(o

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Parallelism across the steps in iterated Runge-Kutta
methods for stiff initial value problems

P.J. van der Houwen, B.P. Sommeijer,

W.A. van der Veen

Department of Numerical Mathematics

Report NM-R9322 November 1993

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part of
the Stichting Mathematisch Centrum [SMC), the Dutch foundation for promotion of mathematics
and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scientific Research (NWO). CWI is a
member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Parallelism Across the Steps in Iterated Runge-Kutta
Methods for Stiff Initial Value Problems

P.J. van der Houwen, B.P. Sommeijer & W.A. van der Veen
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

For the parallel integration of stiff initial value problems (IVPs), three main approaches can be
distinguished: approaches based on "parallelism across the problem", "parallelism across the method" and
on "parallelism across the steps". The first type of parallelism does not require special integration methods
and can be exploited within any available IVP solver. The method-parallel approach received some
attention in the case of Runge-Kutta based methods. For these methods, the required number of processors
is roughly half the order of the generating Runge-Kutta method and the speed-up with respect to a good
sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved
in any IVP solver based on predictor-corrector iteration. Most step-parallel methods proposed so far
employ a large number of processors, but lack the property of robustness, due to a poor convergence
behaviour in the iteration process. Hence, the effective speed-up is rather poor. The step-parallel iteration
process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to
achieve speed-up factors up to 10 with respect to the best sequential codes.

CR Subject Classification (1991): G.1.7
Keywords and Phrases: numerical analysis, Runge-Kutta methods, parallelism.

Note: The research reported in this paper was partly supported by the Technology Foundation (STW) in
the Netherlands.

1. Introduction
Recently, various attempts have been made to solve stiff initial value problems (IVPs)

(1. y©=fy®). yto)=yo. ¥.feR

on parallel computers. Using the familiar terminology of parallelism "across the problem", "across the steps” and
“across the method", we mention the problem-parallel methods based on wave form relaxation (cf. the survey paper of
Burrage [3]), the step-parallel methods of Bellen and coworkers [1, 2] and Chartier [6], and the method-parallel solvers
proposed in [10] based on parallel iteration of Runge-Kutta (RK) methods. To some extent, these three types of
parallelism are orthogonal in the sense that they can often be combined. In this paper, we shall be concerned with step-
parallelism.

Our starting point is a stiff IVP method that is both highly accurate and highly stable. This method is used as a
corrector that is solved to convergence using parallel iteration techniques. In the selection of a suitable corrector, we are
automatically led to the classical implicit Runge-Kutta methods such as the Radau IIA methods. These methods fulfil
the requirements of accuracy and stability and belong to the best correctors for stiff problems. For the iteration method
we choose the PDIRK (Parallel Diagonally Implicit RK) approach developed in [10] that solves the RK corrector by
diagonally implicit iteration using s processors, s being the number of stages of the corrector. In [10], we advocated
alternative correctors (called Lagrange correctors) which possessed stage order s+1, whereas s-stage Radau methods have
only stage order s. Since the stage order is important for the accuracy in many stiff problems and because the number of
processors equals s, the Lagrange correctors may have advantages if the number of processors is small. However, recent
developments indicate that the number of processors is not any more an important issue. Therefore, we adopt the Radau
IIA methods as the correctors to be used in this paper. Using a predictor based on extrapolation of preceding stage values
and the four-stage Radau IIA corrector, we obtained for the PDIRK approach a speed-up factor of about 2 with respect to

Report NM-R9322

ISSN 0169-0388

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

the best sequential codes for stiff problems, viz. the variable order LSODE code and the fifth-order RADAUS code [9].
An interesting feature of the PDIRK-based code (called PSODE in [15]) is the highly efficient performance of high-order
correctors in the low accuracy range. Hence, assuming that sufficiently many processors are available, we may equally
well use a Radau corrector with more than four stages without increasing the sequential costs, while the high order is
effective both in the low and high accuracy range.

A drawback of the PDIRK methods is that the number of iterations needed to achieve corrector accuracy is still
high (about the order of the corrector). To reduce the number of iterations, we introduced preconditioning into the
PDIRK methods by which the number of iterations reduces substantially (cf. [11]). In this paper, we apply step-
parallelism to the PDIRK methods. The analysis given here partly parallels the derivations in [13] for nonstiff
problems.

2. Parallelism across the steps
Following [13], we write the RK method in the General Linear Method (GLM) form introduced by Butcher [4]
(see also [S, p.340)):

(2.12) Yq=(E®I4)Yp.| + ho(A®IGF(Y,), n=1, ..., N.

