: Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Datalog with non-deterministic choice computes
NDB-PTIME

L. Corciulo, F. Giannotti, D. Pedreschi

Computer Science/Department of Algorithmics and Architecture

Report CS-R9364 September 1993



CWI! is the National Research Insfitute for Mathematics and Computer Science. CWI is part of
the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathematics
and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scientific Research (NWO). CWI is a
member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrym
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Datalog with Non-deterministic Choice
Computes NDB-PTIME

Luca Corciulo?, Fosca Giannotti!, and Dino Pedreschi?

1 CNUCE Institute of CNR, Via S. Maria 36, 56125 Pisa, Italy
e-mail: fosca@cnuce.cnr.it

2 Dipartimento di Informatica, Univ. Pisa, Corso Italia 40, 56125 Pisa, Italy
e-mail: pedre@di.unipi.it

Abstract

This paper addresses the issue of non deterministic extensions of logic database languages. After providing a
quick overview of the main proposals in the literature, we concentrate on the analysis of the dynamic choice
construct from the point of view of the expressive power. We show how such construct is capable of expressing
several interesting deterministic and non deterministic problems, such as forms of negation, and ordering. We
then prove that Datalog augmented with the dynamic choice expresses exactly the non deterministic time-
polynomial queries. We thus obtain a complete characterization of the expressiveness of the dynamic choice,
and conversely achieve a characterization of the class of queries NDB-PTIME by means of a simple, declarative
and efficiently implementable language.
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1. INTRODUCTION

Two main classes of logic database languages have been proposed in the literature. One is the class
of FO database languages, based on the relational calculus, i.e. on the first-order logic interpretation
of the relational data model. The other one is the class of Datalog languages, a subset of the logic
programming paradigm which supports and extends the basic mechanisms of the relational data model.

Indeed, both classes served as the basis of several extensions, aimed at enhancing the expressive
power of the relational data model. For instance, the set of queries expressed by the relational algebra
is strictly included in that of the fizpoint queries (the transitive closure is a fixpoint query which is
inexpressible in the relational algebra), whereas it is well known that every fixpoint query can be
expressed in FO extended with an inflationary fixpoint operator, or equivalently in Datalog extended
with inflationary negation.

Unfortunately, the expressiveness achieved by this kind of deterministic extensions of logic database
languages is not satisfactory. Surprisingly enough, no known deterministic logic language can express
all deterministic queries computable in polynomial time (e.g., no known deterministic language ex-
presses the parity query [7]).

From a pragmatical viewpoint, a clear need for non-determinism is also emerging from applications.
The all-answers paradigm for query execution exacerbates the need for special constructs to deal with
situations where the user is not interested in all the possible answers. This problem is exemplified by
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L. Introduction 2

the following situation: a new student must be given one (and only one) advisor. If the application of
various qualification criteria fails to narrow the search to a single qualified professor, then an arbitrary
choice from the eligible faculty will have to be made and' recorded.

Moreover, it has been pointed out in' the literature that non deterministic operators provide an
explicit means for controlling the computation. Several examples illustrating this point are given in
this paper. Explicit control mechanisms are often essential in real applications, in order to achieve effi-
cient implementations—a natural parallel arises here with the technique of meta-interpreters in other
programming paradigms. From this perspective, a tight connection exists between non-determinism
and ordered databases [16, 6]. It is worth observing that languages over ordered domains are more
expressive than those over unordered domains [16].

These are the motivations underlying the introduction of non deterministic mechanisms in logic
database languages. A first batch of proposals is due to Abiteboul and Vianu (3, 4, 5, 6], based
on a non-deterministic witness construct for the fixpoint extensions of FO, and a non-deterministic
operational semantics for Datalog— (d la' production systems), giving rise to the class of N_Datalog
languages. The expressive power of these classes of proposals has been thoroughly studied by the same
authors, who show how certain non deterministic languages compute exactly the non deterministic
time-polynomial queries (NDB-PTIME) and the non deterministic space-polynomial queries (NDB-
PSPACE). On the other hand, these languages are described only in operational terms, without any
declarative semantics, thus spoiling the logic nature of the original languages. Moreover, the proposals
based on the witness construct are hardly amenable to efficient implementations, and therefore they
do not suggest any construct which may be adopted in real database languages.

An alternative stream of proposals was started by Krishnamurthy and Naqvi [18], and later refined
by Sacca and Zaniolo [20] and Giannotti, Pedreschi, Sacca and Zaniolo [13]. These proposals are based
on a non deterministic choice construct for Datalog, which, in all cases, was designed on the basis
of a declarative semantics—choice models in [18], and stable models in [20, 13]. Moreover, the choice
construct can be efficiently implemented, and it is actually adopted in the logic database language
LDL [19, 8]. On the other hand, an expressiveness characterization for these proposals is lacking,
which allows to compare the choice construct with the other proposals.

