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parameter Quantum Groups and Multiparameter r-matrices

Michiel Hazewinkel
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

ts an (;) + 1 parameter quantum group deformation of G Ly, which has been constructed indepen-
several (groups of) authors. In this note | give an explicit R-matrix for this multiparameter family.
additional information on the nature of this family and facilitates some calculations. This explicit
iatisfies the Yang-Baxter equation. The centre of the paper is section 3 which describes all solutions
= under the restriction 'rgg = 0 unless {a,b} = {c,d}. One kind of the most general constituents
lutions precisely corresponds to the (g) + 1 parameter quantum group mentioned above. 1 describe
tions extend to an enhanced Yang-Baxter operator and hence define link invariants. The paper
with some preliminary results on these link invariants

ject Classification (1991): 16W30, 58F07, 57M25
i & Phrases: multiparameter quantum group, multiparameter R-matrix, Yang-Baxter equation,
ra, bialgebra, PBW-algebra, knot invariant, link invariant.

I'ION AND STATEMENT OF MAIN RESULTS

concerned with multiparameter R-matrices and corresponding quantum groups and
invariants. The starting point is an (}) + 1 parameter deformation of the bialgebra of
a the n X n matrices

St tT, Lt = K[, £ et @t e(th) = 6,

e Kronecker delta. Here K is an arbitrary ground field and the Einstein summation
n force, i.e. ti ® t;? stands for ZZ___I t}'c ® t?. This ('2‘) + 1 parameter deformation has
:n independently constructed in various ways by many (groups of) authors, published
ed, all more or less in the winter of 1990/1991. I know of several (including myself)
uction is so natural that quite likely there are more, [1,3,5,9,11,14,15,16,17,18,19,20,21].
papers deal with the full family and [3] in fact describes a quantum group which does
family at all).

most natural point of view is to take two “most general” n-dimensional quantum spaces

XYL XM/(XXT = ¢9XIXY), B=K(1,..., Y)Y = g5 Y3Ys.

: (¢¥)7Y, ¢ =1, ¢ = (g;;) "}, = 1 are arbitrary parameters (viewed as elements
wrent) variables). Now look for a maximal quotient K (t)/I, of K (t), t;'- — i ® t;?, to
eft on A and on the right on B by the standard formulas

L®XF, Y- Y, et

ing bialgebra K(t)/I to be nice, in the sense that the underlying algebra is PBW
‘hoff-Witt) certain relations must hold between the ¢*/ and g, viz. that after a possible
fthe 1,...,n (a renumbering of the variables), ¢*q;; = A # —1, for all 4 # j. This
[1] and other papers is recalled in sections 1 and 2 below

f the paper is section 3. In it I consider the Yang-Baxter equation

Ros = RosRi3Riz, R=(r%) (0.1)
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and describe all invertible solutions whick satisfy the additional condition
72 = 0 unless {a, b} = {c,d} ‘ (0.2)

These solutions consist of several kinds of blocks which are fitted together in certain noy entirely
trivial ways. Cf Theorem 2.44 for a precise discription. Two of the three types of blocks (blocks of
type I and blocks of size 1) are rather trivial. The third type of block looks as follows in the size 3
case (from which the general case is easily guessed; cf again theorem 3.44 for the exact description)

1 12 13 21 22 23 31 32 33

11
12
13
21
22
23
31
32
33

41

-1
Toy 2

~1
T3y 2

Z21

P2

—1
T3y 2

I31

T32

P3

(0.3)

where the p;, pa, p3 are all three solutions of X? = yX + z (but not necessarily all three equal). Given
any n? x n? matrix R there is a natural bialgebra k(t)/I(R), t;- - t;?. Here I(R) is the ideal
generated by the fundamental commutation relations (FCR) of [6]

RT\T, = TLTiR (0.4)

where T' = (t;), TW=T®L, Lh=I,&T

Multiplying a solution of (0.1) with an invertible scalar produces another solution and does not affect
the relations defined by (0.4). Thus the parameter z in (0.3) (or rather its n? x n? generalization) can
be normalized to 1 (by multiplying with (/z)~!). The two roots of X% = yX + z are then g, —¢~*.
If all the p; are now equal to g the invertible n? x n? matrix like (0.3) precisely defines the (3) + 1
parameter deformation of sections 1 and 2. This is the main result of section 4. Having an explicit
invertible R-matrix, that satisfies the YBE (0.1), for this () + 1 parameter quantum matrix algebra
has a number of considerable advantages. For instance it immediately follows that the rewriting rules
(0.4) are confluent which greatly simplifies the proof that this () + 1 parameter quantum matrix
algebra is a PBW algebra. It also helps with the matter of defining a quantum determinant and the
definition of an antipode on the bialgebra obtained by making the quantum determinant invertible
thus obtaining an (’2‘) 4+ 1 parameter qiantum group. This is not further explored here, but see
[4,12,13,6].

It also seems from (0.3) that (3) parameters of the (3) + 1, viz. the z;;,7 > j, are rather trivial
and that there is only one real parameter viz. y (or ¢;y = ¢ — ¢! if z = 1). This does not mean
that the general quantum matrix algebra (z = 1,z;; arbitrary) and the classical one (2 = 1 = =z;;)
are isomorphic; they are not. All the saine the ;; do seem less basic than ¢g. I do not know how
to make this intuition more precise except in the case of the link invariants defined by the enhanced
Yang Baxter operator that is associated to (0.3), cf below.

Each block of a solution of (0.1) (assuming (0.2)) defines a scalar. If all those scalats are equal (and



e solution gives rise to an enhanced Yang Baxter operator (TR, v,a, ) in the sense of
e gives rise to a link invariant. In this setting the (72‘) extra parameters z;;,7 > j are

They do not show up in the link invariant in the sense that if the n? x n? generalization

with both ¢ and —q~! occurring for the p;; we are taking z = 1) is extended to an
ig Baxter operator, which can always be done, than the resulting link invariant is the
»btained with all z;; = 1 = z (but possibly a different n). This “triviality of the z;;”
plies to “one type II block” solutions of (0.1). Even in the case of a two size 1 block
1), nontrivially fitted together, a nontrivial link invariant appears. Though, of course,
tuents themselves give nothing. (An n = 1 solution of (0.1) always defines a trivial link
ixing and fitting together different blocks of both different and the same types seems to
| collection of probably new link invariants. This matter remains to be explored.

ZED QUANTUM SPACE Ag’
e ring is K(X!, X%,..., X™)/I,, where I, is the ideal generated by the elements

__qabXbXa (11)

7**)"} and ¢** =1 iffor all a,b € {1,...,n}. Thus, depending on one’s point of view,
 of algebras parametrized by (}) parameters or an algebra over K[g%?, (¢°*)~*;a > ¥],
nmutative Laurent polynomials in (’2‘) variables ¢*®, a > b

all a,b, one refinds the coordinate ring K[X1, X2,..., X "]. The algebra A,’; is graded
«ded deformation of Af = K[X?,...,X"] in the sense that dim(A7)m = dim(A})m for
ower m indicates the homogeneous part of degree m. Also A7 is a PBW algebra in the
monomials

(XM, 4, e Nu{0} (1.2)

f A7. Indeed it is obvious from (1.1) that every element can be written as a sum of
e form (1.2); to prove the other half it suffices by the diamond lemma, [2], to prove that

»

ps
X©), (X°xb)xe

i.e. give the same results when using the rewriting rules (1.1). Now
bX) = gPe(X X)XP = gqecXe(XoXP) = gbeqacqe XeXbX e
BXe= gBXY(X°X) = %X XX® = gobgeegbeXeXxbXe

ZED MATRIX QUANTUM ALGEBRAS
eft-coaction of

E(th, .., thyo, 80, 87
E(X,...,X™)

sual formula

L@ X*

aplied).

hat relations are needed between the t’s in order that this becomes a co-action of some
t) on A?. This means that the relations X2X® = ¢?*X®X* must be preserved. The
- ¢°® Xt X under (2.1) is



12 th @ XX — g% 10 @ XX (2.2)

rilr, ® sits, ®
The coefficient of X" X" in (2.2) is

242 — q*btbeo (2.3)
and the coefficient of X"X*®, r < s in- (2.2) is

12 — gobibes 4 (g7) st — () gt (2.4)

Lets count the number of independent relations.
(i) For a = b no relations arise from (2.3)

(ii) If a # b, then the relations (2.3) fall in groups of two
it = goies
(2.5)
it = g

which are equivalent because ¢** = (g°®)~1. Thus there are precisely

n(Z) = 3n’(n—1)

relations resultng from (2.3). And these are independent.

(iii) If a = b in (2.4) no relations result

(iv) ¥ r = s in (2.4) the relations (2.4) are implied by (2.3)

(v) For a # b, r # s, the relations (2.4) fall into groups of four (or groups of two if one takes r < s),
viz.
1285 — e 4 (g7) 1o — g?b(q™) " ebee = 0
1910 gbotod 4 (gm*)Lebee — gbe(gm)Lentd =0
$385 — g®1549 1 (g*T)"1tot — g*t(g*T)"1t0e% = 0
th49 _ gbogeb 4 (g*T) 080 — @25 (¢") o = 0

(2.6)

These four relations are all th'e same. E.g. the second is obtained from the first by multiplication of
the first by —¢®* and the fourth results from the first by multiplication of the first by (—¢**)(¢°")~!.

