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Abstract
This paper discusses parallel iteration schemes for collocation-based, symmetric Runge-Kutta (SRK)
methods for solving nonstiff initial-value problems. Our main result is the derivation of four A-stable SRK
corrector methods of orders 4, 6, 8, and 10 that optimize the rate of convergence when iterated by means of
the highly parallel fixed point iteration process. The resulting PISRK method (parallel iterated SRK
method) shows considerably increased efficiency when compared with fixed point iteration process applied
to Gauss-Legendre correctors.
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1. Introduction
In the literature, a number of parallel numerical methods have been proposed to solve the initial-value problem
(IVP) for the system of nonstiff first-order ordinary differential equations (ODEs)

(1.1) %Q =f(y(t)).

Most of them are based on the highly parallel fixed point iteration (or predictor-corrector iteration) using a Runge-Kutta
(RK) corrector already available in the literature (e.g. the Gauss-Legendre methods (cf. [6], [8], [10])). These correctors
possess a high-order of accuracy and excellent stability properties for generating parallel methods. In the present paper,
we propose a new class of symmetric RK methods of collocation type, to be called SRK methods, in which the
abscissas are chosen such that the RK matrix has a minimized spectral radius. This property leads to improved rate of
convergence when applying the parallel iteration scheme. Like the conventional Gauss-Legendre methods, the resulting
SRK methods are A-stable (cf. Subsection 3.3). However, the particular location of the abscissas decreases the order of
accuracy of the SRK methods when compared with the Gauss-Legendre methods. To be more precise, in general, an s-
stage SRK method is of order p = s or p = s+1 depending on whether s is even or odd, whereas an s-stage Gauss-
Legendre method has order p = 2s. On a sequential computer, this would be a serious sacrifice, because for a given order
p, the increased number of stages of the SRK correctors increases the computational work per iteration considerably.
But on parallel computers, the sequential computational work is independent of the number of stages.

The parallel iterated SRK methods (PISRK methods) developed in this paper have the same predictor-corrector
nature as the parallel iterated RK methods (PIRK methods) proposed in [6] and the block PIRK methods (BPIRK
methods) of [5]. The predictor formula is based on extrapolation of preceding stage and steppoint values (cf. Subsection
3.1). Stability investigations reveal that the PISRK methods have sufficiently large stability regions for nonstiff
problems (see Subsection 3.3). In Section 4, we compare the efficiency of PISRK methods with that of the PIRK and
the BPIRK methods by means of a number of numerical experiments. These comparisons show that for a given order
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of accuracy, the efficiency of the PISRK methods is much higher than the efficiency of the PIRK methods and
comparable with or superior to that of the BPIRK methods. If we take into account that PISRK methods need much
less processors for their implementation than needed by the BPIRK methods, we conclude that the PISRK methods are
" more attractive than the BPIRK methods.

2. Symmetric RK methods

In this section, we construct various symmetric RK methods that will serve as correctors for the parallel iteration
scheme. For simplicity of notation, we assume that the equation (1.1) is an autonomous, scalar equation. However, all
considerations below can be straightforwardly extended to a system of ODEs, and therefore, also to nonautonomous
equations. For autonomous, scalar equations, the general s-stage RK method then assumes the form

2.1 Yp=eyy +hAf(Yp), yn+1 =yn +hbTf(Yp),

where A is an s-by-s matrix, b and e are s-dimensional vectors, e is the vector with unit entries, and Yy, is the stage
vector corresponding to the n-th step. Furthermore, we use the convention that for any given vector v = (vj), f(v)
denotes the vector with entries f(v;). From now on, we assume that the RK method (2.1) is a collocation method based
on symmetrically distributed, distinct collocation points (that is, the vector ¢ = Ae is such that the abscissas t; + cih
are symmetric with respect to t; + h/2). These RK methods will be referred to as SRK methods. They form a special

family of the class of symmetric RK methods (cf. [4] p. 217]).
The collocation principle ensures that the SRK method is of at least order p = s. The order can be increased by
satisfying the orthogonality relation (cf., e.g. [4] p. 207)

15
(2.2) | TIx-cp) xi-lax =o.
0 i=l

It is easily verified that this condition is automatically satisfied for j = 1 if s is odd. Thus, we have the result:
Theorem 2.1. An s-stage SRK method is of order p = s if s is even and of order p = s + 1 if s is odd. []

This leads us to restrict our considerations to SRK methods with an odd number of stages.

