies with A, § = mgu(A, B), and
IWLE is trues in 1 B
where W is the set of local variables of ¢, W = Var(L)\Var(B) .

e A ground atom A is false in @ (1), (A € ®p(I)7)
iff for all clauses ¢ : B — L in P for which there exists 0 = mgu(A, B) we have that
AW L0 is falses in I
where W is the set of local variables of ¢, W = Var(z)\Var(B) . O

Note that ®p depends on the language £. It would actually be more appropriate to write ®% instead
of ®p, but then the notation would become more cumbersome.
We adopt the standard notation:

o O%(I) = I,
o OEFH(I) = @p(D3(1));
o O%(I) = U5<Q<I>f3(f), when « is a limit ordinal.

When the argument is omitted, we assume it to be the empty interpretation (,0): ®% = ®%(0,0).

@, is a monotonic operator, that is I C J implies ®L C ®%; it follows that the Kleene’s sequence ®%,
®L ... ®% ... ®%, ...is monotonically increasing and it converges to the least fixpoint of ®,. Hence
there always exists an ordinal o such that Ifp(®,) = ®%. Since $p is monotone but not continuous, «
could be greater than w.

The ®p operator characterizes the three valued semantics of C'omp, as stated in the following theorem.
Theorem 2.9 Let P be a normal program, £ a finite language, ¢ any allowed first order formula. Then
(a) TE(P) | & iff Up(®p) Fe 6
(b) T£(P) k= ¢ iff for some integer n, ®% =, 6.

Proof. The first statement follows from theorem 5b in [16]. The second from theorem 6.6 in [11]. O

Note that statement (a) could be restated as follows: 7;*(P) k= ¢ iff for some ordinal 3, <I>?D Ec o

Example 2.10 Let us refer to the program in example 2.6. If £ = L(P), we have that

Y, = (0,0).

= ({n(0)},0).

8% = ({n(0), n(s(0)},0).

By = ({n(0),. .., n(*(0)), ..}, 0).
@p) = B = ({n(0), . n(s*(0)),. } {a}).

Hence ¢ is false in Ifp(®p) but not in any ®%; this coincides with the fact that 7,°(P) = —¢ while
T£(P) ¥ . O

2.4 The Simultaneous Replacement Operation

The replacement operation has been introduced by Tamaki and Sato in [17] for deﬁmte programs. Syn-

tactically it consists in substituting a conjunction, C’ of literals with another one, D, in the body of
a clause. Similarly, simultaneous replacement consists in substituting a set of conjunctions of literals
{C1,...,Cy}, occurring in the bodies of clauses {cli,...,¢el,}, with another corresponding set of con-
junctions {Dy,..., D,}. Note that the order of literals is irrelevant for the semantics we are interested
in.

Definition 2.11 (simultaneous replacement) Let P be a normal program and {cl1, ..., ¢l } a set of
clauses of P such that for each i, ¢l; = A; —Cy, ..., Cir(,)aEi' where Cy,, ..., Cir(,) are conjunctions
of literals we want to replace with ﬁil, cey 52}(;)' Now let {6’1, .. ,én} be the set of conjunctions to be
replaced in all the clauses, and {51, ce En} be the corresponding set of replacing conjunctions.

e The simultaneous replacement of {6’1, .. ,én} with {51, .. ,En} in {elh, ..., cl,} produces the
program P’ = P\{cly,... el,} U{cl},... cl}, where for each 7,

Cl; = Az — 52'1, ceey Dir(,)aEi'
replace (P, {ely, ... ely}, {C1, ..., Co} A D1, Da}) E P\ely, ... ely} U{ely, ... ell}. 0
Note that each C; may occur in only one of the clauses {cli, ..., el,}, this is not restrictive since even

if i £ j, 6’2 and C; may actually represent identical literals.

Some applicability conditions are necessary in order to ensure the preservation of the semantics through
the transformation. Such conditions depend on the semantics we associate to the program. In the
literature some applicability conditions for ordinary replacement are given. In [17] definite programs
are considered; the applicability condition requires the replaced atom C' and the replacing atom D to
be logically equivalent in P and that the size of the smallest proof tree for (' is greater or equal to
the size of the smallest proof tree for D. Gardner and Shepherdson, in [9], give different conditions for
preserving procedural (SLDNF) semantics and the declarative one. Such conditions are based on Clark’s
(two valued) completion of the program. Also Maher, in [13, 14], studies replacement wrt Success set,
Finite Failure Set, Ground Finite Failure Set and Perfect Model semantics. Sato, in [15], considers also
replacement of tautologically equivalent formulas in first order programs. Bossi et al. have studied the
correctness of this operation wrt the S-semantics for definite programs [4], Fitting’s semantics [5] and the
Well-Founded semantics for normal programs [7]. In this paper we consider the replacement operation for
normal programs and state some applicability conditions for both the three valued semantics mentioned
in theorem 2.9. Later on we also consider the case in which the language £ is infinite.

2.5 Equivalences

We give the definition of equivalence of formulas wrt an arbitrary theory 7. With F'V(x) we denote the
free variables in a formula y. We say that a substitution § = (tN/i‘) is ground if all the terms in the tuple
{ are ground. Given the formulas ¢, y and ¢, we denote by ([¢/x] is the formula obtained from ¢ by
substituting all occurrences of y as a subformula with ¢.

Definition 2.12 (equivalence of formulas) Let vy, ¢ be first order formulas and 7 be a theory. We
say that

o v 1s less defined or equal to ¢ wrtT, x <7 ¢, iff

for each closed allowed formula ¢ and for each ground substitution o,
7 E (=) implies 7T = (=)([¢o/x0);

o x is equivalent to ¢ wriT, x =7 ¢, il x <7 ¢ and ¢ <7 x; a

Note that, in the above definition, since the domain of ¢ could be smaller than FV(x), xo is not
necessarily a closed formula.

As far as we are concerned in this paper, a semantics is a theory 7 (P) that we associate to the normal
program P. Hence two programs P and P’ are considered semantically equivalent iff the set of logical
consequences of 7(P) and 7 (P’) coincide.

Definition 2.13 Let 7(P) and 7 (P’), be the semantic theories associated with the normal programs P
and P’. We say that P and P’ are equivalent wrt T iff for each allowed formula ¢

e T(P) G T T(P)E. 0

In the case that P’ was obtained by transforming P, the above definition is used to define the
correctness of a transformation operation.

Definition 2.14 Let P, P’ be normal programs and 7(P), 7(P’) the associated semantic theories.
Suppose that P’ is obtained by applying a transformation operation to P. We say that the transformation
is

e T -Partially Correct if for each allowed formula ¢,
when 7 (P’) |= ¢ then also T(P) = ¢.

o T-Complete if for each allowed formula ¢,
when 7 (P) [¢ then also 7(P') E ¢.

o T-Totally Correct or Safe if 1t is both partially correct and complete. This is the case in which P
and P’ are equivalent wrt 7. a

Here and in the sequel we assume that the language £ of the theories 7(P)and 7 (P’) contains
both £(P) and L£(P’). This is obviously a necessary condition for the correctness of the transformation
operation. Note that the transformation is partially correct if all the information contained in (the
semantics of) P’ was already present in (the semantics of) P, that is if no new knowledge was added
to the program during the transformation. On the other hand the transformation is complete if no
information is lost during the transformation.

3 Correctness Results wrt Comp(P) UDCA (L finite)

In this Section we refer to the semantics given by Comp(P)z UDCA, where we assume £ to be finite.
Adopting DCA is equivalent to restricting our attention to Herbrand models (on the language £) and
in this particular case we have that:

a) there always exists a minimal Herbrand model (wrt C);

b) an allowed formula is true in all Herbrand models iff it is ¢rue in the minimal one.
Moreover the minimal model coincides with the interpretation given by Ifp(®p). So to check if an allowed
formula is a logical consequence of 7/< it is sufficient to check if it is true in Ifp(®). These properties are
proved in [8], and [11] and are summarized in statement (a) of theorem 2.9. In the case that £ = L(P),
this semantics is called Fitting’s model semantics [8].

By Theorem 2.9 and Definition 2.14, we can easily characterize the correctness of the transformation
by referring to the least fixed point of the ®p, operator.

Lemma 3.1 Let P, P’ be normal programs and £ be a finite language. Suppose that P’ is obtained by
applying a transformation operation to P. Then the operation is

o T/ -Partially Correct iff ifp(®p) D Ifp(®p));
o T/ -Complete iff Ifp(®p) C Ufp(®p);
o T/ -Totally Correct iff Ifp(®p) = Ifp(®p). O

3.1 Partial Correctness

When we replace the conjunction C' with 5, the “first requirement” we ask for is the equivalence of C
and D wrt 7{5(P). After all it would make no sense to replace C with something which has a different
meaning.

By Theorem 2.9 and Definition 2.12 we can characterize the equivalence of formulas in 7*(P) by
referring to the least fixed point of the operator ®p. First we introduce the three valued operator =,
which is “one side” of < and is defined as follows: ¢ = x is true iff x is more defined than ¢, that is if
¢ and y are both {rue (or both false) or if ¢ is undefined. In any other case ¢ = y is false.

Proposition 3.2 Let y, ¢ be first order allowed formulas and P be a normal program. The following
statements are equivalent:

(a) X Z7epy
(b) ifp(®p) Er x = ¢

Proof.
(a) implies (b).
By the definition of the operator =, (b) is equivalent to

for each tuple of L-terms ¢, Ifp(®p) [z (—)x(1/F) implies Ifp(Pp:) =g (m)(T/ 7).
By Theorem 2.9 this is equivalent to

for each tuple of L-terms #, 7;5(P) |= (—=)x(#/%) implies 75 (P) = (=)6(t/%).
This is immediate by Definition 2.12.

(b) implies (a).

Let ¢ be any allowed formula such that 7° |= ¢, ¢ be any ground substitution; we have to prove that
TE E Cloo/xol.

If { does not contain yo as a subformula then the result holds trivially, so let us suppose that { contains
yo as a subformula. The proof proceeds by induction on the structure of (.

Base step: ¢ = yo. By Theorem 2.9, 7* = xo implies that Ifp(®p) =, yo.

By (b) this implies that Ifp(®p) =¢ ¢, and, by Theorem 2.9, that 7;* = ¢o.
Since ¢o = ([¢o/x 0], this implies the thesis.

Induction step: we have to consider four cases:

1) ¢ = A (4, where A is any allowed unary connective. The result holds trivially, since by the
inductive hypothesis, 7/* = ()¢ implies T/° = (=)(1[¢o/xo].

2) (= (1 © (2, where < is any allowed binary connective. For i € {1,2}, either {; does not contain an
instance of y as a subformula, in which case the result holds trivially, or the inductive hypothesis applies
to Cz

3) ¢ =Vuw (G (w).