These relations only involve the four products t2t5,5¢2 13¢5 152 and they are the only relations in

which these four (for given a,b,r, s) are involved Thus there are precisely
n?(n —1)2
. 4
independent relations of this type. In total we therefore have

1
Enz(n -1+ %nz(n -1)2 = :11-77,2(112 -1)

quadratic relations.
To make the dimension of the degree two part of k(t)/I equal to that of the degree two part of k[t]
we need

2 2_1 1
n4—(n2+zb-——(f?—))= Enz(nz——l)



;hat precisely half of them are missing. There are a variety of ways to add the missing
extremely elegant one is to make k(t)/I also act on the right on the dual of the quantum
. This, however, does not result in the most general quantum matrix algebra. To obtain
: a second, a priori completely different, quantum space

UXg, .o, Xn)/[(XpXo = @paXaXp,a,b€ {1,...,n}) (2.7)
uitable quotient of k{t) is supposed to act on the right by
X;et (2.8)

IS, gba = q;blv Qoo = 1, Gab 75 0.

b are second set of variables, which have, a priori, nothing to do with the ¢°*.) The
hat the action (2.8) be compatible with the commutation relations XpX, = gpa XqXp of
essary relations on the tj- which are completely analogous to those produced by having

he left on k(X*°) as above. They are

Qabtpt, (2.9)
Qabthts + (grs) T E0E] — qablgrs) ' EiEL =0 (2.10)
—(g®®)71, relations (2.4) and (2.10) coincide. But generically they are independent.

a. Let Iy in k(t) be the two sided ideal generated by the elements (2.3) and let Ip be
ideal generated by the relations (2.9) and (2.10). Both Iy, are Ip are bialgebra ideals in
ce so is I, the two sided ideal generated by I, and I together.

this is contained in Appendix 1.

ere is also a more elegant way to see that I, and Ig are bialgebra ideals. Let A = A7.
eis A' = K(X3,...,X,)/J where J is generated by X]?, X;X; = —q" X; X;. It is now
1er to check that A' e A as defined in [16] is precisely k(t)/I;. Now A' e A is always a
], section 5), for any quadratic algebra A. The results above now brings the additional
tion that A'e A is in fact the largest quotient of k(t) which coacts on the left on A7.

m now on that ¢®® +¢;.! # 0 for all a,b. Then the relations (2.4) and (2.10) combine to

(@ + ¢ )"0 ~ ¢t g tets (212)
(8°" + a:1) 7M™ + g5, )eeth
2 ty as follows. Choose an ordering on the set of indices {1,...,n}
a<c
@{ora:candb<d (2.13)

's from 7t = gr.t5t7 and (2.12) that every monomial in K(¢) can be written modulo I

im i i im
Lt <t <L < (2.14)
TION. An algebra A over K is a PBW algebra if there are elements z1, ..., ., in A such
ymials

.z, r; € NU{O}



A over K.

follow that K (t)/I is a PBW algebra. All we know so far is that (for any ordering of
,...) the monomials (2.14) generate the algebra and that the monomials of degree 2
1 iz

73— J2

tt (as they should be for a PBW algebra).

E OF A PBW. Let g be a Lie algebra over K and Ug its universal enveloping algebra.
be a basis over K for g C Ug (as a vector space). Then by the PBW-theorem

hoff-Witt). The
., r; € NU{0}

m ?

Ug over K. Thus Ug is a PBW algebra. This is of course the result which suggested
3W-algebra”. If g is abelian then Ug = Sg the symmetric algebra of g over K, viz.

'{zl,...,:cm]

M, [1]. Let K, gab,q%, t,I be as before. Then K(t)/I is a PBW algebra with generators
‘n if and only if ¢*° + q;bl # 0 for all a,b and there is a total ordering on the indez set
erent from 1 <2 < ...<n) such that

=q"/quc=p# —1foralla<b, c<d (2.18)

an (7)+1 parameter family of PBW deformations of the polynomial algebra K[t} .. . £7].
a graded ideal so that M, = K(t)/I is also graded. Give the t;‘. degree 1. Then

)r = #{(’I‘1,...,’I‘m) 1, €NU {0}, Z'I‘i :'r}
=1

lim K[t1,...,t7],

and A, denotes the homogeneous component of degree r of a graded algebra A.
sincaré series of a graded algebra A is by definition equal to

i dim(A,)t" (2.19)

art-Poncaré series of every K (t)/I satisfying (2.18) is equal to that of the polynomial
1d the M, = K (t)/I are a-deformation of the graded algebra K[t] in the sense of graded

OF THE NECESSITY OF(2.18). By the remark just below 2.10 we already know that we

s #0

t amount of monomials of degree 2.

r=bin (2.12) to get

" qabtits (2.21)

) and (2.12) and t2> = ¢®*tbt2, t94% = q,,t%2 to calculate t5t5t¢ in two ways for

et Tor



) =gt
= 0" qu(q" + 0 ) e e — a5 e (tget)
+0°qan(q® + 455 ) (0% + 4! )Eg (25t)
= 0" qab(g + a5 )7 (070 — 4y 02 )(@”* + 4 ) M@ — 0 ) tathe
+0" (9% + a5 ) (a0 — 45 9@ + g5, ) THg — gt eetdis
+4" (g + a3y ) (g% + g g tepthis
hand
)ty =gt (tetg)
= ¢°2(g* + ¢} ) 1 (g*q®® — qzlay ) (thed)Eg
+a°(g* + g5 ) (g% + g ) (Bhep)te
= q“"(q“" +ag )T g™ — gtany) )gtetathis
a(g® + a3, ) "M% + ¢5t g antpthis
t the coefficient of 31}t must be zero which gives

cb ba

— g5, =00r g®°¢" — g3l =0 (2.22)

deb = ¢°%q;}. Then (2.22) says
Pac O Pab = Ped (223)

or all triples a # b # ¢ # a). Choose a fixed 4,5 say ¢ = 1,5 = 2 and let p = p;;. Then

0 OT pap = p~ ! for all a,b (2.24)

strictly weaker than (2.23)).
e. p= 1) then for all a,b

ting works. If p # p~! define
S pij=p (2.25)

>k = pi; = pand pjr = p so that by (2.23) (witha =1, b=k, ¢ = 5) pix = p, i.e.
5 that the order defined by (2.25) is transitive. For this order we have

0;j=pfori>j

the proof of the necessity of theorem 2.17. The sufficiency can now be handled by the
ma, [2], which says, in this case, that if all the overlaps

‘g

the monomials (2.14) are a basis. Through there is a good deal of symmetry which can
this still involves quite a number of cases and rather lenghty calculations for each case.
1 different approach, cf Corollary 4.25.




'ENERAL CANDIDATE R-MATRIX

be an n? x n? matrix over K. In this section we examine a fairly general R-matrix
ispired by the kind of commutation relations of section 2 and study when it satisfies
r equation

23 = RazRi3Ri2 (3.1)

"V ® V with basis e!,...,e" is given by

)= r e ® €

23 = Id® R and Ri3(e' ® ¢/ ® €*) = r* e™ ® e/ ® ¢”. In terms of the entries 724 of
(3.1) says

phaks

be _alz I3l
Tow = Thi 7. (32)

2Tlaw uy
nwe€ {1,2,...,n}
a general R-matrix with the requirement

unless {a,b} = {c,d} (3.3)

onzero entries are of the form 2%, 728 122 (and rf2,rb2) a # b.

a? a.
less inspired by the commutation relations of section 2 and, as we shall see in section
to choose the 72 such that the commutation relations of section 2 are reproduced. It
ararkable that the requirement that an R-matrix of type (3.3) satisfy Y B is practically
equivalent to the requirement that it gives the right number of relations in degree 2
hese are precisely the commutation relations of section 2 above.

lemma drastically reduces the number of equations (32) that must be examined (from

et R be an n® x n? matriz satisfying (3.8). Then both sides of (3.2) are zero unless

w}.

erm of the left hand side of (3.2) is zero we must have {a,b} = {ki,k2}, ks €
2, k3} C {a,b,c}. Further u € {ki,c},v,w € {ka,ks} so {u,v,w} C {k1,c, ko, k3}
{a,b,c}.

k3} = {v,w}, ki € {u,ks} so {k1,ke,k3} C {u,v,w}; {a,b} = {k1,k2},c € {u,ks} so
2, ks, u} C {u,v, w}.

t that for a nonzero term on the right hand side we must have {a,b,c} = {u,v,w} =
;e similar. Indeed {b,c} = {l1,l2},1s € {a,l2} so {I1,13,13} C {a,b, c}; {u,v} = {l, 15},
{u,v,w} C {ll,lz,l;;,a} C {a,b,c}; and {11,13} = {u,v}, lg € {lg,’w}, so {ll,lz,lg} C
= {l;,lz},a S {l3,'w} S0 {a, b, C} C {ll,lz,l3,’w} C {u,v,w}.

et R be an n? x n? matriz satisfying 3.3. Then
LT - et

=1 <7 )

iate.