The figure highlights the taxonomy of non deterministic logic languages. The dashed boxes indicate
the mentioned two classes of proposals.

Logic Database Languages

This work is aimed at bridging the éxisting gap between the two classes of proposals, by presenting
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an expressiveness characterization of Datalog augmented with one of the choice mechanisms, namely
the dynamic choice construct introduced in [13]. This study is conducted both pragmatically, on the
basis of examples, and formally, on the basis of known expressiveness results. In particular, we show
how the dynamic choice construct is a powerful means for controlling the fixpoint computation, in
order to express relevant problems such as computing the complement of a relation, or computing an
arbitrary ordering of a relation.

Finally, in the main result of this paper; we show that Datalog with dynamic choice expresses
exactly the non deterministic time-polynomial queries, a complexity class known as NDB-PTIME.
The result is achieved by showing how the dynamic choice allows us to express the control needed to
execute N Datalog— programs over ordered domains—a language which is known to capture NDB-
PTIME. The relevance of this result is clear: Datalog with the dynamic choice has the same (high)
expressiveness of languages which:

e are considerably more complex—Datalog with dynamic choice is negation-less,

e are lacking a declarative semantics—Datalog with dynamic choice is sound (although not com-
plete) w.r.t. stable model semantics,

o are hard to be efficiently implemented—Datalog with dynamic choice is the kernel of LDL.

As a conclusion, a simple, declarative characterization of NDB-PTIME is achieved by means of the
dynamic choice extension of pure Datalog: such a language, although remarkably simple, is then

capable of expressing all non deterministic time-polynomial queries and, therefore, all deterministic
ones.

The plan of the paper follows. In Section 2 a short survey of the main proposals of non deterministic
extensions of logic database languages is provided. Particular emphasis is placed on Datalog extended
with the dynamic choice construct. Section 3 and 4 show how to compute negation and ordering using
the dynamic choice. Section 5 is devoted to illustrating the emulation of N_Datalog— , a language
which embodies a form of nondeterminism typical of rule-based systems. Section 6 presents the main
result, namely that Datalog with dynamic choice captures the complexity class NDB-PTIME; we then
draw some conclusions, and briefly illustrate future research directions.

1.1 Preliminaries

We assume that the reader is familiar with the relational data model and associated algebra, the
relational calculus (i.e. the first-order gueries, denoted F'O), and Datalog [17, 21, 9, 11]. In the
extended language Datalog— the use of negation in the bodies of clauses (or rules) is also allowed;
in another extension of Datalog, N Datalog(—), we shall also admit the presence of multiple atoms
in the heads of clauses. Datalog(—) (and N _Datalog(—)) rules obey the safety constraint, i.e. each
variable occurring in the head of a clause also occurs in a positive literal in the body. The operational
semantics of Datalog, in the usual deterministic case, consists of evaluating “in parallel” all applicable
instantiations of the rules. This is formalized using the consequences operator Tp associated to a
Datalog program P, which is a map over (Herbrand) interpretations defined as follows:

Tp(I)={A| A«B,,...,B, €ground(P) and I =B A...AB,}
The least model Mp of program P can then be computed as the limit (union) of the finite powers of
Tp starting from the empty interpretation, denoted Tp T w [1]:
Tp10 = 0
Tp1(i+1) = Tp(Tp1i), fori>0

Tplw = UTpTi.
i>0
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In the case of Datalog—, this simple operational semantics can be slightly modified to realize to the
so-called inflationary negation: the required change is to accumulate the powers of Tp as follows:

TPT(‘I:-}-].) = TpTiUTp(TPTi), for i > 0.

This fixpoint procedure is therefore monotonic only w.r.t. the positive knowledge, and computes, in
general, non-minimal models.

The fixpoint (iterative) extensions of FO consist of augmenting the relational calculus with fixpoint
operators, which provide recursion. The inflationary fizpoint operator IFP is defined as follows.
Let @ be a FO formula where the n-ary relation symbol S occurs. Then I FP(®,S) denotes an n-
ary relation, whose extension is the limit of the sequence Jp, ... s Ik, - .., defined as follows (given a
database extension, or instance, I):

¢ Jo = I(S), where I(S) denotes the extension of S in I, and

® Jiy1 = Jx UR(I[Jx/S]), for k > 0, where ®(I[J;/S]) denotes the evaluation of the query @ on
I where S is assigned to J;.

Notice that JF'P converges in polynomial time on all input databases. A partial fixpoint operator
PFP can also be defined, which gives raise to possibly infinite computations: PFP is not considered
in this paper. The first-order logic augmented with IFP is called inflationary fizpoint logic and is
denoted by FO+IFP. The queries computed by FO+IFP are the so-called fizpoint queries, for which
various equivalent definitions exist in the literature [7, 15].

