Outerjoins as disjunctions

C.A. Galindo-Legaria
Computer Science/Department of Algorithmics and Architecture

CS-R9404 1994

Outerjoins as Disjunctions

César A. Galindo-Legaria

cwI
P. O. Box 4079, 1009 AB Amsterdam, The Netherlands

cesar@cwi.nl

Abstract

The outerjoin operator is currently available in the query language of several major
DBMSs, and it is included in the proposed SQL2 standard draft. However, “associativity
problems” of the operator have been pointed out since its introduction. In this paper
we propose a shift in the intuition behind outerjoin: Instead of computing the join while
also preserving its arguments, outerjoin delivers tuples that come either from the join
or from the arguments. Queries with joins and outerjoins deliver tuples that come from
one out of several joins, where a single relation is a trivial join. An advantage of this
view is that, in contrast to preservation, disjunction is commutative and associative,
which is a significant property for intuition, formalisms, and generation of execution
plans.

Based on a disjunctive normal form, we show that some data merging queries cannot
be evaluated by means of binary outerjoins, and give alternative procedures to evalu-
ate those queries. We also explore several evaluation strategies for outerjoin queries,
including the use of semijoin programs to reduce base relations.

CR Subject Classification (1991): [H.2.4] Database Systems, Query Processing; [H.3.3]
Information Search and Retrieval, Query Formulation; [G.2.2] Graph Theory; [F.2.2]
Nonnumerical algorithms and problems.

Keywords and Phrases: Outerjoin, Query Graph, Query Formulation and Processing.

Note: The author had an ERCIM postdoctoral fellowship while conducting this work.

1 Introduction

1.1 Motivation

Relational query languages and optimizers are designed to exploit the properties of Se-
lect/Project/Join (S/P/J) queries. In particular, they depend on the fact that join queries
can be unambiguously specified using a query graph. The graph does not impose a par-
tial ordering on the operations, but instead shows relations as nodes, and join predicates as
edges. Since execution order is inessential to the query’s semantics, languages and optimiza-
tion of S/P/J queries are relatively simple: Users need only provide enough information to
produce the query graph, e. g., the SQL Select-From-Where clauses. And every operator
tree that “implements” the query graph is known to evaluate to the same result.

But there are applications of matching elements of two relations that are not expressed
properly by means of join. A problem arises if we want to preserve all elements of one (or

both) of the relations in the result, even if there is no matching element in the other relation.
As an example, in a listing of customers and their purchase orders, we often want to see
all customers, even those without purchase orders. To obtain this rather natural result in
standard SQL, we have to compute the union of two SQL query blocks, one of which has a
nested block.

The outerjoin operator is a modification of join that adds to the result the non-matching
tuples from one or both of the relations being combined. One-sided or left outerjoins preserve
only one of its arguments. They are used basically to flatten conceptual hierarchies, where
some of the “parents” have no “children” [Dav91], as in the above example of customers and
purchase orders. Full outerjoins preserve both of its arguments. They are used basically to
merge data from different sources [DH84, SLI0], e. g., a list of information about clients in
databasel and database2, but a single row with all information for each client appearing in
both databases.

An outerjoin construct is included in the SQL2 standard draft [ANS92], and proprietary
or SQL2-compatible extensions for outerjoins are currently available in Sybase, NonStop
SQL of Tandem, SSQL of ShareBase, and ORACLE/SQL [Dav91, HM92]. The operator is
also used to represent algebraically some loop constructs of Daplex [Shi81], and to flatten
nested SQL queries with Count aggregates [Day87, Mur89).

Unfortunately, it is known that outerjoins are neither commutative nor associative,
in general. For this reason, a query graph in which edges indicate an operator (join or
outerjoin), in addition to match predicates, is not an unambiguous representation of a
Outerjoin/Join (O/J) query. Sometimes the same query graph can be derived from two
queries that compute different results.

For join, the intuition of pairs of matching tuples is easily extended from a single operator
to queries composed of several joins. And then, from the query graph formalism, it is easy
to generate execution plans for the query. We claim that these “query-wide” intuition and
formalisms provide an extremely important insight, both in the formulation and evaluation
of queries, that goes beyond what can be grasped from a collection of algebraic identities.
For example, it would be difficult to study semijoin reduction programs based only on
algebraic identities for binary join and semijoin.

For O/J queries, what is the intuition? What is the appropriate formalism? What are
the feasible execution plans?

In this paper we propose a shift in the intuition behind outerjoin: Instead of computing
the join while also preserving its arguments, outerjoin delivers tuples that come either from
the join or from the arguments. O/J queries deliver tuples that come from one out of several
joins (a single relation is a trivial join). An advantage of this view is that, in contrast to
preservation, disjunction is commutative and associative, which is a significant property for
intuition, formalisms, and generation of execution plans.