Suppose that 7 = Vuw (i (w).
This is equivalent to: for any L-term ¢, 77 | (1(2).
For each L-term ¢, let 7; be the substitution (¢/w), by the inductive hypothesis, we have that for any
L-term t, TF E G()[poy/xov].
Since DCA forces the quantification to be over £-terms, and DCA is included in 7/, this implies that
¢ =Y G (w)éo/xal.
On the other hand, for the case when 7;* | =Vw (;(w), a similar reasoning applies.
4) ¢ = 3w G (w)

This falls into the previous case, since Jw (1 (w) = Vw =1 (w). a

Example 3.3 Let us consider the following program:

ml(El [El] Tail], s(0)).
m1(EL[X | Tail], s(N)) — ml(El Tail, N).
m2(El [El| Tail]).
m2(EL [X | Tail]) —m2(El, Tail).
d: mtersect(Ll, L2) —ml(El, L1, N1),ml(El, L2, N2).

Predicates ml and m2 behave like “member” predicates. The only difference between the two is that
ml ”reports”, as third argument, the location where element El has been found. As far as the definition of
intersect goes, this is totally unnecessary, and we can replace the conjunction m1(El, L1, N1), m1(El, L2, N2)
with the new conjunction m2(E!l, L1), m2(El, L2) in the body of d, without affecting the semantics of
the program. In practice we want to replace clause d with

d' :intersect(L1, L2) — m2(El, L1),m2(El, L2).
Now observe that the completed definition of intersect before the transformation is

intersect(L1,L2) <IN, M. m1(El, L1, N),m1(El, L2, M), (1)
while after the transformation it 1is
intersect(L1, L2) < m2(El, L1), m2(El, L2). (2)

When applying a replacement we want the replacing conjunction to be semantically equivalent to the
replaced one. In this particular case, by Proposition 3.2 we can formalize this statement by requiring the
equivalence of the two “bodies”, (1) and (2), of the completed definition of intersect, that is, we require
that

AN, M. m1(ElL, L1, N),ml(El, L2, M) Zre(p) m2(El, L1), m2(El, L2).

In this example we have specified two existentially quantified variables: N and M. In the sequel,
when replacing, say, C with D, we will always specify a set X of “local” variables, namely variables
which can appear in either CorD (or both) but cannot occur in the rest of the clause where C is found.

Consequently, our first requirement will be the equivalence of 3XC and 3XD. Such an equivalence is
weaker than the equivalence between C and D while being still sufficient for our purposes. a

We now formalize this concept of local variables for simultaneous replacement.

Definition 3.4 (Locality Property) Refer to the notation of Definition 2.11: {6’1, .., Ch } is the set
of conjunctions to be replaced with {D1,..., Dy} in the clauses {ch,...,cl,}. Let i € [1,n], and let ¢l;

be the clause in which C’ occurs. A set of Varlables X; satisfies the Localzty Property with respect to C’
and D; if the following holds:

o X; C Var(éi) U Var(ﬁi) and the variables in X; do not occur anywhere else neither in the clause
cl;, where C; is found, nor, after replacement, in cl’, where D; is found. a

Note that the locality property is trivially satisfied when X; is empty. Note also that the locality
property implies, that if C and C; occur in the same clause then the corresponding X and Xj are
disjoint.

Next we give the theorem on partial correctness of the replacement operation we were aiming at.

It shows that the equivalence between the replacing and the replaced literals is sufficient to ensure the
partial correctness of the replacement operation.

Theorem 3.5 (partial correctness) Let £ be a finite language. In the hypothesis of Definition 2.11,
if for each C; € {C,...,C,}, there exists a (possibly empty) set of variables X; satisfying the locality

property wrt C; and D; such that _ _
E|XZ'DZ' jTIL(P) HXZCZ,

then Ifp(®p) D Ufp(Pp1).

Proof. Let us first recall the notation adopted.
P is the original program,

{cli, ... el } is the set of clauses of P which will be affected by the simultaneous replacement operation,
each ¢l; has the form B B
CIi e AZ'<—CZ'1,...,C' EZ

INOY _ _
P'is the transformed program, obtained by replacing each C'; by D;. P’ = P\{cly, ... cl,} U{cly, ... cl}}
where each ¢l/ has the form

10

Cl; IAZ<—13 .,D Ei~

Ty Lr(i)s

The proof is by contradiction. Let us suppose Ifp(®p) 2 Ifp(®p:). Since the sequence ®%,, ®L, ... is
monotonically increasing and ®%, = (0,0) C Ifp(®p), there has to be an ordinal « such that

Ifp(®p) D ®%, and Ufp(Pp) D DL = @pi (D).
Hence lfp(®p) 2 @5/ (Ifp(Pp)), and since ¥ is monotone, from the first inclusion it follows that
Ppi(Ifp(Pp)) 2 ®p(Pp).
Since ®p({fp(Pp)) = lfp(Pp) we have that

Qp(Ufp(®p)) 2 @p (Ufp(Pp)). (3)

Let X; be any set of variables which satisfies the locality property. Note that with the exception of
clauses {cl1,...,clp}, P is just like P’/. Hence if for each 7, 3X;C; and 3X; D; have the same meaning in
a given interpretation I, that is if I =, 3X,C; < 3X; ﬁi, then ®,(I) = &5, (I). It follows that whenever
®p(I) # @p,(I), then there exists an integer j such that 3X; éj and 3.X; Ej have different meanings in
1.

This idea is formalized and extended in the following Claim, whose proof is given in the Appendix A.

Claim 1 Let I, I’ be two partial interpretations. If I’ C I but ®p:(I') € ®p(I), then there exist a
conjunction C; € {C1,...,C,} and a ground substitution § such that:

e cither I’ =¢ 3X;D;6 while I}, 3X;C;6;
e or I' =; —3X;D;0 while I = ~3X;C;0.

From this Claim and (3) it follows that there exists an integer j and a ground substitution € such that
3AX; D;6 is trues (or falses) in Ifp(®p), while 3X;C;0 is not. This, by Proposition 3.2 (¢), contradicts
hypothesis (ii). a

3.2 Semantic Delay and Dependency Degree

As we proved in the previous Section, if X is a set which satisfies the locality property, the equivalence
of 3XC and 3IXD is sufficient to guarantee the partial correctness of the replacement of C' with D.
Unfortunately this may not be enough to obtain total correctness. For that we need the equivalence to
hold also after the transformation and the equivalence can be destroyed when D depends on the modified
clause. This is shown by the next example.

Example 3.6 Let P be the following definite program:

P=A p—q
cel: q—r.

r. }

Let also £ = £(P). In this case Ifp(®p) = ({p,q,7},0). p, ¢ and r are all equivalent wrt T~ (P), but if
we replace r with p in the body of ¢/ we obtain

Pr=A p—q.
c . q+—p.

r. }

which is by no means equivalent to the previous program. In fact {fp(®p:) = ({r},). We have introduced
a loop and p and ¢ are no more true. a

11

In order to obtain the desired completeness results we introduce two more concepts: the semantic
delay and the dependency degree. They are meant to express relations between first order formulas, such
as conjunctions of literals, in terms of their semantic properties.

Consider the following definite program:

P={ m(X) — n(s(X)).

n(0).
n(s(X)) <= n(X). }

The predicates m and n have exactly the same meaning, but in order to refute the goal — m(s(0)). we
need four resolution steps, while for refuting — n(s(0)). two steps are sufficient. Each time «— n(#). has
a refutation (or finitely fails) with j resolution steps, — m(?). has a refutation (or fails) with & resolution
steps, where k < j + 2. By transposing this idea into the three valued semantics we are adopting, we
have that each time n(t) is true (or false) in ®,, m(t) is true (vesp. false) in <I>§D+2. We can formalize this
intuitive idea by saying that the semantic delay of m wrt n is 2.

Definition 3.7 (semantic delay in I[fp(®p)) Let P be a normal program, x and ¢ be first order
formulas, and & = {zy,...,2x} = FV(x) U FV(¢). Suppose that ¢ =rep) X

o The semantic delay of x wrt ¢ in lfp(Pp) is the least integer k such that, for each ordinal o and
each k-uple of L-terms #: if ®% =, (—)¢(f/&), then @ =, (m)x (/7). O

Since we are assuming that ¢ 272P) X if (/)(tN/i‘) is true in some ®%, then there exists an ordinal § such
that y(f/%) is true in <I>?3.

Intuitively, ¢(¢/%) is trueg in ®% iff its truth has been proved from scratch in at most « steps. The
semantic delay of x wrt ¢ shows how many steps later than ¢(¢/#), we determine the truth value of
x(t/&) (at worse).

Example 3.8 Let P be the following program:

P={ p0). q(0).
p(s(0)). q(s(X)) —q(X).
p(s(s(X))) = p(X). }

Let £ = L(P). p and ¢ both compute natural numbers, p(X)) q(X). but while ¢(s*(0)) is true

starting from <I>l;3+1, p(s*(0)) is true starting from <I>§Dk/2)+1. The delay of p(X) wrt ¢(X) in Ufp(Pp) is
zero, in fact if for some ground term ¢ and ordinal «, ¢(¢) is true (resp. false) in ®%, then p(t) is also
true (resp. false) in ®%. Vice versa, the delay of ¢(X) wrt p(X) is not definable in fact there exists no
integer m < w such that if, for some ground term ¢ and ordinal «, p(t) is true (resp. false) in ®%, then
q(t) is true (vesp. false) in @™, a

A simple property of semantic delay which will be used in the sequel is the following.

Lemma 3.9 Ifd: A — L. is the only clause in a program P whose head unifies with an atom A, and

W is the set of variables local to the body of d, W = Var(f)\Var(A), then
o Ufp(®p) Ec (A IWL), that is, A =rcp) IWL;
e the delay of A wrt IWL in Ifp(®p) is one.

Proof. It is a straightforward application of the definition of Fitting’s operator, since, by Definition 2.8,
for all integers » and substitution @, (3WL)6 is trues (falses) in @ iff A is true (false) in <I>TP+1. |

Now we want to introduce one further concept: the dependency degree. Let us consider the following
normal program:

12

P={ ¢cl: p «— —q5s.
c2: q — r
cd: T
ed: s — q. }

The definitions of the atoms p, ¢, s and r, all depend from clause ¢3. Informally we could say that the
dependency degree of the predicate p over clause ¢3 is two, as the shortest derivation path from a clause
having head p to ¢3 contains two arcs: the first from ¢l to ¢2, through the negative literal —¢; the second
from ¢2, to ¢3, through the atom r. Similarly, the dependency degree of ¢ and s on ¢3 are respectively
one and two and the dependency degree of » on ¢3 is zero. The next definition formalizes this intuitive
notion. The atom A and the clause ¢/ are assumed to be standardized apart.

Definition 3.10 (dependency degree) Let P be a program, ¢l a clause of P and A an atom. The
dependency degree of A (and =A) on el, depenp(A,cl), is

0 if A unifies with the head of ¢l;

n+1 if A does not unify with the head of ¢/ and n is the least integer such that there exists a clause
C —C(Cy,...,Cp. in P, whose head unifies with 4 via mgu, say, #, and, for some i, depenp(C;0,cl) =

n;

w when there exists no such n. In this case we say that A is independent from cl.