Close connections exist between the fixpoint F'O extensions and the Datalog extensions [6]: Datalog—
expresses exactly the fixpoint queries, i.e. it is equivalent to FO+IFP. This implies that Datalog— is
strictly more expressive than Datalog with stratified negation, as the latter is known to be strictly
included in FO+IFP.

Finally, the complexity measures are functions of the size of the input database. For Turing Machine
complexity class C' there is a corresponding complexity class of (non-deterministic) queries (N)DB-C.
In particular, the class of (non-deterministic) database queries that can be computed by a (non-
deterministic) Turing Machine in polynomial time is denoted by (N)DB-PTIME. It is conjectured
that no deterministic language exists, capable of expressing all queries in DB-PTIME.

2. NON-DETERMINISTIC EXTENSIONS OF LOGIC DATABASE LANGUAGES

In this section, several mechanisms for dealing with non-determinism in logic database languages are
briefly surveyed. In particular, we present a non-deterministic construct for the fixpoint extensions
of FO, a non-deterministic operational semantics for Datalog— (d la production systems), and a non-
deterministic mechanism for pure Datalog. The first two classes of proposals are due to Abiteboul
and Vianu [3, 5, 6], whereas the third class of proposals is due to Krishnamurthy and Naqvi (18] and
Giannotti, Pedreschi, Sacca and Zaniolo [20, 13].

2.1 The witness operator
A non-deterministic extension of F'O is achieved by introducing the so-called witness operator [3, 5, 6].
Informally, given a formula (query) ®(X), the witness operator Wx applied to ®(X) chooses an

arbitrary X that makes ® true. The extension of the inflationary fixpoint logic FO+IFP with the
witness operator is denoted by FO+IFP+W.

Let us define more precisely the semantics of W. Notice that, in presence of non-determinism, we
have a set of possible interpretations for a given formula in FO+IFP+ W, or equivalently, a set of
possible sets of answers to a given query. Consider a formula Wx(®(X,Y)), where Y is the vector of
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variables other than X that occur free in ®. Then I is an interpretation of Wx(®(X,Y)) iff, for some
interpretation J of ®(X,Y’) such that I C J:

e for each Y such that (X,Y) € J for some X, there is a unique Xy such that (Xy,Y) € I.

Intuitively, one “witness” Xy is arbitrarily chosen for each Y satisfying 3X.®(X,Y’). Alternatively,
the meaning of W can be also described in terms of functional dependencies: the interpretation I is
a maximal subset of J satisfying the functional dependency ¥ — X.

Example 1 Consider a binary relation E such that E(P,S) represents the fact that professor P is
an eligible advisor of student S. Then the formula Wp(E(P, S)) realizes the non-deterministic query
of assigning exactly one advisor to each student.

It should be noted that the witness operator is added to F'O independently from the fixpoint
operator. Accordingly, the fixpoint computation and the non-deterministic choices do not interfere,
in the sense the non-deterministic choices of the witnesses are performed w.r.t. the current fixpoint
approximation, without memory of the choices that were previously operated. In other words, the
witness operator performs choices locally to a given step of the fixpoint computation.

From the viewpoint of the expressive power, the relevance of FO+IFP+ W is due to the following
result of Abiteboul and Vianu [5]:

Theorem 2 A query is in NDB-PTIME iff it is expressed in FO+IFP+W. a

An analogous result of the same authors shows that FO+PFP+W, i.e. FO augmented with the
partial fixpoint and the witness operators, expresses exactly the queries in NDB-PSPACE.

2.2 N_Datalog

A natural form of non-determinism for Datalog programs is obtained by relaxing the constraint that,
at each step of the fixpoint computation, all applicable rules are executed. Thus, a non-deterministic
operational semantics is obtained by firing, at each step, one (instance of an) applicable rule, based
on a non-deterministic choice. This policy directly mirrors the behavior of rule-based (or production)
systems, such as OPS5 or KEE. Notice that such an execution policy yields the same results as the
usual Datalog fixpoint computation in absence of negation, as, in pure Datalog, an applicable rule
remains applicable as new facts are inferred.

Abiteboul and Vianu [5] proposed to adopt the mentioned non-deterministic operational semantics
for N_Datalog—, an extension of pure Datalog which allows the use of negation in clause bodies, and
multiple atoms in clause heads. Thus, an N_Datalog program is a finite set of rules of the form

Al,...,AkPLl,...,Lm

(k > 1,m > 0), where each A; is an atom and each L; is a literal, i.e. an atom or its negation.

To define the non-deterministic operational semantics, the notion of immediate successor of an
interpretation (i.e. a set of facts) I w.r.t. a rule 7 is introduced. Let ' = A;,...,Ax < L1,...,Ln
be a ground instance of an N_Datalog— rule r such that all literals Ly,..., Ly, in the body of r’ are
true in I. Then the interpretation J = I U {A1,..., Ak} is called an immediate successor of I using
r. We then define a computation of an N_Datalog— program P starting from an initial interpretation
Iy as a maximal sequence Iy, ..., I, ... of interpretations such that, for k£ > 0, Ix4 is an immediate
successor of I using some rule from P.

