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Abstract

This note discusses a pseudo-steady-state approximation approach for solving chemical kinetics
equations in reactive flows. For a set of three example problems from atmospheric chemistry a
comparison is presented between an explicit pseudo-steady-state solver and the two implicit
state-of-the-art solvers RADAUS and DASSL from the numerical stiff ODE field.
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1. Introduction.
Systems of ordinary differential equations (ODEs) describing chemical kinetics problems can be cast in

the special form

(1.1) y' =f(y) =Py)-Ly)y,  y® =[ly1(®, ..., yp®IT,
where
(1.2) P(y) = [P1(¥), ..., PmIT,  L(y) = diag [L{(y), ... , Lipy(¥)].

The components Py (y) and Ly (y)yy are nonnegative and represent, respectively, the production and loss rate
for the k-th 'concentration’ y).. The reciprocal of Ly (y) is the physical time constant or characteristic reaction
time for yy. In most applications the range of time constants is large, which causes the ODE system to be
stiff. For simplicity of presentation we here confine ourselves to the autonomous case. A chemical kinetics
problem will become non-autonomous when the reaction constants are made time-dependent. This occurs, for
example, in air pollution models involving temperature dependent reaction rates. All schemes discussed can

be made non-autonomous in the usual way, either directly or by treating time as a dependent variable.
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Many applications, such as those from air pollution modelling, give rise to a system of partial
differential equations of the advection-diffusion-reaction type in which the ODE system (1.1) occurs as the
reaction part. A popular approach for solving this kind of problems is operator splitting. Splitting involves
the numerical integration of (1.1) at thousands of gridpoints, for each step of the operator splitting method.
Because the costs of integrating (1.1) then readily dominate the total costs, one often applies so-called
pseudo-steady-state approximation (PSSA) or asymptotic approximation schemes. Such schemes exploit the
specific form (1.1) and, in contrast with modern, general purpose stiff solvers, they are explicit. Hence a
PSSA scheme is extremely cheap, per integration step. PSSA schemes also show remarkably good stability,
but can attain only low accuracy. An example of an algorithm based on this approach is CHEMEQ, which
has been proposed by Young & Boris [15,16] and recommended in [11,13]. Early comparisons with implicit
BDF/Gear codes (DIFSUB [15,6] and EPISODE [11,2]) are in favour of the PSSA approach and also in more
recent work this approach is still applied and advocated [8,9,17,18].

The present paper reports on results which are less favourable for PSSA, however. For a number of stiff
ODE:s from atmospheric chemistry we have compared a simple, easy-to-use PSSA solver with two state-of-
the-art solvers from the stiff ODE field, viz., the implicit Runge-Kutta code RADAUS5 developed by Hairer &
Wanner [7] and the implicit BDF code DASSL developed by Petzoldt [1]. In spite of their considerable
overhead costs, our findings indicate that in most cases the implicit codes can be made more efficient, even
for the low accuracy range that is of interest for reactive flow problems. In addition, the implicit codes prove

also more reliable than the PSSA solver we have applied.

2. PSSA schemes.

If P and L are constant, then (1.1) can be solved exactly, i.e.,'
@.1) y(t+1) = L y) + (1- L) L-1p.
This suggests to consider the associated integration scheme
(2.2) y? = REAL®) yP 4 tREALY) - T) (ALY IP?,  t=tppg -ty

where y" is the approximation to y(t,), L™ = L(y™), P" = P(y"), and R(z) = €Z or a suitable consistent
approximation, e.g. a Padé approximation. Note that (2.2) is explicit because L and R(-tL™) are diagonal
matrices. A second attractive property is that nonnegative solutions are generated for any T > 0 if R(z) and
(R(z)-1)/z are nonnegative for all z < 0.