Now let I, = Ly,..., Ly be a conjunction of literals. The dependency degree ofz on clis equal to the least
dependency degree of one of its elements on ¢l, depenp(L,cl) = inf{depenp(L;,cl), where 1 < i < n}.
Similarly, L s independent from cl iff all its components are independent from el. a

Example 3.11 Consider the following normal program:

P={ d: pX)
el: r ()

where d is the only clause defining the predicate symbol p. Let also £ = L£(P). By Lemma 3.9
p(X)) —¢(X). Now, if we replace —¢(t) with p(t) in ¢l, we obtain the following program:

Pr={ d: p(X) < =qX)
el: r — . p),...

1

which has the same semantics of the previous one, that is Ifp(®p) = Ifp(Pps). This holds even if the
definition of p is not independent from c¢l; that is, even if we are exposed to the risk of introducing a
loop, losing completeness. But in this case we can show that ”there is no room for introducing a loop”.
in fact replacing —¢(t) by p(t) in ¢l preserves the semantics of the initial program if

e cither p does not depend on ¢l (in this case no loop can be introduced) or

o the dependency level of p on ¢l (this is how big the loop would be) is greater or equal to the semantic
delay of p(X) wrt —¢(X) (this is the space where the loop would be introduced).

By lemma 3.9 the delay of p(X) wrt =¢(X) in Ifp(®p) is one; moreover, since d is the only clause defining
predicate p and d # ¢l, depenp(p(X), cl) > 0, thus satisfying the above conditions. a

3.3 Completeness

We want a completeness result which formalizes the idea outlined in the previous example and that
matches with Theorem 3.5.
Let us first establish the notation and state a few simple remarks:

13

Notation.
P is the original program,
{cli, ... el } is the set of clauses of P which will be affected by the simultaneous replacement operation,
each ¢l; has the form B B

Cli = Az — Cil, ey CiT(,)aEi;
P’ is the transformed program, obtained by replacing each C; by D;: P/ = P\{cly, ... el,} U{cly, ... cly}
where each ¢l/ has the form

Cl; = AZ'<—DZ'1,...,DZ'T(1),EZ'. (]
The first remark states that when a conjunction of literals L is independent from clauses {cly,...,elp}
then its meaning does not change when replacing {cly, ..., clp} with {clj,...,cl }.

Remark 3.12 Let L be a conjunction of literals independent from the clauses {c/,...,el,} in P. Let
W = Var(L), Then, for each ordinal «,

o ®% f=p (m)AWL iff @9, =, (-)IWL.
Consequently
o n(®p) e (R)3WL iff Ufp(®pr) e (<)IWL. D

The following lemma represents an important step in the proof of the completeness result.

Let I be an L-interpretation and B a ground atom that can be proved true (or false), starting from
I, in m steps, that is, B is true in ®F(I). The lemma states that if the dependency level of B on
{cli, ..., el } is greater or equal to m, then the clauses {ely, ..., cl,} cannot have been used in the proof
of B, hence B is true in ®,(I) too.

Lemma 3.13 Let B be a ground atom, m a natural number such that depenp(B,{cli,...,clp}) > m;
then

o B is true (resp. false) in ®P(I) iff B is true (resp. false) in OB, ().

Proof. The proof is by induction on m.

The base of the induction (m = 0) is trivial, since ®%,(I) = ®%(I) = I.

Induction step: m > 0. We will now proceed as follows: in a) we show that if B is true (resp. not
false) in ®P(I), then it is also true (resp. not false) in ®F.(I). That is, we show that if B is true in
Q'L (1), then it is also true in ®F,(I); and, by contradiction, that if B is false in &, (I), then it is also
false in ®B(I). In b) we consider the converse implications. This will be sufficient to prove the thesis.

a) Let us assume B true (resp. not false) in ®'B(I). There has to be a clause ¢ € P and a ground
substitution y such that head(c)y = B and body(c)y is true (resp. not false) in @”Pl_l(f). It follows that,
for each literal L belonging to body(c)7y:

- L is true (resp. not false) in @”Pl_l(f);

- depenp(L {cli,... cl,}) >m—1.

Then, from the inductive hypothesis each L is true (resp. not false) in @”Pl,_l(f).
Since depenp(B,{ecli, ... cl,}) > m > 0, B does not unify with the head of any clause in {cl1, ..., ¢l },
that is ¢ & {cly,...,clp}. Hence ¢ € P! and B is true (not false) in 7, (I).

b) Now we have to prove that if B is true (not false) in ®% (1), then it is also true (not false) in

@2 (I). This part is omitted as it is perfectly symmetrical to the previous one. a

The previous lemma leads to the following generalization.

Lemma 3.14 Let L be a conjunction of literals, W = Var(z) and I be an L-interpretation. Suppose
that, for some integer m, depenp(L,{cl, ..., clp}) > m, then,

o 2(I) e (7)IWL it OR(I) = (-)IWL.

14

Proof. Let I = Li,...,L;. Observe that depenp(z,{cll,...,clp}) > m implies that for i € [1,7],
depenp(Li,{ch,... clp}) > m.

Suppose first that IWL is trues in ®'2(I). Then for some ground substitution §, Dom(f) = W, Lo
is true in ®'B(I). Then for ¢ € [1,], L;0 is true in ®'E(I), and by Lemma 3.13, it is true also in ®F,(I).
Hence the conjunction L0 is true in ®2,(I). Tt follows that WL is trues in S, ().

Now suppose that IWL is falses in @7 (). Then for each ground substitution 6, Dom(0) = W, L0 is
false in @ (I). That is, for each of the above 8, there exists an ¢ € [1, 5] such that L;0 is false in ®E (7).

By Lemma 3.13 L;0 is also false in ®'%,(I). Hence Lo is false in ®F.(I). Tt follows that IWL is falseg in
5 (I). o

Now we can prove the result we were looking for.

Theorem 3.15 (completeness) In the hypothesis of Definition 2.11 for simultaneous replacement, if
for each C; € {61, .. .,én}, there exists a (possibly empty) set of variables X; satisfying the locality
property wrt C; and D; such that _ _

HXZCZ jTIL(P) HX]'D]',

and if one of the following two conditions holds:

(a) {51, .. ,ﬁn} are all independent from the clauses {cl,..., el }; or

(b) there exists an integer m such that, for each C; € {6’1, Cel én}, and each cl; € {cly,... e, }:
- the delay of 3X;D; wrt 3X;C; in lfp(®p) is less or equal to m, and
- depenp(D;, cly) > m;

then fp(®p) C fp(Ppr).
Proof. First we need to establish a Claim similar to the one in the proof of Theorem 3.5.

Claim 2 Let I, I’ be two partial interpretations. If 7 C I’ but ®p(I) € ®p:(I’), then there exist a
conjunction C; € {C1,...,C,} and a ground substitution § such that:

o cither I = 3X;C;0 while I' [3X; D; 6;
o or I = ~3X;C560 while I' e =3X, D;6;

Proof. The proof is identical to the one given in the Appendix A for Claim 1 in Theorem 3.5, and it is
omitted here. ad

The proof of the Theorem, is by contradiction.
Let us suppose lfp(®p) € Ufp(®ps). By the same argument used in the proof of 3.5, it follows that there
exists an ordinal « such that:

Up(®p)) D ®% and Ifp(®pr) D BT

Since ®p:(Ifp(Pp:)) = Ifp(Pp), it follows that ®p: ({fp(Pp)) O Pp(D%).
From Claim 2 there exists an integer j and a ground substitution # such that:

EIXjé]ﬂ is trueg (or falseg) in &%, while EIXjEjH is not trueg (resp. not falsez) in lfp(®pr). (4)

Let us distinguish two cases.

1) Condition (a) of the hypothesis applies, and Ej is independent from {cli, ..., cl,}.
Since ®% C Ifp(®p), from the left hand side of (4) it follows that 3X; éjﬁ is also trues (resp. falses) in
lfp(®p). N
Hence, by the hypothesis and Proposition 3.2, also 3X; D;8 is trues (resp. falses) in Ifp(®p). Because of

15

condition (a) and Remark 3.12 it follows that 3X; ﬁjﬁ is trues (vesp. falseg) in lfp(®pr). This contradicts
the left hand side of (4).

2) Condition (b) of the hypothesis applies. The delay of 3X; ﬁj wrt 3X; éj is not greater that m,
hence from the left hand side of (4) it follows that 3X; D;8 is trueg (or false,) in @4,
that is, 3X; D;0 is trues (resp. falser) in @5 (D%).
Since by (b), depenp(D;6,{cli, ... el,}) > m, from lemma 3.14 it follows that

EIXjﬁ]ﬂ is trueg (resp. falseg) in OF, (P3).
Now &% C Ifp(®p/) and $ps is monotone, then
EIXjﬁjH is trueg (resp. falses) in ®F, (Ifp(Pp))

But since ®, (Ifp(®p/)) = lfp(®p:), this contradicts the right hand side of (4) . a

From Theorems 3.5 and 3.15 we obtain the following.

Corollary 3.16 (applicability conditions wrt Comp; UDCA, with £ finite) Let £ be a finite
language. In the hypothesis of Definition 2.11 for simultaneous replacement, if for each C; € {6’1, cey én},
there exists a (possibly empty) set of variables X; satisfying the locality property wrt C; and D; such
that

E|Xil~)i ETIL(P) HXiéi,

and one of the following two conditions holds:

1. {51, .. ,ﬁn} are all independent from the clauses in {ely,... ¢l }; or

2. there exists an integer m such that, for each C; € {6’1, Cel én}, and each cl; € {cly,... e, }:
- the delay of 3X;D; wrt 3X;C; in Ifp(®p) is less or equal to m, and
- depenp(D;, elj) > m;

then P is equivalent to P’ wrt 7. i

4 Correctness Results wrt Comp,(P) U WDCA, (L finite)

The aim of this Section 1s to reformulate the results on the correctness of the replacement operation given
for 7, (P) in order to adapt them to 75 (P). We always assume £ to be a finite language.

We are just replacing the DCA . closure axioms with WDCA ;. The next example shows how pro-
gram’s equivalence may be affected from such a change.

Example 4.1 Consider the three programs:

Pi={ n0).
n(s(X)) —=n(X). }
Pr={ n(0).

Ps={ n(X). }
Letﬁ:E(Pl)

If we assume DCA | for all three the programs
T(P) EVz n(x), P€{P, P, Ps}.

Then, all the programs are pairwise equivalent wrt this semantics.

16

If we assume WDCA ., for Py
T, (P1) = Va n(z),
while for P € {P,, P3}
TS (P) [Va n(z), (5)

and P, and Ps are equivalent wrt this semantics.

Finally if we assume that £ strictly contains £(P;), then Ps is the only program for which (5) holds. In
this case no program is equivalent to any of the other ones. a

This example shows that two programs may be equivalent wrt 7/ and not equivalent wrt 7,°. But
there are also cases in which the converse of this statement is true. So even though the semantics obtained
by assuming WDCA is stronger than the one obtained by assuming DCA ., no program’s equivalence
is stronger than the other one.

As before, we characterize equivalence of programs by the ®, operator. But in the previous Section
this task was quite straightforward through Lemma 3.1. Here, since we are assuming WDCA £, things
are slightly more complicated. We need a lemma first.