In Section 3, it will turn out that it is convenient to iterate A-stable SRK correctors. Therefore, we now briefly
discuss the A-stability of SRK methods. It is well known that RK methods are A-stable if the stability function is
analytic in the left-half plane C -~ := {z € C: Re(z) < 0} (i.e., if the eigenvalues of the matrix A lie in the right-half
plane C *:= {z € C: Re(z) > 0}) and if it is bounded by 1 on the imaginary axis. Since SRK methods possess stability
functions of modulus 1 along the imaginary axis, we have the result:

Theorem 2.2. An s-stage SRK method is A-stable if A has its eigenvalues in the right-half plane. []

3. Parallel-iterated SRK methods
Starting with the RK method (2.1), we consider the following fixed-point iteration scheme

(3.1b) Yn® = ey, + hAf(Y,0-D), j=1,.., m,
B3.1¢)  yns1 = yn +hbTHRY,(™).

By using information from the preceding step, that is, the values of y, and the stage vector Yp-1{M), we may define a
predictor formula of the form

(3.1a) YO = vy, (™ 4wy,

where V is an s-by-s matrix and w is an s-dimensional vector, both determined by order conditions (see Subsection 3.1).
Notice that the s components of the vectors f(Y,()) can be computed in parallel, provided that s processors are
available. Hence, the computational time needed for one iteration of (3.1b) is equivalent to the time required to evaluate
one right-hand side function f on a sequential computer. Thus, in (3.1) the number of sequential evaluations of f per
step of length h equals m+1.
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Regarding the prediction formula (3.1a) as the predictor method and (2.1) as the corrector method, (3.1) may be
considered as a conventional predictor-corrector (PC) method (in P(EC)™E mode). This parallel PC method (3.1) is of
the same nature as the PIRK methods (parallel iterated RK methods) considered in [6], and only differs by its predictor
(3.1a) and the underlying SRK corrector. In analogy with the PIRK methods, the method (3.1) will be called a PISRK
method (parallel iterated SRK method).

—

3.1.  Order conditions for the predictor method
The order conditions for the predictor formula (3.1a) can be derived straightforwardly using Taylor expansions.
We obtain an order s predictor if

(3.2) jl—,[ (c+ey-(V,w)al | =0, a:=(T, DT j=0,1,..,s.

These conditions determine the matrix (V, w). In order to express (V, w) explicitly in terms of ¢, we define the s-by-
(s+1) and (s+1)-by-(s+1) matrices P and Q

(33a) P=(e (c+e), (c+e), ..., (c+e)S), Q=(e* a, a2, .., as),

where e* is the (s+1)-dimensional vector with unit entries. Condition (3.2) can be written in the form P - (V,w)Q = O,
where O is s-by-(s+1) matrix with zero entries. Since the abscissas cj are assumed to be distinct, we can write

(33b)  (V,w)=PQlL

If (3.3) is satisfied, then the iteration errors associated with the stage vector and step point value satisfy the order
relations

Yn- Yn(m) = O(hm+s+l), Un+l - Yn+1 =h bT[f(Yn) - f(Yn(m))] = O(hm+s+2),

where up, 1 denotes the corrector solution at the step point tp41. The local truncation error of PISRK methods can be
written as the sum of the truncation error of the SRK corrector and the iteration error of the PISRK method:

Y(tn+1) - Yn+1 = (Y(tn+1) - un+1) + (Uns1 - Yne1) = O(hp+1) + O(hm+s+2) = o(hp*+l)’
where p is the order of the SRK corrector, p* = min (p, m+ s+1). Thus, we have:

