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Abstract

We present an algorithm for multiscale highway recognition from high resolution panchromatic satellite data.
Proposed filters first detect possible highway elements on an image. Data compression and subsequent rough
scale optimization yields a rough scale highway estimation which serves as a basis for precise location of a
highway in the original resolution scale in the last step of the algorithm.
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1. INTRODUCTION

Recognition of a highway in a high resolution image is a simple task for a human observer, but
automatic detection is complicated by the statistical similarity of road and off-road elements. Several
algorithms have been proposed to detect road or similar linear elements (i.e. runways [6] or rivers
[5]) from remote sensing data. Fischler, Tanenbaum, and Wolf [4] describe a method where locally
evaluated road evidence from multiple sources is combined, followed by global optimization using
either a graph search or dynamic programming technique. Zhu and Yeh [12] present a method for
road network detection where edge detection is used to detect antiparallel pairs of segments. These
segments are used as seeds in generating longer road pieces through the use of road growing heuristics.
The intent is to use this result as an input to a higher level reasoning system. Similarly, Huertas,
Cole, and Nevatia [6] estimate antiparallel seeds of detected runways, then fill gaps and remove
antiparallel segments which correspond to non-runway features. Vasudevan, Cannon, and Bezdek
[11] have addressed the problem of partitioning and connecting the roadlike segments extracted by
low levels operators (Duda Road Operator). The approach discussed in Medioni and Nevatia (9] is
based on relaxation technique to match objects from multi-temporal images. Van Cleynenbreugel,
Osinga, Fierens, Suetens, and Oosterlinck [10] use multi-temporal satellite images of the same scene
to eliminate transient (vegetation) features. A road segment from one source image is matched to
segments in another image using the Dempster-Shafer evidence combination rule.

We present a multiscale algorithm which uses only monospectral image data and some prior highway
information (resolution, road width, maximal possible road curvature) to find a highway in a complete
satellite scene. The whole scene is first divided into a mosaic of subimages to get a reasonable
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optimization size problem. In our case we check the algorithm on SPOT panchromatic images, where
these subimages are 320 x 320 pixels. Single subimages are processed independently and corresponding
results are combined together in the last’ step of the algorithm. The next section deals with several
road detection filters. Data compression, described in section 3, is used to lower filter noise, to fill
gaps, and to introduce a rough resolution scale for subsequent simplified optimization, described in
the section 4. An algorithm for combining single subimage solutions is presented in section 5 and
experimental results are presented in section 6.

2. ROAD DETECTION FILTERS

The purpose of road detection filters is to detect linear elements (possible highways) on a given
monospectral high resolution image. An ideal filter should respond only to specified width linear
elements with homogeneous pixel grey levels. Because the filter prepares input data for all other
data reduction and optimization steps, its optimal design is crucial for a successful road detection
algorithm. Eight different filters have been proposed. Their behaviour and speed differ so that they
can be used in combination - an approach advocated in [4], or else it is possible to select one which fits
best to the image data. Each filter is realized by means of directional masks, whose directions o are
denoted using the standard cartographic convention, i.e. N for vertical, NE for diagonal direction,
etc. Note that orientation has no meaning, so N = S,NE = WS, etc. The number of possible
directions is denoted by A. Using more directions provides a better fit to a real road segment. On
the other hand, the smaller the angular discretization step is, the longer the mask should be to be
able to approximate its direction (only directions N, E, NE, NW are supported by the rectangular
pixel lattice). Another disadvantage in this case is the relative increase of the most time consuming
part of the algorithm - the filtering and an exponential increase of possible combinations in the final
optimization step. A reasonable compromise is to use'.A = 8 directions for the filtering and to decrease
this number to A = 4 in the compression step to simplify subsequent optimization. Let us denote A’
a set of mask pixels corresponding to a possible linear segment, B a set of off-road pixels on one side
of A, and C is a set of off-road pixels on the opposite side of A. The number of conditions tested (or
the maximum mask response) is N,. The Euclidean distance between pixel 7 and pixel j is denoted
d;j. A filter response in the direction o and i-th lattice position is denoted f(7, ). Such a response
is evaluated from a mask centered around the i-th lattice pixel. Finally let us denote