Lemma 4.2 Let P be a normal program, £ an arbitrary language, and y an allowed formula with free

variables z. For each integer n, there exists two formulas in the language of equality 77 and FY, with

free variables Z such that, for any tuple of ground terms,
. Tg(f/i‘) is trueg in <I>§ED iff x(1/%) is;
in any other case 7} (/%) is false in .
. Fg(f/i‘) is trueg in <I>§ED iff Y(t/%) is false, in O%.
in any other case F}}(t/Z) is false, in ®%.
Proof. From lemma 4.1 in [16] it follows that Tg(f/i‘) is trues in ®% iff y(t/%) is, and that Fg(f/i‘) is
trues in @' iff x(t/%) is false in ®%. From the completeness of CET, in the case that the underlying

universe is the Herbrand Universe, we have that when 77 (/%) (resp. Py ({/%)) is not true, in ®%, it has
to be falses in ®%. a

To give the intuitive idea of how such formulas are built, let us consider the simple case in which
x = n(x), and P is the program
{

P =

We have that
THz)==2=0,
T} z)=2z=0Vae=1,

On .t.h.e other hand,
Flz)=2z# 0A -3y z = s(y),
Fie)=(x#£0A-Fyz=s(y)V@ye=s(y) V(y#0A-3z y=s(2))),

Theorem 4.3 Let £ be a finite language, P, and Py be two normal programs. The following statements
are equivalent:

(a) for all ¢, T (P1) | ¢ implies 7.5 (P2) | ¢;
(b) Vn Im @} C @7 .

17

where ¢ ranges over the set of allowed formulas and n and m are quantified over natural numbers.

Proof.
(a) implies (b)
This part is proved by contradiction.
Assume (a) holds and that there exists a fixed n such that

for all m, @3 & &3 (6)

For each predicate symbol p let T;(i) and F;(i) be the equality formulas described in Lemma 4.2. Hence
7%”(5)(1?/1‘) is trues in @7 iff p(£/7) is, and that F;@)(f/i‘) is trues in @7 iff p(f/7) is false, in ®7%. Let
also
X = /\ V& (T;@) —p(&) A F;@) — —p(&))
pEpred(Py)
where p ranges over the finite set of predicate symbols occurring in P;. From lemma 4.2 it follows that
@3 ¢ x, and, by theorem 2.9
T(P1) E x.

By (a) we have that 755(P;) = x, and, by theorem 2.9 there exists an integer r such that

dp o ox

By (6) ®3 ¢ ®%,, hence there exists a ground atom ¢(t) such that

either &% E.c q(t) and D, e q(t) or Uy E. —q(t) and D, e —q(t)

We consider only the first possibility, the other case is perfectly symmetrical. So we assume that

O}, o oqf) and @ e q(f) (7)

By the left hand side of this and the definition of an(i) in Lemma 4.2,

O}, o Ty (l/7)

“__»

Tq”(i)(f/i‘) is a formula of the equality language and contains no predicate symbols other than , so 1f
it is trues in ®% it must be trues also in <I>931, le. <I>931 Ec Tq"@)(f/i‘). But <I>931 =(0,0) C @, hence

@, o T (0/5).
Since, ®p, =, x, from the definition of x, follows that also % =, V& (Tq”@)(i‘) — q(Z)), hence that

Oy e T

q(f)(f/i‘) — q(t); and, from the above statement,

@, Fe q(t)
which contradicts the right hand side of (7).

(b) implies (a)
Let us assume (b), and let ¢ be any allowed formula such that 7.,5(P;) k= ¢. By theorem 2.9, there
exists an integer n such that ®%, Ec ¢; by the hypothesis there exists an m such that ¢ C ®p , hence

PP, Fr o
Again, by theorem 2.9, this implies that 755 () = ¢. O

18

4.1 Partial Correctness

As in Proposition 3.2, we can characterize the equivalence of formulas wrt 7,5 (P) by referring to the
Kleene sequence of the operator ®p.

Proposition 4.4 Let £ be a finite language, P be a normal program and y, ¢ be first order allowed
formulas. The following statements are equivalent

(a) X Zrep) ¢

(b) Yn I3mVt OB =g (0)x(t/F) implies OB =g (7)o(t/7);

where n, m are quantified over natural numbers, & = {zy,..., 21} = FV(x) U FV(¢), and { is quantified
over k-tuples of L-terms.

Proof.

(a) implies (b)
This part is by contradiction. Let us assume there exists a fized n, such that for each integer m there
exists a k-uple of L-terms #,, for which the following hold

(i) @b Fc ()X /E);
(i) O Pe ()6(m/1).

By Lemma 4.2 there exist two formulas T and FY in the language of equality, such that FV(TQ) =
FV(FY) = FV(x) and
QL =, Vi (Tg —x A Fg—>—|x).

By Theorem 2.9
TE(P) EVE (T} —x A FY —=x).

By (a),
TS(P) EVE(T] — ¢ A I ——¢).

This is an allowed formula, then by Theorem 2.9 there exists an r such that
But by (i) x({,/%) is either {ruec or falses in ®%, let us now consider just the first possibility, that is

O} o x(/E).

The other case is perfectly symmetrical and omitted here.

From this and the definition of 7' in Lemma 4.2, we have that &% Ec Ty (f,/%), and since Ty (t,) is
a formula in the language of equality, if it is trues in ®% it must be trues already at stage 0, that is
% = T7(tr /&), but @) C @}, hence

p o TPt /7).
But then, by (8), ®% =, ¢(t, /&), contradicting (ii).
(b) implies (a)

We prove that for each n there exists an m such that for any closed allowed formula ¢, and for any ground
substitution o,

O% E. ¢ implies @ =, ([oo/x0]. (9)

By Theorem 2.9 this implies (a).
Let m be an integer that satisfies hypothesis (b) for some n. It is not restrictive to assume that
m > n. Let { be a closed allowed formula such that

DL = C.

19

If ¢ does not contain any instance of xo as a subformula then (9) follows immediately from the assumption
that m > n. In the case that { contains yo as a subformula we proceed by induction on the structure of
<.

Base step: ¢ = xo, then (9) follows immediately from (b).

Induction step: we consider three cases:

1) If (= A (1, where A is any allowed unary connective, or { = {3 O (3, where < is any allowed
binary connective, then we have that either {; does not contain yo as a subformula (and the result holds
trivially) or the inductive hypothesis applies.

2) If ¢ =V G (w).

Since ®% =, ¢, we have that
for each L-term ¢, ®% = (1(¢).

For each L-term ¢, let 4; be the substitution (#/w), by the inductive hypothesis there exists an m such
that

for each L-term t, ®F f=r (1 (t)[@ov:/x0ov4].

Since the underlying universe of ®'7 is the Herbrand universe on £, this implies that
Oy o Yw Gi(w)[po/xo].
3) Finally, the case ¢ = Jw (3 (w), is treated as =Vw =i (w). a

In the above Proposition, statement (b) differs from the corresponding one of Proposition 3.2. Let us
consider the two statements:

(a) X Z7epy ¢
(b) for each tuple of L-terms ¢, 7.5 (Py) | x(t/%) iff T, (Py) | ¢(1/%).

(a) implies (b), but not vice-versa. On the other hand, if we use 77 instead of 75, we have that the two
statements are equivalent, and this is just a reformulation of Proposition 3.2. When we are assuming
WDCA ¢, the universe of a model of 7. (P;) may contain non-standard elements, that is, elements which
are not L-terms. Hence the equivalence between all the closed instances of y and ¢ is no longer sufficient
to ensure the equivalence between y and ¢.

For example, if we consider the following program:

P=1{ n(0).
n(s(X)) —n(X).
m(X). }
and we fix £ = L(P), we have that for each £-term ¢, both n(t) and m(t) are true in all models of 7.5 (P),
but n(X) =7zpy m(X). In fact, let ¢ =V m(x), then T£(P) = ¢, while 7 (P) - ¢n(z)/m(z)] (see
Example 4.1).
The equivalence defined as follows: “y is equivalent to ¢ iff (b) holds” is too weak for our purposes. In
fact if we consider the following extension to program P:
P1:PU{ q1 — _|77,(X)
g2 — —m(X). }

and £ = L(P1), n(X) is equivalent to m(X) while ¢; is not equivalent to ¢2 and it would be impossible
to obtain an applicability condition similar to 3.16.

Now, given a characterization of equivalent formulas, we can state the result on partial correctness of
the replacement operation wrt the 7,¢(P) semantics.

20

Theorem 4.5 (partial correctness) Let £ be a ﬁnlte language. In the hypothesis of Definition 2.11 for
simultaneous replacement, if for each C € {C’l, ..., Cp}, there exists a (possibly empty) set of variables
X; satisfying the locality property wrt C’ and D such that

3X;Di <7ecpy NG,
then Vn I3m &7 D ¢,
Proof. The proof is by contradiction. Let us suppose there exist two integers ¢ and j such that:
L D <I>gD, and for all integers {, ®% 2 <I>§;I,'1.

Clearly 1t also follows that ' '
for all integers {, ®F1+ 2 4t

Since <I>§;|,'1:<I>P,(<I>§3,), oL, D <I>gD, and @, is monotone, we have that ®p,(®%) D <I>§;I,'1, hence

for all integers I, ® (@) 2 ®p/(h).

Since @ﬁj’i D &%, from Claim 1 in the proof of Theorem 3.5, it follows that for each integer [there exist
an integer j({) € {1,...,n} and a ground substitution §; such that:

EIXj(l)Dj(l)Hl is trueg (or falseg) in <I>jD, while EIXj(l)éj(l)Hl it is not trueg (resp. falses) in <I>i,;"i. (10)

By hypothesis 3X; D 21s(P) 3X; C’Z, then we can apply Proposition 4.4 to the left hand side of (10) to
obtain that for each [, there has to be an integer r such that

Xj(l)éj(l)ﬁl is trueg (resp falser) in ®'p;
but when [satisfies { + ¢ > r, we have that <I>§;"i D ®% and hence

for each [such that [+ ¢ > r, EIXj(l)éj(l)Hl is trueg (resp falseg) in <I>§5H.
This contradicts (10). a

4.2 Completeness

In order to state the completeness result, we can use a definition of semantic delay slightly weaker than
the one given for 7T/5(P).

Definition 4.6 (semantic delay in &%) Let P be a normal program, x and ¢ be first order formulas,
and & = {x1,..., 25} = FV(x) U FV(¢). Suppose that ¢ =<r2p) X

o The semantic delay of x wrt ¢ in ®% is the least integer k such that, for each integer n and each
k-uple of L-terms £: if ®% = (=)p(t/%), then 5T =, (=)x(1/F). O

Theorem 4.7 (completeness) In the hypothesis of Definition 2.11 for simultaneous replacement, if
for each C; € {C’l, ..., C Cp}, there exists a (possibly empty) set of variables X; satisfying the locality
property wrt C; and D such that _ _

HXZCZ jT2L(P) HX]'D]',

and if one of the following two conditions holds:

(a) {Dl, .. ,Dn} are all independent from the clauses {cl,..., el }; or

(b) there exists an integer m such that, for each C; € {6’1, Cel én}, and each cl; € {cly,... e, }:
- the delay of 3X;D; wrt 3X;C; in ®% is less or equal to m, and
- depenp(D;, cly) > m;

21

then Yn 3 m &% C OF,.