Theorem 3.1. If the generating SRK corrector method (2.1) is of order p and if (V, w) is defined by (3.3), then on s-
processor computers the PISRK method (3.1) represents an explicit method of order p* = min{p, m+s+1) requiring
m+1 sequential right-hand side evaluations per step. []

3.2. Construction of SRK corrector methods

In this subsection we concentrate on SRK methods with an odd number of implicit stages (s = 3, 5, 7, 9) and we
will construct SRK correctors such that the corresponding PISRK methods have maximized rates of convergence. The
rate of convergence of PISRK methods is defined by using the model test equation y' = Ay, where A runs through the
eigenvalues of the Jacobian matrix of/dy (cf. [5], [9]). For this equation, we obtain the iteration error equation

Y@ -Y,=2zA[Y,0-D-Y,), z:=Ah, j=1,..,m.

Hence, with respect to the model test equation, the rate of convergence is determined by the spectral radius P(A) of the
matrix A. We shall call p(A) the convergence factor of the PISRK method. By requiring that p(zA) < 1, we are led to

the convergence condition

or h< L

P(A) P(A) pfRY)

(3.4) lz1<

We exploit the freedom in the choice of the collocation vector ¢ for SRK correctors for minimizing the
convergence factor P(A), or equivalently, for maximizing the convergence region {z: P(zA) < 1}. By a numerical
search, we found the collocation vectors and the corresponding convergence factors as listed in Table 3.1 (the
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specification of the parameters of the associated SRK corrector methods can be found in the Appendix). Table 3.1 also
lists the convergence factors for the Gauss-Legendre based PIRK methods (we note that PIRK and BPIRK methods have
identical convergence factors). From these figures, we see that the convergence factors of the PISRK methods are
- substantially smaller than those of the PIRK methods of the same order.

Table 3.1. SRK collocation points and convergence factors of PISRK -and (B)PIRK methods

Order c1 c c3 c4 Convergence factors
PISRK (B)PIRK
p=4 0.10300662 0.198 0.289
p=6 0.04101173 0.21235714 0.123 0.215
p=38 0.02180707 0.11383597 0.27544350 0.089 0.165
p=10 0.01348800  0.07067122 0.17189713  0.31496835 0.070 0.137

3.3. Stability of PISRK methods

A numerical computation of the spectrum of the matrix A defining the SRK methods derived above shows that
all the eigenvalues are lying in the right-half plane. Therefore, in view of Theorem 2.2, these SRK methods are A-
stable. Evidently, when iterating until convergence, the stability region of the PISRK method is given by the
intersection of its convergence region {z: 1z 1< 1/ P(A)} and the stability region of the corrector. Hence, by virtue of
the A-stability, we achieve that by maximizing the region of convergence, we have in fact maximized the region of
stability. However, in actual computation, we often do not iterate until convergence, so that it is of interest to
determine the stability regions as a function of m.

Applying (3.1) to the model test equation, we obtain

(3.5a) YoM =ey, + zZAY (™D = (14 2A + (zA)? + ... + (zA)™ ] ey, + (zA)mY, (O
= (ZA)Y"VY (™ + (I - A Y 1(I - (zA)™)e + (zA)™W)yp
(3.5b)  yn41 =yn+zbTY M

=2zbT(zA)YMVY 1M + (1 + zbT((zA)Pw + (I - zA) 1(T - (zA)M)e))yp.

From (3.5) we obtain the recursion

Y, (m) Yy (™
3.6) ( )=Mm(z)( ),Mm(z) =(
Yn+l ¥n

(zA)ymV (zA)Mw + (I - zZA) I(I - (zA)M)e
bTzA)MV 1+ zbT((zA)Mw + (I - zA)1(I - (zA)M)e)

Similar to the stability considerations of block PIRK methods (cf. [5]), the (s+1)-by-(s+1) matrix My, (z) will be

called the amplification matrix, and its spectral radius P(Mp,(z)) the stability function. Notice that P(M(z)) converges
to the stability function of the corrector method as m — oo, if z satisfies the convergence condition (3.4).