JWATIONS. Many of the equations (3.2), assuming (3.3), are automatically satisfied.
lea+#b#c#a,u=a,v=>bw=c Then the nonzero lefthand terms must have
= c and hence k; = b so the LHS is equal to r2¢r2°rf¢. For the RHS we must have



, hence I; = b and so the RH .S is ri°r2¢r2 and so this equation is automatically satisfied.

it there remain the following equations

oTes) = The(ThaTly + TeaThe (e#b#Fc#a, u=bv=cw=a) (R1)
aras T Thares) =1h(rigrld)  (a#bEeto u=cv=a,w=D) (R2)
Tes + ThaTiaTes = ThergTes +TheTaTee  (@#b#c#a, u=cv=bw=a) (RI)
oo =0 (a=b#c,u=a,v=c, w=a) {(R4)
Tea = TaaTcaTea T TacTeaTea (@=bFc,u=cv=w=a) (R5)
Tac =TaaTacTae + TcaTacTae (@Fb=c,u=b,v=>b w=a) (R6)
rgb = ppbpbaybe (a=c#b,u=a,v=>b, w=a) R7)

r cases either give nothing or give back one of these six types of equations. For the
:ailed analysis, cf Appendix 2.

'TION FAMILY

z;; for i > j, r:j = :I:J-_il)\”)\d fori<j

X, = X = A ifi < j, ri = 0fori > j

htforward matter to check that these r’s satisfy (R1) - (R7).

) parameters z;;,7 < j and two more parameters A%, A\y. One of these can be eliminated
ull parameters by an arbitrary number.

e thus an ('2’) + 1 parameter family and this is in fact the (’21) -+ 1 parameter family of
we. The connections are

A, ga =z, a>b (3.8)

L ORDENING {1,...,n}
hat R is invertible. Define for a,b € {1,...,n}.

& b A0 (3.10)

A. The relation defined by (3.10) is a partial order

b

have to show transitivity. Let rgb # 0 # r®

o).

: are four cases to consider

iy ie. a < b,b < cand we have to show 2 # 0

0, 75 =0, T #0, 1 =0 (3.11.1)
0, 7 =0, T =12 #£0 (3.11.2)
rot # 0, TS #0, 72 =0 (3.11.3)
ey 0, rhe =1 #0 (3.11.4)

v the invertibility of R (cf Lemma 3.5), also 72 # 0 # 8. Hence by (R2)
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ab bec __ _bc ac
ToaTeh = TebTca

and hence
lcl;: = Tba, ;é 0.
In case (2), also 72 # 0 # r2% and using (R2) with a and b transposed gives

bc_ab __ _ac_ be
TebTba = TeaTch

so that again
c:z: - Tba 7é 0
In case (3), by the invertibility of R, # 0 # r¢} and hence by (R1)
rgbrss = aghrl;
and hence 725 = rb¢ #£ O
In case (4), suppose that 72 = 0. Then, by invertibility of R, 725 # 0 # 75
Now use (R3) with b and c¢ transposed to obtain
ToeTSaTh + ToaTeT e = T he + TheTheTeq
By (R4), 7%t = rbe = (because rbered £ 0); hence this would give

ac,.ca,ab

racréary =0, le.ry, =0,

a contradiction. Hence r2¢ # 0, concluding the proof of the lemma.

3.12. BLOCKS
Still assuming that R is invertible define two indices a,b € {1,...,n} to be connected ifa < borb< a
in the ordening of 3.9 above.

3.13. LEMMA. Connectedness is an equivalent relation.

REMARK. This is not immediately implied by Lemma 3.11. It adds information e.g. to the case
a < b, a < ¢, by stating that then b, ¢ are comparable.

PROOF OF LEMMA 3.13. There are four cases to consider

T8 £0, 1% #£0. Then a < b, b< ¢, hence a < c and 75 # 0 (3.13.1)

22 £ 0, 78 #£ 0. Then b < a, ¢ < b, hence ¢ < a and r<® # 0 (3.13.2)
The other two cases involve more work

2 20, 2 £0 (3.13.3)
As in the case of the proof of lemma 3.11 there are (by (R7)) four possible subcases to consider.

e £0, 728 =0, 7 £0, X = (3.13.3.1)

e £0, 782 =0, rb =12 £0 (3.13.3.2)

rhe =Tet #0, T80 #£0, % (3.13.3.3)
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76 0, Tbc = ch #0 (3.13.3.4)

ree subcases lemma 3.11 is immediately applicable. It remains to deal with (3.13.3.1).
S # 0 by invertibility.

after the permutation b == ¢ — b, @ — a to find

Tac + 7’327'32) - Tac(ngTgab) (31335)
rée = 0, r2¢ # 0 by invertibility. Hence the RHS of (3.13.3.5) is # 0 so that also 72 or
t0
1 is

reg # 0. (3.13.4)

re four subcases

), rgg =0, ¢ #0, ri2 = 0. (3.13.4.1)
), 788 =0, 7 = vt £ 0. (3.13.4.2)
ab 20, rbe £0, rb (3.13.4.3)
ab L0, rbe =12 £ 0. (3.13.4.4)

v 3.11 immediately takes care of (3.13.4.2) - (3.13.4.4) and only (3.13.4.1) remains. In
& = 7% = 0, r3 # 0 which by (R1) would imply r%¢rb2 = 0 contradicting (3.13.4.1).

a
)or 2% # 0 and we are done.

TION. An equivalence class B C {1,...,n} under the equivalence relation of connected-
Uled a block.

I'URE OF BLOCKS I

tion and the next the structure of blocks is examined. More precisely if B is a block, the
= (7%8)4ap.c.d,cB is determined. After that we will examine how blocks can fit together.
of block is (as it will turn out) the trivial one. The result is:

SITION. Let B be a block. Suppose that there are a # b, a,b € B such that a < b and
here is a A # 0 such that for all ¢,d € B

dd —ped =pde = )\ r9=1% =0 Ve, deB (3.17)

ssumption 1t # 0 # rb2. Hence 7% = rb2 = 0 by (R4), and A = 7@ = rb by (R6).
n (R5) gives
aa ab_ab

= TaaTbaTba (3.18)

y (cf Lemma 3.5), 732 # 0. Hence r22 = r2® = X and switching a,b also 7* = X. Hence
or these particular a,b € B. Now let ¢ € B, a # ¢ # b. If now suffices to prove
=T

(cz:’ 7’ac - Tlc:g =0 (319)

n turn, it suffices, by the previous argument, to show that




# e (3.20)
w
or ca :’é 0 .

0, then a < ¢, b < a, soalsob<candr"§#0 Fres #£0; also c < b< a, 50 782 # 0.
ns (assuming r2 # 0) to-analyze the case

# g, Toe = 0=rf¢ (3:21)

~ b < cwhen a ~bmeans a <band b<a.
m (3.21) that

#7h, Tas £ 0# rie (3:22)
to see that
b=H (3.23)

‘ow replace a by b in (R5) to find

[T e AT (3.24)
and (R3) gives

po=ricribn + B (3.25)

Ap =0, ie. p =0 a contradiction. So r¢® # 0. The case r% # 0 (but 72 = 0) is
ilarly and (3.20) is established so that the proposition is proved

URE OF OF BLOCKS IT
. block such that there are'no a,b € B for which a < b and b < a. Then by the previous
all c #d, ¢,d € B it holds that not c < d, d < ¢, i.e.

0 for all a,be B. (3.27)

;hat all a,b € B are comparable, so that the induced order on B must be total. Hence
uation '

=0,70 #0#r2  all a<b, abeB (3.28)
ARY. A block B is one of the following two types:
a,b € B, a~ b and its structure is givew by (8.17)
inearly ordered and no two elements a,b satisfy a ~ b.

»sition gives the structure' of a block of type IT

ITION. Let B be a block' of type II. Then there are y # 0, z # O such that for all

gt =y for a<b, Taa”ba =z for a#b (3.31)

or p where A and g (3.32)
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solutions of

yX + z. (3.33)

‘@ @ < b < c(where a < bmeans a < b and not b < a). Then using (3.28) and (R2) it

be

Toh (3.34)
y and establishes the first part of (3.31). Using this in (R3) gives

y+y° =reriy +y°

la<b<e

= ey (3.35)

ind ¢ in (R3) now gives

Y =TTy

0, this, together with (3.35), establishes the second part of (3.31). The last part of
3.30) now follows directly from (R5) and (R6).