Here, hy, denotes the stepsize tp, - t,_1, the matrix A contains the RK parameters, and F(Y) contains the derivative
values G‘(Yn_i)), where Yy, ;,i=1, 2, ..., s, denote the d-dimensional components of the stage vector Yy, In this paper
we will assume that (2.1a) possesses s implicit stages and that the last stage corresponds to the step point t, (e.g.
Radau IIA type methods). The first s-1 stage vector components Yp, ; represent numerical approximations at the
intermediate points tn_1+cihp, i=1, 2, ..., s-1, where ¢ = (ci) = Ae, e being the vector with unit entries. In (2.1a), the
matrix E is of the form

0..01
@) E:=| ... |
0..01
the matrix I is the d-by-d identity matrix, ® denotes the Kronecker product, and we define Y(= e®yj. In the following,

the dimension of I and e may change, but will always be clear from the context.
We approximate the solution Yy, of (2.1) by successive iterates Y, satisfying the iteration scheme

Y(D defined by predictor formula,
(2.2)

Yn0 - ha(DBIF (YD) = (B®ILg)Yn.1Q0-19) + hy((A - DYRIGF(Y,GD), j=2, ..., mety),

wheren=1,2, .., Nand Yo0) = e®yj for all j. The predictor formula and the integer-valued function q(n,j) will be
discussed below. The number of iterations m(ty,) performed at t;, is defined by the condition that for j = m(ty) the iterates
YnU) numerically satisfy the corrector equation (2.1) (evidently, if the iterates Yn(’) satisfying (2.2) converge to fixed
vectors Vi as j — oo, then Vy, = Y;). The matrix D will be assumed to be diagonal with s positive diagonal entries. In
the case of the s-stage Radau IIA correctors (s = 2, 3, 4), suitable matrices D = D have been derived in [10]. For future
reference, these matrices are here reproduced:

3055
4365 9532 0 0 O
13624 531
23) Dy (2056 0 Dy=| o 182, py=| | 39560 °
- 2—30 0 12+3V6 ’ 3= 7373 ’ 4= 0 0 --—147l 0
1887 8094
0 0 5577 o o o l848
7919

Irrespective the definition of the function g(n,j), the correction formula (2.2) possesses parallelism across the
method, because the diagonal structure of the matrix D enables us to compute the components of Yn(l_) in parallel. In
addition, a suitable definition of the function q(n,j) may determine an ordering by which the iterates Y,,0) are computed
that facilitates parallelism across the steps. We shall discuss various options.

2.1. Order of computation of the iterates
The conventional PC approach is defined by

q(n,j) = m(ty),

for all n and j. By this definition, the only possibility is to compute first the iterates Y1®,j=1,2, .., m(t), next
the iterates YZU ,j=1,2, .., m(t), etc. This ordering generates the PDIRK method of [12] and [10]. Thus,
representing the iterates by points in the (n,j)-plane, the PDIRK method computes the iterates column-wise. Obviously,
this method does not allow for parallelism across the steps. If the predictor formula defining Y,(!1) requires the same
sequential costs as the correction formula in (2.2), then the sequential computational complexity of the PDIRK method
is given by Ngeq = X, m(tp), Nseq denoting the number of implicit systems to be solved.

A second option defines

(2.4) q(nj) =j-1,j>1.

In this case, there are various possibilities in the ordering by which the iterates can be computed, leading to the same set
of iterates. For example, it can again be done column-wise, but also row-wise. In the latter case, the iteration scheme
{(2.2), (2.4)} may be considered as Jacobi-type iteration possessing a large degree of parallelism across the steps,
because for fixed j, all iterates Y, n=1,2,..,N, can be computed concurrently. Therefore, it will be called the
PDIRKAS J method (PDIRK Across the Steps using Jacobi iteration). The sequential computational complexity of the
PDIRKAS J method is reduced to the sequential costs of computing all initial iterates Yn(D and the sequential costs of
solving maxp{m(ty)} - 1 implicit systems. In actual application, one wants to limit the sequential costs of the predictor
formula. In the extreme case, one sets Y,(!) = e®y(for all n, so that Nseq = maxp{m(tp)} - 1. The PDIRKAS J
method using this strategy has similarities with the step-parallel methods studied by Bellen and co-workers [1, 2].
However, such a PDIRKAS J method is expected to exhibit poor convergence due to the inaccuracy of Yp(1) as n
increases and can only be applied on small subintervals (windows). A more robust approach computes Y,(1) by a
predictor formula of at least order one that is sufficiently stable (see Section 2.2). Assuming that this predictor formula
requires the same sequential costs as the correction formula in (2.2), the total sequential computational costs are given
by Nseq = N + maxp{m(tp)} - 1. Initially, the number of processors needed in this strategy is sN. However, in an actual
implementation, iteration at a particular point t, will be stopped as soon as the corrector solution is obtained within
some given tolerance (see Section 4), so that the number of processors needed will gradually decrease.
Convergence will often be improved substantially by defining

2.5 q(n,j) =j.