Tt is worth observing that such an operational semantics is inflationary, and thus computations are
always finite (and, again, convergent in polynomial time).
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Example 3 The following Datalog—~ program takes as input a binary relation G representing an
undirected graph g, and computes (into the relation DQ@) an arbitrary orientation of g:

DG(X,Y) — G(X,Y),G(Y, X),=DG(Y, X).

From the viewpoint of the expressive power, N _Datalog- is strictly included in NDB-PTIME. In
fact, it is possible to show that such a language cannot express the query P — 71(Q), where P is a
unary relation and @ a binary one. Thus, it is needed to extend N_Datalog— in order to capture all the
queries in NDB-PTIME. Two possible approaches of remedying this problem are the following. One
is allowing universal quantification in clause bodies: the resulting language is denoted N_Datalog—V.
The second is violating the data independence principle, and allowing the use of ordered databases.
In both cases we obtain languages that capture NDB-PTIME, and that are therefore equivalent to
FO+IFP+W. This result is due to Abiteboul and Vianu [6].

Theorem 4 A query is in NDB-PTIME iff it is expressed in N_Datalog—V or, equivalently, in N_Datalog—
over ordered databases. O

An analogous result of the same authors shows that N_Datalog—x, i.e. N_Datalog— augmented with
negation in rule heads (interpreted as deletion of facts), expresses exactly the queries in NDB-PSPACE.

2.3 The family of choice operators

The proposals discussed in the previous sections 2.1 and 2.2 suffer from the lack of a declarative,
model-theoretic semantics, which seriously compromises their logic connotation. Another approach
was started by Krishnamurthy and Naqvi [18], and later refined by Sacci and Zaniolo [20] and Gian-
notti, Pedreschi, Sacca and Zaniolo [13]. The proposals described in this section are based on a non
deterministic choice construct for Datalog, which, in all cases, was designed on the basis of a declar-
ative semantics—choice models in [18], and stable models in [20, 13]. Moreover, the choice construct
can be efficiently implemented, and it is actually adopted in the logic database language £DL[19, 8].
On the other hand, an expressiveness characterization for these proposals is lacking, which allows to
compare the choice construct with the previously discussed proposals. The rest of this section surveys
the original proposal and two refinements, which improve from several viewpoints.

Static choice The choice construct was first proposed by Krishnamurthy and Nagvi in [18]. Ac-
cording to their proposal, special goals, of the form choice((X),(Y)), are allowed in Datalog rules
to denote the functional dependency (FD) X — Y. The meaning of such programs is defined by its
choice models, as discussed next.

Example 5 Consider the following Datalog program with choice.

a_st(St,Crs) « takes(St, Crs), chaice((Crs), (St)).
takes(andy, engl).

takes(ann, math).

takes(mark, engl).

takes(mark, math).

The choice goal in the first rule specifies that the a_st predicate symbol must associate exactly one
student to each course. Thus the functional dependency Crs — St holds in the (choice model defining
the) answer. Thus the above program has the following four choice models:
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M; = { a_st(andy, engl),a_st(ann, math)} UX,
M, = { a_st(mark, engl),a_st(mark, math)} UX,
M; = { a_st(mark, engl),a_st(ann, math)} UX,
M, = { a_st(andy, engl),a_st(mark, math)} UX,

where X is the set of takes facts.

A choice predicate is an atom of the form choice((X),(Y)), where X and Y are lists of variables
(note that X can be empty). A rule having one or more choice predicates as goals is a choice rule,
while a rule without choice predicates is called a positive rule. Finally, a choice program is a program
consisting of positive rules and choice rules.

The set of the choice models of a choice program formally defines its meaning. The main operation
involved in the definition of a choice model is illustrated by the previous example. Basically, any choice
model Mj, ..., M4 can be constructed by first removing the choice goal from the rule and computing
the resulting a_st facts. Then the basic operation of enforcing the FD constraints is performed, by
selecting a maximal subset of the previous a_st facts that satisfies the FD Crs — St (there are four
such subsets).

For the sake of simplicity, assume that P contain only one choice rule r, as follows:
r: A« B(Z),choice((X),(Y)).

where B(Z) denotes the conjunction of all the non-choice goals of 7, and Z is the vector of variables
occurring in the body of r (hence Z D X UY.) The positive version of P, denoted by PV(P), is the
positive program obtained from P by eliminating all choice goals. Let Mp be the least model of the
positive program PV (P), and consider the set Cp defined as follows:

Cp = { choice((z), (y)) | Mp = B(2)}

Consider next a maximal subset C}, of Cp satisfying the FD X — Y. With this preparation, a choice
model of P is defined as the least model of the program P U C5p.