Xl o+ - 1 fi<pAi<jon...
6 )= 1
(& 71,72, ) 0 otherwise @)
and
1 for B; C B
6(B1, By) = 1 2 2
(B1, By) 0 otherwise (2)

The standard filter can then be specified

N,
fli,@) =" 6%(laj — ar, b — a;1, |ear — ax]), )

=1
where k, 1, m are lattice positions such, that

dit = dpi = djj = d (4)

The principle of the mean condition filter is to respond to data only if the mean grey level of the
potential road pixels differs by at least 5 % from the mean grey level of the off-road pixels. This
condition simulates the human visual discernibility of a linear segment from the background on SPOT
images (this threshold was experimentally found from statistical analysis of our data sets). The mean
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condition filter responses are defined as follows:

N,
f(i,a) = > [1 — 8(up,[0.9514,1.0514))]
j=1
[1—6(pc,[0.9514,1.0514])16"(la; — arl, [br — aj], lem — axl), (5)

together with the equal distance condition (4).

The median condition filter has been motivated by an effort to increase the robustness of the mean
condition filter by replacing mean values (i 4, 4B, kc) With corresponding medians in equation (5).

The T filter is based on the idea of statistical hypotheses testing that the road mean value is
equal to the off-road mean value (Hp : pg = pB,(a = pc)), while the alternative hypothesis is
(Hy : pa # pB,(pa # pc)). We assume that a; € N(pa,0?), b € N(up,0?), c; € N(uc,o?),
card(A), card(B), card(C) > 2 and the selections A, B,C are mutually independent. Although it is
known that the normality assumption is not valid on most remote sensing data, methods based on this
assumption work reasonably well (Bayesian classifier, etc.). 3 is the predefined probability (chosen by
the user) that p4 # pp. The usual choice for 8 is 8 = 0.05 or 8 = 0.01. If we denote by fi, 52 the
estimators of mean value and variance of the unknown variables p, o2, respectively (for A,B and C).
It can be shown that the random variable T4 p defined by:

fia — B — (44 — pB) [Cafd(A)CaTd(B)f] 1/2 6)

TAB = [(ard(A) - )5, + (card(B) - 5512 L 12

which gives a measure of distance between p4 — pp is a t distribution (Student distribution) [2] with
f = card(A) + card(B) — 2 degrees of freedom. ¢ ;(3) defined as follows:

P(|Tas| > t;(8)) = B

is called the critical value of the t test on the level 3. We compare in fact T4 p with the critical value
and if |Tap| > t 7(8) we consider that 4 is different from pp. B gives the error corresponding to that
choice. Similarly we test Hy : pa = pc. Using this test, we can finally specify the T filter as follows:

N.
fi,0) =" 6"(t7(8),1Tasl, ITacl)6*(la; — axl, lbr — a;], lem — axl), (7)

i=1
together with condition (4).

The idea of the double maxima suppression filter (8) is to suppress filter responses if there are simi-
larly strong responses in more than one direction. We want also to penalize the mutually perpendicular
response directions. We denote the maximal response

fli,en) = mgX{f(i» )

and the second largest response

fa(3, o) = g;gf{f(i,ﬁ)}-

' [1- 28231 oo tamay  for fa(i,a2) #0and @ = en
fi,0) =4 fi(5,01) for f2(i,a2) =0and a = (8)
0 for a # oy

The responses f(i,3) can be generated for example using the mean condition filter.



The Hadamard filter divides the set A into two mutually disjoint subsets A = Ay U A; such that
card(Ag) = card(A;) = card(A)/2 and the subsequent comparison of grey level mean values of both
subsets. We create all divisions such that vectors @} of length card(A) with a single compound v;
representing a subset membership label (v; € {0,1}) of a corresponding pixel from A, form a base
vector set. In the case of card(A) = 8 there are 7 possible divisions, for example. The filter output
can then be specified as:

N,

f(l, a) = Z 6*(’“A0,]' —Ha, ,j|7 I”Ao,]' - /J‘B,]'I) I/-‘Al,j — Hc,j ') (9)
j=1-

Where the off-road sets B, C are chosen in such a way that the average city-block distances between

all sets )
JAO,B = ; Z Z Jaibjy
i

dasp; = |zi — x| + |yi — y51
are as close to each other as possible (JA(,, a4, ~d 4,8~ d 4,,c) and n is the number of all possible
distances dg,; .

