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Abstract

The aim of this paper is to design a class of two-step Runge-Kutta-Nystrom methods of arbitrarily high
order for the special second-order equation y"(t) = f(y(t)) for use on parallel computers. Starting with an s-
stage implicit two-step Runge-Kutta-Nystrom method of order p with k = p/2 implicit stages, we apply
the highly parallel predictor-corrector iteration process in P(EC)ME mode. In this way, we obtain an
explicit two-step Runge-Kutta-Nystrom method that has order p for all m and that requires k(m+1)
righthand side evaluations per step of which each k evaluations can be computed in parallel. By a number
of numerical experiments we show the superiority of the parallel predictor-corrector methods proposed in
this paper over both sequential and parallel methods available in the literature.
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1. Introduction
In the literature, several explicit Runge-Kutta-Nystrom (RKN) methods have been proposed for the nonstiff
second-order initial-value problem (IVP)

(1.1) d—(zl‘:%t)T fy(®), yto)=yo. y(to)=y0, tost<T.

Methods up to order 10 can be found in [2], [3], [8] and [9]. In order to exploit the facilities of multi-processor
computers, a class of predictor-corrector (PC) methods based on (one-step) RKN correctors have recently been considered
in [15] and [19]. In the present paper, we propose a class of parallel PC methods based on a new class of two-step RKN
correctors. The new corrector method is designed by replacing in an s-stage, implicit, one-step RKN method s-k stage
values by extrapolation formulas using information from the preceding step (see Section 2). In this way, we obtain a k-
stage, implicit, two-step RKN corrector (TRKN corrector). A natural option chooses for the generating one-step RKN
method a collocation method with optimal order of accuracy (see e.g. [8] and [12]). Unfortunately, it turns out that the
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resulting TRKN correctors are often zero-unstable. However, by changing the location of the collocation points in the
generating RKN method, we succeeded in finding zero-stable TRKN correctors of arbitrarily high stage and step point
order. We do not claim that the collocation points obtained in this paper are the best possible. A further study of this
topic will be subject of future research. —

Having designed suitable TRKN correctors, we apply the highly parallel PC iteration scheme. The resulting
method is analogous to the parallel iterated RKN (PIRKN) methods proposed in [15], [19] and will therefore be termed
parallel-iterated TRKN method (PITRKN method).

Although, for a given number of processors, the order of the PITRKN methods proposed in this paper equals that
of the PIRKN method, their rate of convergence is much better, so that their efficiency is expected to be increased (see
Section 4). The increased efficiency is demonstrated in Subsections 4.1 and 4.2 where numerical results are presented by
comparing the PITRKN methods with PIRKN methods and with sequential RKN methods available in the literature.

2. Two-step RKN methods

In this section, we define the class of TRKN correctors that will be used in the parallel PC iteration scheme. For
simplicity of notation, we assume that equation (1.1) is a scalar equation. However, all considerations below can be
straightforwardly extended to a system of ODEs, and therefore, also to nonautonomous equations. We will start with a
fully implicit s-stage collocation-based RKN method (see e.g. [12]). For a scalar equation (1.1), this method assumes
the form

(2.1a) Uy, = upe + hu'pe + h2Af(Up),
(2.1b) Un+1 = Uy + hu'y + h2bTH(UY),
(2.1¢c) U'ns1 =’y + hdTR(Up),

where A is an s-by-s matrix, b, ¢, d, e are s-dimensional vectors, e is the vector with unit entries, ¢ is the collocation
vector, and Uy, is the stage vector corresponding to the n-th step. Furthermore, we use the convention that for any given
vector v = (vj), f(v) denotes the vector with entries f(vj). In this paper we confine the considerations to the case where
(2.1) is based on a collocation vector ¢ with all its components different from 1, i.e., the stage values differ from the
steppoint values. The method (2.1) will be referred to as the generating RKN method.