1.2 Basic Definitions

We adhere to the usual concepts and notation of relational algebra and relational calculus.

A scheme is a finite set of attribute names. A tuple t on scheme S is an assignment of
values to attribute names in S. The scheme of tuple ¢ is denoted sch(¢). For X C sch(t), we

say t is a tuple over X. A null tuple on scheme S has a null value assigned for all attributes,
and is denoted nullg.

Tuples t1, 9 on schemes S7, So, respectively, can be concatenated if the schemes are
disjoint or the assignments coincides for all attributes in S; N Sy in both tuples. The
concatenation is a tuple on S;USy, whose assignment coincides with that of ¢; for attributes
in Sq, and with that of ¢y for attributes in Sy. Concatenation of tuples 1, t3 is denoted
(t1,t9). If t is a tuple on scheme S, we may obtain a tuple ¢ on scheme S’ O S by padding,
i. e. concatenating ¢ with nullg:_g.

A relation on scheme S is a finite set of tuples on scheme S. The scheme of relation R is
denoted sch(R). A database is a set of relations whose schemes are mutually disjoint; they
will be called base relations.

A tuple predicate p is defined on some set of attributes S; it maps tuples over S to
{True, False}. Such S is called the scheme of the predicate, and denoted sch(p). For any
tuple t over S = sch(p), p(t) is defined and depends only on the values of attributes S in ¢.
Given a database, a predicate p is said to be n-ary if sch(p) intersects the scheme of n base
relations of the database. Note that our definition of predicate covers arbitrary, user-defined
predicates.

We call a predicate p strong with respect to a set S of attributes if, whenever a tuple
t has a null value for all attributes in S, p(¢t)=False [RGL90]. Comparisons (and boolean
combinations of comparisons) in the where clause of SQL queries actually behave as strong
predicates, on each of the attributes they reference. If an attribute being compared turns
out to be null for a given tuple, the value of the predicate is “unknown,” and the tuple is
not selected [NPS91]. In this paper we assume that predicates are strong on each attribute
they reference.

Let Ry, Ry be relations with schemes Sy, Ss, respectively. The outerunion, denoted
R1 W Ry, first pads the tuples of each relation to scheme (S; U S3), and then computes the
union of the resulting sets [Cod79]. Outerunion has lower precedence than join —i. e. in an
expression without parenthesis, joins should be evaluated first, and then outerunions.

Let R;, Ry be relations with disjoint schemes Si, Sy, respectively, and predicate p,
such that sch(p) C (sch(R;) U sch(Ry)). The join is Ry 51 Ry := {(t1,%2) | t1 € Ry, s €

L p
Ry, p(t1,t2)}. The antijoin is Ry > Ry := {t1 | t1 € R1,(—3t2 € Ry)(p(t1,12))}. The left
outerjoin is Ry 2, Ry = R B Row Ry 1I7> Rs. The right outerjoin is Ry ya Ry := Ry LA R;.
L p P
The full outerjoinis R1 & Ry:= Risa RoW Ry > RyWRy > Ry.

Since left and right outerjoin are symmetric cases, we use the term “left outerjoin” in a
generic sense, as an outerjoin that preserves all tuples from one of its arguments only. Also,
we use the general term “outerjoin” to refer both to left or full outerjoin. The symbol ® is

P
used to denote join or outerjoin in expressions of the form R; ©® Rs.

A query is an expression in relational algebra. We usually view it as an operator tree,
i. e. a tree whose leaves correspond to relation variables, and whose internal nodes contain
joins, outerjoins, and other algebraic operators. The result of a query Q is denoted eval(Q),
and is defined by the usual bottom-up evaluation of expressions. If opi,ops,... denote
generic operators (e.g., selection, outerjoin), then an op;/opy/ ... query is a an expression
in which only the mentioned operators may appear (e.g., Outerjoin / Join query).

In this paper we assume a conjunctive normal form for predicates of join and outerjoin,

where each conjunct is a tuple predicate in the sense defined above. We also make a

p1 Pn
connectivity assumption, namely, for any subtree (@1 © @3) of a join/outerjoin query,
each p; references relations both in ¢); and in Qs.

Given a join query, its query graph has a node for each relation mentioned in the query,
and an edge for each conjunct of the join predicates. An edge labeled p exists between
the nodes of two relations, say R;, Rj, if p references attributes of R;, R;; more exactly,
sch(p) & sch(R;), sch(p) Z sch(Rz), but sch(p) C (sch(R;) U sch(R;)). If query conjuncts
refer to more than two relations, then the resulting query is a hyper-graph [UlI89]. We do
not consider hyper-graphs explicitly, but, in principle, our results extend to them as well.