If Pi(y) and Li(y) vary very slowly, it is obvious that scheme (2.2) makes sense as a replacement of
(2.1). This is the case when we are sufficiently close to the steady state value Py/Ly. Due to the fact that for
any given value y{z, the new approximation y’l:-” --> Py/Ly for TLi --> oo, if R(-e0) = 0, scheme (2.2) is
called a pseudo-steady-state approximation (PSSA) scheme or asymptotic approximation scheme. Scheme

(2.2) is consistent of order one, because if we substitute the exact solution value y(t,) for y1, we get

(23) y"™ =y + 1yt + QLY. L=L(y(ty),
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and we see that first order consistency holds for components for which T << 1/Ly, due to the fact that Q(z) =
(R(z)-z-1)/z = O(z), z --> 0. This concerns the nonstiff (t << 1/Ly) components yk- For the other, stiff
components, the 1-st order consistency result is not true, since for these the order relation for Q(z) cannot be
imposed. In fact, we have Q(z) ~ 1, uniformly in z < 0, so that for the stiff components a zero consistency
order holds. This provides an example of local order reduction (see [4], Ch. 7). Of course, close to
equilibrium this reduction will not be felt. However, if a component is not close to equilibrium and yet T >>
1/Ly, the PSSA scheme may introduce the steady state too quickly. This indicates that the accuracy can be
low and unpredictable, to some extent, for large complicated chemical kinetics problems containing widely
different time scales.

The above accuracy observations are local and what counts is the global accuracy. The global accuracy
depends on the consistency properties, on the stability, and hence on the precise way local errors accumulate
to global ones. For well established implicit Runge-Kutta schemes we know that in the transition from local
to global, part of the local errors due to stiffness is often annihilated [4]. For the PSSA scheme a
comprehensive error analysis seems not feasible, at least not for general nonlinear systems (1.1). Our
practical experience is that schemes like (2.2) perform remarkably well with respect to stability, at least when
taking into account that the stability is introduced solely by the diagonal matrix L(y). However, albeit this
may seem advantageous, it is also dangerous for schemes which are inaccurate, because it might give a false
impression of reliability.

For nonstiff components 2-nd order consistency can be obtained with the scheme
(2.4) yn+l - R(-’th+U2) yn + T(R(_TLn+1/2) _ I) (-TLn+1/2)_1Pn+1/2,
provided that R(z) is 2-nd order consistent and that the diagonal matrix Ln+l/ 2, as yet undefined, satisfies
n+1/2 _ 2L ' 2
2.5) L2 o Ly(t)) + 12 Ly(t,) y'(t,) + O(td),
upon substitution of the true solution (and similar for pn+l/ 2). The 2-nd order consistency follows from a
straightforward Taylor expansion. Note the resemblance with (2.2). In particular, under the same conditions
on R(z), scheme (2.4) also guarantees nonnegative solutions.
Freedom exists in defining the intermediate values L2 and P2 1 e put
(26) Ln+1/2 = L((yn+1+yn)/2), Pn+1/2 = P((yn+1+yn)/2),
and select the 2-nd order diagonal Padé approximation
2.7 R(z) = (2+2)/(2-2),
we in fact recover the classical, fully implicit midpoint rule. Likewise, with (2.7) and

(28) Ln+1/2 = (L(yn) + L(yﬂ+1))/2’ Pn+1/2 = (P(yn) + P(yn+1))/2’

we get a 3-rd order perturbation of the classical, fully implicit trapezoidal rule, given by
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29) y " =yl 2 a2 ] g @Dy (DL ymy
From the equivalent implicit form
(2.10) y "+ = g0 4 20 (a1 4 o] 4 L)1 prtl L palyn gy

the explicit, stiff corrector formula used in CHEMEQ [11,16] is derived. Let §“+1 denote a predicted value

and y“"'1 the associated corrected one. This explicit stiff corrector then reads

@.11) y"* =y 4 20 @+ @@ + Ly @) - Loy 4 7,

Note that LM*1y™ i replaced by Ly™ and not by L(C™*!)y™. In [15] and [13] (p. 161) the implicit form
(2.12) y" 1 = (n+l oo g qpy1 epn+l 4 T qpyP 4 1720 (TRH] 4 T0) P+ 4 piy),

is used, where TN = (L?)1, ., the diagonal matrix of time constants. This formula is equivalent to (2,9)
and (2.10), as it is also obtained from (2.4) and (2.7) by substitution of TN+1/2 = (LN+1/2y-1 514 by using
definition (2.8) for pn+l/2 and T"+1/ 2.