Using the familiar definition of the real and imaginary stability boundaries Bre(m) and ﬁim(m) , we computed

the stability pairs (Bre(m), Bim(m)) as listed in Table 3.2. We observe that for small m, the stability of PISRK

methods is rather poor, but for m > p/2 (say), the stability boundaries are sufficiently large for nonstiff problems.
Hence, already for relatively small numbers of iterations, the PISRK method is expected to perform stably.

Table 3.2. Stability pairs (Bre(m), Bim(m)) for various PISRK methods

Order m=1 m=2 m=3 m=4 m=35

p=4 (0.04, 0.05) (0.43, 0.40) (0.96, 0.53) (1.52, 0.42) (2.13, 0.42)
p=6 (0.00, 0.00) (0.10, 0.10) (0.39, 0.40) (0.80, 0.82) (1.25, 1.28)
p=8 (0.00, 0.00) (0.02, 0.02) (0.15, 0.16) (0.42, 0.42) (0.77, 0.78)
p=10 (0.00, 0.00) (0.00, 0.00) (0.06, 0.06) 0.21, 0.21) (0.46, 0.46)




4. Numerical experiments

In this section we report numerical results obtained by the PISRK, the PIRK and the BPIRK methods. The
experiments were performed on a 28-digits arithmetic computer. The absolute error obtained at the end of integration
interval is presented in the form 104 (d may be interpreted as the number of correct decimal digits (NCD)). We only
compared methods of the same order, so that the accuracies are more or less comparable.

In order to see the efficiency of the PISRK, PIRK and BPIRK methods, we applied a dynamical strategy for
determining the number of iterations in the successive steps. The stopping criterion is defined by

@.1) Il y,(m -y (m-D]]_ <TOL =C hP,

where C is a problem- and method-dependent parameter, p is order of the corrector. Notice that by this criterion the
iteration error has the same order in h as the underlying corrector. Furthermore, in the tables of results, Ngeq denotes the
total number of sequential right hand side evaluations, Ngteps denotes the total number of integration steps, k denotes
number of processors needed for implementation. In the first integration step, we used the trivial predictor formula

Y 1 (0) = yne_

4.1. Fehlberg problem
As a first numerical test, we integrate the often-used Fehlberg problem (cf. [3])

y1'(®) = 2 t y1(t) log(max{yz(®), 103}), y1(0) =1,
4.2) 0<t<s,

y2'(t) = -2 t yo(t) log(max{y1(t), 103}), y2(0) =e,

with exact solution yq(t) = exp(sin(tz)), ya(t) = exp(cos(tz)). The results listed in Table 4.1 show that PISRK is
always superior to PIRK. In the low accuracy range, the convergence of the PISRK methods in the integration process
is slower than that of the BPIRK methods. This may be explained by the fact that the stability region of the PISRK
methods is not sufficiently large for low m-values (see Table 3.2). However, for a given stepsize, the accuracy of the
PISRK results turns out to be higher than the accuracy of the BPIRK method, so that the efficiency of PISRK is at
least as high as that of BPIRK. Particularly, in the high accuracy range, the superiority of the PISRK methods over the
BPIRK methods is evident.

Table 4.1. Values of NCD / Nseq for problem (4.2) obtained by various parallel PC methods

PCmethods k  p  Ngpeps=100 Ngieps=200  Ngreps=400  Ngiepe=800  Ngiep=1600  C
BPIRK 8 4  32/200 43/406 5.4/ 844 6.5/ 1758 7.7/3759 103
PISRK 3 4  43/256 52/483 6.2 /930 7.4/ 1820 8.7/3661 103

PIRK 2 4  27/392 40/842 52/1756  6.5/3650 7.7/7409 103
BPIRK 18 6  54/250 7.1/533 89/1150  10.7/2505  12.5/5317 103
PISRK 5 6  59/348  8.6/637 10271194  122/2272  14.0/4398 103