The minimum difference variance filter is based on the idea that if the filter mask is exactly located
on the road, the variance of grey level difference between road pixels should be smaller than variances
in all other remaining directions. If we denote the difference variance estimator in a direction « as

. 1 1,&
0= (e~ g = =(3lai - o;)%) (10)
=1

i=1

and a; is a pixel with constant Euclidean distance d in the direction o apart from the pixel a; and n
is the number of all possible such pairs, then we can express this filter as:

N
fili,a) =862 G 00 o )8 (18 — ail, b = aj], |em — ax]), (11)
i=1

together with condition (4) and S; are all remaining directions different from a.

The minimum mean difference filter is based on a similar idea. If the mask direction corresponds
to a road element direction then the mean grey level difference between pixels in this direction should
be smaller than this variable for all other directions.

I
Ho = ;Zlai‘aﬂ (12)

i=1

a; is again a pixel with constant Euclidean distance d in the direction & apart from the pixel a;. This
filter has the definition given in equation (11) if all 62 are replaced with k.

It is not possible to avoid incorrect filter responses introduced by some other linear structures present
in an image. These other linear structures differ at least in some of their parameters (length, width,
curvature, homogeneity, etc.), so the wrong filter responses introduced by them should be generally
weaker than the proper ones. Use of an appropriate filter response threshold can remove some of these
cases. Let us assume that all filter N, conditions are independent of each other, all filter directional
responses f(i, ) outside a true road area (7 — T) are also independent, then the final filter result is
the maximal response:

f@G, ") = m(gx{f(i, a)} for Viel. (13)
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Figure 1: The standard filter output.

If a single direction response of a filter has an additive character of N, conditions fj(i,c) (each
condition returns 1 if satisfied)

Nc
fli,e) =Y fi(i,a) (14)
j=1
and we assume the probability of an elementary off-road incorrect reaction
P,=P(fi(i,a)=1li € (T - T)) (15)
equal for Vi, j, &, then the probability of the off-road incorrect response has the binomial distribution.

P(f(i,a") 2 tlie (Z-T)) =

N,
< (N .
S PG 2tie @-T) =AY () P - P (16)
[+ j=t
We require the probability of error to be smaller than a specified value B
P(f(i,a") 2 tli€ (Z-T)) < 6. (17)

From this inequality we can specify the threshold t. The probability P, (see equation (15)) can be
estimated experimentally or we can find its value analytically for the standard filter. Experimental
estimation is based on equation (16) and on the fact that

card(FN(Z-T))
card(T)

P(f(i,0") 2 tli € (I -T)) = (18)

for some £ , where F = {f(4,a*) : f(i,a") > i}.

Comparing different filter outputs (Figs. 1 and 2), it is possible to see (visually as well as using
statistical criteria - to be described in a following paper) differences in their behaviour. The standard



Figure 2: The mean condition filter output.

filter is the most noisy one. The Hadamard filter is only slightly better but is computationally more
demanding. Similarly we have not seen a significant improvement in the median condition filter
behaviour compared to the mean condition filter to advocate its increased computational complexity.
Our experiments reveal the mean condition filter to be the fastest one, since the time consuming
absolute difference evaluation is done only if the mean condition is satisfied. The signal to noise
ratio was also found to be the best for this filter, but there is also room for improvement of the T
filter performance by improved tuning. Finally, another improvement can be reached by combining
the double maxima suppression principle with the mean condition filter. The mean condition filter
appears to provide a practical compromise between filter robustness and computational complexity.