Proof. Again the proof is by contradiction. Let us suppose that there exist two integers ¢ and j such
that: ' ' '
®%, O @) and for all integers [, <I>§D‘|71+1 2 <I>§D+1.

Since <I>§3+1:<I>P(<I>§3), from Claim 2 in the proof of Theorem 3.15 we have that:
for each integer [there exists an integer j(!) € {1,...,n} and a ground substitution #; such that:

EIXj(l)éj(l)Hl is trueg (or falseg) in <I>§D, while EIXj(l)ﬁj(l)Hl is not trueg (resp. not falses) in <I>3;'71.

(11)

Let us distinguish two cases.

1) Hypothesis (a) is satisfied and each conjunction in {51, e En} is independent from {cly, ..., cl,}.
From the left hand side of (11), the hypothesis and Proposition 4.4 it follows that for each [there has to
be an integer r such that B

AX;y D)0 is trueg (vesp. falseg) in @p.

From remark 3.12, it follows that for each integer [, EIXj(l)ﬁj(l)Hl is trues (resp. falses) in ®,.
This contradicts (11); in fact, when ¢ 4+ > », by the monotonicity of ®ps, we have that &%, C <I>3;|71 and
since 3X; 1y Dj)0r is trues (vesp. falseg) in @, it must be trues (vesp. falses) in <I>3;|71.

2) Hypothesis (b) is satisfied. We know that for each integer [, the delay of EIXj(l)ﬁj(l) wrt EIXj(l)éj(l)
is not greater than m, hence from the left hand side of (11) it follows that,

for each I, EIXj(l)ﬁj(l)Hl is trues or falses in <I>§3+m.
Since @ = & (P%,), it follows that,
for each [, EIXj(l)ﬁj(l)Hl is trueg (resp. falses) in <I>”P1(<I>§3).
depenp(ﬁj(l)ﬁl, {cli,...,clp}) > m, then, from Lemma 3.14 it follows that,
for each [, EIXj(l)ﬁj(l)Hl is trueg (resp. falseg) in <I>”P1,(<I>§3).
Now <I>gD C <I>§D, and ®p/ 1s monotone, then,
for each [, EIXj(l)ﬁj(l)Hl is trueg (resp. falseg) in ®F (®h)) = @$,+i,

this contradicts the right hand side of (11). O
From Theorems 4.5 and 4.7 we obtain the following.

Corollary 4.8 (applicability conditions wrt Comp; UWDCA,; with £ finite) Let £ be a finite
language. In the hypothesis of Definition 2.11 for simultaneous replacement, if for each C; € {6’1, cey én},
there exists a (possibly empty) set of variables X; satisfying the locality property wrt C; and D; such
that

E|Xil~)i 5725(13) HXiéi,

and one of the following two conditions holds:

1. {51, .. ,ﬁn} are all independent from the clauses in {ely,... ¢l }; or

2. there exists an integer m such that, for each C; € {6’1, Cel én}, and each cl; € {cly,... e, }:
- the delay of 3X;D; wrt 3X;C; in Ifp(®p) is less or equal to m, and
- depenp(D;, elj) > m;

then P is equivalent to P’ wrt 7. i

22

5 Correctness Results when £ is Infinite

5.1 Correctness Results when £ is Infinite

When the language is infinite, that is when it contains infinitely many function symbols, the domain
closure axioms are no longer needed since in this case CET, is already a complete theory.

Three valued program’s completion semantics in the case of an infinite language has been studied by
Kunen [11] and successively by Shepherdson [16]. As far as we are concerned the Comp,(P) semantics
when £ is infinite behaves exactly as the Comp,(P)UWDCA, when £ is finite. This fact is due to the
following result:

Theorem 5.1 Let P be a normal program, £ an infinite language and ¢ an allowed formula.
o Comps(P) | ¢ iff for some integer n, ®% =, ¢

Proof. This is Theorem 5b in [16]. O

Observe that this is identical to Theorem 2.9 (b), which was the only result on the semantics that we
used in Section 4. Consequently, the results that we can prove on program’s and formula’s equivalence
and on the replacement operation are identical to the ones given in the previous Section. Theorem 4.3
holds also for Comp(P) with £ infinite; the proof is identical as well, as Lemma 4.2 holds for an arbitrary
language. The same reasoning applies to Proposition 4.4 on the equivalence of formulas. Finally, the
results on the replacement operation, that is Theorems 4.5, 4.7 and Corollary 4.8 hold also for this
semantics.

Corollary 5.2 (applicability conditions wrt Comp, with £ infinite) Let £ be an infinite language.
In the hypothesis of Definition 2.11 for simultaneous replacement, if for each C; € {C,...,C,}, there
exists a (possibly empty) set of variables X; satisfying the locality property wrt C; and D; such that

3X; D is equivalent to 3X,C; wrt Compg(P),

and one of the following two conditions holds:

1. {51, .. ,En} are all independent from the clauses in {ely,... ¢l }; or

2. there exists an integer m such that, for each C; € {6’1, Cel én}, and each cl; € {cly,... e, }:
- the delay of 3X;D; wrt 3X;C; in Ifp(®p) is less or equal to m, and
- depenp(D;, elj) > m;

then P is equivalent to P’ wrt the three valued completion semantics, Comp . a

6 Replacement vs. Other Operations.

We now consider some other operations which are normally used in program’s transformation and show
how they can be seen as particular cases of replacement. This will also give us the opportunity of providing
some other examples.

6.1 Reversible Folding

The fold operation consists in substituting an atom for an equivalent conjunction of literals, in the body
of a clause. This operation is generally used in all the transformation systems in order to pack back
unfolded clauses and to detect implicit recursive definitions. In the literature we find different definitions
for this operation. This is due to the fact that it is not generally safe even for definite programs and
declarative semantics and its application must be restricted by some conditions which depend on the
semantics we choose. The reversible folding corresponds to the kind of folding considered in [13, 9].

23

Definition 6.1 (reversible fold) Let ¢/ : A «— L, . and d: B — H. be distinet clauses in a program
P; let also W be the set of local variables of H in d, W = Var(H)\Var(B).

If there exists a substitution 6, dom(6) = Var(f[)\W, such that A = H and d is the only clause of
P whose head unifies with Bf. Then

e Folding H in el by using d as folding clause consists of substituting ¢!’ for ¢/, where

el A — T, Bo.
fold(P, H cl,d)= P\{cl}U{cl' : A — L, B0} O
Example 6.2 Let us consider the following program:

P={ ¢e: p
d: r

a
b). }
With 0 = {b/7, X/Y}, we have body(d)f = (¢(X,b),—-s(X)) and that d is the only clause of P whose

head unifies with »(7Z,Y)0. Hence we can fold clause ¢/, thus obtaining the program:

P={ ¢e: p

X) —r(b, X),r(a, X).
d: r(Z,

Y) — q(Y, Z),ﬁS(Y).

O

This operation is always safe. Indeed we now show that it can be seen as a special case of replacement
in which the conditions of Corollaries 3.16 and 4.8 are always satisfied.

Theorem 6.3 (correctness of reversible folding) The reversible folding operation is safe wrt both

’Tf and ’Tf.

Proof. Consider the notation as in Definition 6.1. Recall that d is the only clause that unifies with B6.
By the definition of Fitting’s operator we have that, for all substitutions y, By is true (resp. false) at
step ®% iff «a is an ordinal greater than 1 and EIW?I&W is trueg (resp. falses) at step @%_1. This implies
that whichever semantics we consider:

- B8 is equivalent to AW HE, and

- the delay of B8 wrt IW H@ is one.
Since d # ¢l, we also have that depenp(B6,cl) > 0. Hence, by Corollary 3.16 (resp. 4.8), the operation
is 7{*-safe (resp. T -safe). O

Now we need to define the unfold operation which is widely used in transformations. We suppose
that all the clauses are disjoint, that 1s, they have no variable in common.

Definition 6.4 (unfold) Let ¢/ : A — E, H. be a clause of a normal program P, where H is an atom.
Let {Hy < B1,..., H, — B, } be the set of clauses of P whose heads unify with H, by mgu’s {6,...,6,}.

o Unfolding an atom H in cl consists of substituting el with {cl|, ..., ell,}, where, for each i,
Cl; = (A — L, Bl)gl
unfold (P, cl, H) < P\{cly U {cl], ... cl}. O

This operation is safe wrt all the semantics we consider in this paper?.

1 The proof of safeness will appear in a technical report and is now reported in the Appendix B.

24

Example 6.5 (sorting by permutation and check, part I) The following program is borrowed from
[17]. The transformation process is intentionally redundant in order to be more explanatory. For the sake
of simplicity, here we consider the semantics given by 7;*. The results hold also in the case we adopt 7.f
although, as we will point out, the proofs are more complicated.

Let Py be the following program:

Po=A{ cl: perm([],[])-
e2: perm([A] Xs],Ys) — perm(Xs, Zs),ins(A, Zs,Y s).
e3: ins(A, Xs, [A] Xs]).
cd: ins(A,[B|Xs],[B|Ys]) «— ins(A Xs,YVs).

b ord([]).

6 ord([A]).

c7: ord([A, B Xs]) — A< B,ord([B| Xs]).
e8: sort(Xs,Ys) — perm(Xs,Ys),ord(Ys).

(Step 1) If we unfold perm(Xs,Ys) in the body of ¢8; the resulting program is:
P ={el,...,cTtU

{ 9: sort([],[]) — ord([]).
cl0: sort([A]| Xs],Ys) — perm(Xs,Zs),ins(A, Zs,Ys),ord(Ys).}

(Step 2) By unfolding ord([]) in ¢9, we eliminate ord([]) from the body of that clause.
Py={cl,...;cTtu{cl0} U{ cll: sort([],[])-}

By the safeness of the unfold operation (Corollary 9.2 in the Appendix B) Py, P; and P are equivalent
programs both wrt 75 and 7.¢. i

6.2 Thining and Fattening

The fatten operation consists in introducing redundant literals in the body of a clause. It is generally
used in order to make possible some other transformations such as folding.

Definition 6.6 (fatten) Let ¢/ : A — L. be a clause in a program P and Ha conjunction of literals.

e Fattening cl with H in P consists of substituting cl’ for el, where cl’ 1 A — E, H.

fatten (P,c,) = P\{cl} U {cl'}. O

The fatten operation is a special case of replacement, and then its applicability conditions can be
drawn directly from Corollaries 3.16 and 4.8.

The next Lemma shows that for fattening, we actually need to check only part of the applicability
conditions.

Lemma 6.7 Let ¢l = A E,é be a clause in the normal program P, X be a set of variables not
occurring in (A, £) and H be another conjunction of literals. Then

(a) If for each 0, ifp(®p) =z IXGO implies Ufp(®p) =c (AXG, H)0,
then ElXG jTIL(P) ElXG, H.

(b) If for each 8, lfp(®p) =c ~(3X G, H) implies fp(Pp) =c -IXGO
then ElXG,H jTIL(P) ElXG

¢) If m is an integer such that, for each o and 8, ®% =, IXGo implies %™ =, EIX(E, H f, then
P P
-3XG 21e(p) iXdG, H,

25

- the delay of EIXé, H wrt 3XG in Ifp(®p) is less or equal to m.
If m is the least of such integers, then the delay of 3X G, H wrt 3XG in lfp(Pp) is exactly m.