TAGONAL BLOCK

isting of a single element is (trivially) both of type I and type II. These blocks behave
‘ent when connecting blocks together then blocks of type I or type II of size > 1. It
sjometimes convenient to group all the blocks of size 1 together in one diagonal block
1}. For this group of indices we therefore have

= rli=r3¢=0 forall a€{l,...,n}
0#7%, deD, ac{l,...,n} (3.38)
FYING (R3)

nd term on the left of (R3), i.e. rgbrgbr¥, and the second term on the right of (R3), i.e.
zero unless ¢ < b and b < ¢. But then rgfl’ = r'c’g so that these terms are equal. Thus
5 to '

ac __ . bec_cb, ac )
"ea = TocTcbTca (RB )

3

SITION. Let By, ..., B, be the blocks of {1,...,n}. Then there are zy, s,t € {1,...,m}
= 0 +f By is a block of type I, such that for all a # b.

=2y if a€B, bEB,, a#b. (3.41)

=1 and B, is of type I, then 72 = 0 = re and if B, is of type II then the result is

ructure proposition of blocks of type II. We can therefore assume that s # ¢. Choose
}; and set

cdpde (3.42)

'+ = 1 there is nothing more to prove. If #B, =1, #B; > 1,let b € By, b #d. Then
# 0 and in both cases (R3') gives



reards (3.43)
result in this case. The case #B, > 1, #B; = 1 goes the same. Finally if a #¢, a €
3, then we get again (3.34) and also because r3 # 0 or 75¢ # 0

TheTes

| with (3.42) gives (3.41).
irn out that the various properties which have been derived in above are in fact also
rantee a solution of the Y BE.

the following description of all solutions of the Y BE under the restriction re; =0

{c,d}.

4. Divide the set of indices {1,...,n} into blocks. Assign to each block type I or type
se case of a block of size 1). Further choose numbers € K as follows

% B, of size 1 choose A; € K, Ay #0

k of type I choose As € K, A\; #0

k of type II choose y, € K, z, € K, 2, #0, ys # 0

two blocks By, By, s #t choose 254 € K, 24 # 0, 25t = 245.

2> b such that a,b are not in the same block of type I, choose x4 € K, Tap #0

rcd as follows

#B =1, rad = A
sa s Of type I T - ng = Tg: - Tz.‘;)‘ A"""ab - Tb O
},, B, of type II, a < b, rba = Ys,T Z‘; = 0,1‘,,,, = stbaf, T;,a = Tpa, Tag = )\s,#s’ 7'11:2 =
sre Ay, s are the two solutions of X?= Xys + zs (It zs allowed that v22 # r 9
in different blocks, a > b, a € B;, b€ By, 7 b = Zap, ’I‘ba = zstzabl, rb: = TZb =0

nless {a,b} = {c,d}.

wus specified constitute a solution of the Y BE.
a permutation of {1,...,n} (non-unigue as a rule) every solution satisfying (z) is thus

a permutation of indices if necessary, the partial order defined by a < b & r2b £ 0 is
1 the natural order of {1,...,n}. The statement that all solutions under the restriction
1 by the recipe (i) - (iz) above is now the context of the lemmas and formulas (3.10)-

show that if R = (r2) is constructed by this recipe then it is indeed a solution. This
rhtforward verification of (R1)-(R7).

tions (R1). If a,b,c do not all belong to the same block at most one of the three
e rgbs 12 v can be nonzero. As each term in an (R1) equation involves a product of
ifferent pairs, all termsin an (R1) equation are zero in thzs case. It remains to check the
all belong to the same block. If this block is of type 1 72} = rp¢ = r2¢ =0 and agam all
So let a # b # c # a all belong to the same block B, of type II. f a < b < ¢, ret =0
—y_,,lfa,<c<b rcb=0andrba—y,—rbc; 1fb<a.<c r?ﬁ:O:rbc,lf
=0=r@;ifc<a<b ri=0=r%ifc<b<a, rfl =0=rg;so (R1) holds in all
1u1va,1ently for a given abc all six (R1) equations hold)

tions (R2). As in the case of (R1) if a,b,c, a # b # ¢ # a, do not all belong to the
terms are zero, and, also again, if a,b, c all belong to the same block of type I then
¢ = 0. Thus it remains to deal with the case that a,b,c belong all to a block B, of

b<e, rab=0and'rba—y3—rca,1fa<c<b 'rcb—O-—rab,lfb<a<c, r,m-O
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cb,lfb<c<a,, re¢ =0=r2ifc <a<b, e =0=1rifc<b<a; réc =0 =rgb
olds in all six cases.

ruations (R3). These can first be simplified to (R3'). Indeed, unless, a, b, ¢ belong to the
the second term on the left and the second term on the right are both zero. If all these
e same block of type I both these terms are equal to A3; and finally if a, b, ¢ all belong to
'pe II both terms are equal to zero unless a < b < ¢ and then both are equal to y3.

i to check (R3'). Both terms in (R3') are zero unless a < c. Let B, be the block of a,c. If

3, and B, is of type IL, r2brb% = z, = ricrel by (viii). If b € B, is of type I, 2 = 0 = 7}¢.

Bs, then if a > b, 'rabrga = LapZstT bl = zg4 and if b > a, 7‘2 'r“g = mbaztsxbal = Zps = Zst;
re® = 2z, because b € B;, ¢ € B,. Thus (R3) holds.

quations (R4). If a,c are not in the same block r2 = 0. If they are in the same block of
0; if they are in the same block of type II r35rS% = 0.

quations (R5) If a,c are not both in the same block r%¢ = 0 and all terms are zero. If a,c

me block B, of type I, 733 = A, = 725 and 72¢ = rS? = 0 so that (R5) holds Finally, ifa,c

k B, of type I, all terms are zero unless a > c and then 735 = A,, us; 725 = y,, 72752 = 2,
(R5) holds because A,, it both solve X2 = Xy, + z,.

quations (R6). Exactly the same argument as (R5).

quations (R7). rgbrb? = 0 unless a,b belong to the same block B, of type I and then

As.

EXAMPLES

12 13 21 22 23 31 32 33 11 12 13 21 22 23 31 32 33

11 A
zw;'ll Y 12 A
z:rza—l1 y 13 A

z21 21 A
A 22 A

z:r:s_.‘_,1 Y 23 A

z31 31 A
Z3z 32 A

P 33 A

= 3; one block of type IT (A2 = Ay + z; n = 3; one block of type I
2= py+z A\ p, T,z all #0; p=4) (A#0;p=1)



S i

22 23 24 31 32 33 34 41 42 43 44

M
-1
Z12Z 39

-1
212849

T3z
Az

-1
22T 4q Y2

41

1, both of size 2; A2 = M\jy1 + 21, A2 = Aoy + 22, p2 = poys + 22;
Op=12

12 13 21 22 23 31 32 33

-1
12854

-1
213% 3,

Az

-1
22330

Z31

x32

A3

2 blocks of size 1, p = g, all parameter # 0; if all
size 1, R is simple any invertible diagonal matrix)



17

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 X
12 zlz,;ll n
13 2121;11

14 z13z;11
21 z21

22 Az

23 212“;21

24 21525,
31 31

32 T32

33 A2

34 Zzam;sl
41 Ta1

42 T42

43 Z43

44 H3

(n = 4, 1 block of type II of size 2, 2 blocks of size 1, A? = A\jy; + 2, p = 13, i, Zij, 21, %45 £ 0)

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 X
12 z1 z.:,'ll Y1
13 zlzxs_ll

14 212:24'11
21 ®21

22 M

23 zlz:c;zl

24 z;zzzzl
31 : T3

32 z32

33 A2
34 Ag
41 T4y

42 Taz

43 Az
44 A2

(n =4, 1 block of type II of size 2, 1 block of type I of size 2; A2 =y 421 Ay Tij,
21, z13 all # 0; p = 8)

In the examples above p is the number of parameters. In the “irreducible” case of one block of type
IT of size n, p = (72‘) + 2; in the “irreducible” case of one block of type I of size n, p = 1. In the
“reducible” cases the number of parameters can increase drastically to a maximum of n?; in that case
there are n blocks of size 1 and R is simply any invertible diagonal matrix; this is, in a way, the most
degenerate case.



YJING COMMENTS FOR SECTION 3
the YBE, in fact any n? x n2 matrix R, can be used to define a bialgebra by commu-
RT>Ty =TT R, cf below. The “standard” quantum group of type A, 1 corresponds
1e block of type Il of size n withy = ¢ —g~ 1, 7% =A=gqforalla, z=1, 24 = 1 for
ee, the irreducible case of type II, with 22 for all a equal to the same solution A of
orresponds to the ('2’) + 1 multiparameter quantum group of section 2. In this case
) + 2 parameters, but one is superfluous because multiplication by a scalar is irrelevant
'E and for the commutation relations defined by an R.
: of the R-matrix for the (;) + 1 parameter quantum group is illuminating. There are
arameters” and these define what in several ways seems to be a rather nonessential
y not trivial in the technical sense) deformation of the matrix algebra. The phrase
ntial” here is intuitive and should be given precise meaning. One fact in this direction
X ('2‘) parameters (the z;;) do not appear to give any more sensitive Turaev-type knot
simple drop out of the defining trace formula even though the relevant braid group
are different.
le type II R-matrix with mixed r2%, meaning that some of the r%$ are equal to one
= (g — ¢~ 1)X + 1 and some to the other one, give rise to bialgebras with nilpotents
m groups in the accepted sense of the word); they also give the same polynomial
ot invariants (for a lower size R-matrix).
lassical R-matrices of type B!,C*, D, A? do not arise as special cases of those of
These classical R-matrices do, however, satisfy a very similar condition to the one
Let o be the involution on {1,...,n} given by (i) = n 4+ 1 — 4. Then these R
: B, C1, DY, A? satisfy

unless {a,b} = {¢,d} or b=uo0(a), d=0(c) (3.47)

ible to extend the analysis of this section to the case of all solutions of the YBE
R
y that the(g) + 1 parameter E-matrix quantum is maximal though this remains to be
y it will thus be possible to find the maximal families for type B!,C!,C?, A? as well.
hese matters is in progress.