We are not in favour of using (2.10) or (2.12), simply because (2.7) does not decay like eZ for z < 0.
Hence, small perturbations from the equilibrium state are no longer rapidly damped for TLy --> oo, which is
the clue of the PSSA approach. Also note that (2.7) does not guarantee a nonnegative solution for all values

of the stepsize T. A more obvious choice is the 2-nd order subdiagonal Padé approximation
12
(2.13) R(z)=1/(1 -z+52 )

since this one nicely mimics the damping of eZ for z < 0 and also guarantees nonnegativity for (2.2) and
(2.4). Trivially, one could use the exponential itself, like in [9], but this may lead to zero divisions in the
expression (R(z)-1)/z and hence requires an additional check or modification. The use of the approximation
(2.13) avoids this.

The scheme for the PSSA solver that will be compared to RADAUS and DASSL in Section 5 uses
(2.13) and can now be defined. It has two stages. In stage one, the predictor stage, we apply (2.2). In stage
two, the corrector stage, we apply (2.4), (2.8) while the first stage result §n+1 is substituted for y"+1:

A+2Z+ ;—22) G B B O -;-Z)P“, Z=1Lh,
2.14)
(I+ Z+%Zz) yn+1 =yn+,c(]+%,z) Pn+1/2’ Z=TLn+1/2’

where L"1/2 2 172 (LP + L¢™*1)) and PP*1/2 = 172 (PN + P™*1)). One may also use (2.6) instead of
(2.8). Numerical tests have revealed that this leads to only minor differences. Note that for components for
which Ly (y) =0, stage one yields the explicit Euler formula and stage two the explicit trapezoidal rule.

All experiments discussed in Section 5 have been repeated with (2.14) replaced by the two-stage scheme

A+2Z) 0+l oy ppt 7 gL,



(2.15)
y1* 1 = max {0,y + 21 (41 + T + Ly 1 (P - LoyP 4 ),

of which stage two comes from (2.11) and stage one results from (2.2) by defining R(z) = 1/(1-z). The stage
one formula is the predictor used in CHEMEQ. In all our experiments, (2.14) did perform notably better than
this CHEMEQ pair. The difference in performance is due to the difference in asymptotic behaviour between
the stability functions (2.7) and (2.13). In the remainder results will only be given for (2.14).

Finally we note that in PSSA algorithms one usually assigns a steady state value Py /Ly to components
yk for values of 1Ly larger than a certain threshold. Similarly, for values of TLy smaller than a second
threshold, simple explicit integration formulas are introduced to replace the PSSA formulas. For large
chemical systems a sensible choice of these thresholds is in general not an easy task. By using (2.13) there is
less need to either, simply because for TLy --> oo the exponential damping to steady state is assured, while
for TLy --> O the usual order concept applies and then the PSSA formulas behave as accurate as standard
explicit formulas of the same order. In fact, these two limit cases are dealt with sufficiently accurately in the
PSSA approach. However, for components not yet in steady state intermediate values of TLy, associated with
intermediate time constants, may give rise to less accurate results, due to the fact that the size of TLy

influences the local truncation error in a manner similar as outlined for formula (2.2).

3. Connections with Runge-Kutta methods.

For (most) implicit RK methods, having R(z) as stability function, (2.2) results after one modified
Newton iteration if y" is taken as the start vector and L™ as the (very crude) approximate Jacobian. Scheme
(2.2) is also known as the most simple example of a RK-Rosenbrock or linearly implicit RK method ([14],
Ch. 4), when L™ is again interpreted as an approximate Jacobian. Also the most simple W-method ([7], Sect.
IV.7) can be brought in the form (2.2). Along the RK lin.e it thus is possible to consider the application of
PSSA type schemes of classical order higher than two. To see whether this could be advantageous, we have
implemented the 3-rd order, L-stable W-method W3L from [12], using L" in all its four stages as the
approximate Jacobian. Unfortunately, the performance of this explicit W3L turned out to be rather
disappointing compared to the 2-nd order PSSA scheme (2.14) (therefore no test results will be given for
W3L). The main reasons are that W3L is roughly a factor three more expensive, per step, while it also
generates negative solutions. Because the number of consistency conditions to be fulfilled increases very

rapidly with the order, no further attempts have been made towards a scheme of order four or higher.