Proof. It is a straightforward application of Theorem 2.9 together with the fact that, for any interprtation
I, I E; -G implies that T =z =(G, H)6. O

This Lemma applies as well to the semantics given by 75, as it is shown by Lemma 8.2 in the
Appendix A.

Example 6.5 (sorting by permutation and check, part II)

(Step 3) Now we can fatten clause ¢10 by adding ord(Zs) to its body.
Let Ps be the resulting program:
Ps={cl,...,cT}U

{ ell: sort([],[])-
el2: sort([A]| Xs],Ys) — perm(Xs,Zs),ord(Zs),ins(A, 7s,Y s), ord(Ys).}

This operation corresponds to a replacement of ins(A, Zs,Y s), ord(Y's) with ord(Zs), ins(A, Zs,Y's),
ord(Y's).

We now use Theorem 3.15 to prove that Ifp(®p,) C Ifp(Pp,).

Observe that if (ins(A4, Zs,Y's), ord(Y's))0 is true in Ifp(®p,) then Y's0 is an ordered list and Zs0 is a

sublist of Y sf; hence also Zs6 is ordered and (ord(Zs),ins(A, Zs,Y s), ord(Y's))0 is also true in ifp(®p,).
By Lemma 6.7, this is sufficient to state that:

ins(A, Z7s,Ys),ord(Ys) TPy ord(Zs),ins(A, Zs,Ys),ord(Ys)?.

Notice also that the conjunction ord(Zs),ins(A, Zs,Ys),ord(Ys) is independent from clause ¢10.
Hence by Theorem 3.15 {fp(®p,) C lfp(®p,), by Lemma 3.1 this means that the operation is 7;°-complete.

To show that the operation is also safe, that is, that Ifp(®p,) = Ifp(®p,), we could use Corollary 3.16,
but it is easier to observe that Ifp(®p,) is already a total model 3, namely nothing is undefined, hence
Ifp(®p,) C Ufp(Pp,) implies that Ifp(Pp,) = Ufp(Pp,), and by (2.9) the operation is also safe.

(Step 4) We can now fatten ¢12 with sort(Xs, Zs). The resulting program is:
Py={el,...,cT}U

{ ell: sort([],[])-
el3: sort([A]| Xs],Ys) — sort(Xs,Zs),perm(Xs, Zs),ord(Zs),ins(A, 75,V s),ord(Ys).}

This operation corresponds to a replacement of perm(Xs, Zs), ord(Zs) with sort(Xs, Zs), perm(Xs, Zs),
ord(Zs). Using Corollary 3.16 we can prove that {fp(®p,) = lfp(®p,); in order to apply the Corollary we
have to show that:

(a) sort(Xs, Zs),perm(Xs, Zs), ord(Zs) Zre(py) perm(Xs, Zs), ord(Zs);
(b) the delay of sort(Xs, Zs), perm(Xs, Zs),ord(Zs) wrt perm(Xs, Zs),ord(Zs) in lfp(®p,) is zero.

To prove (a) we proceed as follows: since sort(Xs, Zs) — perm(Xs, Zs),ord(Zs), is a clause of Py,
by Lemma 3.9, we have that sort(Xs, Zs) =re(py) perm(Xs, Zs),ord(Zs), this clearly implies that

2When using WDCA instead of DCA, in order to establish the equivalence, computations are in general more complicated.
In this example it is sufficient to observe that (ins(A, Zs,Ys),ord(Ys))d is true, in @71_?,2 then also ord(Zs)é is true, in
@’ﬂ
P% :
This also follows from a result due to Apt and Bezem [2], that states that the Fitting’s Model of an acyclic program is
always a total model.

26

sort(Xs, Zs),perm(Xs, Zs), ord(7s) = re(Py) perm(Xs, Zs),ord(Zs). By Proposition 3.2 this implies
that Ufp(Po) = sort(Xs, Zs), perm(Xs, Zs), ord(Zs) < perm(Xs, Zs),ord(Zs). From the correctness of
the previous transformation’s steps we have that Ifp(Ps) = lfp(Pp); hence

Ifp(Ps) = sort(Xs, Zs), perm(Xs, Zs), ord(Zs) < perm(Xs, Zs), ord(Zs),
and (a) follows from Proposition 3.2.

We now prove (b). Note that it is sufficient to show that the delay of sort(Xs, Zs) wrt perm(Xs, Zs),
ord(Zs) in lfp(®p,) is zero. By Lemma 6.7, it is sufficient to prove that:
for all 8, k, if <I>’lf33 Er (perm(Xs, Zs), ord(Zs))f then also <I>’lf33 Ec sort(Xs, Zs)6.

First we need to prove a few properties. In the following we denote || the length of a list [.

(i) ins(A, Zs YS)H becomes true at step ®,, where n < [Y'sf|, in fact n is precisely the place where
A ends up in Ys.
For example: ins(a,[t,s,..], [a,t,s,..]) is true in <I>}33.
ins(a,[t,s,..],[t,a,s,..]) is true in <I>%3.
ins(a,[t,s,..],[t,s,a,..]) is true in <I>?1’33. .
Moreover, when ins(A, Zs, Y s)0 is true in lfp(®p,), we have that
[Ys0| = | Zs0] + 1. (12)
(ii) perm(Xs, Zs)0 becomes true in <I>|PZ359|+1.
This can be proven by induction on the length of |Zs6]|.
perm([],[]) is true in ®p;
if |Zsf] > 0 then perm(Xs, Zs)6 is true in ®% iff there exists an instance of ¢2,
(perm([A|X s, Ys") — perm(Xs', Zs"), ins(A', Zs',Vs").)t,
such that
- perm([A'|Xs'], Y0 = perm(Xs, Zs)0 and
- (perm(Xs', 75", ins(A', Zs',Y's"))0' is true in @%_1.
Now we can apply the inductive hypothesis and the previous results in order to determine oo — 1:
- perm(Xs', Zs")¢ is, by the inductive hypothesis, true in <I>|ZS ol
-ins(A', Zs' Y s becomes true at step ®%_, where n < |Y5 o'
By (12), |Y5’9’| =|Zs'0’| + 1, hence the COHJUHCthIl (perm(Xs', Zs"),ins(A', Zs',Ys'))6" becomes
true exactly at step @B;slell. But |[Ys'0'| = |Zs0|, hence perm(Xs, Zs)0 becomes true at step
<I)|Zs€|+1
S .
(iil) ord(Zs)f becomes true at step <I>max(1 12361,
This can be proven by induction on |Zs8|.

(iv) sort(Xs, Zs)f becomes true at step <I>|ZSGH_1

Again, this can be proven by mductlon on |Zsb|.
sort([],[1) is trues in ®p . When |Zs6] > 0, sort(Xs, Zs)0 is in ®% iff there exists an instance of
el2: (sort([A | Xs'],Ys") —perm(Xs', Zs"), ord(Zs"),ins(A, Zs',Ys"), ord(Ys").)¢ such that
- sort([A] Xs] s = sort(Xs, Zs)0 and
- (perm(Xs', Zs"), ord(7Zs"), ins(A, Zs',Y's'), ord(Ys').)8 trueg in @%_1.
Now to determine the value of o — 1, we can use (i), (ii) and (iii):
- perm(Xs', Zs")0' is true in <I>|ZS fl+L,
- ord(Zs")0 is true in <I>max(1 lZS o,
-ins(A, Zs' | Ys')0 is true in P, Where n < |Ys'd).

- ord(Y's')0" is true in @maf(l vs'6'l)
Since [Z91+1 =172 9/| = |250], (perm(XS’, Zs"), ord(Zs"),ins(A, Zs',Y's"), ord(Y's"))§" becomes
! |Zs8]+1

Op. .

true exactly at step <I>|P3 and sort(Xs, Zs) becomes true at step

bl

but by (ii) and (iii), whenever (perm(Xs, Zs),ord(Zs))0 is true in lfp(®p,), it is true in <I>|Zs‘9|+1 By

We can finally prove (b). By (iv), whenever sort(Xs, Zs)0 is true in lfp(®p,), it is true in <I>|ZS€|+1'

27

Lemma 6.7 the delay of sort(Xs, Zs) wrt perm(Xs, Zs),ord(Zs) is zero. It follows that also the delay
of sort(Xs, Zs), perm(Xs, Zs),ord(Zs) wrt perm(Xs, Zs), ord(Zs) is zero. a

The thinning operation is the converse of fattening, and allows one to eliminate superfluous literals
from the body of a clause.

Definition 6.8 (thin) Let ¢/ : A — L, H. be a clause in a program P.

o Thinning cl of the literals H in P consists of substituting cl’ for el, where cl’ 1 A — L.

thin(P, cl, 1) " P\{cl} U {cl'}. O

As for fattening, thinning can be interpreted as a replacement and then its applicability conditions
can be inferred from Corollaries 3.16 and 4.8. Moreover Lemma 6.7 applies in a natural way also to this
operation; only statement (c) requires a symmetric formulation. We restate only this last point.

Lemma 6.9 Let ¢l = A — E, é, H. be a clause in P and X be a set of variables not occurring in (A, E)
The following property holds:
e If m is an integer such that, for each « and 8, ®% =, ﬁ(EIXé, f[)b’ implies ®31" =, —EIX(?H, then
-3XGLH =re(py IXG,
- the delay of 3XG wrt 3XG, H in Ifp(®p) is smaller or equal to m.
If m is the least of such integers, then the delay of EIXG, H wrt 3XG in Ifp(®p) is exactly m.

Proof. It is a straightforward application of the fact that for any interpretation I, if I =, (é, f[)@ then
also I = G6. O

In the Appendix A (Lemma 8.3) we state a corresponding Lemma for the case in which we adopt 7°
instead of 7;~.

Example 6.5 (sorting by permutation and check, part IIT)

(Step (5) We can eliminate ord(Zs) from the body of ¢13 by thinning it. The resulting program is:
Py ={cl,...,cT}U

{ ell: sort([],[])-
cld . sort([A|Xs],Ys) — sort(Xs,Zs),perm(Xs,Zs),ins(A, Zs,Y s),ord(Ys).}

This corresponds to replacing ord(Zs), ins(A, Zs,Y s), ord(Y's) with ins(A4, Zs,Ys), ord(Ys). In order
to prove that the operation is 7*-complete we apply Theorem 3.15.
First we have to prove that

if ord(Zs)0 is false in lfp(®p,) then (ins(A, Zs,Y s),ord(Ys))0 is false in Ifp(®p,) 4, (13)

4When adopting WDCA instead of DCA, calculations are truly more complicated, in fact in order to ensure the equiv-
alence we have to show that for each j there is a k such that if ord(Zs)0 is false in @é_—,‘l then (ins(A, Zs,Ys),ord(Ys))0 is

false in @?_—,4.