Now, let k be an arbitrarily given integer (k < s) and let the parameters of the generating RKN method (2.1) be
partitioned according to

Ask,s-k As-kk bs-x Cs-k ds. (I
(e ma )2l ) <& =) ==(3)
Aks-k  Akk b ck dy ex
where Ajj are i-by-j matrices, c;, b;, d;, ej are i-dimensional vectors. Defining the vector Uy, = (U, K)T, (Un(k))T)T,

where Up(5-K), Up(®) are (s-k)-dimensional and k-dimensional stage subvectors, respectively, the generating RKN

method (2.1) can be written in the form

Un(s-k) = upes.k + hu'pcg g + h2As-k,s-kf(Un(s-k)) + hZAs-k,kf(Un(k))’
(2.1a)

Up® = upey + hu'peg + h2Ag 5 kf(UpG-0) + h2Af(U,K)),

(2.1b") Un+1 = Up + hu'y + h2bg , THU,(-0) + h2by TRU,K)),



(2.1¢") Upt1 = U’ + h dg THULGW) + h d THULK)).

Suppose that we replace U,-%) by an extrapolation formula based on the stage vector Up.j. Then, we obtain the

method —
Vn=¥nV + Bsk s-kVn-1 + Bs.k kxWn-1, n=1)

(2.2a)
Wi, = ynek + hy'nek + h2Ax ¢ kf(Vp) + h2Af(Wp), (n=0)

(2.2b) Yn+1 = ¥n + hy'n + hZbg  TE(Vp) + hZbi TH(Wy), (n=0)

(2.20) Y'ne1 =¥'n + hdsk Tf(Vp) + h dcTH(Wy), (n=0)

where the Bjj are i-by-j extrapolation matrices and v is an (s-k)-dimensional vector. The vector (VaT, WnT)T may be
considered as the new stage vector for (2.2). Obviously, (2.2) can be considered as a two-step RKN method (TRKN
method) with s-k explicit and k implicit stages, using the stage vectors (V,T, W, DT and (Vg1 T, Wy T)T. We shall
call V;, and W), the stage subvectors of the TRKN method. The parameters v and Bjj in (2.2a) are defined by order
conditions which will be discussed in the next subsection. In addition to the initial values yo and y'o, the TRKN
method (2.2) requires s-k starting values, that is the (s-k)-dimensional starting vector V.

2.1. Order conditions for the explicit stages

In this subsection we describe the derivation of the parameter matrices Bs_k s-k , Bs-k k and vector v in (2.2a). In
this derivation, we assume that V( is provided with the same order of accuracy as the stage order of the generating RKN
method (2.1). We start with the following lemma:
Lemma 2.1. Let UG-K)(t,) denote the vector with components y(ty + cih), i = 1, ..., s-k, with y the locally exact
solution of (1.1). Moreover, let up = yp = y(ty) and u'p = y'n = y'(tp). If (2.1) has stage order r* > s and if UpS-K(ty) -
Vp = O(hdt1), then

U5 - v, = O™ +1) + Oha+l), UK - Wy = O(hr*+3) + O(ha3).

Proof. Since the RKN method (2.1) is a collocation method, it has at least stage order r* = s and step point order p =s
for all sets of distinct collocation points ¢j, i = 1, ..., s. The first relation is immediate from

U080 - vy = Up(0) - UpSB(tg) + UpER(ty) - Vi = O™ +) + OhaH).
Using this relation, we find
Un®) - Wy = [ugek + hu'neg + h2Ag s 1 f(ULGR) + h2Af(U,K)]
- [ynek + hy'nek + h?Ak s kf(Vn) + h2Agkf(Wp)]
= h2Ak s k[f(UnW) - (V)] + h2 A [f(Un0)) - f(Wp)]
= O(h™*+3) + O(hd+3) + O(h?)[Uy®) - Wy ],

which proves the second relation. []



Now, we arrive at the following result for the TRKN method defined by (2.2):