Again, many algebraic equivalent orderings are possible (i.e., ordenings that generate the same set of iterates). But now,
neither the column-wise, nor the row-wise ordering does allow for step-parallelism. The only ordering by which a
certain amount of step-parallelism is achieved, computes the iterates along the diagonals n+j = constant, that is, all
iterates YnU) with n+j constant are computed concurrently. Again assuming that the predictor formula defining Y, (D
requires the same sequential costs as the correction formula, the total sequential computational costs are now given by
Nseq =N + maxp{m(ty)} - 1, and where again the number of processors is at most sN (but usually less than sN as we
saw 1n our previous discussion of the Jacobi iteration strategy). The iteration scheme defined by (2.5) may be considered
as Gauss-Seidel-type iteration and the corresponding integration method will therefore be called the PDIRKAS GS
method. We remark that the PDIRKAS GS method {(2.2),(2.5)} is the stiff version of the PIRKAS GS method
developed in [13].
In the remainder of this paper, we analyse the PIRKAS J and PIRKAS GS methods.

2.2. The predictor formula

There are several possibilities in defining a predictor formula for the PDIRKAS method. An implementational
convenient choice defines Y,(1) by applying a backward differentiation formula (BDF) to the preceding iterate YD
to obtain the implicit stage vector predictor formula

26) Y- hy(D*®IYF(YnD) = (E*®Ig)Yp.1 (D,

where D* is assumed to be diagonal. If we choose D* = D, then we can achieve predictor order q = s-1, while the
predictor formula and the correction formula share the same LU decomposition. If both D* and E* are defined by order
conditions, then we have order q = s. However, we need an additional set of s processors in order to compute the LU-
decompositions for the predictor formula concurrently with those for the correction formula.

An alternative to (2.6) defines Y,(1) by applying a BDF to preceding step values (E®Iq)Yp.1(D), (E®I4)Y oD,
... . For example, we may define the szep point predictor formula _

27 YoV - hy(D*RIYF(YnD) = (B1®1g) Y11 + (Ex®1g)Yp o1,

where D* is again diagonal, and where the first s-1 columns of E and Ej vanish. Locally, this formula is at most
third-order accurate. If D* = D, then only second-order local accuracy can be achieved.

3. Stability and convergence

The stability region and the convergence region of the PDIRKAS methods will be discussed for the familiar basic
test equation y'(t) = Ay(t), where A is assumed to run through the spectrum of of/dy. With respect to this test equation,
the stability properties of the PDIRKAS method are determined by the stability of the predictor-corrector pair and the
convergence properties of the iteration process. Unlike the situation in conventional PC methods, step-parallel methods
as considered here, require the predictor to be stable for integration over the whole interval (row-wise ordering of the
iterates). Assuming that the underlying corrector is unconditionally stable (with respect to the basic test equation), the
stability region of the PDIRKAS method is the intersection of the region of convergence of the correction formula and
the stability region of the predictor formula. At first sight, the stage value predictor formula (2.6) is more attractive,
because of its higher order (we recall that the predictor order q equals s or s-1), whereas the step point predictor formula
(2.7) is at most second-order accurate. However, (2.6) is less stable than (2.7). To see this, we consider the case where
all coefficients are determined by order conditions. Furthermore, let the stepsizes be constant, i.e. hy = h. Then, each of
the s components of Y,(1) defined by (2.6) may be considered as the result of applying an s-step BDF with the s+1
abscissas {tn.1 +cih,i=1,..,s;tn.] + h+ckh} where k = 1, ..., s. In the case (2.7), each component of Y,(1) is
defined by a two-step BDF with abscissas {t;.9, ty.2 + h, ty.2 + h + cxh} where k = 1, ... , s. BDFs with
nonuniformly distributed abscissas have been investigated in [8] and were shown to lead to poor stability regions if the
spacing of the abscissas is increasing. Since in general the spacing of the last two abscissas in formula (2.6) is
relatively large for k > 1, we cannot expect that (2.6) is sufficiently stable, whereas (2.7) is expected to be L-stable,
because its stepsizes are nonincreasing. We also considered the case of (2.6) with D* = D and we did prove the existence
of a family of first-order predictors which are L(o)-stable for the two-, three- and four-stage Radau IIA correctors using
the matrices D as given in (2.3). For example, for the four-stage Radau ITA corrector we computed the angle o and found
o = 700. Because the stability of the predictor formula is crucial in step-parallel methods, we decided to use the second-
order, L-stable step point predictor formula (2.7) with D*, E; and E; defined by order conditions.

3.1. Region of convergence of the correction formula

In this section, we shall derive the region of convergence for the recursion (2.2) when applied to the test
equation. Let us define the stage vector iteration errors
(3]) En(-]) = Yn(J) - Yn.