Thus, computing with the static choice entails three stages of a bottom-up procedure. In the
first stage, the saturation of PV(P) is computed, ignoring choice goals. In the second stage, an
extension of the choice predicates is computed by non-deterministically selecting a maximal subset of
the corresponding query which satisfies the given FD. Finally, a new saturation is performed using
the original program P together with the selected choice atoms, in order to propagate the effects of
the operated choice.

The qualification static for this choice operator stems from the observation that the choice is op-
erated once and forall, after a preliminary fixpoint computation. Because of its static nature, this
form of choice cannot be safely used within recursive rules. As observed in [13], the choice models
semantics fails when mixed with recursion, in the sense that the delivered results do not comply with
any declarative reading. Moreover, the procedure for computing choice models is extremely inefficient,
as operating the choices only after a general saturation phase is wasteful—a more efficient procedure
should instead operate choices as soon as possible, in order to reduce the amount of work for future
saturations. Finally, due to the impossibility of being adopted within recursion, the static choice has
a limited expressive power. To remedy these drawbacks, some refinements of the static choice have
been proposed, which are discussed next.

Model-theoretical choice An alternative approach to define a declarative semantics for the choice
construct was proposed by Sacca and Zaniolo [20]. According to this proposal, programs with choice
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are transformed into programs with negation which exhibit a multiplicity of stable models. ! Each
stable model corresponds to an alternative set of answers for the original program. Following [20],
therefore, given a choice program P, we introduce the stable version of P, denoted by SV (P), defined
as the program with negation obtained from P by the following two transformation steps:

1. Consider a choice rule of P, say
r: A+ B(Z), choice((X),(Y)).

where B(Z) denotes the conjunction of all the non-choice goals of r, and Z is the vector of
variables occurring in the body of 7, and replace the body of r with the atom chosen(Z):

' : A« chosen(Z).
2. add the new rule:
chosen(Z) «— B(Z),~dif fChoice(Z).
3. add the new rule:
dif fChoice(Z) «— chosen(Z'),Y #Y'.
where Z' is a list of variables obtained from Z by replacing variable Y by the fresh variable Y.

The transformation directly generalizes to FD involving vectors of variables, and to multiple choice
goals. When the given program P is such that none of its choice rules is recursive, then P and its
stable version are semantically equivalent in the sense that the set of choice models of P coincides
with the set of stable models of SV(P) on common predicate symbols [20].

Example 6 The following is the stable version of Example 3.

a_st(St,Crs) «— chosen(Crs, St).

chosen(Crs, St) «— takes(St,Crs), ~dif fChoice(Crs, St).
dif fChoice(Crs, St) «— chosen(Crs, St), St # St.
takes(andy, engl).

takes(ann, math).

takes(mark, engl).

takes(mark, math).

This programs admits four distinct stable models, corresponding to the four choice models of Example

3.

It should be remarked that, in choice programs, negation is only used to assign a declarative
semantics to the choice construct. In other words, choice programs are positive Datalog programs
augmented with choice goals.

This new characterization of choice overcomes the cited deficiencies of static choice of Krishnamurthy
and Naqvi [18]. Indeed, the new formulation correctly supports the use of choice within recursive
rules, avoiding the semantical anomalies of the static choice [13]. Moreover, it can be efficiently
implemented by a straightforward fixpoint procedure which allows to interleave non-deterministic
choices and ordinary rule applications in the bottom-up computation (the so-called stable backtracking
fizpoint [20]). Nevertheless, the expressiveness of this form of choice can be considerably enhanced by
adopting a particular instance of the cited fixpoint procedure.

1Stable models semanticsis a concept originating from autoepistemic logic, which was applied to the study of negation
in Horn clause languages by Gelfond and Lifschitz [12].
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Dynamic choice 'We now introduce a particular operational semantics for the choice construct,
following the presentation of Giannotti, Pedreschi, Sacca and Zaniolo [13]. This operational semantics
is an instance of the general bottom-up procedure of Sacca and Zaniolo [20] for computing stable
models, and is obtained by adopting a particular policy of interleaving non-deterministic choices and
the ordinary fixpoint computation. The resulting procedure is referred to as DCF for dynamic choice
fizpoint, and the associated form of choice construct is referred to as dynamic choice.

The DCF procedure, and thus the dynamic choice construct, reflects the intuition that choices
should be operated as soon as possible during the fixpoint computation. This design principle has
two relevant consequences. First, a higher degree of efficiency is achieved, as early choices have the
effect of reducing the number of inferred facts at the intermediate stages of the fixpoint computation,
and possibly of anticipating its termination. Second, a higher degree of expressiveness is achieved:
the next sections of this paper are devoted to this point. For instance, we will show how the dynamic
choice construct is expressive enough to capture various forms of negation for Datalog.

Informally, the DCF procedure behaves as follows. Given a choice program P and its stable version
SV (P), call C the set of chosen rules in SV(P), D the set of dif fChoice rules in SV(P), and O the
set of the remaining (original) rules in SV(P).