Theorem 2.1. If (2.1) has stage order r* >sand step point order p* 2 s, and if Un(s‘k)(tn) -Vnp= O(h9+1), then the
TRKN method (2.2) has stage order r = min(r*, q) and step point order p = min (p*, r*+1, g+1) for any set of
collocation points.
Proof. For the local truncation error of the TRKN method (2.2) we may write

Y(tn+1) - Yne1 = Y(tns1) - Unel + Unal - Ynel = OBP™ 1) + upyq - yns1,

Y'(tne1) - Y'nel = Y'(tn+1) - Wnal + Unsel - Yne1 = OGP™D) + winy g - yinyr.
By virtue of Lemma 2.1 we have

Unel - Ynel = h2bs i TEULEK) - £(Vi) + b2y T(EULK)) - (W)

= O(hr*+3 + hq+3) + O(hr*+5 + hq+5) = O(hr*+3 + hq+3)
Untl - Ynel =hdgT(fURER) - (V) + b dicT(EULMN)) - f(Wp))

= O(hr*+2 + hq+2) + O(hr*+4 + hCI+4) = O(hr*+2 + hq+2)_

Hence, we obtain p = min (p*, '+, g+l),and r = min(r*, q,p) = min(r’, q) (because < p*) which proves the
assertion of the theorem. []

The order conditions for the vector Vy, ensuring that Un(s‘k)(tn) -V = O(h9*1) are derived by replacing Vy, yp,

V-1, Wn.1 by the exact solution values y(tpesk + €s-kh), y(tn), y(tn-1€s-k + €s-kh), y(tn-1€x + cxh), respectively. On

substitution of these exact values into (2.2a) and by requiring that the residue is of order g+1 in h, we are led to
(2.3) Y(tnes-k + €s-kh) - y(tn) v - Bsk sk ¥(tn-1€s-k + Cs-kh) - Bs.k k y(tn-1€k + ckh) = O(hd+1).

Using (s+1)-point Lagrange interpolation formulas with abscissa vector a = (¢!, 1)T, we obtain (see e.g. [1, p. 878])

s+1 d \s+1
*
Yt t) = % L4+ 1) Y1 + ) + Con(hs) v,
J:
2.4)
s+l . a s+1
Lix) := ;o Ce1(t) === t+1- a),

where t* is a suitably chosen point in the interval containing the values t, t;.1 +cih,i=1, ..., s+1. Hence,

s-k S

y(tn + cph) - 3 Li(cp + 1) y(ty.1 + ajh) - Li(cy + 1) y(tg-1 + ajh)
j=1 j=s-k+1

(2.52)
d s+1 N
~Ls1(ou+ Dyt +0) =Conep(h ) vt



where tu* is a suitably chosen point in the interval containing the values ty ty.1 +cih,i=1, .., s+l, p=1, .., s-k.

Using componentwise notation we obtain
y(tnesk + cs-kh) - (L1(Csk + €sk)> --r Lsk(Csk + es-k)) Y(tn-1€s-k + €5.kh)

(2.5b) - (Ls-k+1(cs-k +€5.k)s - Ls(Csk + es-k)) y(tp-1€k + ckh) - Lgy1(csk + €5-k) ¥(tn)

d s+1
= Cs+1(cs-k)(h a;) y(th),
where t* = (11", ..., ts_k*)T. By defining
Bsksk := (L1(Csk + €5k, --.r Ls-k(Cs-k + €5k))s
(2.6)

Bskk = (Ls-k+1(Csk + €5k, - Ls(€sc + es.k)), V:i=Lgpi(csk +e€sk)s

a comparison with (2.4) reveals that we achieve q = s for any set of collocation points, and q = s+1 if Cg41(€s-k)

vanishes.