This can be proved by the following schema: suppose that ord(Zs)é is false in [fp(®p,) and let Ws6 be the maximal
ordered prefix of Zs0, then ord(Zs)f becomes false at step @gjsel. We have to distinguish two cases:
- if there is no X 56 such that X sf is a prefix of Y's and ins(A, Ws, X 5)6 is true in some @71_3,4, then ins(A, Zs,Y s)6 becomes

false no later than ord(Zs)6 does, and we have the desired result.
- otherwise, either X is not ordered or it is the maximal ordered prefix of Y s6; in either cases, ord(Y s)¢ becomes false no

later than step q)ll:),jsl.
In any case if ord(Zs)6 is false in @é_—,‘l then (ins(A, Zs,Ys),ord(Ys))0 is false in @é_—,tl.

28

This is easy to prove: if ins(A, Zs,Ys)0 is false in lfp(®p,) then we have the thesis. Otherwise, since
lfp(®p,) is a total interpretation, ins(A, Zs,Y s)0 cannot be undefined in it, and ins(A, Zs, Y's)@ is true in
lfp(®p,), but in this case it is easy to see that Zs@ has one element less than Y'sf, and hence if ord(Zs)0
is false in Ifp(®p,), so is ord(Y s)d; and (2) follows.

Now (13) implies that whenever (ord(Zs),ins(A,Zs,Ys),ord(Y's))6 is false in lfp(®p,) then also
(ins(A, Zs,Y's),ord(Y's))0 is false in lfp(®p,), and, by Lemma 6.7, that

ord(Zs),ins(A, Zs,Y's),ord(Ys) TPy ins(A, Zs,Ys),ord(Ys).

Since we also have that ins(A, Zs,Ys),ord(Y's) is independent from ¢13, from Theorem 3.15 it follows
that {fp(®p,) C lfp(Pp,), that is, that the operation is T/ -complete. As in (Step 3), since ifp(®p,) is a
total interpretation, this implies that Ifp(®p,) = lfp(®p,) and that the operation is also T~ -safe.

(Step 6) Finally we can eliminate perm(Xs, Zs) from the body of ¢14 by a further thinning, obtaining:
Ps={cl,...,cT}U

{ ell: sort([],[])-
cl5: sort([A|Xs],Ys) — sort(Xs,Zs),ins(A, Zs,Y s),ord(Ys).}

This is an O(n®) sorting program, while Py runs in O(n!). To prove the 7*-completeness of this last
step, we use Theorem 3.15. Let us distinguish two cases.

o If X560 =[], then perm(Xs, Zs)0 is false in <I>}35 iff Zs# # [], but in this case also sort(Xs, Zs)f is
false in <I>}35;

e otherwise observe that the body of ¢2, which defines perm, i1s contained in the body of ¢14, defining
sort.

This implies that if some instance of body(c2) is false in some interpretation I, then the corresponding
instance of body(cl4) is false in I. Hence, if perm([A|Xs], Zs)0 is false in <I>§;l'1 then sort([A|Xs], Z5)0 is
false in <I>§;l'1. It follows that

if (sort(Xs, Zs), perm(Xs, Zs))0 is false in <I>§DS then sort(Xs, Zs)0 is false in <I>§35.

By Lemma 6.9, this is sufficient to show that sort(Xs, Zs), perm(Xs, Zs) =TE(Py) sort(Xs, Zs) and
that the semantic delay of sort(Xs, Zs), perm(Xs, Zs) wrt sort(Xs, Zs) is zero, and hence, by Theorem
315, lfp(®p,) C Ufp(Pp,). Again, since lfp(®p,) is already a total interpretation, this implies that
ifp(®p,) = lfp(®p,), and hence, by Theorem 2.9 that the operation is TF-safe. a

7 Conclusions

In this paper we study the simultaneous replacement operation wrt normal programs. Simultaneous
replacement is a transformation operation which consists in substituting a set of conjunctions of literals
{C1,...,Cpn} in the bodies of some clauses, with a set of equivalent conjunctions {Ds, ..., D,}. The set
of loglcal consequences of the program’s completlon is taken as the semantics of the normal program.
In this way we obtain three different semantics which depend on the domain closure axioms and on the
finiteness properties of the language we choose. More precisely, the semantics we consider are:

o Comps(PY)UDCA,,
where £ is a finite language, namely it has a finite number of function symbols and DCA is the set
of Domain Closure Axioms.

o Comps(P)UWDCA,,
where £ is a finite language, namely it has a finite number of function symbols and WDCA is the
set of Weak Domain Closure Axioms.

29

o Comp,(P),
where £ is an infinite language, this corresponds to Kunen’s semantics.

All these semantics can be characterized by means of the Kleene sequence of the three valued immediate
consequence operator ®p.

For each of these semantics we define formulas equivalence, programs equivalence and safeness of
program transformations, namely their correctness and completeness, and express them also in terms of
the ®p operator.

Furthermore, we propose applicability conditions for simultaneous replacement which guarantee safe-
ness, that is the preservation of each semantics during the transformation. The equivalence between C';
and D; is obviously necessary but it is generally not sufficient. In fact, we also need the equivalence to
hold after the transformation. Such equivalence can be destroyed when a D; depends on one of the clauses
on which the replacement is performed. Hence we establish a relation between the level of dependency of
{D1, ..., D,} over the modified clauses and the difference in ”semantic complexity” between each C; and
ﬁi. Such semantic complexity is measured by counting the number of the applications of the immediate
consequence operator which are necessary in order to determine the truth or falsity of a predicate.

By considering replacement as a generalization of other transformation operations such as thinning,
fattening and reversible folding, we show how applicability conditions can be used also for them.

Acknowledgements

This work has been partially supported by ” Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”

of CNR under grant n. 89.00026.69.

References

[1] K. Apt. Introduction to logic programming. In Handbook of Theoretical Computer Science, pages
493-574. Elsevier Science Publishers B.V., 1990.

[2] K. Apt and M. Bezem. Acyclic Programs. New Generation Computing, 9:335-363, 1991.

[3] A. Bossi and N. Cocco. Basic Transformation Operations which preserve Computed Answer Substi-
tutions of Logic Programs. Journal of Logic Programming, 16:47-87, 1993.

[4] A. Bossi, N. Cocco, and S. Etalle. On Safe Folding. In M. Bruynooghe and M. Wirsing, editors,
Programmaing Language Implementation and Logic Programmaing - Proceedings PLILP’92, volume
631 of Lecture Notes in Computer Science, pages 172-186. Springer-Verlag, 1992.

[5] A. Bossi, N. Cocco, and S. Etalle. Transforming normal program by replacement. In Third Workshop
on Metaprogrammang i Logic, META92: Uppsala, Sweden, June 1992.

[6] K. L. Clark. Negation as failure rule. In H. Gallaire and G. Minker, editors, Logic and Dala Bases,
pages 293-322. Plenum Press, 1978.

[7] S. Etalle. Transformazione dei programmi logici con negazione, Tesi di Laurea, Dip. Matematica
Pura e Applicata, Universita di Padova, Padova, Italy, July 1991.

[8] M. Fitting. A kripke-kleene semantics for logic programs. Journal of Logic Programming, (4), 1985.

[9] P. Gardner and J. Shepherdson. Unfold/fold transformations of logic programs. In J.-L. Lassez and
e. G. Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson. 1991.

[10] S. Kleene. Introduction to Metamathematics. D. van Nostrand, Princeton, New Jersey, 1952.
[11] K. Kunen. Negation in Logic Programming. Journal of Logic Programming, 4:289-308, 1987.
[12] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

30

[13] M. Maher. Correctness of a logic program transformation system. IBM Research Report RC13496,
T.J. Watson Research Center, 1987.

[14] M. Maher. A transformation system for deductive databases with perfect model semantics. Theo-
retical Computer Science, to appear.

[15] T. Sato. An equivalence preserving first order unfold/fold transformation system. In Second Int.
Conference on Algebraic and Logic Programming, Nancy, France, October 1990, (Lecture Notes in
Computer Science, Vol. {63), pages 175-188. Springer-Verlag, 1990.

[16] J. C. Shepherdson. Language and equality theory in logic programming. Technical Report PM-88-08,
University Walk, Bristol, England, 1988.

[17] H. Tamaki and T. Sato. Unfold/fold transformation ol logic programs. In S. Tarnlund, editor, 2nd
International Logic Programming Conference, Uppsala, Sweden, July 1984, pages 127-138, 1984.

8 Appendix A.

Now we provide the proof of Claim 1 in Theorem 3.5. Let us first state a simple property of existentially
quantified formulas.

Remark 8.1 Let £ be any language, W and Z be sets of variables, L be a conjunction of literals, [
a three valued L-interpretation and @ any ground substitution. Suppose that W 2> Z N Var(L). The
following properties hold:

o If3ZL0 is truey in I then IWLE is trues in 1.
o If 3710 is not falseg in I then IWLO is not falsegs in 1.

This is true in particular when 7 is empty and 37100 = 0. a

Claim A.1 (Claim 1 in Theorem 3.5.) Notation as in 3.5. Let I, I’ be two partial interpretations. If

I' CTbut®p/(I') € ®p(I), then there exist a conjunction C € {C1,...,Cy} and a ground substitution
0 such that:

e cither I’ =¢ 3X;D;6 while I}, 3X;C;6;
e or I' |=x —3X; D;6 while I £ -3X;C;6.
Proof. Recall that ®p/(I') € ®p(I) iff either ®p/(I')T € ®p (1)t or ®p:/(I')~ € ®p(I)~ (or both). We

have to distinguish the two cases.
Case 1) Let us suppose that ®p: (I')* € ®p(I)* and let us take an atom B € ®p:(I')T\®p(I)T. There
has to be a clause ¢ € P\ P, a ground substitution §’ such that: head(c)6’ = B and body(c)¢" is truein I'.

P\P = {ely, ... cl,}, then there is an integer j such that: ¢ = cl} and body(cl};)0" = (Dj,, ..., Ejr(j) , Ej)ﬁ’.
is true in I’

Hence the conjunctions ﬁjlﬁ’, ce D; @ areall truein I'. From remark 8.1 it follows that the formulas:

Jr(s)

ax; D;,¢,...,3X; D

. !
i)]T(])H are trueg in I, (14)

where the X; are set of variables that satisfy the locality property wrt to C; and D;.
We know that B = head(cl})0" = head(cl;)¢’, but since B ¢ ®p(I)T, by definition 2.8 we have that
(W body(cl;))8" is not trues in I, where W = Var(body(cl;))\V ar(head(cl;)), that is,
(AW Cjyyo o Gl
For each k, W D X;, N Var(body(cl;)), now let Y = W\X;, U ... UX;

Jr(5)
of ' whose domain contains Y. Then from Remark 8.1 it follovvs that

Ej)ﬁl is not truesinl.

and # be a ground extension

(AX;,, ..., X;

iy CiveennnC

jr(j),Ej)H is not trues in 1.

31

Since E 0 is truein I’ and I’ C I, then E @ is truein I, by the locality property, the sets X;, are pairwise
disjoint, hence one of the formulas in EIXJIC'JIH, S 3X;, (])C’] 0
Since (14) holds also for #, the thesis follows.