4. Four solvers
4.1. PSSA. PSSA is based on (2.14). The difference EM*! = yn*1 _¢n+1 s ysed as the local error

estimator. Recall that the classical order of the two stages is one and two, respectively. Because the classical

En+1

order concept is of limited value here (cf. Section 2), will act as a crude estimate. However, for our

En+1

comparison purpose is good enough. Define

4.1) I EM g, = max ( EEHI /W), Wy =ATOL + RTOL ly,l,

where ATOL and RTOL are the absolute and relative error tolerance. If Il E“‘HIIW < 1, then the integration

step is accepted and otherwise rejected. The new stepsize Tpe,y is estimated by
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“2) Tnew = max (0.2, min (8.0, 0.8 A\ IEP I, )) 714.

Hence the stepsize ratio is constrained by 0.2 and 8.0, which means that we allow a very rapid increase or
decrease. It should be stressed that this is a highly desirable feature in the setting of operator splitting, due to
the necessary restart within every operator splitting step. We copied these growth factors from the stepsize
control from RADAUS.

To obtain a safe guess for the initial stepsize, we replace EMtl (3.1) by ‘cf(yO) and define T such that
the weighted error norm is equal to 1, i.e.,

4.3) T =min (W) / Ifk(yO)I), Wy = ATOL + RTOL Iyg I

Hence the initial step is chosen such that the first Taylor term ‘cf(yO) satisfies the absolute/relative tolerance
requirement. If this still results in a step rejection, we divide the initial guess by 10.0 until acception follows
and then proceed as usual (cf. the RADAUS strategy). Normally, however, (4.3) will lead to a rather small

initial guess, which will be accepted and subsequently rapidly increased according to (4.2).

4.2. RADAUS and DASSL. RADAUS is the Nov. 14/1989 version of the solver discussed in [7]. DASSL
[1] is the double precision version DDASSL taken from netlib [5]. Both codes possess their own strategies
and we have applied them as black boxes using only default options, except that the initial stepsize is
determined by (4.3). Hence any possibility to let them run faster has been omitted. For example, the Jacobian
matrix is computed numerically and always treated as a full matrix. Note that both can produce negative

solution values. However, in the experiments reported here this has never been a problem.

4.3. TRAP. TRAP is based on the explicit trapezoidal rule
§n+1 =yN 4 1,

4.4
y ™=y s 12n (7 4+ £,

and chooses its stepsizes in precisely the same way as PSSA. We have used TRAP to assess in a simple way
the degree of stiffness of the example problems. As a solver for stiff problems TRAP makes no sense of
course, due to the severe stability restriction. Note, however, that per integration step the costs of PSSA and
TRAP are highly comparable, so that PSSA can be compared to TRAP to illustrate the large gain in

stability of the explicit pseudo-steady-state formulas over standard explicit ones like (4.4).

5. The numerical comparison.

5.1. The example problems. We have selected three example problems from atmospheric chemistry, here
called ATMOS7, ATMOS12 and ATMOS20 (the integer denotes the dimension). ATMOS7 is an
atmospheric chemical relaxation test problem involving cesium and cesium ions. We borrowed this problem
from [15,16] where it is used to illustrate CHEMEQ. The two problems ATMOS12 and ATMOS20 emanate
from an air pollution study and were borrowed from [10], respectively [9]. A complete specification of the

problems is given in the Appendix.



In the tables of result we give the values (sd, cpu, steps), where sd is the number of significant digits for

the maximum relative error,
n
yg - Ye(D

.1 sd =- 1Olog (max Tk(ﬂ—r— ),

cpu the CPU time in seconds, and steps the number of accepted plus rejected integration steps. Steps and cpu
serve to measure the efficiency. We use cpu as we cannot give the full statistics due to a too widely differing
workload of the solvers. Although cpu is an approximate value and implementation and machine dependent,
the given values are good enough for comparison purposes. We also tabulate the initial stepsize T; and the
length T of the integration interval. For simplicity we have used one set of tolerances in all experiments with
PSSA, RADAU and DASSL, viz,

(5.2) ATOL =109 TOL, RTOL=TOL, TOL=10", i=1(1)4.