Then, the DCF procedure is as follows:

1. find the fixpoint of the O part;
2. while there exists an enabled ground instance r of a chosen rule in C, repeat:

(a) execute r;

(b) execute all rules in D enabled by r;

3. repeat steps 1 and 2 until no rule is enabled.

Notice that we used the term “execute” to mean the ordinary bottom-up computation mechanism
of asserting the head of a rule whenever its body is true. The idea underlying the DCF procedure can
be explained as follows. There are two modes of operation: a saturation mode and a choice mode.
In the saturation mode, the consequences of the original rules are computed by an ordinary fixpoint
mechanism. When nothing more can be deduced, the procedure switches to the choice mode. In the
choice mode, a chosen rule together with the associate dif fChoice rules are executed, until no more
choices can be made. Then the procedure switches to the saturation mode again, and the process
continues until a fixpoint is reached. Notice that the execution the dif fchoice rules shrinks the set
of enabled choice rules.

In other words, when DCF is in the choice mode, all the choices that are compatible with the
functional dependency are operated, before DCF switches to the saturation mode again.

The following code formalizes the DCF procedure.

begin
M = 0; ¥ :=0;
repeat
OldM := M,
M := So(M);

while not Cy = 0 do
M := MU {~dif fChoice;(z)|
7 : chosen(z) — B, —dif fChoice;(z) € Ci };
M := M U {chosen(z)|
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7 : chosen(z) « B,—dif fChoice;(z) € Cyr};
M := Sp(M);
od;
until M # OldM;
output M “is a choice model”
end.

The DCF procedure is correct with respect to the stable choice model semantics of the program,
in the sense that the result of DCF is a stable choice model of the program. This claim can be
easily established by observing that an early choice is clearly correct with respect to the functional
dependencies, although it may inhibit possible later choices. This implies that DCF cannot compute
any stable choice model of a program, but only some preferred ones. Therefore, dynamic choice is
sound, although not complete, w.r.t. stable model semantics. The main interest for the dynamic choice
construct lies in the fact that it is highly expressive—it allows to compute efficiently some relevant
deterministic problems which cannot be expresses by deterministic, such as negation and ordering.
These and other issues are addressed in the rest of this paper.

3. COMPUTING NEGATION WITH THE CHOICE OPERATOR

A remarkable example taken from [13] is the realization of a form of negation, which can be used to
model] stratified and inflationary negation for Datalog. The following choice program defines relation
NOT _P as the complement of a relation P with respect to a universal relation U. We assume here
that both P and U are extensional relations, although this constraint will be soon relaxed.

Definition 7 The choice program NOT[P, U] consists of the following rules:
NOT_P(X)— COMP_P(X,1).
COMP_P(X,I)— TAG_P(X,I),choice((X), (I)).

TAG_P(nil,0).
TAG_P(X,0) «— P(X).
TAG_P(X,1) « U(X),COMP_P(_,0).

where nil is a new constant, which does not occur in the EDB. ]

According to the specified operational semantics of the dynamic choice, we obtain a set of answers
where COM P _P(z,1) holds if and only if z is not in the extension of P. This behavior is due to the
fact that the extension of COM P_P is taken as a subset of the relation TAG_P which obeys the FD
(X — I), and that the dynamic choice operates early choices which binds to 0 all the elements in the
extension of P. This implies that all the elements which do not belong to P will be chosen in the next
saturation step, and hence bound to 1. The fact rule TAG_P(nil,0) is needed to cope with the case
that relation P is empty.

More precisely, in the first saturation phase the facts and TAG_P(z,0) are inferred, for z in the
extension of relation P. In the following choice phase the facts chosen(z,0) are chosen, again for z
in the extension of P, as all possible choices are operated. In the second saturation phase the facts
COMP_P(z,0) are inferred for = in the extension of P, and the facts TAG _P(z,1) for all z in U.
In the following choice phase the facts chosen(z,1) are chosen in a maximal way to satisfy the FD,
i.e. for x not in the extension of P, as all z in P have been chosen with tag 0 already. In the third
saturation step the extension of NOT _P becomes the complement of P with respect to U.
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The above argument is actually a sketch of the proof of the following result, which states the
correctness of the program of Def. 7.

Proposition 8 Let P and U be n-ary EDB relations. Then program NOT[P, U] has a unique stable
choice model Myor, and Myor = NOT _P(z) iffc € U\ P. O

Essentially, this example shows how the dynamic choice offers a flexible mechanism for handling
the control needed to emulate the difference between two relations. It is shown in [10] that the above
program can be refined in order to realize more powerful forms of negation, such as stratified and
inflationary negation. This goal is achieved by suitably emulating the extra control needed to handle
program strata and fixpoint approximations, respectively.