Case 2) Tt is perfectly symmetrical to case 1) except for the fact that it is proven by contradiction.
Let us suppose that ®p:(I')” € ®p(I)~, and let us take an atom B € ®p,(I')"\®p(I)~. There has to
be a clause ¢ € P\P’, a ground substitution @ such that head(c)é’ = B and body(c)#’ is not false in I.
P\P" = {cly,...,clp}, then there is an integer j such that: ¢ = ¢l;, and then the conjunction (éjl, Cel
éjr(j),Ej)H’ is not false in I.

Hence the conjunctions C';,6', ..., er(o

@ is not trues in 1.

0" are all not false in I. From remark 8.1 it follows that:

3X;,C5,0 - 3X;..Cj

vy Cis ()9 are not falses in I. (15)

We know that B = head(cl;)0' = head(cl})0’, but since B € ®p:(I')”, by definition 2.8 we have that
(AW body(cl}))0" is falses in I', with W = Var(body(cl’))\Var(head(clé)), that is,

(Fw ﬁjl, .. .,Ejr(j) , Ej)ﬁl is false inl’.
For each k, W D X;, N Var(body(cl;)), now let Y = W\X;, U ... UX;

jry and 0 be a ground extension
of ' whose domain contains Y. From remark 8.1 it follows that

(3X;,,...,X; . D Dj, s

i) Ej)ﬁ is false; in I'.

Jioc

Since E @ is not false in I and I' C I, E f is not false in I'. By the locality property, the sets X;, are

pairwise disjoint, then one of the formulas in 3.X; D 03X, (])D] G)9 Is falses in I'.

Since (15) holds also for #, the thesis follows. a

Now we state two Lemmata which are the counterpart of Lemmata 6.7 and 6.9, for the case in which
the closure axioms adopted are WDCA , rather than DCA ..

Lemma 8.2 Let ¢l = A %E G. be a clause in the normal program P, X be a set of variables not
occurring in (A4, E) and H be another conjunction of literals. Then

(a) If for each j there exists a k such that, for each 6, <I>] = 3X G0 implies Ok =, (EIXG H)H then
AXG =72(pP) 3AXGL H.

(b) If for each j there exist a k such that, for each 6, <I>gD Ec ﬁ(EIXé,fI)H implies ®% =, —EIX(?H,
then ElXG,H ij(P) ElXG

(¢) If m is an integer such that, for each n and 0, ®% =, IX G0 implies L p (3XG, H)0 then
-3AXG =72(P) X H;
- the delay of EIXG H wrt 3XG in Comp(P) U WDCAg is smaller or equal to m.

If m is the least of such integers, then the delay of EIXG H wrt 3XG in Comp(P)UWDCA, is
exactly m.

Proof. It is a straightforward application of Theorem 2.9 together with the fact that, for any interpre-
tation I, I =z =GO implies that T =, —(G, H)6. a

Lemma 8.3 Let ¢l = A — E, é, H. be a clause in P and X be a set of variables not occurring in A, E.
The following property holds:
e If m is an integer such that, for each integer n and substitution 6, ®% =, —EIX((?, f[)b’ implies that
O™ =, ~3X G0, then
-3XGLH =re(py IXG,
- the delay of IXG wrt EIXG, H in ®% 1s less or equal to m.
If m is the least of such integers, then the delay of EIXG, H wrt 3XG in O} is exactly m.

32

Proof. It is a straightforward application of the fact that for any interpretation I, if I =, (é, f[)@ then
also I =, G6. O

9 Appendix B (Safeness of the Unfolding Operation)
First we need the following technical Lemma.

Lemma 9.1 Let P’ be the program obtained by unfolding an atom in a clause of program P. Then for
each integer ¢ and limit ordinal 3,

(a) @5 C &%, and dL, C O,
(b) Pp(Pp) C B (Pp) and B (Pp,) C PH(Pp).

Proof. Here we adopt the same notation of definition 6.4, s0 ¢l : A — H, K. is the clause of P to which
we apply the unfold operation, {H| <« By.,..., H, < B,.} are the clauses of P whose heads unify with
H, {cl],... cl.} are the resulting clauses, where, for each i, el} : (4 — B, f{)ﬁl and 6; = mgu(H, ;).
We also suppose that all this clauses are disjoint.

The next Claim is crucial

Claim 3 Suppose that « is an ordinal such that, for each ground 7,
(i) ®p = Op;

(i) if Hr € <I>%+ then there exist a substitution ¢ and an integer ¢ such that Hr = H;6;¢ and EZHZQS
is true in ®%;

(iii) if Hr € ®%~ then for each substitution ¢ and integer ¢ if Hr = H;0;¢ then EZHZQS is false in ®F.
Then, for each integer j,

o DH(PR) C Pp(PR);

o D (PF) C H(BR).

Proof. First we prove the first statement, and we show by induction that if a ground atom R is true or
false in ®%,(®%) then it is also so in &%, (PE,).

The base case j = 0 is trivial, since ®%(®%) = ®%, and from (i) we have the thesis.

Induction step, j > 0; we have to distinguish two cases:

1) Suppose R is true in <I>§3(<I>%); then there exists a clause d € P and a substitution § such that
R = head(d)0 and body(d)0 is true in <I>§D_1(<I>%).

If d # ¢l then d belongs both to P and P/, by the inductive hypothesis body(d)é is true in <I>§3_,1(<I>%,),
and the result follows. B ' '

Otherwise, d = ¢/, R = A6 and (H, K) is true in <I>§D_1(<I>%). So HE is true in <I>§D_1(<I>%).~

If 5 > 1 this implies that for some integer ¢ and substitution ¢, H8 = H8;¢ = H;0;¢ and B;0;¢ is true in
Oy ().

On the other hand, if j = 1 the fact that 76 is true in ®% implies, by (ii), that for some integer ¢ and
some substitution ¢, EZHZQS is true in F.

In any case, (Ez, f{)ﬁlqb Is true in <I>§3_1(<I>%) and, by inductive hypothesis, in <I>§3_,1(<I>%,). Then body(cll)¢
Is true in <I>§3_,1(<I>%,), it follows that, head(cl})¢ is true in <I>§3,(<I>%,).

We can assume that 0y 4r(a) = 0i®|var(q), and hence that A0 = Af;¢.

As R = A0 = Ab;¢ = head(cl})¢, the result follows.

2) Suppose that R is false in <I>§D(<I>%), we prove this part by contradiction.We assume that R is not
false in @ /(®%,); then there exists a clause d’ € P’ and a substitution ¢ such that R = head(d")0 and
body(d')f is not false in <I>§3_,1(<I>§§,).

Ifd & {cly,... el }, then d' belongs both to P/ and P, by the inductive hypothesis body(d')f is not false

33

in <I>§3_1(<I>%), and R = head(d")0 is not false in <I>§3(<I>%), which is a contradiction.

Otherwise, for some integer ¢ and substitution ¢, d’ = cll, R = head(cl})¢ = Af;¢, and body(cli)¢ is not
false in &%, (®%,). Recall that body(cl})p = ('éz, K)0i 9.

If 7 > 1, the fact that B.6; ¢ is not false in @, ((I)%,) implies that EZHZQS Is not false in <I>j_,2(<1>%,), and
since H; — B;. is a clause of P!, HO;¢ = H;0;¢ is not false in &%, (q)%,).

On the other hand, if j = 1, the fact that B;6; ¢ is not false in ®%, implies by (i1) that H6;¢ is not false
in ®%,.

In any case (M, f{)ﬁlqb Is not false in <I>§3_,1(<I>§§,), and by the inductive hypothesis, in <I>§3_1(<I>%). Since
H K= body(cl) it follows that R = Af;¢ = head(el)8;¢ is not false in <I>§3(<I>%), which gives a contradic-

tion.

Now we prove the second statement: we show by induction that if a ground atom R is true or false

in <I>P,(<I> /) then it is also so in ®](<I>“)
As above, the base case j = 0 is trivial.
Induction step j > 0: we have to distinguish two cases.

1) Suppose that R is true in ®%,(P%,), then there exists a clause d’ € P’ and a substitution 6 such
that R = head(d’)f and body(d')f is true in <I>§3_,1(<I>§§,).

If d' ¢ {cli,... el } then d’ belongs both to P’ and P, by the inductive hypothesis body(d’)# is true in
<I>] 1(<I>“) R = head(d")d is true in @ 5(®%) and the result follows.

Otherw1se for some integer ¢ and substitution ¢, d' = elf, R = head(cli)¢ = Af;¢, and body(cl)¢ is true
in &%, (0%,).

Recall that body(cl})¢ = (BZ, A)H @; by inductive hypothesis, (BZ, A)H ¢ is also true in ®F 4= 2(<I>“)
Since B;0;¢ is true in oy 2= 2(<I>“) and H; — B;. is a clause of P, H;6;¢ is true in U] 1(<I>“). But
Hi0;¢ = HO; ¢, so (H, A)qub = body(cl)f; ¢ is true in @?DJ 1(@%), hence R = Ab;¢ = head(00; ¢ is true
in ®%(0%).

2) Let R be false in @ /(®%,); we prove this part by contradiction, so we assume that R is not false
in @?(@%). Then there exists a clause d € P and a substitution @ such that R = head(d)f and body(d)f
Is not false in @?Dj_l(@%).

If d # ¢l then d belongs both to P and P’, by the monotonicity of the Kleene sequence, body(d)f is
not false in @?_2(@%) either, hence, by the inductive hypothesis body(d)@ is not false in <I>§3_,1(<I>%,). It
follows that head(d)? = R is not false in P’ /(®%,) which gives a contradiction.

Otherwise, d = ¢/, R = A6 and (H, IX’)H is not false in @?Dj_l(@%). So HE is not false in @?_1(@%).
This implies that for some integer ¢ and substitution ¢, H8 = H8;¢p = H;0;¢ and EZHZQS is not false in
4 2(0p)

Hence (BZ,A)H ¢ 1is not false in ®F 4= 2(<I>“), and by the inductive hypothesis, in <I>§3_,1(<I>%,). Since
B0, ¢ = body(cli)¢, this implies that head(cli)¢ = Ab;¢ = R is not false in <I>P,(<I>P,) which is a

contradiction. O

Now, in order to prove (a) we observe that o = 0 is an ordinal that trivially satisfies the hypothesis
of Claim 3.

In order to prove (b) we have to show that Claim 3 also applies when « is any limit ordinal.
First consider the case & = w. From (a) it follows that ®% = ®%,, moreover, if H7 is true (resp. false) in
®Y, | then, it is also true in some ®F, (m < w). By applying the definition of Fitting’s operator we have
that condition (ii) (resp. (iii)) hold for & = w. So & = w satisfies the requirements of Claim 3.
It follows that, for each ¢, <I>‘1‘§+i C <I>‘1‘§7H and that <I>‘1‘§7H C <I>°1‘3+2i. By the same reasoning it turns out that
the ordinal 2w, and iterating, all the other limit ordinals, satisfy the requirements of Claim 3. a

This brings us to the desired conclusions.

Corollary 9.2 (safeness of the unfolding operation) Let P’ be the result of unfolding an atom of
a clause in P. Then P is equivalent to P’ wrt both 75 and 7.F

Proof. By Lemmata 9.1, 3.1 and Theorem 4.3. a

34