RIX BIALGEBRAS DEFINED BY THE FAIRLY GENERAL R-MATRIX OF SECTION 3
be any matrix satisfying

unless {a,b} = {c,d} (4.1)
the commutation relations defined by

T,T,R (4.2)

tl .
, T=T®IL, Th=I,%T.

T e

A
ms (4.2) written out become

=i, (43)
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the ideal in k(t) generated by the relations (4.3). Then I(R) is a bialgebra ideal, cf e.g.

(EM Let R be a solution of the YBE consisting of one type II block of size n such that
! = constant for all a € {1,...,n}, Then R defines a multiparameter quantum matriz

:scribed in section 2 above.

:all that the quantum matrix algebra in question arises by taking the maximal quotient
t*) that acts from the left on a quantum space K(X?,...,X™), X'XJ = ¢ X1 X* by the
. action and from the right on a quantum space K{(Yi,...,Yn), ViV = guY,Yy, where
= (g9, qrr = 1, qr1 = (qi) ™! and the ¢ and gy are related by

=p#-~1 (4.5)

;ions defining the quantum matrix algebra are

O (4.6)
Qabthts + (grs) T o8] — dab(grs) "' E5EL =0 (4.7)
1 qTitgty (4.8)
gretsty + (¢*) Mgt ~ (¢70) (g it =0 (4.9)

€i;,t < j, as in theorem 3.44. Let A%, —A; be the two solution of X? = Xy + z and take

=AY, rgg = x4 for a > b, r,’,"‘; = /\“).da:;bl fora>b

(4.10)
=A% —Agfora<b, rgt =0fora<b
by theorem 3.44. (One can also take r22 = — A4 for all a; that gives an isomorphic matrix
ivial relations resulting from 4.3 are
c=d, 7Titit? =ritlt? (4.11)
c#d, TS = rodtt? + rdcgate (4.12)
c=d, robeetd +rebedee = recebee (4.13)
c#d, 1ot +rgbebee = redsbie 4 pdcsbea (4.14)
=755 = A%, (4.11) holds. Now take
Zap(A*) 7, @uo =zapA;' for a<b (4.15)

ndeed g%qup = z46(A*) " (2 Aa) = Ag(A*)™! = p = constant. Substituting the values of
.2) we obtain ford < ¢

= Teatgt + (¥ — Mg)t2ts
od

A7 Teatlt? = A T g 310 = g qt3t2 (4.16)
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which is (4.6). And for ¢ < d we get
AUeS = A¥ gz} 1312
which gives
8t = Aawey t3EE = 40 t4tE = geatlt]

which is the same as (4.16).
Now substitute the values of (4.10) in (4.13). There are again two cases to consider.
Ifa < bwe find

AgAvz 1088 + (A — Ag)thte = Xugbee
which gives (using 4.15)

2t = (W) aapthts = gotthes

which is (4.8).
If a > b we find

Tapt2td = Avebee
which gives

thee = (X*) Loaptith = gPotet?

Finally substitute the values of (4.10) in (4.14). Note that (4.14) really embodies four equations
between the tf}tg, t‘jtb t"t‘a‘,, tf}t‘c’; namely, the one written down and the three obtained by switching

a and b, switching ¢ ;;dcd, and switching both.
Taking a < b, ¢ < d we find

AUAGT 10th + (A% — Ag)thtd = Mgz tibte

Switching a and b in (4.14) and then substituting gives
Tapthts = A¥Agz ] tath
XA S8 4+ (X — Ag)thte = moathts + (A — Ag)thte

Finally, switching both a,b and ¢,d and then substituting gives
Taptht? = Tegt®th + (A% — A\g)t3t]

Observe that (4.18) and (4.19) are identical. It is easily checked that
Tap(A*A2) 7 (417) +(zy) (420) — (A7 — (A%)71) (4.18)

has equal left and right hand sides. Thus (4.17)-(4.20) are equivalent to (4.17)-(4.18).
Multiply (4.17) by Zap(A*Ag)~! to find

t28h + Tap A7 108G — wap AS 1088 — z T el = 0

and now use (4.18) to rewrite the third term to find

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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t2th + map A7 0% — Mgz 38 — zopz 14t = 0 (4.22)
Because a < b, ¢ < d we have by (4.15) that
0 = @a = TabAY,  Gea = (qae) " = (zead7?) ™ = Mgz},
Qo Ged = Tap A7 AT} = Tapz )
so that (4.22) is identical with (4.9).
Now use (4.18) to rewrite the second term in (4.21). This gives
288 + Xz 151D — 2o A7 S — zopz ]l 02 = 0 (4.23)
Again, as a < b, ¢ < d, we have by (4.15) that
qab = ()‘u)_lmabv (q(:d)—l = ((Au)_lmcd)—l = )‘uw;jl
(4.24)
g®(q=h) =1 = (A\¥) "tz Atz )

so that (4.23) is identical with (4.7).

This finishes the proof of the theorem. (Though not necessary, given what has been shown about
the rank of the various groups of relations involved, it is in fact now not difficult to show that inversely
the groups of relations (4.7)-(4.9) imply the group (4.14), i.e. (4.17)-(4.20)).

4.25. COROLLARY. Let M7*™ be the multiparameter quantum matriz algebra of section 3, i.e.
Mg>™ = d(t)/I when I is the ideal of the relations (4.6)-(4.9). Then M7*™ is a PBW algebra with
the same Hilbert-Poincaré series as k[tl,... t7].

PROOF. We already know that the dimension of the degree 2 part is exactly right viz. n?+ (';2) The
commutation relations are of the form

1T, = RT'TZThR
Now R satisfies the YBE, i.e.
RisRi3Re3 = Ro3Ri3Ry» (4.26)
Now for the triple product‘ LD, T =TRIQI, T, =IQT® I, T5=1®1I®T, we have that
Ty(T2T3) = TiRy3 TsToRos = Ry (T1T5)ToRys = R{glnglTsTlRmTszs
= Ry Ry Ts(TiTo) RisRes = Ryy Ryg TsRyy ToTi Rz Ris Ras (4.27)
= Ry Ry R T3TyTy Ri2 Ry3 Ros

(Note that R;;Ty = TxR;; if i # j # k # i because R;; only affects factors 7 and j where T} is the
identity). We also have

(TITZ)T3 = RﬁngTlRuTg == Rl_lez(Tsz)Rlz = RaszR;31T3T1R13R12
= ‘Rl_21}21_31 (T2T3)T1R13R12 = R—l—glRl_gle_angTszaTlRllez (428)
= Ry Ry Ry TsT2Ti Rys RagRas




cts of (4.27) and (4.28) are the same proving the confluence conditions of the diamond
d the result follows. This argument: YBE = confluence condition of diamond lemma
ved before, [6].

NTS ON THE OTHER SOLUTIONS OF THE YBE
onsisting of one block of type I gives, as is easily checked, no relations at all amoung

s consisting of one block of type II but with mixed r2% give rise to a bialgebra k(t)/I(R)
elements. Indeed if, say, 72 = X, rff = p # A, then by (4.11)

ptete (4.30)

0. These are of course perfectly good solutions of the YBE and as such are of potential
1ple the business of constructing link invariants (cf section 5 below) but the bialgebras
» not quantum groups in the (more or less) accepted sense of the word. (There is no
some authors equate the concepts Hopf algebra and quantum group; I would be inclined
phrase quantum group for a Hopf algebra that is a PBW algebra and is a deformation
algebra of a linear algebraic group).

remark that in spite of nilpotents the bialgebras defined by a single type II block
* solution of the YBE are still pretty nice in the sense that its defining rewriting rules
relations) are confluent (so that it is easy to write down a basis and a version of Grobner
-obably applies).

JM GROUPS

a single type II block solution of the YBE with constant v, defining a multiparameter
ix algebra M, = K(t)/I(R) as described in section 3. As is shown in e.g. [1] there is
ant d in M, (a quantum determinant) Such that the localization M,[d~'] admits an

hus becomes a Hopf algebra.
. of [6,12,13], cf also [4], the fact that M, comes from a solution of the YBE is also
lishing such facts.