Subtracting (2.1) and (2.2), we find the linear recursion

(32) en0) = Kp €01 @-10) + 7,6, G-D, Ky = (1 - 2yD)1E, Z, := z,DA - z,D)"{(D-1A - I), zp := Ahp,

where n = 1, ..., N. We shall study the convergence of the iteration error vectors
. (J)
(3.3a) g) .= | &2 ! , Z:=(Z1, - » zn)T.

e ()
In particular, we are interested in the rate of convergence of the error vectors as function of n. The recursion (3.2) can be
represented in the form
(3.3b) el = Qz) eU-D = Qz)i-1 e,

where in the case of the PDIRKAS J and PDIRKAS GS methods the n-by-n block iteration matrix Q(z) is respectively
given by

Zi O O O .. A o 0O O
Kb 20 O O .. KoZ Zy (0] (0]
(3.4) Q== O K3z Z3 O , Qgs(z):=| K3KiZ K3z, Z3 O

O O K4 Z4 ... K4K3K2Z1 K4K3Zy KyZ3z Z4

If all matrices Z; in (3.4) are nondefective, then the spectrum of the matrix Q(z) consists of the eigenvalues of
the n matrices Z;. This observation leads us to the condition of convergence

p(zDA - zD) /(D 'A-T)) <1, i=1,..,n,

where p(-) denotes the spectral radius function. This condition is identical to that of the PDIRK method. Constant
stepsize plots of the convergence region C := {z: p(zD(I -zD) (D 1A - I)) < 1} for the Radau IIA correctors of orders
p = 3, 5 and 7 reveal that the whole lefthand plane is contained in C. Hence, the Radau ITA based PDIRKAS J and
PDIRKAS GS methods may be considered as "A-convergent". Thus, we may conclude that using these Radau IIA
correctors leads to PDIRKAS methods whose stability region is completely determined by the stability region of the
predictor.

3.2. Rate of convergence

Although the regions of convergence of the PDIRKAS and PDIRK methods are identical, the rate of convergence
of the PDIRKAS method may be much worse because of ill-conditioning (or even defectiveness) of the eigensystem of
the iteration matrix Q(z). For example, if we integrate with fixed stepsizes, then Q(z) possesses s eigenvalues of
geometric multiplicity n leading to rather poor convergence as n increases. The condition of the eigensystem may
improve if all stepsizes are distinct, but convergence can still be slow.

In order to get insight into the convergence properties as a function of j and n, we need an estimate for the rate of
convergence of the iteration process. In this paper, we shall adopt a definition as given in [16, p. 88], where the
averaged rate of convergence of the recursion (3.3) is given by

—
35) Rmja) =-log (ViQu@).

Let the iteration error associated with Y;(), i =1, ..., n, be of magnitude 10-A0) (that is, the iterates Y;(0) and the
corrector solutions Yj, i < n, differ by A(j) decimal digits). Then, taking logarithms to base 10, the number of iterations
j needed to achieve this is at most

AR - A
(6 =1+ g

We shall separately discuss the rate of convergence at the origin (nonstiff rate of convergence), at infinity (stiff
rate of convergence), and the rate of convergence at intermediate points in the whole lefthand plane. At the origin, the
matrices Qj and QgGs can be approximated by

[O00O0 .. A-D O o o
EOO. DE A-D O o ..
(3.7a) QJ(z)=K+diag(z)L+O(zz), K:=| O EO.. , L:= (0] DE A-D O .. ,
OOE. (0] (0] DE. A-D ...
(A-D O o o
H A-D (0] (0]
(3.7b) Qgs(z) =M diag(z) +0(z2), M := H H A-D O , H:=E(A-D),
H H H A-D

and at infinity, we obtain

(o}
o} —
o + 0@z).

D-

(0]
(3.8) Qi(z) = Qcs(2) := o
0

In the following subsections, the maximum norm is used in the definition of o(n,j,z), and in the tables of
computed convergence rates, the underlying corrector is the four-stage Radau IIA method iterated by means of the matrix
D =Dy as defined in (2.3).

3.2.1. Convergence of nonstiff error components. From (3.7a) it follows that
(3.9) [Qi@P = [K + diag(z) L + 0@} =K + O(2).

Since Kl equals 1 for j < n and vanishes as j 2 n, we have that

Rj(n,j.z) = O(z) forj <n,
(3.10a)

Rj(n,j,z) = O(JL| loglzl l) forj=n,
whereas (3.7b) immediately reveals that

(3.10b) Rgs(njz) = O(l log1z1l) for allj.
These formulas indicate that with respect to the nonstiff error components the convergence of Jacobi iteration is

unacceptably slow. Therefore, in the remainder of this paper, we confine our discussions to the PDIRKAS GS method.
Let us consider convergence in more detail for fixed stepsizes, i.e. z; = z for all i. From (3.7b) it follows that

j
(3.11) Rgs(nj,z)= -loglzl - log(VIVl +0(z)).

The following theorem provides explicit formulas for the asymptotic behaviour of the nonstiff rate of
convergence for large values of j and n, respectively.