PIRK 3 6 52/601 7.0/1245 89/2542  10.7/5199 125710488 103
BPIRK 32 8  82/293 103/662  127/1432 150/2985 17.5/6233 103
PISRK 7 8  87/439 119/780  14.6/1439  173/2706 19.6/5116 103

PIRK 4 8 78/774 102/1603  12.6/3297 151/6674  17.5/13468 103
BPIRK 50 10 9.9/357 129/787  159/1710 189/3658  220/7540 103
PISRK 9 10 122/513 13.1/913  188/1654  21.7/3086  23.1/5919 103

PIRK 5 10 99/942 129/1947 159/3973  189/8134 220/ 16407

103




4.2. Orbit equation
Our second example is a well-known test problem in the RK-literature, viz. the orbit equation (cf. [7])

y'1() = y3(), y10)=1-¢, _
y'2(t) = ya(®), y2(0) =0,
- t
@3 OG0 ; ly(z;(t))y2 L pO=0 Ose=20
ey = - ya(t) _ 1+& _3
HOSGPo vy 2o MO\ Tt

The performance of the methods is shown by the results given in Table 4.2. Again PISRK is superior to PIRK, but
now, the BPIRK methods are slightly more efficient than PISRK in the low accuracy range. However, in the range of
high accuracy, the PISRK methods are again superior to the BPIRK methods.

Table 4.2. Values of NCD / Nseq for problem (4.2) obtained by various parallel PC methods

PCmethods k  p  Nyteps=100 Nyteps=200  Ngips=400  Ngrep=800  Ngepe=1600 €

BPIRK 8 4 3.0/203 4.6 / 404 5.0/880 6.1/ 1861 7.373924 100
PISRK 3 4 2.717270 5.0/499 5.8/958 7.7/ 1880 8.9/3739 100
PIRK 2 4 3.1/ 441 3.7/ 905 4.9 /1947 6.1 /4000 7.3 7 8000 100

BPIRK 18 6 4.8 /237 6.8 /511 8.7/ 1106 10.4 / 2516 12.2 /5185 10!
PISRK 5 6 53/373 7.9 /659 100/ 1172 12.6 / 2221 14.0 / 4363 10!
PIRK 3 6 5.0/643 7.2 11302 8.9/2637 10.5 / 5499 12.3 /711200 10-!

BPIRK 32 8 721276 9.7/632 12.2 /1382 14.7 / 2956 17.2 /1 6277 10-2
PISRK 7 8 7.9 17458 10.9 / 808 14.0/ 1436 16.6 / 2695 19.0 / 5063 10-2
PIRK 4 8 7.6/837 10.4/1686 12.8 /3397 15.0 / 6845 17.3 /13827 10-2

BPIRK 50 10 9.5/265 12.8 / 637 16.0 / 1469 19.0 /3187 22.1/7 6957 10-2
PISRK 9 10 9.8/538 14.1 /930 17.0/ 1651 19.6 / 2990 23.9 /5625 10-2
PIRK 5 10 93/926 12.8/1926 16.3/3927 19.2 /7 8226 22.2/16532 10-2

Concluding remarks

This paper shows the performance of a special class of symmetric Runge-Kutta methods when they are used as
corrector methods for generating parallel PC methods for nonstiff problems. By two examples, we have shown that for
a given order p the resulting PISRK method is by far superior to the PIRK method (about a factor from 2 to 5).
However, the number of necessary processors is a factor 2 - 2/p larger. This modest increase of processors seems to be a
low price for the substantially increased efficiency. The PISRK method is roughly competitive with BPIRK in the low
accuracy range, but clearly more efficient in the high accuracy range. But here, it is the PISRK method that needs less
processors. In fact, the number of processors needed by BPIRK is a factor p2/ (2p - 2) larger.
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Appendix
Here we give the parameters (c, A, b) in 24 decimals of the A-stable SRK methods of fourth-order, sixth-order,
eighth-order and tenth-order based on optimal collocation vectors defined in Subsection 3.2. These parameters were
" computed on a 28-digits arithmetic computer.