It should be emphasized that for reactive flow problems a low level of accuracy suffices, say 1% (sd = 2). A
higher level is redundant due to errors made in other (operator splitting) processes and uncertainties in the

reaction constants of the chemistry model.

5.2. Results for TRAP. To assess the degree of stiffness of the three tests problems, we have first applied
TRAP using the tolerances RTOL = ATOL = 0.1. For these tolerances the stepsizes for ATMOS12 and
ATMOS20 are completely restricted by stability, for all times. For ATMOS12 the variable stepsize

mechanism selects as the maximum stable stepsize 2.0;(-6, approximately, which indicates a Lipschitz
constant for the right-hand side function of approximately 100. For ATMOS20 these approximate values are,
respectively, 1.3;9-7 and 1.5;(+7. Hence, both are excessively stiff. For ATMOS12, respectively
ATMOS20, the explicit solver TRAP would require a total of about 60 million, respectively 460 million,
accepted integration steps over the selected time intervals (see Table 2 and Table 3).

ATMOST7 differs from the other two problems, in the sense that for a number of components production
strongly dominates over part of the integration steps. During these production steps the stepsize smoothly
increases from about 1.21(-11 to a maximum of about 3.25, which is then maintained until the final time T
= 1000. When the maximum stepsize is reached, production has stopped and the stepsize is determined solely
by stability. ATMOS7 thus turns out to be only moderately stiff. The integration for RTOL = ATOL = 0.1

requires 6305 accepted steps plus 3 rejected ones, and delivers sd = 1.73.

5.3. Results for PSSA, RADAU and DASSL. The results have been collected in Tables 1 - 3. The following

conclusions can be made. The explicit solver PSSA really beats the explicit solver TRAP, illustrating its

much improved stability. In fact, with respect to stability, PSSA compares with the implicit solvers.

PSSA performs well for ATMOS?7 for which it outperforms the two implicit solvers for TOL = 10'1,
1072, For the smaller values of TOL the implicit codes become more efficient than PSSA due to their high
order. This is of minor relevance, though, as high accuracy is redundant for the present application. The
difference in number of time steps between the two implicit solvers is due to the fact that RADAUS admits a
larger stepsize growth. As a result, for this problem RADAUS manages to spent approximately the same
CPU time as DASSL, in spite of its larger numerical algebra overhead. For a larger dimension this may no

longer be true.
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For ATMOS12 and ATMOS20 the situation is different and less promising for PSSA, in spite of the
larger problem dimension which is a disadvantage for the implicit solvers. PSSA returns less accurate
solutions and hence needs too many time steps near the 1% error level to beat the implicit solvers in speed.
In particular, for ATMOS20 the two implicit codes are significantly faster near the 1% error level. We
conjecture that this is due to the presence of intermediate time constants rendering the PSSA approach
inaccurate (cf. the remark at the end of Section 3). Clearly, the more complicated the chemical scheme, the
more intermediate time constants can play this negative role.

Finally, the experiments of this section have been repeated with the time interval halved. No notable

differences with the results obtained on the original intervals were observed.

Table 1. The values (sd, cpu, steps) for ATMOS7 with T = 1000.

(TOL, ;) PSSA RADAUS DASSL
(107, 1.61¢-18) (1.53, 0012, 116) (1.82, 0.08, 49) (143, 0.09, 134)
(1072, 1.60-19) (244, 0051, 456) (2.82, 0.09, 49) (1.97, 0.10, 175)
(1073, 1.6;9-20) (3.43, 0.182, 1639 ) (3.89, 0.11, 61) (3.66, 0.15, 265)
(104, 1.670-21) (441, 0.610,5479 ) (5.63, 0.14, 92) (3.96, 0.21, 356 )

Table 2. The values (sd, cpu, steps) for ATMOS12 with T = 120.