3. DATA COMPRESSION

Statistical data analysis of road and off-road image segments reveals the difficulty to design a noise-
free road detection filter. Any filter inevitably will generate some incorrect responses due to low
separability of road and off-road data. Another source of incorrect filter responses stems from the
presence of linear artifacts with similar parameters to recognized highways, such as, rivers, side roads,
runways etc. Optimization in the original fine resolution scale is a time consuming task which is
complicated by the presence of incorrect filter responses or the lack of any response (gaps located in
an actual highway side). A reasonable solution is to apply some sort of low-pass filter technique and to
change the resolution scale. The data compression is done using the Hough transformations for pairs
of rough scale new pixels in four principal road directions (horizontal, vertical and both diagonals).
Single local Hough transformations

§=(y—1yo)cosf — (z — z¢)sinf (19)

have not only the desired low-pass filter and gap filling properties, but can also be evaluated very
quickly due to the reduced amount of data (two rough pixels) involved. An element (8,¢) of the
Hough transformation accumulator array is incremented by a corresponding f(z,a*). From every
local directional Hough transformation we select the weight of the most probable line (Fig. 3) as a



4.  Optimization 7

= ‘ ,,3—/, ;7' <
74 -

- / / / 2

. 4 7

w4 Z—

__,.—-57 ﬁ—‘r”-ﬁ"‘

/‘/ R

o -
ZHN

—\\.....z"'

// -hr ______==...-£' .ﬂ'/ 7/

=

Figure 3: The Hough transformations for diagonal pairs.

local representative of our trust in a highway crossing between two corresponding rough scale pixels.
This weight is modified according the angular difference between the line found angle (@) and the
angle of the pair of rough pixels (1) processed

v = 9| cos(6 + n)| (20)

The result is a dual lattice of all possible crossings between rough scale pixels.

4. OPTIMIZATION

The optimization task attempts to find an optimal path through the dual lattice over the rough
scale resolution image. We assume the presence of just one highway in a processed image. (The
removal of this restriction is discussed in the concluding section.) The image to be processed is
limited to the width corresponding to 7 dual lattice row elements, each with four possible basic
directions. This restriction gives a reasonable number of possible combinations. These possible lattice
row configurations are precomputed and stored in a dictionary. Necessary geometrical restrictions
(maximal possible road curvature) are incorporated through the selection of possible successive lattice
row configurations stored for each row configuration. Let us denote the dual lattice S, single sites s
and a binary array over S denoting the presence or absence of a road element U = (us,s € S). The
corresponding Hough transformation array is V = (vs, s € S). The optimality criterion selected is the
mean response per lattice element:

UgVy
) - g ‘2”
s€ 8

U =argml?xF(U, V). (22)



The function (21) is nonlinear and cannot be directly solved using dynamic programming techniques.
Let us define a sequence of \;,2=0,1,...:

N = F(ULV) (23)

with some arbitrary )¢ and

(U, V,A) = u,(A—v,) (24)

s€S
where .
U* = argmin @(U, V, \;). (25)
Then it can be shown [7] that R
U =lim);. (26)

This optimization problem can be solved using iterative dynamic programming. Practical realization
in our case usually needs only few iterative steps (3-5) to find an optimal path. Once an optimal
rough scale road has been determined, it can be used as the guidance pattern for the final original
scale road location algorithm. This precise localization is done using the A* algorithm [3]. The
algorithm always ends with a proposed road even if no road is present in a tested subimage. This
problem can be handled by checking filter values in suspected road locations. The criterion used is
the mean difference from the optimal filter response

D = fmax — %Zf(%a*) (27)

=1

(its value can be obtained from the A* algorithm ). The mean road filter response should be greater
or equal to the threshold t (17) so a subimage road must be rejected if its D > fpax — t.

5. LARGE IMAGE PROCESSING

Due to the sharp increase in the number of possible configurations with the increase of dual lattice
row width, we are limited in image optimization up to 7 dual lattice boxes. The corresponding
image maximal width depends on satellite image resolution and highway parameters. To process
a large satellite image or a mosaic of such images we have to divide such a scene into individual
subscenes which are independently processed. Combining single individual results into a final mosaic
can sometimes lead to a desired solution. But in some more difficult cases (large urban areas, rivers
or rail tracks having similar geometric properties with highways) we can endup with a mosaic where
some part of a highway is missing or some subimage has an incorrect solution. To solve these cases
we use the following strategy based on border crossing points.