For an outerjoin/join query, we construct the graph using the same procedure, ignoring
whether conjuncts appear in join or outerjoin predicates. Obviously, the resulting query
graph does not provide enough information to compute the query. The graph corresponding
to query @ is denoted graph(Q).

2 A normal form for outerjoins

2.1 Join-disjunctive queries

We introduce the idea of join-disjunctive queries with an example.

Example 1 Suppose we have a database with relations CUSTOMERS, ORDERS, and
ITEMS, with the obvious meaning, and predicates p; to match customers to orders, and po
to match orders to items. Assuming ITEMS' has our luxury items, we want a query to list
all our customers, with their orders, and their luxury items. Tuples in the result must have
the following format:

CUSTOMERS | ORDERS | ITEMS'

Cc o]
Cc o —
C J— J—

The first row corresponds to customers and orders for luxury items; the second row
corresponds to customers and orders for non-luxury items; and the third row corresponds
to clients who have not ordered anything. The result contains all tuples in the join (CUS-

TOMERS 54 ORDERS b4 ITEMS'), all tuples in the join (CUSTOMERS & ORDERS),
and also all tuples in CUSTOMERS.

Each of the three “sub-results” can be retrieved by projecting on the appropriate at-
tributes. These “sub-results” are included in the result in a “minimal” way. For example, if
(c,—,—) appears in the result, it means that c € CUSTOMER, but there is no 0 € ORDERS

such that (c,0) € (CUSTOMERS 64 ORDERS). -

The query in the previous example is called join-disjunctive, because, intuitively, it
consists of the minimum union of several join queries on a given query graph. A formal
definition of minimum union is given next!.

!This in not the only approach to formalize the operator we need. However, it is simpler than an
alternative approach to minimum union given in [GL92], which is based on projection and set difference.

Definition. We say that a tuple ¢; subsumes ts if they are defined on the same attributes,
to has more null values than ¢;, and ¢; coincides with ¢3 in all non-null attributes of 5.
The remowal of subsumed tuples of R, denoted R |, returns the tuples of R that are not
subsumed by any other tuple in R [UlI89].

Definition. The minimum union of relations Ry, Ry is Ry @ Ry := (R; W Ry) |. Minimum
union has lower precedence than join.

Observation 1. Minimum union is commutative and associative. In addition, if R; does
not contain subsumed tuples, then (R; @ () = Ry; and if Ry C R; then (R; @ Ry) = Ry.

Now, based on minimum union, we define join-disjunctive queries.

Definition. Let G = (V,E) be a query graph. The join evaluation of a query graph
is >4 (G) = Opia-npn (R1 X --- X Rp,), where {p1,...,pn} are the labels of edges E and
{Ry,...,R,} are the labels of nodes V.

Definition. Let G = (V, E) be a graph and V' C V. The induced subgraph, denoted G|y,
is (V! E"), where E' = {(u,v) | (u,v) € E,u € V',v € V'}. When the query graph G is
understood, we write the join evaluation of a subgraph < (G|y) simply as < (V).

Definition. Let G = (V, E) be a query graph. Let V4,...,V, C V be sets of nodes such
that each induced subgraph G|y, ..., G|y, is connected. The query p(Vy) @ --- @ (V)
is called a join-disjunctive query, or a join-disjunction, on G. Each (V) is called a term
of the query.

Each term of a join-disjunctive query corresponds to a join, and the query result contains
the results of these various joins. Although not required, join-disjunctions on G often contain
a term for the join evaluation of the whole graph i (G).

Since both minimum union and joins are commutative and associative, join-disjunctive
queries can be specified in a set notation. Given a query graph G, we write query <
(V) @ -+ @ (V) as {V1,...,Va}. A term < (V;), where V; = {R;,,... R;, } is written
simply as V; or, using juxtaposition of its elements, as R;, --- R; ..
Observation 2. The set notation of a join-disjunctive query on graph G denotes a unique
result.

Observation 3. If normal disjunctive queries)1, Q2 have different set notations, then
there are database instances for which eval(Q1) # eval(Q2).

Example 2 For the query of example 1, the query graph has three relations, and two
edges, corresponding to predicates pi, ps. The set notation for the join-disjunctive query is
{CUSTOMERS ORDERS ITEMS’, CUSTOMERS ORDER, CUSTOMERS}. [

2.2 Rewriting outerjoins as disjunctions

The following identities are used to rewrite join/outerjoin queries:

Ri5Ry, = Ri%Ry® Ry; if Ri=Ri|,Ry=Ry]|. (1)
Ri& Ry = R %Ry ® R, @ Ry; if Ry =Ry |,Ry =Ry . (2)
(Ri ® Ry)« Ry = Ryt Ry @ RytaRg; if Rg=Rs)| . (3)

Identities 1 and 2 above are straightforward, but distributivity of join over minimal
union, identity 3, requires closer analysis. It is based on the distributivity of cartesian
product and selection over minimal union, but there is a problem with selection, because it
does not always commute with removal of subsumed tuples. For instance, assume t; € R |,
ty € R, t; is the only tuple that subsumes 9, p is false in ¢, but p is true in ¢3. Then
ty & op(R |), but ¢y € (0,R) |. However, this problem does not appear under our stated
assumption that predicates are strong on each attribute they reference.