(TOL, 1) PSSA RADAUS DASSL

(10°], 2510:5) (0.77, 0.003, 18) (021, 0.08, 25) (1.37, 0.04, 30)
(102, 2.5,0-6) (0.94, 0.006, 38) (1.89, 0.05, 19) (1.59, 0.05, 49)
(1073, 2.5;0-7) (1.22, 0.020,130) (3.12, 0.06, 23) (267, 0.07, 77)
(104, 25,5-8) (2.14, 0.090, 595) (4.16, 0.09, 32) (3.48, 0.09, 112)

Table 3. The values (sd, cpu, steps) for ATMOS20 with T = 60.

(TOL, 17) PSSA RADAUS DASSL
( lO'l, 4.710-07) (0.09, 0.006, 29) (2.08, 0.13, 20) (1.20, 0.10, 42)
( 10'2, 4.710-08) (041, 0.024, 123) (4.17, 0.14, 23) (2.09, 0.12, 69)
( 10'3, 4.710-09) (1.13, 0.133, 676) (4.86, 0.20, 32) (3.56, 0.17, 108 )
( 10'4, 4.710-10) (227, 0.930, 4700) (5.19, 031, 48) (4.06, 0.24,173)

6. Final remarks.

Two more chemical reaction kinetics problems have been experimented with, viz the 8-species problem
HIRES used as a test example in [7] and a 12-species chemical pyrolysis problem from [3]. These
experiments again favour the implicit approach. We should also recall that common implicit integration

formulas are conservative. The conservation error generated by implicit solvers only depends on the accuracy
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at which the implicit equations are solved. On the other hand, PSSA schemes are not conservative and
therefore may easily generate larger conservation errors.

In spite of their better performance, it is clear that standard implicit solvers will still require an enormous
amount of CPU time in a reactive flow calculation where the chemical equations must be integrated at
thousands of grid points at many operator splitting steps. Therefore, more research into fast implicit chemical
integrators for reactive flow problems is needed. This research should be directed towards reducing the
numerical algebra overhead costs spent in solving implicit relations for reactive flow calculations. Several

possibilities to achieve this goal are conceivable and we plan to report on the subject in the near future.
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Appendix.

We give, for each of the three examples, the chemical model, the initial values and a highly accurate
reference solution at the chosen point of time. The reference solutions were computed with RADAUS5, using
ATOL =RTOL = 10712 and the initial stepsize determined by (4.3).

ATMOS?7 The first example is an atmospheric chemical relaxation test problem involving cesium and

cesium ions. We borrowed the problem from [15,16] where it is used to illustrate CHEMEQ.

reaction rate constant
1. 02 +Cs* - Cs + 02 5.00E--08 cm3s-1
2. Cst+e N Cs + hv 1.00E--12 cm3s-1
3. Cs+hv - Cst+e 3.24E--03 57!
4. 02 +hv - O2+e 4.00E--01 s-1
5. 02+Cs+M - Cs02 + M 1.00E--31 cms-1
6. 02+e +02 - 02" +02 1.24E--30 cmbs-1
7. 02+e +N2 - 02" +N2 1.00E--31 cm®s-1
M = [Cs] + [CsO2] + [N2] + [02]
initial concentrations (cm'3 ) after 1000 sec.
1. [e] 1.0E+02 [Cs*] - [027]
2. [027] 5.2E+02 0.25913949206091E+05
3. [Cst] 6.2E+02 0.75571846029976E+05
4. [Cs] 1.0E+12 0.15319405172213E+04
5. [CsO2] 0 0.99999992351621E+12
6. [N2] 1.4E+15 initial concentration
7. [02] 3.6E+14 0.35900000005109E+15

ATMOS12 The second example problem emanates from an air pollution study and has been provided by De
Leeuw [10]. The units for the rate constants are min-! for first order reactions and ppm'1 min-! for the

second order ones.