\XTER OPERATORS AND LINK INVARIANTS
1 the Yang-Baxter equation takes the form

12 = S23512523 (5.1)
en in terms of the entries of S this works out as

km _ cai bd ki
uv = SukSij Suv (5.2)

Jle relation between (5.1) and the YBE (3.1): if R = (r2}) solves (3.1) then both

), %=1t ' =(s2), s =rbe (5.3)

1 vice versa). Let’s check that for S. Putting (5.3) in the LHS of (5.2) gives

km (54)

Y

1S of (3.2) with wvw replaced by wvu; now put (5.3) in the RHS of (5.2) to find

i — pbepai ki (5.5)

w ji TeuTwy

HS of (3.2) also with uvw replaced by wvu. The proof for S’ is as easy {except that
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| LHS switch).

‘10N ([22]). A Yang-Baxter operator consists of a quadruple (5,7, «, ) where S is an
ix satisfying the YBE in the form (5.1), ¢ is an » X n matrix, and «, 3 are invertible
are related to S by the conditions (5.7)-(5.9)

:ommutes with S (5.7
o(v®v)) = afv (5.8)
lo(wev)=a 8y (5.9)

m;c’,) is an n? x n? matrix (with the usual ordering 11,...,1n;21,...,2n;...;nl,...,nn

olumns), then Tro(M) = N is the n X n matrix with entries

2

W 4.+ mi, (5.10)

ritten as an n X n matrix of n x n blocks then replace each block by its trace. If v is
n (5.8) and (5.9) are equivalent to

k1 o (In ® V)) = ailﬂIn (511)

the n x n identity matrix).
3 operator (S,v,a, §), Turaev’s formula

= a0 Tr(ps(€) o v®™) (5.12)

invariant. Here £ € By,, the braid group a m letters, w(£) = Ze; if £ = o} ... 0]" where
standard generators of By, and pg is the representation of the braid group (in (K™)®™)
o5 4 Siiv1; To(€) is then independent of the particular braid that gives rise to a link £
the braid.

. the solutions of the YBE described in section 3 it is natural to investigate whether
to Yang Baxter operators in the sense of Turaev (definition 5.6), and, if so, what the
and knot invariants bring. Here I report some preliminary results only. Further work is

RKS. Both the constants o and S can be normalized to 1. Indeed if (S,v,q,0) is a
operator then (a=!S,87'v,1,1) is another one. However, for the formulas below it is
keep o (but 8 will always be 1). As Turaev observes, if v is diagonal, then (5.8) implies

where S is the n x n matrix 5; = SZ:, 7 is the column vecxtor (y1,...,v,)T and @ is the
r (1,1,...,1)T. Thus, assuming v is diagonal, it is unique if S is invertible, as it will

ts reported below.

\EM. Let R be a solution of the YBE consisting of a single type II block, let S = TR be
solution of (5.1). Then S extends to a Yang-Bazter operator with the scalar o such that

—1)n kA —Rutl yhu—katl (5.15)
p. ky) is the number of times that the solution A (resp. ) of X? = yX + z occurs as an

the moment regard R,R™! and §,57! as n x n matrices made up of blocks that are
atrices. Observe that the diagonals of all the off-diagonal blocks are zero. Take v =



), the diagonal n'x n matrix with diagonal entries v, ..., v,. Because v is diagonal and

{a,b} = {c,d}, (5.7) holds. It also follows (cf (5.10)) that the conditions (5.8), (5.9)
ie diagonal blocks of S and S~1. As is easily checked the inverse R~! of R is equal to
= A l4pt i a<d

Ya

= 27z, if a<b
(5.16)
= ) if a>b
= (Ri)™" (=27 (resp. p71))
), {a, b} # {c,d}

2 =Ry (R0 = RY(R™)e + B2(R™)ig =0

ba=c, b=d

2 = RGBT + B2(RT)% = 23, 2 e +0 = 1

=d,b=c¢

b = RGBT+ BB = 2ol O + 07 ) + (A4 )z =0

AL
1ses a == b, a > b are even easier to check.
and p if necessary we can assume that ril = X. Let the pattern of A’s and p’s be the

ing p; = ri for convenience)
= Pdy = A Pditl = - = Pdybdy = M Pdybdptl = o = Pdytdytds = A -

umber of switches (dy,d; + 1),...,(dr,dr + 1), so that p, = A if r even and p, = p if
now easy to see that the equations (5.8), (5.9) (with 8 = 1) amound te the following,
1ations resulting from (5.8) are written on the left and those from (5.9) on the right.
te above, to follow the calculations, it is useful to keep the first example of (3.45) in
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A+ (A e D+ ) = a7t
,\—1

v =a o+ (A M+ s+ ) =at

FA)+ .o tvg ) =a X lug 1+ O+ V(g + ) = a7t
V(s + ...+ pg—1) =a A lug + A7+ g D(vgger +- . )= at
FN@+ .t = p g + (Y g2 b ) =t
FA 4.t vg ) =a e g e+ OV (vt b ) =@t

(/—L + )‘)(Vl +...+ V¢11+d2-2) = /‘l‘—lydr*‘d'z-l +()“—1 +#_1)Cudl+d2.+ s +V1'1) =a!
FAO + A Vga-) = e T e (T T (apdp 1 ) = 07
(B+X+. Frarg)=a  p ara AT AT Ve rdp 2t ) = a7
(B+ X0+ varde1) = B Wa a2 AT D) (Ve rdy st AR) = a7

(Et+Nn+... 4=« & oy =a™!

(resp. p) depending on whether r is even (resp. odd). Now observe that substituting
from the i-th equation both left and right results in the same relation between v;,; and
Vie1 = =AY py;, or vy = —p~ Py, or Vity = —v;. This results in the following recipe

(=AM i pi=A=pig

“Vi—;ll %f pi=A, pi1 =4 (5.17)
(=27 N i pi=p=piy

N it pi=p, pi1= A

( Aot if 7iseven

L po? if risodd

hat, depending on the number, r, of switches from A to u or vice versa

even v, = (—=1)P"1xAku—katly, nxla, v, =Aa! (5.18)

odd v, = (1) INke—Ergyka-buy, oy = Al p, = pa ™t .

1e number of ¢’s for which p; = X and k, the number of i’s for which p; = p, ka +k,=mn
it follows that

L R ! (5:19)

o’s solving (5.19) (taking if necessary a quadratic extension of K) (5.17) then speciﬁé;
h that (5.8), (5.9) are satisfied: (with 4 = ). This concludes the proof of the theorem

K. Both choices for a in (5.19) give up to sign the same link invariant, cf [22], 3.3.

LARY. Let B be any solution of the YBE as describied by theovem 3.44 and § = TR’ the
1 solution of (5.1). Then S extends to a Yang Bazter operator (S,v, @, 1), if any only if



-1)"*’“1/\f>“_k”iﬂpfm—k)“ﬂ for a block of type II of size n; (5.22)
for a block of type I (5.23)
for a block of size 1 (5.24)

s diagonal. From the form of § (and S~! which has the same form) one easily sees
(5.9) only involve the separate blocks and the v’s with corresponding indices. It is
(5.23), (5.24) for blocks of type I and size 1. Finally (5.7) holds because s2§ = 0 unless
wmd v is diagonal.

is perhaps a disappointment. With (72‘) extra variables in an n? x n? single type II
f (5.1) it might be hoped (even expected) that these will give some extra information
to define link invariants via Turaev’s formula (5.12). This is not the case, and using
A\ and p of X? = yX + z (instead of just 1) for the p, = s%% also gives nothing new.

TION. Let S be a single type II block solution of (5.1). Let p occur m times as a p,,
the link invariant T's defined by S by formula (5.12) using the extended YB operator
ed by theorem (5.14) is the same as the one defined by the single type II block solution
2m)? x (n — 2m)?, z;; =1 = z for all 4, j, same y as S (i.e. it is one of the “classical”
[ Turaev).

ows immediately from (5.12) that (S,v,a, ) and (pS,v, pa, B) define the same link
:an therefore assume z = 1, i.e. A =g, p = —g—'. Then, by (5.15), a = F¢"?™. A
w shows that S satisfies the relation

=(g—q (5.26)

tisfied by S;. It follows that the link invariants T and T3 defined by S and Sy (or —5;
matter by 5.20) both satisfy, [22], the same skein relation.

(Ly) = @™ "Ts(L-) = (¢ ~ ¢~ ")Ts(Lo) (5.27)

and Ly are three oriented links which are identical except for one crossing where they
y like

\ /
\ /

+ - 0

anging of + crossings to — crossings any link can be turned into an unlink. Thus the
niquely determined by the skein relation (5.27) and its values on k-component unlinks.
:qual to (11 + ...+ v,)F. Finally one checks that (v +... 4+ vp) = (73 + ... + Fn_om)
1) is the YB operator belonging to S;. This is (with induction) seen as follows. If d;
run of AX’s or p’s, then if 1 = 1, the pattern dy — dy,ds,...,d.11 gives the same trace
1e original (because vg, 41 = —vy,, Vg, 4i = —Va;—it1, ¢ = 1,...,d;) and similarly if
ern dy,...,di—1, dit1,...,dr41 gives the same trace value of v as the original. This
osition.
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K. This result (proposition 5.25), illustrates the previous remark (cf (3.46)) that the
onal parameters in the general on type II block solution of the YBE, i.e. the z;; and
e sense a trivial role, while there is but one essential parameter, viz. y (or g). On the
2 corresponding quantum groups, the general (’2"“) + 1 parameter one, and the classical
1e are not isomorphic.