We shall assume that base relations do not contain subsumed tuples —which is usually
the case in practice, given that tuples have some user- or system-assigned unique identifier.
Then, by identities 1-3, intermediate results in join/outerjoin queries do not contain sub-
sumed tuples. The following example illustrates how to rewrite a query as a join-disjunction,
using identities 1-3.

12 23
Example 3 The query (R; %> Ry) %> Rj is rewritten as a join-disjunction as follows:

12 23
(R % Ry) % Ry
p23

12
= (Ri{™ Ry ® Rl ® R)5 Ry
p12 p23 plz
= (Ri™= Ry ® Rl ® R)) M R3 & Rix Ry ® Ry @ Ry

p12 p23 p23 p23 p12
= Ri™>~Ry™<R3 ® Ri™< R3s ®&® Ry R3 & Ri ™ Ry & R1 & Ry

p12

p23 p23 pl2
= Ri~Ry™=<R3 ® Ryt Rg & Ri M Ry & Ri1 & Ry
= {RiRyR3,RyR3, R1 Ry, Ry, Ry}

2.3 A normal form

It turns out that join-disjunctions provide a normal form for join/outerjoin queries. We
show that next.

Observation 4. Let G be a query graph partitioned into two connected subgraphs
G1,G2. Let p be the conjunction of labels of all edges between G; and G in G. Let
Q1 ={Vi1,..-,Vin}, Q2 = {Va1,..., Vam} be join-disjunctive queries on graphs G1, G2 re-
spectively. Then the expressions ()1 B Q2, Q1 2 @2, and @1 & (2 can all be rewritten as
join-disjunctive queries.

Proof. For @, B (2, repeated application of identity 3 rewrites the expression as
P p P

(> (V1)) o< (0 (Var)) @ (pa(Vin)) B (ba(Va2)) @ -+ @ (> (Vin)) B (>4 (Vam)). For
each join (> (V1)) - (>a(V2;)), p contains conjuncts for all conditions between relations
in V1; and V55, and perhaps more. If p contains a conjunct involving some relation not
in Vi;, Va4, then the result of (> (Vi) B (> (Va;)) is actually the empty relation, by
predicate strongness, and it is removed; otherwise, (< (V7;)) B (> (Vy;)) is the term
l><1(V12 U ‘/21) of G.

The outerjoin cases, Q1 2, Q2 and Q) N Qo follow directly from identities 1, 2, and the
join case. -

Theorem 1. Let Q be a join/outerjoin query. Q can be rewritten as a join-disjunctive
query Q'. Such Q' is a normal form for Q.

Proof. First, consider rewriting operator tree () as a join-disjunction. We show by induc-
tion the stronger property that any subtree of) can be rewritten as a join-disjunction.

Each leaf of) is a single relation, which is a trivial join-disjunction. Now, let Q' = (Q1 (%
Q2) be a subtree of Q. By the connectivity assumption, G' = graph(Q’) is partitioned
by connected subgraphs G; = graph(Q;), Gy = graph(Q2), and p is the conjunction
of the labels of all edges between G; and G9 in G. By induction hypothesis, Q1, Q>
can be rewritten as join-disjunctive queries. By observation 4, Q' can be written as a
join-disjunction.

By observation 2, if rewriting two queries yields the same join-disjunction, those queries
evaluate to the same result. By observation 3, if rewriting two queries yields different
join-disjunctions, those queries evaluate to different results, in general. [

An immediate consequence of theorem 1 is a simple, transparent procedure to decide
whether or not two join/outerjoin queries are equivalent —rewrite them as join-disjunctive
queries and see if they are equal. This is done in the following example to prove identities.

Example 4 In example 1 we transformed query (R; 25 Rs) i Rj3 into the join-disjunctive
query {RiRyRs, RoRs, Ri Ry, R1, Ro}. Query Ri % (Ry > Ry) can also be rewritten as
join disjunction {R; RyR3, R2R3, R1 Ry, R1, Ry}. Therefore the associative identity (R; I:l—f
Ry) ™5 Ry = Ri %> (Ry "> Ry) holds.