Every subimage can have 0 or 2 border crossing points . A border crossing point 7 is assumed
to be reliable if it is common for two neighbouring subimage roads and the road curvature in this
crossing point ¢ fulfills the maximal road curvature limitation, then the weight of this point is set to
¥: = 2. If there is no continuation from point  in one subimage or the i point does not fulfill the
curvature condition, its weight is set to one (y; = 1). +; = 0 is the weight of a crossing point on
the outer border of the whole large image. The longest found road segment (max 3, ;) is followed
until the point j with v; = 1. The optimization step is repeated in neighbouring subimage forcing the
start of dynamic programming in a dual lattice point corresponding to point j in fine scale resolution
. This new segment, forced to bind with the previously found long road segment, can violate the
maximal curvature limit in the crossing point j or can end in a point [ with 4, = 1. Such cases are
caused by the tendency of the optimization algorithm to connect together part of the road with a
strong noise-introduced response (i.e. river). Such areas can be detected by tracking filter responses
corresponding to the optimization result (monitoring changes in D). The optimization algorithm is
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Figure 4: Toulouse 1.

enforced to keep the maximal highway curvature limitation in its solution and therefore inevitably
introduces an inhomogeneous part between two parts of a proposed solution supperted by different
courses. This case is solved by erasing data in the Hough transformation accumulator arrays which
supports the incorrect part of a solution and running the subimage optimization part on a restricted
data set once more.

6. RESULTS

The example on Fig. 4 shows SPOT panchromatic scene from the vicinity of Toulouse. By just
combining single subimage results we obtained the proper solution (Fig. 5) which is easily detected
by the road tracking algorithm described in the previous section. All detected road crossing points
have value 9; = 2 except both outer border points. Results from subimages 11,32,41,42 and 43 were
rejected by the criterion (27). Result 14 corresponds to the side branch of a detected highway, results
22 and 32 correspond to a dual-carriage way. Solutioms 21 and 31 were combined by the algorithm
from several smaller responses.

While the first example did not require any further processing, the second scene from the vicinity
of Toulouse (Fig. 6) is our most complicated example because it contains lot of linear structures with
similar parameters to the detected highway.

Fig. 7 shows the resulting mosaic using the standard Hough transformation in the compression step.
The proper results appear only in subimages 12 and 22. The lower part of subimage 43 is also correct.
Using the modified Hough transformation (20) always improves our results, in this example additional
correct result in the subimage 33 was obtained. The result 43 was automatically corrected using the
fixed start (to bind the 33 result) dynamic programming technique from the previous section, but
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Figure 6: Toulouse 2.
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this technique fails on two remaining undesired results 11 and 32. The true highway in the subimage
11 lies in a border area unprocessed in the rough scale optimization and can be solved by subimage
overlapping or a modification of the A* algorithm. The subimage 32 also contains a river with
highway-like parameters and has stronger filter response than the highway itself. The algorithm was
not able to combine both large road segments through the subimage 32 trying to enforce the dynamic
programming starting points on ends of these highway segments. The algorithm therefore removed
data supporting this unsatisfactory solution and run the optimization step once more with the proper
solution as a result. Fig. 8 shows the final result of the algorithm (the subimage overlapping was not
yet implemented).

7. CONCLUSION

The algorithm described in this paper has been checked against several panchromatic SPOT images
from the vicinity of Toulouse and La Rochelle with encouraging results. Correct highway recognition
has been achieved, in several cases, by just connecting single subimage results. Other cases were solved
using enforced dynamic programming and data elimination techniques (Fig. 8). Another possible
solution we are currently investigating is combining the local (subimage) optimization technique with
the global one (two resolution optimization). Our algorithm can be modified to detect other linear
structures in images such as rivers or rail tracks. Using the data elimination technique described the
recognition of multiple highways present in processed remote sensing data can be solved as well.
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