2.2. Zero-stability
Since we have transformed the one-step RKN method (2.1) into the two-step method (2.2), we have to check the

property of zero-stability. To that end we rewrite (2.2) in the one-step form

@7 Y, = RYy. + hSYp.1 + hPf(Yy) + h2Qf(Yy),

where Yp := (Vn, Wh, Yo+1s y‘n+1)T ,and P, Q, R, S are all (s+2)-by-(s+2) matrices given by

(Bs-k,s~k Bskk Vv 05k Osk,s-k Os-kk Os.x Osk
R < Oks-k  Okxk e Ok S Oks-k  Okk Ok ok
oxT of 1 o [ o T of o 1 [
\ 0xT T 0 1 0T T 0 0
( Os-k,s-k Os-kk Osk Osk Osk,s-k Oskk Osk Osk
b Ok,s-k  Okk Ok Ok 0= Agsk  Akk Ok Ok
0T of o o [ byl - I 0 0 |
d T &I 0 0 . 0T of o0 o

and where Oj j and 0; are respectively i-by-j matrices and i-dimensional vectors with zero entries. For zero-stability, we
have to demand that no eigenvalue of the matrix R has modulus greater than one, and that every eigenvalue of modulus
one has multiplicity not greater than two. Hence, a sufficient condition for zero-stability of the TRKN method (2.2) is
that the parameter matrix Bg_k -k has its eigenvalues within the unit circle.



2.3.  Choice of the method parameters

Suppose that the generating RKN method (2.1) is a collocation method. Then, the freedom in the choice of the
collocation points cj of the TRKN method (2.2) can be used for obtaining some useful method-properties. It seems
natural to choose the abscissas such that the generating RKN method (2.1) has the highest possible order. For example,
we may use the Gauss-Legendre points in each interval [ty, tn,1]. However, this choice can easily violate the condition
of zero-stability. In Table 2.1, we have listed the spectral radius P(Bs-k,s-k) of Bs.k sk for a few (s,k)-pairs.

Table 2.1. Spectral radius p(Bs.k s-k) of Gauss-Legendre based TRKN methods.

(sk) = G2  43) 42 G4 53 (5,2)
pP(Bsksk) = 059  .023 3.05 011 1.72 47.7

A second option minimizes the principal error vector associated with the extrapolation formula for the vector Vo,

i.e., the vector
Cs.k = Cs41(€sk) = (Cs+1(c1)s -r Cs41(cs.10) T,

where according to (2.4)

s+1

1 1 >
(2.8) Cs+1(cp) = Gt i=H](Cu +1-a)= G K i-_-H](cu +1-¢), u=1, .., sk

This vector vanishes if the set of components of the collocation vector ¢ contains the set of components of the vector
Cs-k + es-k. By means of (2.6) it can be verified that the parameter matrix Bs.k s-k is strictly upper triangular so that it

has zero eigenvalues and consequently, the TRKN method is zero-stable, Thus we have

Theorem 2.2. If the components of the collocation vector ¢ contain the components of the vector cg.k + €5, then the
associated TRKN method is zero-stable. []

3. Parallel iterated TRKN methods
Using (2.2) as corrector formula with predictor formula

(3.1a) Wn© =y w + Cx sk V.1 + Cc W1 (™),

where the i-by-j matrices Cij and the k-dimensional vector w are determined by order conditions, we arrive at the
following PC iteration scheme (in P(EC)ME mode)

Vo =ynV +BskskVn-1 + Bs-k,kwn-l(m)v
W@ = ypey + heky'n + h2Ax s kf(Vy) + h2A1f(WoGD), j=1, .., m,
(3.1b)

Yn+1 = ¥n + hy'n + h2bg § TH(Vy) + h2by TH(W (m),

Y'n+1 =¥'n + hds TH(Vp) + hdy THOW, (M),



The computational costs are measured by the number of sequential righthand side evaluations (f-evaluations) per step
(notice that the (s-k) and k components of the vectors f(Vy) and f(Wn(j‘l)) can be computed in parallel, provided that

max(s-k, k) processors are available). In general, we need m+2 sequential f-evaluations. However, if ¢ satisfies the
condition of Theorem 2.2, then one f-evaluation can be saved, because f(Vy) can be copied from the preceding step and

only k processors are needed. We shall call (3.1) a parallel-iterated TRKN method (PITRKN method).