Theorem 3.2. For fixed values of n, the nonstiff rate of convergence of the PDIRKAS GS method satisfies the
asymptotic relation

(3.12) RGs(n,j,z) = - log (p(A-D) Izl) - O(j‘llog (j)) as j— o and z— 0,

If the matrices A and D satisfy the conditions agg <dg < 1 and agg >0 (k= 1, ..., s), then for fixed j

- 2agg + dg

j
(3.13) Rgs(n,j.z) =-log (nlzl) - log [(1 -dg) '\/ ! A - dy) +O(n'1)] as n—o and z—-0.
s (l-ds

Proof. The formula (3.12) immediately follows from the asymptotic formula for the norm of powers of matrices (see
e.g. [16]). Assertion (3.13) can be proved along the lines of a similar theorem given in [13]. According to this proof, it
is first shown that

(3.14) I Mille =l Mg llo + O(ni"1) as n — oo,

where

Mo : , H:=E(A -D).

T TxTO
- mOO
: 00O
o 00O

Next, it is shown that
(3.15) I Mg llo = j‘—,ni I Hi llo + O(ni1) as n — oo.

By observing that H satisfies the recursion Hi=(1- ds)j"H, and using the assumptions agg > 0, agg < dg < 1, we find
(3.16) I Hilloo = (1 - ds¥"1 (1 - 2ag5 + dy)

On substitution into (3.15) and into (3.14) formula (3.13) is immediate. []

If we consider the error over the whole integration interval, i.e. n = N, then this theorem shows that the nonstiff
rate of convergence Rgg rapidly converges to a constant value as N increases and j is kept fixed. In this connection, we
remark that the nonstiff rate of convergence of the PDIRK method is given by

J— j
317 Reomxiz) = - log(N1Z11) = -1og121-10g(V(A - DYll. +0@)),

showing that the nonstiff rate of convergence Rppirg behaves as O(log (N)) as N increases.

3.2.2. Convergence of stiff error components. If z — o, then (3.8) immediately yields the following theorem:

Theorem 3.3. If z = o and if n is finite, then for any corrector (2.1), the rate of convergence of the PDIRKAS GS
method is given by

(3.18) Rgs(n,j.=) = -]!-mg lha-playl. .0

Table 3.1. Stiff Rgg(n,j,) values for the four-stage Radau IIA corrector.

J=1 J=2 J=4 J=8 J=16 J=32 J:oo

-0.67 -052 0.15 0.82 1.22 140 1.60

We remark that the stiff rate of convergence of the PDIRKAS GS method is identical to that of the PDIRK
method and does not depend on n. Table 3.1 lists the values for a few values of j.

3.2.3. Convergence at intermediate values of z. The preceding subsections indicate that the stiff and nonstiff rates of
convergence of the PDIRKAS GS method are quite satisfactory, even for larger values of n. However, as soon as we
move away from the origin or from infinity, then the rate of convergence deteriorates. The Tables 3.2a and 3.2b
respectively list values of Min {Rgs(n,j,z): z < 0} and Min {RGs(n,j,z): Re(z) < 0} for the four-stage Radau IIA
corrector for a few values of n. In the latter case, the minimal rate of convergence was always found on the imaginary
axis. The Tables 3.2 show that for larger values of n, the rate of convergence only becomes positive if the number of
iterations is relatively large, particularly in the case of Tables 3.2b. The effect on the corresponding iteration error
components is disastrous (even for relatively low values of n), because these components start to grow exponentially
and will only be damped if j is relatively large. In order to illustrate this, the Tables 3.2a and 3.2b also list the values of
j = ja(n) given by (3.6) with A - A} = 10 and z = ze. The rather large values of ja(n) as n increases indicate that the
iterates may easily become so bad that we have overflow before the iteration process starts to converge. Therefore, some

strategy should be employed that controls when it is safe to advance to the next step point (see Section 4.3). Finally,
we remark that by means of the values of j4 we can compute an estimate of the speed-up factor of PDIRKAS GS with
respect to PDIRK. Setting n = N, the number of sequential iterations of these methods are rEspectively given by
N + jA(N) - I and N ja(1), resulting in the speed-up factor S(N) = N ja(1) [N + jao(N) - l]'l. These factors are also
listed in the Tables 3.2 (notice that the speed-up factors along the negative and imaginary axis are roughly equal).

Table 3.2a. Values of Min {RGs(n,j,z): z < 0} and ja for the four-stage Radau IIA corrector.

J n=1 n=2 n=4 n=3§
1 -0.67 - 0.67 -0.67 - 0.67
2 -0.52 -0.52 -0.52 -0.54
4 - 0.01 -0.25 -0.36 -043
8 0.33 0.09 -0.16 -0.33
16 0.52 0.35 0.12 -0.12
32 0.60 0.51 0.35 0.14
ja(n) 19 23 31 42
S(n) 1 1.6 22 3.1

Table 3.2b. Values of Min {Rgg(n,j,z): Re(z) < 0} and j for the four-stage Radau IIA corrector.