On the other hand Ry 23 (Ry % Ry) = {RiRsRs, RaRs, R1}, but (Ry %o R) ’ézj Ry =
{Rle,Rl,Rz} l><1 R3 = {R1RaR3, R2R3}. Therefore the associative identity RS (Rz l><l
R3) = (R & Rg) D<1 R3 does not hold. (]

A list of identities for joins, left outerjoins, and full outerjoins is given in [GLR93].
An initial motivation for our join-disjunctions was to facilitate the proof of identities with
outerjoins, which is somewhat involved if we transform left- into right-hand-side expressions
algebraically —see [RGL90, OMO89], for example.

Our disjunctive normal form is in the worst case exponential on the number of relations
of the query. This is to be expected, since it encodes operator trees of non-associative
operators. Still, we believe it is an intuitive formalism, appropriate for reasoning about
outerjoin queries.

3 Cyclic query graphs
3.1 Full disjunction and data merging

Example 4 showed that some associative identities involving joins and outerjoins do not
hold. However, [GLR93] shows that the order of evaluation in many important cases can
be changed using simplification techniques, and a generalized outerjoin operator —which
we describe later in this paper. In this section we turn our attention to a different sort of
“associativity problem” raised in the literature. The problem affects the intended answer
of the query, rather than query evaluation.

Example 5 Recall the database of example 1. We have relations CUSTOMERS, OR-
DERS, and ITEMS; predicate p; to matches customers to orders, and ps to match orders
to items. We add a new predicate ps matching each customer with items produced in the
same location as his or her address.

Let CUSTOMERS' be customers within certain age range, and ITEMS' be luxury items.
Our query is the full outerjoin of three relations under p1, ps, p3, but note that:

(CUSTOMERS' 2 ORDERS) *2¥* ITEMS'

P2/Ap3

= (CUSTOMERS' & ORDERS) "%* ITEMS' @ CUSTOMERS' & ORDERS @

P2/\p3

CUSTOMERS' "% ITEMS' @ ORDERS "3%° ITEMS' &

CUSTOMERS' @ ORDERS & ITEMS'

— (CUSTOMERS' £ ORDERS) "3 ITEMS' @ CUSTOMERS' £4 ORDERS @

CUSTOMERS' @ ORDERS @ ITEMS'
= {CUSTOMERS' ORDERS ITEMS’, CUSTOMERS' ORDERS,
CUSTOMERS’, ORDERS, ITEMS'}.

The result does not lose tuples from the original relations, but it does miss some matches.
Since ORDERS ITEMS' is not a term, orders will not be matched with their items —unless
they were ordered by a customer in CUSTOMERS', in which case they are part of term
ORDERS ITEMS' CUSTOMERS'.

A second observation is that different associations of the query, namely ((ORDERS &
ITEMS') p3/p1 CUSTOMERS’) and ((ITEMS' 25 CUSTOMERS’) Pi/p2 ORDERS), all yield
different results, but none contains all terms. Some tuple matches are still missing from the
result. [

Definition. The full disjunction of a query graph G is given by the join-disjunctive query
Q = {V'| G|y is connected}.

A full disjunction delivers all tuples of the base relations, combining them as a single
tuple whenever they match. Clearly, on fully connected graphs, the full disjunction has
exponentially many terms; but, in our view, full disjunctions capture the requirements of
data merging queries.

The following theorem relates full disjunction with full outerjoins.

Theorem 2. Assume the operators in query Q are all full outerjoins, and let G =
graph(Q). Q computes the full disjunction of G if and only if G is acyclic.

Proof. (Sketch) The if part is proved by induction on the subtrees that make up the
operator tree (). To prove the only-if part, the argument follows the join-disjunction
rewrite of example 5: There is an outerjoin operator in) that, when applied to the
join-disjunction of its subtrees, will remove some terms.

An important consequence of our theorem is that, for acyclic query graphs, the full
disjunction can be computed applying full outerjoins, in any order. For cyclic graphs,
however, the full preservation —i. e. data merging query— cannot be computed by means
of binary outerjoins.

The “outerjoin associativity” problem pointed out in [Mai83] is an instance of (natural)
full outerjoins on a cyclic graph.

3.2 Implied graph edges

A related “associativity problem” affecting the intended answer of a query is the following.
Conjuncts of join predicates may logically imply other conjuncts, e. g., using transitivity
of equality. In terms of query graphs, implied conjuncts add edges, and thus modify the
topology. If graph G4 is obtained by adding or removing implied edges from G1, then the
join evaluation of both graphs yield the same result. But the full disjunction —i. e. data
merging query— is not, in general, the same on both graphs. The following example, taken
from [Dat86a], shows the problem.

Example 6 We want to compute the full outerjoin of the the following relations S, P, J,
comparing their city attributes. Let predicate p®P be (S.city=P.city), pP’ be (P.city=.J.city),
and p* be (S.city=J.city). Outerjoin queries yield the following results.