Table A.1. Parameters (c, A, b) of the tenth-order A-stable SRK method —

c(1)= 1.348800000000000000000000E-02
c(2)= 7.067122000000000000000000E-02
c(3)= 1.718971300000000000000000E-01
c(4)= 3.149683500000000000000000E-01
¢(5)= 5.000000000000000000000000E-01
c(6)= 6.850316500000000000000000E-01
c(7)= 8.281028700000000000000000E-01
c(8)= 9.293287800000000000000000E-01
c(9)= 9.865120000000000000000000E-01

a(1,1)=1.692339033818321939497441E-02
a(2,1)=3.798817356241748118932512E-02
a(3,1)=3.234123973504638506520096E-02
a(4,1)=3.664998191129603776826191E-02
a(5,1)=3.226567141936681430506374E-02
a(6,1)=3.523575889482434401551513E-02
a(7,1)=3.392814865782345884856517E-02
a(8,1)=3.458681211188532716328230E-02
a(9,1)=3.423041653974535666415322E-02
a(1,2)=-5.372877186948610979204383E-03
a(2,2)=3.793042239933952621207395E-02
a(3,2)= 8.914068188432960705279154E-02
a(4,2)=7.214823522603643827668426E-02
a(5,2)=8.71581315601807490454548 7TE-02
a(6,2)=7.753888002071564087429668E-02
a(7,2)= 8.166998985340760450441485E-02
a(8,2)=7.961396089592372678503346E-02
a(9,2)=8.071975787278094675641915E-02
a(1,3)=3.02006707596068797449605 1E-03
a(2,3)=-7.605791416395464019000707E-03
a(3,3)=5.687867485055305133149481E-02
a(4,3)=1.394692711029870485237149E-01
a(5,3)= 1.085038502561400075538737E-01
a(6,3)=1.255158296324067806711156E-01
a(7,3)=1.186263300514896209624078E-01
a(8,3)= 1.219650873007507517440521E-01
a(9,3)= 1.201925506762233974860856E-01
a(1,4)=-1.668147821514945772414703E-03
a(2,4)=3.531558356659417634588727E-03
a(3,4)=-9.007594029596988000742774E-03
a(4,4)=7.431119784149148037587473E-02
a(5,4)= 1.873548708757394207585122E-01
a(6,4)= 1.606177047179006518206175E-01
a(7,4)= 1.699748660154087304808069E-01
a(8,4)=1.656896014770599236543393E-01
a(9,4)= 1.679065754319158627819615E-01
a(1,5)=9.932209631862539295369726E-04
a(2,5)=-1.959328268200190811510921E-03
a(3,5)=4.101814985998400206219221E-03
a(4,5)=-1.134380996776254670422 189E-02
a(5,5)=9.735835284820104085876903E-02