J n=1 n=2 n=4 n=8
1 - 0.67 - 0.81 -0.94 - 1.05
2 - 0.52 - 0.60 -0.75 -0.90
4 -0.14 -0.38 -0.57 -0.75
8 0.09 -0.12 -0.35 - 045
16 0.18 0.02 -0.13 - 0.29
32 0.23 0.15 0.03 -0.11
64 0.25 0.21 0.14 0.02
ja(n) 42 52 69 102
S(n) 1 1.6 2.3 3.1

4. Numerical experiments

The PDIRKAS GS method {(2.2), (2.5)} described above was applied using the four-stage Radau IIA corrector
equation and the predictor formula (2.7). Since the number m(t,) of outer iterations needed to solve the corrector
equation will strongly depend on n, we applied a dynamic iteration strategy with stopping criterium (cf. [13])

AG) = Il eTE®ID)(Y,0-D -y, D)
Il eTE®D)Y,G-D I,

n < TOLcorr -

In all our experiments, we set TOL¢or = 10°12. The number of necessary processors is determined by the number of
step points at which this stopping criterion is not yet satisfied. The maximal number of processors needed during the
integration equals sKmax, Where Kmay denotes the maximal number of step points where the stopping criterion is not
yet satisfied. For the inner iteration process for solving the correction formula in (2.2) we used modified Newton method
which was solved to convergence.

In addition to the PDIRKAS GS method, we shall also apply the PDIRK method that may be considered as the
PDIRKAS GS method in one-processor mode. In this paper, we want to compare characteristic properties of the
methods like the rate of convergence and sequential costs, rather than strategy aspects such as stepsize and error control.
Therefore, we restrict the experiments to problems that can be integrated with fixed stepsizes h = N-IT. In a sequel to
this paper, we will develop a stepsize and error control strategy.

The calculations were performed using 15-digits arithmetic. The accuracy is given by the number of correct digits
A, obtained by writing the maximum norm of the absolute error at the endpoint in the form 10-A. We recall that the
sequential computational complexity can be measured by the total number Ngeq = N + maxp(tp) - 1 of sequential
implicit systems to be solved during the integration process. Furthermore, we deﬁne the average number of 1terat10ns
per step and the average number of sequential iterations per step by m* := N- 13, m(ty) and m seq := N° Nseq,
respectively. For the PDIRK method, we obviously have Ngeq = X m(t,) and m* = M*geq = N- Nseq Finally, we
remark that the ratio of the values of m*seq for the PDIRKAS 85 and PDIRK methods determines the speed-up factor
S(N).

4.1. Test problems
Our first problem is the well known stability test problem of Prothero and Robinson

@l Lo ely-g0) +g0, yio) =glo) 0StsT,

where the exact solution equals g(t) and € is a small parameter. Prothero and Robinson used this problem to show the
order reduction of RK methods when € is small. In our experiments we set

4.1b) g(t) =cos(t), €= 103

The second test problem is the nonlinearization of problem (4.1):

(4.2a) %= -el(y3 - g®3) + g, y(to) =g(tp), O0<t<T,

with exact solution y(t)=g(t) for all values of the parameter €. As in the preceding problem we set
(42b) g(t) =cos(t), €=10"3.
The third test problem is that of Kaps [i4]:

d d
43 H=-esebyir el SEeyiovnl+y), yit)=y0)=1 0StsT,

with the smooth exact solution y| = exp(-2t) and y7 = exp(-t) for all values of the parameter €. This problem belongs to
the class of problems for which stiffly accurate RK methods do not suffer order reduction whatever small £ is (cf. [9]).
The test set of Enright et al. [7] contains the following system of ODEs describing a chemical reaction:

013 + 1000y3 0 0
(@40 Lo 0 2500y3 0 Y.
013 0 1000y; + 2500y,

with y(0) = (l,l,O)T. Since we want to use fixed step sizes in our experiments, we avoided the initial phase by choosing
the starting point at tg = 1. The corresponding initial and end point values at t = T = 51 are given by

0.990731920827 0.591045966680
(44b) y()=| 1009264413846 |, y(51)= | 1.408952165382
-366532612659 103 -.186793736719 105

4.2. Comparison of the PDIRKAS GS and the PDIRK method

In our first tests, we compare results obtained by the PDIRKAS GS and the PDIRK method. We apply the
PDIRKAS GS in unlimited-number-of-processors mode and in one-processor mode (by which we generate the PDIRK
method). The Tables 4.1 until 4.4 present multi-processor results for the PDIRKAS GS method and the speed-up factors
with respect to the PDIRK method. From these results, we conclude that the PDIRKAS GS method becomes more

10

~ efficient as the number of step points N increases and that the speed-up factors S(N) are in good agreement with the
theoretical speed-up factors listed in the Tables 3.2. _

Table 4.1. Results for the linear Prothero-Robinson problem (4.1) with T = 1.

N A Kmax —m* Nseq Mm*geq S(N)
1 6.3 1 10.0 10 10.0 1.0
2 7.4 2 10.5 13 6.5 1.5
4 8.6 4 12.8 19 4.8 22
8 9.8 8 17.3 32 4.0 2.8

16 11.0 13 26.9 59 3.7 3.1

Table 4.2. Results for the nonlinear Prothero-Robinson problem (4.2) and T = 1.