NTS FROM DIAGONAL SOLUTIONS
iand, perhaps surprisingly, the diagonal solutions of the YBE can give rise to nontrivial
5. Take for example the n = 2, 2 blocks of size 1 solution:

11 L T11 1
2oy Z oy

, R—l - -1 (530)
Z22 Z22
1ding solutions of (5.1)

T11 Z1q
0 T21 0 =z 91

-1 _
’ S - —1

zzy 0 Ty 0 (5-31)

T22 Ty

| = g9, extends to a Yang Baxter operator (S,v,q, ) with v = Iy, if a = z1; = z22,
s rise to a link invariant that takes the following values on the following links

O @ & @

L2 L4 (trefoil)

> o @) &

6 L7 Lg

2, T(L) = 4, T(L2) = 2+ 2, T(Ls) = 2+29?, T(Ly) =2
(5.32)
242y, T(Ls) = 21+ 7)2, T(L1) = 2+ 642, T(Lg) = 6+ 297

21 = 2. Thus, this invariant counts components, can detects various ways in which
re linked but does not distinguish between e.g. trefoil and unknot (Lg, and Lg; cf
5). The two size 1 blocks themselves give only the trivial invariant, thus this example
vely that putting two blocks nontrivially together can definitely give nontrivial extra
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5.33. REMARK. The representations of the raid group on k strings Bj defined by S and S; in
proposition (5.25) are different (even if m = 0), but this difference does not show up in the trace
formula (5.12). This can also be seen directly in cases where there is no relation like (5.26), which is
important in dealing with solutions S which do not consist of a single block. Indeed:

5.34. THEOREM. R be an invertible n? x n? matriz with diagonal entries z;; and possibly nonzero

diagonal entries g;; = rg, i < 7, and no other nonzero entries. Let S = TR. Let w = dfll . ..af::,
€; € {1,~1} be an element of the braid group By of braids on k strings. Let S; = I®*~! ® S @I8Fi-1
and let Sy, = S;} ... S;™. Then the diagonal elements of Sy, are Laurent polynomials in the g;;, the

z;i, and the products xi;T;; = zi;

Proor. The only off-diagonal elements of S are of the form

L B R Jio_ L Jt . =1
S5 =T = Tij, Sy =T = Tji = T Zij (5.35)
-1

The off-diagonal elements of R~ are equal to —q,-j:cj_il z;; ,t < j. It follows that the diagonal elements

of §~1 = R~I7 are of the form

Tl

vt —qii(TgTy) Tt = —qizg (5.36)

and that the off-diagonal elements of S~ are of the form
(.5'_1)3-71- = :cj_i1 = zi;la:ij, (871 :]’ = :ci_jl (5.37)

Now consider a diagonal element of S,,. Such an element is a sum of products of the form

i1 (1) in (1) 432 (2).8n (2) i1 (m—1)...in (m—1)
b (2)in ()i (3)in(3) *° Liy(m)...in(m) (5.38)
with 4(m) =4{1),l=1,...,n,and 1'::811;“(1)1“(”_1) an element of Sj/. Because of (5.35)-(5.37) each

product (5.38) is zero unless all the permutations

( 11(1) . . i, (D) )
u(l+1).. 5,0+
are of the form identity or 7 where 7 is the transposition (k k + 1) that interchanges the k-th and

(k + 1)-th entries and leaves all others in place. The identity permutations produce diagonal entries
from S;, or S; ! and by (5.35)-(5.37) these are of the desired form. The remaining permutations in

(5.38) form a word w in the 7y, ..., 7,1 that is equal to the identity in the permutation group II, on
n-letters. The relations between the generators 7y,...,7,-1 of II,, are the following
=1
-1 =11 _
TETh+1Tk T, Tk Thpr = 1 (5.39)

nnrt =1 i k—1]>2

It follows that somewhere in the word w one of the three left hand sides of (5.39) occurs and by
induction (in the length of w) it follows that if suffices to check that in all three cases the corresponding
factors in (5.38) combine to give a monomial of the desired form. Observe that S and S~! have the
same off-diagonal entries except for a factor z;;. Thus replacing each S;” ! with S only changes things
by monomials in the z;; and we may assume that all ¢ are 1.

In the first case we obtain a product
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a1 bacs
ayabas

10 ZapZpe = Zeb. Here and below the a; stand for strings of indices that remain

f the second type of relation of (5.39) we obtain a product

talbacagtalbcaaztalcbaaztalcabaz ajachas

oy becacs “archaay “a)cabaz“ajachas “aiabeas

t0 TupTacTbcToaTealeb = ZabZbcZac-

e case of the third type of relation of (5.39) we obtain a product

daatoqbaazcdagtalbaazdca;; ajabazdecas
das ajbaasdcas“arabazdeas’arabagecdas

t0 TobTedThaTde = ZabZed- Lhis concludes the proof.

LARY. Let R be any one of the solutions of the YBE described in theorem 3.44 and
ions (5.22)-(5.24) of corollary (5.21) hold (so that there is an YB operator (TR, v, c, 8)).
sponding link invariant is a Laurent polynomial in the )i, z;, z;5.

re are no blocks of type I present this is an immediate corollary of theorem 5.34. The
slock of type I changes very little (essentially on extra scalar multiple of the identity
the result remains true.

VARIANTS FROM MIXED SOLUTIONS

ow from 5.29 that putting together several blocks (in a nontrivial way can give real
ion. In the case of n = 4 and 2 (different) type II blocks of size 2 the resulting link
»e a Laurent polynomial in A;, Az, 21, 22, z12. One of the 2’s, say z;, can be normalized
‘bed into « which is the same thing) so that the result is a Laurent polynomial in four
one nontrivial relation given by 5.22 between them and there does not seem to be any
> write this polynomial in terms of known “classical” ones. In particular there is in
or A1 # A2) no relation like (5.26). Just what this polynomial and all the other ones
.eorem 3.44 via corollary 5.21 bring in terms of new invariants remains to be explored.
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Direct proof that the ideal generated by the elements (2.3), (2.4) is a Hopf algebra ideal
deal in k(t) generated by the elements (2.3), (2.4). Under the comultiplication of k(t)

1728082 o 1242 @ it — g°Pth 12 @ ti1ed (A1.1)
the terms on the right of (A1.1) with ¢; = 45 and j; = j». These balance in pairs:

tith — g°h2 @ il = (1242 — ¢tit?) ® £l € I® kt) (A1.2)
3 terms on the RHS of (A1.1) are treated in groups of four (z # j).
Bt — qoPede? @ tht] + 22 @ tith — g*Pelt! @ titl (A1.3)
— g+ (g9) e — (™) (gY) ) @ £t

mod (I @ k{t) + k{t) ® I)

st congruence is in fact mod(k{t) ® I) and the second mod I ® (k({t))).
ts (2.4) are twice as complicated to treat. Under the comulliplication (2.4) goes to

ti e — gotth 12 @ tired

)T, @t — (¢)(q7) T, @t (Al4)
;h 41 = i3 balance with those with j; = js for the same value (i; = ip = j; = fo):

Pt — gt @il = (1242 — ¢**ht?) @ itk € I @ k(t).

terms with k; = ks balance with those of I; = I; for the same value.
if @ = b the element (2.4) is zero. So a # b in (A1.4). The remaining terms of (A1.4)
in groups of 8 as follows:

i)+ 3 @ titl — q"tit? @ it — q°Ptht? @ titl

et il + ()7 e @ it — (™)) @ 6] — (™)) e @ 68
— g e2t? + (g7) 7138 — (¢")(q7) T eig) ® tit]

i3l @ (tit] — g Uit + (¢70) T kel — ¢ (g7%) M)

7)) M5t © (tht) — ¢Vt + (¢7°) T e — ¢ (g"0) TMelEl)

— g5t + (¢7) 5] — (¢*)(¢) M) © (¢7) Mt

® k(t) + k(t) ® I. Above the RHS differs from the LHS only in regrouping and
of the four terms (¢”)~'t5¢} ® ], ¢°*(q¥) 7 thts ® titd, (g¥) (g™) 2kt ® titd

T8 8T

)71t42 ® titd, each both with a plus and a minus sign.
that Iy is a bialgebra ideal. The proof for I is completely analogous.
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Derivation of the R-equations (R1)-(R7) of subsection 3.6 and pr

juation is (cf (3.2))

— Tblc als T’al1~

e, kaks
T I lzrl;;w uv

t) we know that under the condition
unless {a,b} = {c¢,d}
A2.1) are zero unless {a,b,c} = {u,v,w}

Yz o= oY = U W.