a(6,5)= 2.060605156641646284217599E-01
a(7,5)= 1.906148907104036815113188E-01
a(8,5)= 1.966760339646022725290489E-01
a(9,5)= 1.937234847332158277880012E-01
a(1,6)=-7.613884904309616161391170E-04
a(2,6)= 1.455585464424977511483241E-03
a(3,6)=-2.829679073923829314984336E-03
a(4,6)= 6.527482223584249345204987E-03
a(5,6)=-2.020968393425451959268970E-02
a(6,6)=9.283398909999342078994777E-02
a(7,6)= 1.761527809710818891665653E-01
a(8,6)= 1.636136285848254835312337E-01
a(9,6)= 1.688133347629998469382372E-01
a(1,7)= 6.145364402375350074702177E-04
a(2,7)=-1.158000184289819250496616E-03
a(3,7)=2.180757064971311531147709E-03
a(4,7)=-4.708742515945848177560006E-03
a(5,7)= 1.230323686032092493968 186E-02
a(6,7)=-1.866218398652611603015933E-02
a(7,7)= 6.392841226590788116206071E-02
a(8,7)=1.284128785328563965125563E-01
a(9,7)= 1.177870200405002445190596E-01
a(1,8)=-3.852536787604063243432038E-04
a(2,8)=7.205432980968136470424388E-04
a(3,8)=-1.335485659387064072338948E-03
a(4,8)=2.795624173304899557779179E-03
a(5,8)=-6.823627366160208613379033E-03
a(6,8)= 8.186268967984102155391581E-03
a(7,8)=-8.806177690309066620715686E-03
a(8,8)=4.240408179468101422000194E-02
a(9,8)=8.570738138096915141128027E-02
a(1,9)= 1.244523600872283856237516E-04
a(2,9)=-2.319432120527421135052508E-04
a(3,9)= 4.267202420091262012117974E-04
a(4,9)=-8.808899949917589657381521E-04
a(5,9)= 2.089197480465770744713244E-03
a(6,9)=-2.295113011463452718484930E-03
a(7,9)=2.013629164786199984576012E-03
a(8,9)=-3.633304662584896139548151E-03
a(9,9)= 1.743147856164936565480256E-02

b(1)= 3.435486889983258504977696E-02
b(2)=8.033450419402054043207608E-02
b(3)= 1.208070871164609324935554E-01
b(4)= 1671451869414849011658226E-01
b(5)= 1.947167056964020817175380E-01
b(6)= 1.671451869414849011658226E-01
b(7)= 1.208070871164609324935554E-01
b(8)= 8.033450419402054043207608E-02
b(9)= 3.435486889983258504977696E-02




Table A.2. Parameters (¢, A, b) of the eighth-order A-stable SRK method

c(1)= 2.180707000000000000000000E-02
c(2)= 1.138359700000000000000000E-01
c(3)= 2.754435000000000000000000E-01
c(4)= 5.000000000000000000000000E-01
c(5)= 17.245565000000000000000000E-01
c(6)= 8.861640300000000000000000E-01
c(7)= 9.781929300000000000000000E-01

a(1,1)=2.719458528468348999690676E-02
a(2,1)=6.161543561627850473846273E-02
a(3,1)=5.182898598373283644258651E-02
a(4,1)=5.952886243749456466176979E-02
a(5,1)=5.482318765609052066528260E-02
a(6,1)= 5.685349873400264637965646E-02
a(7,1)=5.587407464549377420287575E-02
a(1,2)=-8.220167794071282102636274E-03
a(2,2)=6.012820617266778675375580E-02
a(3,2)= 1.440785297769299400520244E-01
a(4,2)= 1.151352424853710284014019E-01
a(5,2)=1.306139520393008626937121E-01
a(6,2)= 1.242420897319350853190233E-01
a(7,2)= 1.272580851304069858900342E-01
a(1,3)=4.314630250406867072358188E-03
a(2,3)=-1.125780168575053784617727E-02
a(3,3)=8.932364001562216355758034E-02
a(4,3)=2.209959789429765477172719E-01
a(5,3)=1.904163177045945501581312E-01
a(6,3)=2.013987929810600295938402E-01
a(7,3)= 1.964440248715529706311737E-01
a(1,4)=-2.424361131059649971880218E-03
a(2,4)=5.325943306307701917143556E-03
a(3,4)=-1.445276641379331226440070E-02
a(4,4)=1.194814319625056942706647E-01