N A Kmax m* Nseq m*seq S(N)
1 6.3 1 10.0 10 10.0 1.0
2 7.3 2 9.5 12 6.0 1.6
4 8.5 4 11.3 18 4.5 2.1
8 9.7 7 15.4 28 3.5 29
16 11.0 13 22.7 53 33 3.2

Table 4.3a. Results for the Kaps problem (4.3) with € = 10-3 with T = 1.

N A Kmax m* Ngeq m¥*geq S(N)
1 5.0 1 12.0 12 12.0 1.0
2 6.4 2 13.0 15 7.5 1.7
4 7.8 4 15.3 22 5.5 2.3
8 9.1 8 20.9 36 4.5 2.8
16 10.3 14 314 64 4.0 3.4

Table 4.3b. Results for the Kaps problem (4.3) withe = 108 and T = 1.

N A Kmax —m* Nseq m*geq S(N)
1 6.6 1 12.0 12 12.0 1.0
2 8.7 2 10.5 13 6.5 1.6
4 10.8 4 9.3 14 3.5 2.6

Table 4.4. Results for the chemical reaction problem (4.4).

N A Kmax m* Nseq m*seq S(N)
1 7.9 1 9.0 9 9.0 1.0
2 9.8 2 7.5 10 5.0 1.5
4 118 4 7.0 11 2.8 2.5

In order to see the effect of larger intervals of integration, we repeated the experiments for the linear Prothero-
Robinson problem (4.1) and the Kaps problem (4.3), but now on the interval [0,10]. The results in the Tables 4.5 and
4.6 reveal that the speed-up factor is much larger than in Table 4.1 and 4.2 (for the same stepsize) with a maximal
speed-up factor of about 5, but we also see that the convergence behaviour in the Prothero-Robinson problem and the

11

mildly stiff Kaps problem now becomes worse as N becomes too large. This is due to the deterioration of the rate of
convergence as discussed in Subsection 3.3.3. For the Kaps problem with £ = 10°8, Table 4.6b shows that this
deterioration does not occur and hence the limiting value m*seq = 1 is almost obtained.

Table 4.5. Results for the linear Prothero-Robinson problem (4.1) with T = 10.

N A Kmax m* Nggq m¥seq S(N)
10 6.9 9 17.2 31 3.1 3.6
20 7.7 16 22.4 46 2.3 4.7
40 8.7 29 32.6 77 1.9 5.7
80 10.0 55 69.2 172 2.1 5.2

160 11.0 . divergence

Table 4.6a. Results for the Kaps problem (4.3) with € = 103 and T = 10.

N A Kmax —m* Ngeqg M*seq S(N)
10 9.5 10 22.0 39 3.9 4.1

20 11.6 17 30.6 65 3.3 3.9

40 13.7 30 47.5 110 2.8 43

80 158 57 92.6 245 3.1 3.8
160 17.9 ... divergence :

Table 4.6b. Results for the Kaps problem (4.3) with € = 108 and T = 10.

N A Kmax m* Nseq m¥*seq S(N)
10 9.5 10 20.3 36 3.6 4.5

20 11.6 15 20.1 49 2.5 5.1

40 137 21 22.7 75 1.9 5.6

80 16.0 28 243 117 1.5 59
160 17.5 33 248 198 1.2 6.4

4.3. Dynamic PDIRKAS GS method

The preceding experiments indicate that the performance of the PDIRKAS GS method strongly depends on the
problem to be solved. Therefore, we should apply a strategy that controls when it is safe to move to the next time point
t,. One strategy is to take the local truncation error of the last component of the iterate Yy, 1) as a measure for safety
(in fact, such a strategy was used in [13] for nonstiff problems). However, in the present case of stiff problems, the
BDF predictor formula (2.7) often computes highly accurate first iterates Y (D for all n, so that control of its local
truncation error will not be effective. The cause of a potential bad performance is a strong initial grow of the iteration
error. Hence, an alternative strategy might be a check on the behaviour of the iteration error, e.g. by means of its residue
when substituted into the corrector equation (2.1a). If this residue does not grow anymore, then it should be safe to
advance to the next step point. Let us define the residual function

@5) Ry :=Yy0) - (E®IYY p.1 - ha(ABIYF (Y1),
where Y* ;.. denotes the most recent iterate available at tp,_; (this iterate will depend on j too). One option is to require
46) NeTR D llo<allesTRy D, j22, k21, a<1

before advancing to t,. Here, a is some safety parameter and k determines the point where the iteration errors are
checked. Since the first few iterations at t,_x may have an erratic behaviour, we should choose k greater than 1. Now,
let (4.6) be satisfied for j = j*, then we can compute Y,0) according to the formula

12

.7 Y0 - hy(D®IG)F(Y, D) = (E®Ig) Yy 1G+*k-D + hy((A - D)RIYF(Y,0-D), j=2, ..., m(ty),

The Tables 4.7 and 4.8 are the analogues of the Tables 4.5 and 4.6, and present results using a =102 and k = 3.
By virtue of the strategy (4.6), divergence of the iteration process is avoided at the costs of a modest increase of the
sequential costs. However, Ky is also much lower, which decreases the number of processors substantially.