3.1. Order conditions for the predictor
Along the lines of Subsection 2.1 we can prove that the conditions

Ck,s-k = (L1(ck + €g), ..., Ls-k(ck + ex)),

(3.2)

Cik = (Ls-k+1(ck + €k), ..., Ls(ck + ek)), W =Lgy(ck + ex)
imply that
(3.3) W(ty) - Wp(©® = O(hs*1).

Since each iteration raises the order of the iteration error by 2, the following order relations are obtained:
W, - wn(m) = O(h2m+5+1),
uns1 - Yne1 = 2o T[E(Wn) - (Wp(™)] = O@2m+s+3),
Un+1 - ¥'n+1 = h diT[EWn) - f(W,(™)] = O(h2m+s+2),

Thus, we have

Theorem 2.3. If (2.2) has step point order p > s, and if (3.3) is satisfied, then the PITRKN method (3.1) has step point
order min (p, 2m+s+1) for any set of collocation points. []

3.2. The rate of convergence
The convergence boundary of a PITRKN method is defined in a similar way as for the PIRKN, BPIRK and
PISRK methods proposed in [15], [11] and [16]. Using the model test equation y"(t) = Ay(t), where A runs through the

eigenvalues of the Jacobian matrix df/dy, we obtain the iteration error equation
W@ - Wy = zAp [Wpl-D - Wy, z:=Ah2, j=1,..,m.

Hence, with respect to the test equation, the rate of convergence is determined by the spectral radius p(Akk) of the
matrix Agk. We shall call p(Agk) the convergence factor of the PITRKN method. Requiring that p(zAkk) < 1, leads us

to the convergence condition

2 1
or h* < ——————— .
P(Akk) P(Axk) p(0f/dy)

lzl<



The freedom in the choice of the collocation points in the TRKN corrector can be used for obtaining a small
convergence factor p(Agk). Specification of convergence factors for a specified class of PITRKN methods is reported in

Section 4.

3.3. Stability regions
First, let us define the (s+2)-dimensional vectors

Es;1=0,..,0, 1,07, Eg;2=00, ..,0, DT, 842 =00, ..., 0, 1, DT
and the matrices

Qs-k,s+42 = V Eg41T + By k s-k(Is-k,s-k» Os-k k+2) + Bs-k k(Ok s-k» Ikk» Ok 2),
(3.4) Pis+2 =W Egi1T + Ck s k(Is-k s-k» Os-k k+2) + Ckk(Ok s-k» Ikk> Ok.2)s
R s+2 = ekEs+1T + ckEgi27,

where Ijj is the j-by-j identity matrix. The linear stability of the method (3.1) is determined by again applying it to the
model test equation y"(t) = Ay(t), where A is assumed to be negative. Defining

Xn™ = ((Vo-DT, (W )T, yy, hy'n)T,
and using (3.4) we obtain
(3.5a) Vn= Qs-k,s+2xn(m)

(35b) Wi = Ry 542 + zAk 5-kQs-k s+2)Xn™ + zAgWp(m-1) =
(@ + zAgk + ... + @A™ DRy 542 + ZAk s kQs-k 5+2)Xn™ + (ZAkk)MP 542X (M) =
[d - zAk) 1 - ZAK™)(Ri s+2 + ZAk s-kQs-k s+2) + (ZAkK) Pk s42]Xn(M,

(3.5¢) Yn+l1 =Yn +hy'n + st—kTVn + ZkaWn(m) =
Ss+2TXn(m) + st-kTQs-k,s+2Xn(m) +
zb T(( - zAk) 1 - (ZAK)™)(Ri 542 + ZAk 5k Qs-k 5+2) + (ZAKK)MP 542)X (M) =
[Ss+2T+2bs 1 TQs k s42+2bK T(I-zAkk) 1 (I-(ZAKK) ™) (R s42+2Ak 5-kQs-k 5+2)+(ZAKK) Pk 542)]Xn (™),