a(5,4)=2.534156303388047008057301E-01
a(6,4)=2.336369206187036866241858E-01
a(7,4)=2.413872250560710385132096E-01
a(1,5)=1.614460532672800388263331E-03
a(2,5)=-3.340307576834258574403198E-03
a(3,5)=7.642167699631220861305891E-03
a(4,5)=-2.293749353875077669783486E-02
a(5,5)= 1.087348453886036074618567E-01
a(6,5)=2.093162870899763088656143E-01
a(7,5)= 1.937438551538189039470789E-01
a(1,6)=-9.984651019086125542668728E-04
a(2,6)=2.017530296563288016744008E-03
a(3,6)=-4.354332010802489357944740E-03
a(4,6)= 1.112437754312734493436542E-02
a(5,6)=-1.781890974843156671625709E-02
a(6,6)= 6.613141385583058658201157E-02
a(7,6)= 1.344797878225696554384036E-01
a(1,7)=3.263879592763871712550772E-04
a(2,7)=-6.530361292324850055256341E-04
a(3,7)=1.377274948679640708848226E-03
a(4,7)=-3.328399832724403287638962E-03
a(5,7)=4.371476621037324931544310E-03
a(6,7)=-5.414973011508343364331909E-03
a(7,7)=2.900587732008667137722406E-02

b(1)= 5.620046260477016137413083E-02
b(2)= 1.262596200284983733357673E-01
b(3)= 1.980584854042257710194370E-01
b(4)= 2.389628639250113885413294E-01
b(5)=. 1.980584854042257710194370E-01
b(6)= 1.262596200284983733357673E-01
b(7)= 5.620046260477016137413083E-02

Table A.3. Parameters (c, A, b) of the sixth-order A-stable SRK method

c(1)= 4.101173000000000000000000E-02
c(2)= 2.123571400000000000000000E-01
c(3)= 5.000000000000000000000000E-01
c(4)= 7.876428600000000000000000E-01
c(5)= 9.589882700000000000000000E-01

a(1,1)=5.059861543330464384350888E-02
a(2,1)=1.164192043680639872881541E-01
a(3,1)=9.697562207499493294173674E-02
a(4,1)=1.066777234120923925248380E-01
a(5,1)=1.028168926623065840857543E-01
a(1,2)=-1.414343886533949518205260E-02
a(2,2)=1.094102665416521972928608E-01
a(3,2)=2.649171458284555506978594E-01

o4,2)=2.300951764802980083572076E-01 ~—~ =

a(5,2)=2.424590742482148946645006E-01
a(1,3)=7.022327472350483545356338E-03
a(2,3)=-1.950962388753163024241162E-02
a(3,3)=1.571898071297941534565576E-01

a(4,3)=3.338892381471199371555268E-01
a(5,3)=3.073572867872378233677589E-01
a(1,4)=-3.634699735687252294284819E-03
a(2,4)= 8.729198032229634013008123E-03
a(3,4)=-2.609277131592790832764362E-02
a(4,4)= 1.294141079708754450773549E-01
a(5,4)=2.529678133778671375522684E-01
a(1,5)= 1.168925695371620087472194E-03
a(2,5)=-2.691905054414188351611500E-03
a(3,5)=7.010196282683271231489804E-03
a(4,5)=-1.243338601038578311492761E-02
a(5,5)=5.338720292437356032971765E-02

b(1)= 1.039858183576782041732265E-01
b(2)= 2.388243745125276423702158E-01
b(3)= 3.143796142595883069131152E-01
b(4)= 2.388243745125276423702158E-01
b(5)= 1.039858183576782041732265E-01




Table A.4. Parameters (c, A, b) of the fourth-order A-stable SRK method

c(1)= 1.030066200000000000000000E-01
¢(2)=5.000000000000000000000000E-01
c(3)= 8.969933800000000000000000E-01

a(1,1)= 1.242075086028965905642715E-01
a(2,1)=2.896214169362299238976048E-01
a(3,1)=2.565386352695632572309381E-01
a(1,2)=-2.903837582637420945702549E-02
a(2,2)=2.356238775069591238763078E-01

a(3,2)=5.002861308402924572096411E-01
a(1,3)=7.837487223477618892753973E-03
a(2,3)=-2.524529444318904777391269E-02
a(3,3)= 1.401686138901442855594206E-01

b(1)= 2.643761224930408761236921E-01
b(2)= 4.712477550139182477526156E-01
b(3)= 2.643761224930408761236921E-01
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