reaction rate constant



1. NO2 - NO + 03 .175E+00
2. NO+O3 - NO2 .266E+02
3. HO2 +NO - NO2 + OH .120E+05
4. NO2+OH - HNO3 .163E+05
5. 03 - O1D .225E--03
6. O1D - OH + OH .650E+10
7. OID - 03 470E+11
8. HO2+OH - prod .600E+05
9. 03 +OH - HO2 .100E+03
10. 03 + HO2 - OH .300E+01
11. HO2 + HO2 - H202 .370E+04
12. CO + OH - HO2 .400E+03
13. OH + CH4 - CH30 .118E+02
14. CH30 + NO - HCHO + NO2 + HO2 .120E+05
15. CH30 + HO2 - prod 440E+04
16. HCHO + OH - HO2 + CO .150E+05
17. HCHO - HO2 + HO2 + CO .335E--03
18. HCHO - CcO .850E--03
19. H202 - OH + OH .320E--03
20. H202 + OH - HO2 .240E+04
initial concentrations (ppm) after 120 min.
1. [NO2] 0 0.38589237687089E--02
2. [NOJ .5000E--02 0.96820017614729E--03
3. [03] .3000E--01 0.26144891560585E--01
4. [HO2] 0 0.16287841239683E--06
5. [OH] 0 0.23184614617181E--07
6. [HNO3] 0 0.17287605514378E--03
7. [OID] 0 0.10995515142302E--15
8. [H202] 0 0.10127217681458E--07
9. [CO] .1500E+00 0.14983905001925E+00
10. [CH30] 0 0.35314632377670E--07
11. [HCHO] 0 0.44482671246335E--04
12. [CH4] .1500E+01 0.14999512450596E+01

ATMOS20 The third example problem also emanates from an air pollution study and has been taken from
[9]. The units for the rate constants are min-! for first order reactions and ppm‘1 min! for the second order

ones.



reaction
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rate constant

1. NO2 - NO + 03P .350E+00
2. NO+ 03 - NO2 .266E+02
3. HO2 +NO - NO2 + OH .120E+05
4. HCHO - 2HO2+CO .860E--03
5. HCHO - Cco .820E--03
6. HCHO + OH - HO2 + CO .150E+05
7. ALD - MEO2 + HO2 + CO .130E--03
8. ALD + OH - C203 .240E+05
9. C203 +NO - NO2 + MEO2 + CO2 .165E+05
10. C203 + NO2 - PAN .900E+04
11. PAN - C203 + NO2 .220E--01
12. MEO2 + NO - CH30 + NO2 .120E+05
13. CH30 - HCHO + HO2 .188E+01
14. NO2 + OH - HNO3 .163E+05
15. O3p - 03 480E+07
16. 03 - O1D .350E--03
17. 03 - o3p .175E--01
18. OID - 2 OH .100E+09
19. OID - o3p A444E+12
20. SO2 + OH - SO4 + HO2 .124E+04
21. NO3 - NO .210E+01
22. NO3 - NO2 + O3P .578E+01
23. NO2 +03 - NO3 474E--01
24. NO3 + NO2 - N205 .178E+04
25. N205 - NO3 + NO2 312E+01
initial concentrations (ppm) after 60 min.
1. [NO2] 0 0.56462554800124E--01
2. [NOJ 0.2 0.13424841304232E+00
3. [03P] 0 0.41397343310918E--08
4. [03] 0.04 0.55231402074779E--02
5. [HO2] 0 0.20189772623092E--06
6. [OH] 0 0.14645418635004E--06
7. [HCHO] 0.1 0.77842491190039E--01
8. [CO] 0.3 0.32450753533953E+00
9. [ALD] 0.01 0.74940133838905E--02
10. [MEQ2?] 0 0.16222931573089E--07
11. [C203] 0 0.11358638332624E--07



12.
13.
14.
15.
16.
17.
18.
19.
20.

[cOo2]
[PAN]
[CH30]
[HNO3]
[01D]
[S02]
[SO4]
[NO3]
[N205]
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0.22305059757112E--02
0.20871628827982E--03
0.13969210168610E--04
0.89648848569121E--02
0.43528463693250E--17
0.68992196962640E--02
0.10078030373603E--03
0.17721465139664E--05
0.56829432922952E--04