S P J
S# city P+# | city J# city
S1 | London P1 | Paris J1 Oslo
S2 Paris P2 | Oslo J2 | London

=BT
S# | S.city | P# | P.city | J# | J.city
S1 | London - - J2 | London
S1 Paris P1 | Paris - -

- - P2 Oslo - -

- - - - J1 Oslo

ppj

Q=185 PrE
S# | S.city | P# | P.city | J# | J.city
S1 | London | -
S1 Paris P1 | Paris - -

- - P2 Oslo | J1 Oslo

- - - - J2 | London

Although the join evaluation of graphs G; = graph(Q1) and G5 = graph(Q>) is the same,
the full disjunctions of G; and G2 on the above tables —computed by queries @1, Q2— are
not the same. [

Definition. Given a query graph G = (V, E), the implied graph G' = (V, E') contains the
maximum set of edges E’ such that each edge e’ € E’ is logically implied by the predicates
in .

Observation 5. Let G’ be the implied graph of G. The join evaluations < (G’') and >(Q)
are the same. If the graphs G’ and G are different, then G’ has cycles.

Observation 6. If G is different from its implied graph G’, then the full disjunction of G’
cannot be computed by any outerjoin query.

Example 7 For the example 6 above, the query graph G; = graph(Q;) contains only two
edges, p°?, p*?, but the implied graph G’ of G contains edges p*?, p*/, pP? —and G’ is also

the implied graph of G5 = graph(Q3). The full disjunction of G’, which cannot be computed
by full outerjoins only, is the following:

Q=185 PrL
S# | S.city | P# | P.city | J# | J.city
S1 | London - - J2 | London
S1 Paris P1 | Paris - -
- - P2 Oslo | J1 Oslo

Date uses example 6 above to show that full outerjoin is not associative, in general?,
but asserts that natural full outerjoin is associative [Dat86a]. Maier gives an example of
natural full outerjoin that does not associate in [Mai83]. Our analysis shows that cycles in
the query graph are the source of the problem, and also identifies the relevance of implied
edges, which are relatively unimportant on join queries.

4 Evaluation of join-disjunctions

4.1 Semijoin reduction programs

Semijoin reduction programs have been proposed in the evaluation of join queries in dis-
tributed databases [CP85]. The idea is to eliminate irrelevant tuples from base relations,
before the actual query is evaluated. This reduction can be viewed as an optional prepro-
cessing step, because, whether or not the base relations are reduced, it is still necessary to
select a join evaluation order for the query. The preprocessing step pays off when its cost
is lower than the cost reduction it brings to the evaluation of the actual query.

In general, for a given join/outerjoin (or simply join) query @, the tuples of R; needed to
answer () are given by Ty,(g;)@- When @ includes outerjoins, sometimes R; = mop(g;)Q; 80
all tuples of R; are relevant to the result and no reduction is possible on that relation. The
next example shows that some base relations in join/outerjoin queries do contain irrelevant
tuples.

12 23
Example 8 In example 3, we saw that query Q = (R; > Ry) %> Rj is rewritten as the
join-disjunction {R;RyR3, R2R3, R1 Ry, R1, Ry}. Since terms R; and Ry are included, all
the tuples of those relations are relevant to the result. But relation R3 appears only in
terms R; Ry R3 and Ry Rj3. Furthermore, any tuple of R3 in <t1(R1 Ry R3) is also in <1 (Ra R3).
Therefore, we conclude that tuples of R3 that do not match a tuple in Ry are irrelevant to
the result of Q). [

Definition. Let V;,V; be terms on graph G. Viewing terms as sets of relations, set
containment induces a transitive relation on terms, that corresponds to a directed acyclic
graph. We say V; is an acestor of V3, denoted Vo < Vi, if relations in V5 are contained in
Vi; if, in addition, Vi # Va, then V7 is a parent of V5, denoted V5 < Vi. Given a collection
of terms {Vi,...V,}, if V; < V; and there is not Vi such that V; < V3, <V}, we say Vj is a
parent of V;. Descendant and child are the inverses of ancestor and parent, respectively.

2 Actually, he deals with outer equi-join.

10

Figure 1: Parent-child relationship of terms.

Figure 1 shows the parent-child relationship of the terms of the query of example 3.

Observation 7. Let V1, V5 be terms of graph G, and S be the scheme of (V7). If V; < Vj
then mg(><(V3)) C (V7).

Observation 8. Relational projection distributes over minimum union.