(3.5d)  hy'nyq =hy'n + zdg kT Vp + zdg TWy(M™) =
Es42 Xn™ + zdg 1k TQq.k 542Xn(™ +
2di T((T - zAg) 1 - (ZAK™ Ry 542 + ZAk 5k Qs-k 5+2) + (ZAKK) P 542)Xp™) =
[Es42T+2ds 1 TQs i s42+2di T(I-zAki) 1 (I-(ZAK)™) (R s42+2Ak 5.k Qs k 5+2)+HZAKK) Py 542)] X ™).

By introducing the matrices
Mi.s+2(2) = (I - zAk) 1T - (ZAk)™)(Ri 542 + zAk s kQs-k 5+2) + (zAxk)™Pk 542,
Mi42(z) = Ss42T+2bs 1 TQs.k s42+2bk T((I-2AKi)  (-(zAKI) ™) (R 5+2+2Ak 5k Qs k 5+2)+(ZAkK) Pk 542),

M*5,0(z) = Es+2T+st-kTQs-k,s+2+deT((I-ZAkk)‘1(I-(ZAkk)m)(Rk,s+2+zAk,s-st-k,s+2)+(zAkk)mPk,s+2),

the relations (3.5) yield the recursion



Qs-k,s+2
Mg s+2(2)
Ms42(2)
M*g42(2) —

(G.6)  Xpe1™ =Mp2) Xo™, Mp(2) =

The (s+2) by (s+2) matrix My (z) defined by (3.6) which determines the stability of the PITRKN methods will be called
the amplification matrix, its spectral radius p(M(2)) the stability function. For a given m, the stability intervals of the
PITRKN methods are defined by

(-B(m), 0) := {z p(My()) <1, z<0}.
The stability boundaries B(m) for the PITRKN methods used in our experiments can be found in Section 4.

4. Numerical experiments
In this paper we report numerical results for PITRKN methods with s = 2k and

(4.1) = (esk T &k DT, s = (- cky v - D)L, €k = (1, -on cl, k=2,..5,

where cj, ..., Ck are the k components of the k-dimensional Gauss-Legendre collocation vector. By this choice, we have
that p* =s, 1 =sand q = s+1 (because the vector Cs+1(cs-k) vanishes), so that the PITRKN methods defined by (3.1)
have order s = 2k (see Theorems 2.1 and 2.3) and can be implemented on k = s/2 processors. These orders and number of
processors are the same as used by the PIRKN methods proposed in [15] and [19]. However, a direct numerical
computation reveals that the convergence factor as defined in Subsection 3.2 is much smaller than that of PIRKN
methods (see Table 4.1).

Table 4.1. Convergence factors for various pth-order ITRKN and PIRKN methods

Parallel pth-order PC methods p=4 p=6 p=8 p=10
Direct PIRKN methods (cf. [15]) 0.048 0.029 0.018 0.013
Indirect PIRKN methods (cf. [15]) 0.083 0.046 0.027 0.019
PITRKN methods 0.026 0.015 0.009 0.006

As shown in Table 4.2, the stability boundaries of the PITRKN methods are sufficiently large for nonstiff

problems.

Table 4.2. Stability boundaries B(m) for various pth-order PITRKN methods

pth-order PITRKN methods p=4 p="6 p=8 p=10
m=1 0.42 0.09 0.00 0.00
m=2 4.15 1.37 0.51 0.10
m=3 7.93 7.07 2.54 1.13
m=4 8.50 16.20 7.48 3.74
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In order to see the efficiency of the various PC methods, we applied a dynamical strategy for determining the

number of iterations in the successive steps using the stopping criterion
4.2) Il wym - wy@-D ]|, <TOL = C hp-1,

where p is order of the corrector method, and C is a parameter depending on the method and on the problem. Notice that
by this criterion the iteration error is of the same order in h as the underlying corrector.