Summarizing, we may conclude that the PDIRKAS GS method using the strategy defined by (4.6) with a = 10-2
and k = 2 is rather robust and leads, with respect to the PDIRK method, to speed-up factors in the range 3.5 until 5.
Taking into account that the variable step version of the PDIRK method (viz. the PSODE code described in [15]) is
about twice as fast as the best sequential codes such as LSODE, we may expect that the variable step version of the
PDIRKAS GS method will give rise to speed-up factors in the range 7 until 10 with respect to LSODE. This variable
step version will be subject of a future paper.

Table 4.7. Results for the linear Prothero-Robinson problem (4.1) with T = 10.

N A Kmax m* N seq M¥seq S(N)
10 6.9 7 14.3 31 3.1 3.6
20 7.6 8 16.0 55 2.8 3.9
40 8.8 8 17.5 108 2.7 3.9
80 10.0 8 193 230 29 3.8
160 11.3 8 19.8 513 3.2 3.6

Table 4.8a. Results for the Kaps problem (4.3) with € = 10-3 and T = 10.

N A Kmax m* Nseq m*seq S(N)
10 9.5 7 18.4 39 3.9 4.1

20 11.6 10 20.7 65 33 3.9

40 13.7 14 23.2 116 2.9 4.2

80 15.8 17 254 248 3.1 3.8
160 17.7 9 23.8 532 33 3.6

Table 4.8b. Results for the Kaps problem (4.3) with € = 108 and T = 10.

N A Kmax —m* Nseq m*seq S(N)
10 9.5 8 17.8 36 3.6 4.5
20 11.6 7 13.8 49 2.5 5.1
40 13.7 9 13.0 76 1.9 53
80 15.8 9 10.5 127 1.6 5.0
160 16.9 10 89 233 1.5 5.1

(1

(3]
(4]
(5]
(6]
(7]
(8]
9]
(10]
(1]
(12]
(13]
(14]
(15]

(16]

13

References

Bellen, A. (1987): Parallelism across the steps for difference and differential equations, Lecture Notes in
Mathematics 1386, Springer-Verlag, 22-35.

Bellen, A., Vermiglio, R. & Zennaro, M. (1990): Parallel ODE-solvers with stepsize control, J. Comput. Appl.
Math. 31, 277-293.

Burrage, K. (1993): The search for the Holy Grail, or Predictor-Corrector methods for solving ODEIVPs, Appl.
Numer. Math. 11, 125-141.

Butcher, J.C. (1966): On the convergence of numerical solutions to ordinary differential equations, Math. Comp.
20, pp. 1-10.

Butcher, J. C. (1987): The numerical analysis of Ordinary Differential Equations, Runge-Kutta and general linear
methods, John Wiley & Sons, Chichester - New York - Brisbane - Toronto - Singapore.

Chartier, P. (1993): Parallelism in the numerical solution of initial value problems for ODEs and DAEs, Thesis,
Université de Rennes I, France.

Enright, W.H., Hull, T.E. & Lindberg, B. (1975): Comparing numerical methods for stiff systems of ODEs,
BIT 15, 10-48.

Gear, C.W. & Tu, K.W. (1974): The effect of variable fhesh size on the stability of multistep methods, SIAM J.
Numer. Anal. 11,1025-1043.

Hairer, E. & Wanner, G. (1991): Solving ordinary differential equations, II. Stiff and differential-algebraic
problems, Springer-Verlag, Berlin.

Houwen, P.J. van der & Sommeijer, B.P. (1991): Iterated Runge-Kutta methods on parallel computers, SIAM J.
Sci. Stat. Comput. 12, 1000-1028.

Houwen, P.J. van der & Sommeijer, B.P.(1991): Preconditioning in Parallel Runge-Kutta Methods for Stiff
Initial Value Problems, to appear in CMA.

Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. (1992): Embedded diagonally implicit Runge-Kutta
algorithms on parallel computers, Math. Comp. 58, 135-159.

Houwen, P.J. van der, Sommeijer, B.P. & W.A. van der Veen. (1993): Parallel Iteration Across the Steps of
High Order Runge-Kutta Methods for Nonstiff Initial Value Problems, submitted to JCAM.

Kaps, P. (1981): Rosenbrock-type methods, in: Numerical methods for stiff initial value problems, G. Dahlquist
and R. Jeltsch (eds.), Bericht nr. 9, Inst. fiir Geometrie und Praktische Mathematik der RWTH Aachen.
Sommeijer, B.P. (1992): Parallelism in the numerical integration of initial value problems, Thesis defended at
the University of Amsterdam.

Young, D.M. (1971): Iterative solution of large linear systems, Academic Press, New York.