Let @ be a join-disjunctive query on graph G. Let R; be a relation used in @, with
scheme S;. To reduce R;, compute R, = 7g,Q as follows.

e Set @' ={V |V € Q,R; € V}. From observations 1 and 8, 7g5,Q = 7s,Q’".

e Set @" = {V |V € @, V has no child in Q'}. From observations 1, 7, and 8,
! __ 1
7TS¢Q - WS{Q -

o Let Q" = {V1,...,Vn}. Compute R;; = mg,(>(V;)), for j =1,...,m. Each R;; can
be computed by a semijoin program if G|y, is acyclic [CP85]. The reduced relation
R} is the union of relations R;1, ..., Rim.-

The above procedure can be used to find a reduction plan for every relation in the query.
Since different the reduction plans may contain common work, it is important to schedule
semijoins so that work is not duplicated. We do not consider that problem here.

4.2 Basic outerjoin algorithms

Whether or not base relations are reduced, we still have to evaluate outerjoins efficiently.
To compute a single outerjoin R; 2> Ry we could follow the algebraic definition, and take

the union of the join Ry B Rs and the antijoin R, 117> Rs. But it seems reasonable to expect
common work in the computation of joins and antijoins so, instead of computing them
separately, it has been suggested to modify join algorithms to compute outerjoin directly
[Day87]. We summarize next two basic implementation ideas that have been proposed
[RR84, GLY2, PMC93|, and then extend them to join-disjunctions.

“Simultaneous” computation of join and antijoin. Since there are no common tu-
ples in the join R; > Ry and null-padded antijoin R; > Ry, computing their union reduces
to merging two streams of tuples. Some join algorithms are easy to modify so that, concep-
tually, they return two independent output streams, one with the result of the join, and the
other with the result of the outerjoin. Then, merging these two streams yields the outerjoin.

11

In particular, many join algorithms distinguish an outer and an inner relation, and
for each tuple in the outer relation they find all matching tuples of the inner relation
—e. g. nested-loops, hash-join, index-join. Simple modifications to these algorithms can
determine the tuples of the outer relation without a matching tuple in the inner, thus
making possible to output efficiently the required streams, namely join and antijoin [RR84].
The limitation of this procedure is that, in general, it cannot compute the antijoin of the
inner relation, only the outer.

Similarly, the sort-merge algorithm for joins can be modified so that it efficiently outputs
both antijoins, in addition to the join [GL92]. These three output streams allow easy
computation of full outerjoin. Unfortunately, the sort-merge algorithm cannot be used to
compute joins with arbitrary predicates.

Mark and re-scan. Simultaneous computation of join R; >t Rs and semijoin Ri><Ry
is easy, if duplicates in the semijoin result are irrelevant —simply channel to the semijoin
output stream every tuple that is successfully matched with another. Conceptually, this
semijoin result is used only to mark tuples of an input relation, say R;. After marking
is complete, and additional scan of R; finds the result of the antijoin R; > Ry as those
tuples that remain unmarked. Adding this antijoin to the previously computed join yields
the outerjoin result. Tuple marking could be implemented, for example, using a hash table
of tuple ids. This is the basis of the general outerjoin algorithm proposed in [PMC93]3.
As pointed out in that same reference, this second procedure is less efficient than the first
procedure outlined above, due to the extra scans and temporary memory required, but it
can compute arbitrary outerjoins.

4.3 Independent computation of terms

The strategy of computing outerjoin by following the definition —i. e. taking the union of
independently computed join and antijoin— is generalized next to join-disjunctions.

Definition. Let @@ be a join-disjunctive query whose result has scheme S, and V' be a term
of Q. Assume Q' is the join-disjunctive query containing all terms of @, except V. Let R’
be the result of eval(Q'), padded to scheme S. The contribution of V to Q is defined as
eval(Q) — R'.

Observation 11. Let Q = {V1,...,V,} be a join-disjunctive query, and let S; be the
scheme of the result of < (V;). Assume V;,...,V; are the parents of V; in Q. If m = 0,
then the contribution (up to padding) of V; to Q is > (V;); otherwise, the contribution (up
to padding) of V; to @ is ((>a(V;)) — 75,(5(Vi,))) 1 -+ 1 ((=(Vi)) — 75,(1(Vi,,))). Each

of the relational differences to be intersected corresponds to an antijoin.
The resulting intersections can also be written as antijoin sequences, as it is easy to
D1 p2 p1 P2 P2 pP1
show that (R1 >Ry N Ry > R3) = (R1 > Rg) > R3 = (R1 > R3) > Rs.

Theorem 3. Let Q = {V1,...,V,} be a join-disjunctive query. Assume Ci,...,C, are
the respective contributions of Vi,...,Vy, to Q. C; is disjoint with Cj, for all i # j. Q is
equal to the union C; U --- U C,.

3That reference also examines specific cases where the antijoin of the inner relation can be efficiently
computed simultaneously with the join.