4.1. Comparison with parallel methods

In this section we report numerical results obtained by the best parallel methods available in the literature, the
(indirect) PIRKN methods proposed in [19] and the PITRKN methods considered in this paper. The absolute error
obtained at the end of the integration interval is presented in the form 10-4 (d may be interpreted as the number of correct
decimal digits (NCD)). Furthermore, in the tables of results, Nseq denotes the total number of sequential f-evaluations,
and Ngteps denotes the total number of integration steps. The following three problems possess exact solutions in

closed form. Initial conditions are taken from the exact solutions.

4.1.1. Linear nonautonomous problem
As a first numerical test, we apply the various pth-order PC methods to the linear problem (cf. [15])

S20(t)+1 - a(t)+1
4.3) d—zzég =( O+ - )y(t), o(t) = max (2cosZ(t), sin%(t)), 0<t< 20,
dt 200t)-1)  oft)-2

with exact solution y(t) = (-sin(t), 2sin(t))T. The results listed in Table 4.3 clearly show that the PITRKN methods are
by far superior to the PIRKN methods of the same order. The average number of sequential f-evaluations per step for
PITRKN methods is about two for all methods.

Table 4.3. Values of NCD /Nseq for problem (4.3) obtained by various pth-order parallel PC methods.

pth-order PC methods p Nsteps=80 Nsteps=160 Nsteps=320 Nstcps=640 Nsteps=1280 C

PIRKN 4 4.07/237 5317477 6.5/958 7.7171919 8.9/383 10!
PITRKN 4 48/161 6.2 /321 7.57641 8.7/ 1281 10.0/2561 10!
PIRKN 6 7.41/320 92/640 11.0/1280 12.8/2559 14.6/5119 103
PITRKN 6 82/163 1057322  12.5/642 144/1282 162/2562 103
PIRKN 8 11.0/399 134/799 158/1600 18.2/3198 20.6/6398 104
PITRKN 8 12.1/211 142/380 17.9/683 20.2/1283 22.8/2563 104
PIRKN 10 133/436 18.0/921 20.9/1881 23.8/3803 104

PITRKN 10 14.2/233 17.3/407 203/750 24.1/1403 104
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4.1.2. Nonlinear Fehlberg problem
For the second numerical example, we consider the often-used orbit equation (cf. e.g. [2], [3], [5], [6])

—

A2 2 /()
4.4) g%ya@: ( )y(t), t) = \/ y12(t) + y22(t) , \m2<t<10.
dt 2/(t) -4t

The exact solution is given by y(t) = (cos(tz), sin(t2))T. The results are reported in Table 4.4. For this nonlinear
problem, we observe a similar superiority of the PITRKN methods over the PIRKN methods as in the previous

example.

Table 4.4. Values of NCD / Ngeq for problem (4.4) obtained by various pth-order parallel PC methods.

pth-order PC methods p  Nggeps=200 Niteps=400 Nsteps=800 Ngteps=1600 Ngteps=3200 C

PIRKN 4 1.6 / 591 2.8/1197 4.0 / 2400 5.2 /4800 6.4/9600 102
PITRKN 4 2.7 /441 3.8/802 5.1/ 1601 6.4 /3201 7.6 /6401 102
PIRKN 6 4.0/1775 5.8/1532 7.6 / 3096 9.4/6257 11.2/12648 103
PITRKN 6 5.3 /495 7.1/ 880 9.0/1601 11.0/3201 12.9/6401 103
PIRKN 8 66/1022 90/2032 11.5/4028 13.9/7966 16.3/15725 103
PITRKN 8 87/575 11.1/1051 135/1988 159/3672 183/6616 103
PIRKN 10 94/1234 124/2458 155/4893 18.5/9734 21.5/19332 103
PITRKN 10 114/674 145/1156 18.1/2139 21.1/4094 23.8/7797 103