4. ORDERING WITH THE CHOICE OPERATOR

It has been pointed out in the literature that a tight connection exists between non-determinism and
ordered databases [16, 6]. On one hand, consider the case that a query @ relies on the ordering in
which elements are stored in the database: when abstracted at the conceptual level, where physical
details are unrelevant, @ exhibits a non-deterministic behavior. On the other hand, it is often possible
to emulate ordering using non-deterministic mechanisms.

The following choice program O RD[U] exploits the dynamic choice to compute an arbitrary ordering
of the elements of an EDB relation U.

Definition 9 The choice program ORDI[U] consists of the following rules:
SUCC(min,Y) «— U(Y),choice((), (Y)).

SUCC(X,Y)«~  SUCC(.,X),U(Y),SUCC(min,Z),
X #Y,Y # Z, choice((X),(Y)), choice((Y), (X)).

where min is a new constant, which does not occur in the EDB. O

According to the specified operational semantics of the dynamic choice, we obtain a set of answers
where the extension of relation SUCC is a total, strict ordering over the input relation U. The first
clause of program ORD[U] starts the computation, by selecting an arbitrary element from U as the
successor of min, i.e., as the actual minimum element of U. The second clause selects from U the
successor y of an element x which has been already placed in order. The constraints in the body of
the second clause enforce irreflexivity. In particular:

e z # y prevents immediate cycles (e.g., SUCC(a, a)),
® y # z prevents cycles with the minimum element z,

e the choice goals establish the bijection = < y which prevents the other possible cycles; also, y
is uniquely determined by z.

The above argument is actually a sketch of the proof of the following result, which states the
correctness of the program of Def. 9.

Proposition 10 Let U be an EDB relation. Then, in any stable choice model Mpogp of program
ORDI[U], the (transitive closure of the) relation SUCC 1is an irreflezive total ordering over U. O
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This application brings further evidence to the effectiveness of the dynamic choice as a control
mechanism. It also suggests that the dynamic choice is highly expressive, as languages over ordered
domains are known to be strictly more expressive than languages over unordered domains [16]. Indeed,
the fact that dynamic choice can express ordering is essential in the proof of the main result of this
paper.

5. EMULATING N_DATALOG WITH THE CHOICE OPERATOR
The aim of this section is to present a general transformation algorithm which allows to emulate the
control needed to handle the non-deterministic semantics of N_Datalog~. Ordering over a relation

of a suitable cardinality is exploited to emulate the level of the fixpoint iteration of the N_Datalog—
computation.

Definition 11 (Transformation) Let Prog be a N Datalog— program. Let § be the finite set of
distinct constants occurring in Prog, and L the cardinality of §. Let ! be the number of distinct
relations of Prog, and I; be the maximal arity of the relations in Prog. As a consequence, L*h is
an upper bound for number of instances which are derivable from Prog. Given a set of variables

{V1,..., Viu, }, all variables occurring in the heads of a rule in Prog can be renamed using variables
from this set.

Prog' is a choice program obtained from Prog according to the following steps:
1. Add the following facts:

LEV EL(min).
UNIV(al,. . .,al*ll)‘

for aj € 6,7 =1,...,lx 1y, together with the rules of the program ORD[UNIV] as in Def. 9 as
in Here, min is an array (of proper arity) of new constants.

2. Add the following rules defining the complement of a relation P respect another relation U.
Such rules extend the program of Def. 7 to deal with the level of the fixpoint iteration. The
notation NOT[P,U](z,n) is used in the following to refer to the following program.

NOT_P(X,N) — COMP_P(X,1,N).
COMP_P(X,I,N) — TAG_P(X, I, N), choice((X), (I)).
TAG_P(nil,0,N) — LEVEL(N).

TAG_P(X,0,N) — P(X), LEVEL(N).

TAG_P(X,1,N) «— U(X),COMP_P(_,0,N).

where nil is a new constant.

3. For each rule R; of Prog:

AO(X()), N Am(Xm) — Pl(Yl), . Pk(Yk), _‘QI(ZI); ceey ﬂQh(Zh).

with h, k,m > 0, add the following rules:
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NEW(U,N,i) — P,(Y4),..., Pu(Ys),
NOT[Q,,UNIV]|(Zy,N), ..., NOT[Q4, UNIV](Z, N),
NOT[Ao, UNIV](X,, N).

NEW(U, N, 'L) — Pl(Yl), ey Pk(Yk),
NOT[@.,UNIV](Z1,N),...,NOT[Q4x, UNIV](Zy, N),
NOT[Ap, UNIV)(Xm, N).

Here, 4 is a constant identifying the rule R;, and U is an array of terms of arity [ * [, which
contains all variables in the head of the original rule; all the extra arguments of U are filled in
with a new constant 0.

4. Add the rule:

INSTANCE(Z,N,I) — NEW (U, N, I), choice((N), (U, I)).
LEVEL(N,) — INSTANCE(_, N, ), SUCC(N, Ny).

where I is a variable denoting a generic rule from Prog, and Z is the set of variables {V1,..., Vi., }-

5. Replace rule R; with the following rules:

Ao(Xo) — INSTANCE(Z, N, i).