S of (A2.1) is nonzero iff k1 = kg = k3 = a and then is equal to (
) is nonzero iff [; = Iy = I3 = a and then is also equal to (r22)3
iis case

V£ ¢ # a.

subcases to be considerd, namely how the u, v, w match up with tl

=a,v=b w=c

term on the LHS weneed k1 = a, ks =borky =0, ks = a
kz = b = k3 = ¢ (because u = a = k;) giving a term 7‘321’%7‘22.
ks = a = zero because rfﬁca = 0 for all k3.

term on the RHS weneed l; =b, h, =corly =c¢, Iy =b

2 = ¢ = I3 = a (because w = ¢ = Ip) giving a term r5racrad

2 = b => zero because r;’;’c = 0 for all I5.

JHS = RHS in this subcase and no extra equation results.

=a,v=c¢ w=>b

term on the LHS weneed by = a, kg =bork; =b, ks =a
ks = b= ks = ¢ (because u = a = k;) giving a term r2fracrbe
k2 = a = zero because 7‘223 = 0 for all k3.

term on the RHS weneed l; =b, I =corly =c, Iy =b.

5 = ¢ => zero because i =0 for all I3.

2 =b=> I3 = a (because l; = w = b) giving a term rbepabpac,
JHS = RHS in this subcase and no extra equation results.

=b,v=a, w=c

term on the left hand side we need k; = a, ks =bor k; = b, ky =
ks = b = zero because Thr, = 0 for all k3.

k2 = a = k3 = c (because k; = b = u) giving a term r@rierec.
term on the RHS weneed l; =b, , =corly =¢, I =b.

2 = ¢ => I3 = a (because l; = ¢ = w) giving a term relrcred.

2 = b = zero because 7%, = 0 for all I3.

HS = RHS in this subcase and no extra equation results

=b, v=c w=a.

term on the LHS weneed k1 = a, ks =bor k; =b, ky = a.

, ko = b = zero because Tyr, = 0 for all k3

2 = a = k3 = c (because u = k; = b) giving a term rgiricrac.

2 all

2.1)

2.2)

the
tion



yterm on the RHS weneed [, = b, ls =corls=¢, Iy =b.
I = c= I3 = c (because w = a, Iz = ¢) giving a term risracred.
Io = b= I3 =b (because w = a, Iz = b) giving a term rzgrg:rgz.

RHS in this subcase holds iff
rhe(reirel + s

t=c,v=a, w=b
vterm on the LHS we need ky = a, kg =bor k; =0, ky = a.

. — — — 1 ab,.ac,.ba
k2 = b => k3 = a (because k; = a, u = c) giving a term r3r2ir ¢

ab, .be

k2 = a = k3 = b (because k; = b, u = ¢) giving a term rgréerab,

rterm on the RHS weneed Iy, =b, ls =corly =¢, I =b.

ly = ¢ = zero because {5, = 0 for all ;.

I = b= I3 = a (because w = b = l) giving a term rbrebrac,
RH S in this subcase holds iff

ba ab, _bey _ _aby bc, ac
Tab + Tba.rcb) - Tab(rcbrca

u=c, v=>b w=a.
»term on the LHS we need k; = a, ke =bor k; = b, ks = a.

- - — — e b.ac,.b
ky = b = k3 = a (because u = ¢, ki1 = a) giving a term r2)rr;2.

ab,.bc

k2 =q=> k3 =} (because U =c, kl = b) glvmg a term rbarcbrga.

yterm on the RHS weneed l; = b, Iy =corly =¢, I3 =0.

Iy = ¢ = l3 = ¢ (because w = a, Iy = ¢) giving a term régrg‘%r'ég.
lp = b= l3 = b (because w = a, Iy = b) giving a term r2fr r2e.

RHS in this subcase holds iff

.ac ab_.avb_bc __ _be..chb_ac ab_ba_be
ca + ThaTba Teb = TocTcbTca + TbaTchTch

b#e.
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(R1)

(R2)

(R3)

re a number of subcases to consider depending on how the u, v, w match up with the

k possibilities a priori coincide in pairs giving 3 subcases.

t=v=a=>b, w=c

term on the LHS we need k; = a, k2 = a.

1 = a => k3 = ¢ (Because k; = a = u) giving a term r22r2cpac,
yterm on the RHS weneed [} =a, s =corly=c, la=a

ly = c = I3 = a (Because w = ¢ = l3) giving a term r2Sr2rie,
ly = a = zero because r{}, = 0 for all 3.

LHS = RHS in this subcase and no extra equation results.

t=w=a=bv=ec

»term on the LHS we need k; = ks = a

= a => k3 = c (because u = a = k;) giving a term r2%r2<rac,
1term on the RHS weneed |} = a,ly =corly =c,ly=a

— i — j— - [ 1 C
ly = ¢ = I3 = c (because l; = ¢, w = a) giving a term r2raree,

ly = a = I3 = a (because a = l; = w) giving a term rar22pac,

RHS in this subcase iff

ca
‘ac =0

(R4)



=¢c,v=w=a=h.

term on the LHS we need k1 = ks = a

: ky = k3 = a (because u = ¢, k1 = a) giving a term r22r2Sras.
term on the RHS weneed l; = a, Iy =corly =¢, Iy =a

» = ¢ = I3 = ¢ (because w = a, I = c) giving a term 75Srere.
v =a = I3 = a (because w = a, Iy = a) giving a term ¢

Cat, . ac
CGTGO,TCU.'
RH S in this subcase iff

1C . aa.ac,,ac ac,,Ca  ac

a T lra.a.lrca.’rca + TGCTCGTCCL

=c.

1ere are three subcases to consider

=g, v=w=b=c

term on the LHS weneed k1 = a, ko =bork, =b, ks =a
ta = b=> k3 = b (because u = a) giving a term r2irefrbd.

¢ = a = zero because rgl,’ca =0 for all k3.

term on the RHS weneed I; =1l =)

b= I3 = a (because ly = b = w) giving a term rfiretrab.

HS = RHS in this subcase and no extra equation results

=b=w:c,'u=a.
term on the LHS weneed ky = a, ko =bork; =0b, kg =a

Lo — _ _ s b..ab,.b
¢to = b= k3 = a (because v = b, k1 = a) giving a term r2rp v,

52 = a = k3 = b (because u = b = ki) giving a term rZirpirel.
term on the RHS weneed Iy =1, = b

:b=> I3 = a (because w = b = I5) giving a term rypraitryd.
RHS in this subcase iff

§=0
the second time

=v=b=c,w=a.

on the LHS weneed ky; = a, ks =bork; =b, ks = a

t2 = b=> k3 = a (because u = b, k; = a) giving a term r2irgirie.
12 = a = k3 = a (because u = b, k; =b) giving a term rglriired,
term on the RHS weneed Iy =1, = b

, = b= I3 =b (because w = a, l; = b) giving a term ribrgbréd.
LHS in this subcase iff

Yy __ bbb ab..ab ab, .ba_.ab
L = TeThaTba T TabTbaTba

is not the same equation as (R5) (also after changing & to a, a to
# b As in case 3 and 4, there are three subcases to consider.

=w=a=c¢, v=>b

term in the LHS we need ky = a, ke =bork; =b, kg =a

2 = b= k3 = a (because u = k; = a) giving a term robr2srbe.

2 = a => k3 = b (because k; = b, u=a) giving a t rebpbagab
2 3 1 s gIVING 8 Term Ty, T 17, -
‘erm on the RHS weneed iy =b, lhy =aorly =a, Iy =b

R5)

R6)
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51.3. I} = b, I = a = I3 = a (because w = a = ) giving a term rf2r22rbe.
51.4. I = a,ly = b=> I3 = b (because w = a, Iy = b) giving a term r22rgbrbe,
Thus LHS = RHS in this subcase iff

ribrireh = ridrberty R7)
Subcase 5.2. u=v=a=c¢, w=h
For a nonzero term on the LHS weneed k; =@, ky =bor ky = bky —a

ab .aa,.ba

5.2.1. k1 = a, k2 = b= k3 = a (because v = k; = a) giving a term r2pr3sr22.

5.2.2. k; = b, ks = a = k3 = b (because u = a, k; = b) giving a term rgbrberet,

For a nonzero term on the RHS weneed ly =b, Iy =aorly=a, I =5
5.2.3. I; = b, I = a = zero because r[\} = 0 for all /3

5.2.4. l; = a,ly = b=>l3 = a (because w = b = I,) giving a term rb¢rabrae,
Thus LHS = RHS in this subcase iff

ab_.ab ba __
TabTbaTab = 0

giving (R4) for the third time.

Subcase 5.3. u=b, v=w=a=c.

For a nonzero term on the LHS we need ky = a, ko =bork; =b, ks =a
5.3.1. k1 = a, ky = b = zero because e, =0 for all ks

5.3.2. k; = b, ky = a => k3 = a (because u = b = k) giving a term rglrferae,
For a nonzero term on the RHS weneed i =b, I =aorly =a, I =5

53.3. 11 =b,ly =a=1l3 = a (because w = a = [) giving a term r,’;grggrgg.

53.4. ) = a,ly = b=> I3 = b (because w = a, I = b) giving a term r22rgbrba.
Thus LHS = RHS in this subcase iff

ba,.ab ba _
TyaThaTas = 0

giving (R4) for the fourth time.