4.1.3. Newton's equations of motion problem
The third example is the two-body gravitational problem for Newton's equation of motion (see [18], p. 245):

a1 yi1®  d2ya®) _ ya®)
a2~ @®)?’’ d2 @)’

0<t<20,

4.5)
1+¢

y1(0) = 1-g, y2(0) =0, y'1(0) =0, y'2(0) = o

where r(t) = \] ylz(t) + yzi(t) . The solution components are y1(t) = cos(u) - €, y2(t) = \ (1+€)(1-€) sin(u), where u is
the solution of Kepler's equation t=u -éesin(u) and € denotes the eccentricity of the orbit. In this example we set

£ = 0.3. As in the two preceding examples, the results listed in Table 4.5 show that the PITRKN methods are about
twice as efficient as the PIRKN methods



Table 4.5. Values of NCD / Nseq for problem (4.5) obtained by various pth-order parallel PC methods.

pth-order PC methods p Ngteps=100 Ngteps=200 Nsteps=400 Nsteps=800 Nsteps=1600 C

PIRKN
PITRKN

PIRKN
PITRKN

PTRKN
PITRKN

PIRKN
PITRKN

4
4

10
10

1.9 7200
3.1/200

5.1/360
5.717232

7.71450
9.4 /268

10.4 / 517
10.8 /297

3.3/400
4.1/ 400

6.8 / 800
7.57402

10.1 /917
10.6 / 497

13.3 /1050
13.7 / 546

5.0/841
5.3/800

8.6 / 1600
9.1/802

12.5/ 1934
12.9 7 890

16.2 / 2127
16.8 / 1022

6.2/ 1995
6.4 /1601

10.4 / 3200
10.8 / 1602

14.9 / 4000
15.2/ 1663

19.2 / 4306
19.6 / 1898

7.3 /4800
7.6 / 3201

12.2 / 6400
12.6 / 3202

17.3 7 8000
17.6 / 3203

22.2 /8706
22.6 /3515

101
101

10-1
10-1

10-2
102

10-2
10-2

4.2. Comparison with sequential methods

In Subsection 4.1 the PITRKN methods were compared with PIRKN methods (the most efficient parallel
methods for nonstiff problems). In this section we will compare the PITRKN methods with the sequential methods
currently available.

We restricted our tests to the comparison of our tenth-order PITRKN method (PITRKN{ method) with a few
well-known sequential codes for the orbit problem (4.4). We selected some embedded RKN pairs presented in the form
p(p+1) or (p+1)p constructed in [2], [3], [5], [6] and the RKN code DOPRIN taken from [10]. We reproduced the best
results obtained by these sequential methods given in the literature (cf. e.g. [6], [19]) and added the results obtained by
PITRKN (0 method. In spite of the fact that the results of the sequential methods are obtained using a stepsize strategy,
whereas PITRKN 1o method is applied with fixed stepsizes, it is the PITRKN7( method that performs most efficiently

(see Table 4.6).

Table 4.6. Comparison with the sequential methods for problem (4.4)

Methods Nsteps NCD Niseq
11(10) pair (from [6]) 919 20.7 15614
8(9)-pair (from [2]) 1452 13.5 15973
9(10)-pair (from [3]) 628 15.1 8793
3235 214 45291
11(12)-pair (from [5]) 876 20.3 17521
DOPRIN (from [10]) 1208 12.3 9665
4466 16.3 35729
16667 20.3 133337
PITRKN| (in this paper) 200 11.4 674
400 14.5 1156
800 18.1 2139
1600 21.1 4094
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5. Conduding remarks

In this paper we proposed a new class of two-step RKN correctors of order 2k where k is the number of implicit
stages. When solved by parallel predictor-corrector iteration, the sequential costs are considerably less than those of the
best parallel and sequential methods available in the literature.

—
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