Am(Xm) — INSTANCE(Z, N,5).
O

Before analyzing the transformation, let us recall the behavior of the non-deterministic semantics:
at each fixpoint iteration a new instance is computed by choosing only one instantiation among
the possible ones of the single rule chosen among the firable ones. At step 3 of the transformation
the predicate NEW/(_,1) collects only all the new instances derived using the rule R;. In fact the
meta_predicate NOT'[A;, UNIV]) ensures that instances for the predicate A; occurring in the head of
the rule have not been computed yet. At step 4 only one rule and only one instance of the selected rule
are selected. At step 5 the predicates of the head of the selected rule are inferred. At this stage, a new
value for LEV EL can be inferred which will possibly fire rules of the meta-predicate NOT[_,UNIV].

It is worth remarking that in the non-deterministic semantics also the EDB facts are derived one
at a time, so the transformation considers them as IDB rules with an equality between variables and
constants the body.

The above argument is a rough sketch of the proof of the correctness of the transformation. To
formalize this statement we need the following definition.

Definition 12 Let P be a N_Datalog— and P’ a choice program. P and P’ are semantically equivalent
with respect to common predicate symbols if

o for each model M of P there exists a stable choice model M' of P’ which coincides with M over
common predicates, and M |= -R(z) iff M' = NOT _R(z) for each relation R occurring in P.

e for each stable choice model M’ of P’ there exists a model M of P which coincides with M' over
common predicates, and M |= —R(z) iff M' = NOT _R(z) for each relation R occurring in P.
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O

The above definition takes into account the fact that negative information is represented in choice
programs with the NOT _R predicates.

Theorem 13 Let P be a N_Datalog~ and let P' a choice program obtained from P applying the
transformation of Def. 11. Then P and P' are semantically equivalent. a

Example 14 We show the transformation on a simple N_Datalog— program:

Ry : P(z),Q(y) « ~R(a), $(z), T(y).
Ry: S(z) « T(x).
R3 . T(a)

The following are the relevant rules of the corresponding choice program:

LEV EL(min).

UNIV(a).

NEW(X,Y,N,1) — NOT[R,UNIV)(a,N),S(X),T(Y),
NOT[P,UNIV|(X, N)

NEW(X,Y,N,1) «— NOT[R,UNIV](a,N),S(X),T(Y),
NOT[Q,UNIV|(Y,N)

NEW(X,8,N,?2) — T(X),NOT[S,UNIV](X,N)

NEW(a, 8, N, 3) — NOT[T,UNIV](a, N)

INSTANCE(X,N,I) « NEW(X,Y,N,I),choice(N),(X,Y,I)).

P(X) «— INSTANCE(X,Y,N,1).

Q(Y) — INSTANCE(X,Y,N,1).

5(X) — INSTANCE(X,Y,N,?2).

T(X) — INSTANCE(X,Y,N,3).

LEVEL(N;) — INSTANCE(,,N,.),SUCC(N, Ny).

6. DATALOG WITH DYNAMIC CHOICE COMPUTES NDB_PTIME
We are now in the position of summing up the results of the previous sections in the main result of
this paper. It is stated by the following

Theorem 15 A query is in NDB-PTIME iff it is ezpressed in Datalog with dynamic choice.

Proof. The only if part follows from the following facts:

¢ Datalog with dynamic choice emulates N_Datalog— (Theorem 13),
¢ Datalog with dynamic choice expresses ordering (Proposition 10), and

¢ N_Datalog— over ordered domains expresses NDB-PTIME (Theorem 4).
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The if part follows from the observation that Datalog with dynamic choice is an inflationary language,
as operated choices are never retracted. 0

Theorem 15 defines precisely the expressive power of Datalog augmented with: the dynamic choice
construct. As a consequence, we obtain that such a language embodies a simple, declarative and:
efficiently implementable characterization of NDB-PTIME, thus improving over previous results.

From a more pragmatical viewpoint, these results indicate that dynamic choice is: a: flexible mech-
anism for explicitly handling the control in the fixpoint computation. A natural parallel here is with
the cut control mechanism of Prolog, which is however much more difficult to be explained in declaz-
ative terms [14]. Also, it is natural to ask ourselves whether the dynamic choice prowides. us with the
basis for constructing bottom-up meta-interpreters, capable of turning logic database programs into.
efficient systems by exploiting a customized computation strategy. Another open: problem is whether
it is realistic to implement negation and ordering by choice in a real language.

Finally, we mention another direction for future work. Abiteboul and Vianu showed: that certain
non deterministic languages augmented with the extra possibility of performing updates are capable
of expressing NDB-PSPACE, i.e., the non deterministic space-polynomial queries [6]. We conjecture
that a similar result holds when augmenting Datalog with dynamic choice and an update construct,
such as that of LDL.
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