12

Proof. (Sketch) Assume, without loss of generality, that terms are arranged so that
Vi < V; implies j < i. Define the collection of join-disjunctive queries Qr = {V; | Vi €
Q,i < k} for 1 <k < n. It can be shown, by induction on k, that Qy is equal to the
union of the disjoint contributions of its terms, for 1 < k <. Since Qr = @, the theorem
follows.

12 23
Example 9 Query Q = (R; AN Ry) P Ry = {R1RyR3, R2R3, R1 Ry, R1, Ry} of example 3
can be computed using contributions as
12 23 23 12 12 23
Rlll]Xl RQZIJXI Rs W (Rzll)xl R3)pl> R W (Rlll)Xl Rz)p|> R34

12 23
p

p'? P
R >Ry W (Rz > Rl) > Rs.
|

Similar to single outerjoin evaluation, the above strategy may duplicate work. It does
provide a reference evaluation procedure for arbitrary disjunctions, based on joins, antijoins,
and union of disjoint sets, rather than elimination of subsumed tuples.

4.4 Extending the basic outerjoin evaluation techniques

Strategies to compute outerjoins can be extended to compute join-disjunctions. In general,
generalized semijoin and antijoin have to be computed simultaneously with join.

Definition. Let Ri, Ry be relations with disjoint schemes, p be a predicate between Ry, Ry,
and S C (sch(R;) U sch(Ry)) a set of attributes. The generalized semijoin is the S-

projection of the join, i. e. R 52 Ry = ms(Ry B Ry). If, in addition, S is disjoint with
sch(Ry), the generalized antijoin is the S-projection of R; that does not appear in the join,

S, S,
i.e. R B Ry:=ngR; — (R 5% Ry).

Assuming operators that compute join and semijoin simultaneously, join-disjunctions
are handled as follows. The contribution of each term is collected independently at the end,
as the difference of tuples received from a “positive” stream minus those received from one
of more “negative” (or “mark”) streams. For a given term V, the “positive” stream comes
from the computation of > (V'), and the “negative” streams come from semijoins obtained
by operators that compute 1 (V"), for each parent V' of V.

Example 10 Figure 2 shows a way to compute the join-disjunctive query of example 3,
Q = {R1R3R3, RyR3, R1 Ry, Ry, Ry} on predicates p'2, p?3. The flow of tuples is from left to
right. Operators compute join and semijoin simultaneously; the join is sent through streams
starting on a solid circle (e), and the semijoin is sent through streams starting on a hollow
circle (o).

Figure 1 shows the child-parent relationship for the query. The contribution of R; is
computed based on a “positive” stream coming from R;, and a “negative” stream coming
from a semijoin of operator t<;. The contribution of Ry requires two “negative” streams,
one from operator ;, and another from operator t<3. Finally, operator b, computes join b
(R1R2R3), and also generalized semijoins Tsch(Ry RZ)(IXI (R1R2R3)), ﬂ-SCh(RzR,g)(D(] (R1R2R3)).
[

13

Ry A Ry
Dy D3 Ri Ry R3
R RyR3

Figure 2: Computing with semijoin streams.

Ry ¢ R Ry R3
>)
| G RiRy > R3
R > R2
Ry— N Ry > R1 > R3
X3 l><140 R2R3 > R1
R3

Figure 3: Computing with antijoin streams.

As with the single outerjoin case, each of the operators is relatively simple, but there
is some memory and time overhead involved in marking and re-scanning —i. e. computing
the difference of “positive” and “negative” streams above.

Assuming operators that compute join and antijoin simultaneously, join-disjunctions
are handled as follows. When given term V with child V' is evaluated, the antijoin ((><
(V)) — (> (V")) is simultaneously computed, and antijoins results are intersected at the
end to determine term contributions.

Example 11 Figure 3 shows a way to compute the join-disjunctive query of example 3,
Q = {R1RyR3, RyR3, R1 Ry, R1, Ry} on predicates p'2,p?3. Operators compute join and
antijoin simultaneously; the join is sent through streams starting on a solid circle (e), and
the antijoin is sent through streams starting on a hollow circle (0).

Figure 1 shows the child-parent relationship for the query. The contribution of R; is
computed as an atijoin in <;. The contribution of Ry is the intersection of two antijoins,
one from < and another from 3. The antijoin on attributes of Ry R3 cannot be computed

14

by <2, because those attributes intersect with the scheme of both input streams. For this
reason, we are forced to add another operator, <4, to compute the contribution of Ry R3. m

The antijoin-based strategy seems to impose less restrictions on the synchronization of
operators, compared to the semijoin-based strategy that requires relational differences at
the end. On the other hand, to implement an operator that computes join and antijoin
simultaneously, we need a semijoin-based strategy, in the general case.

5 Conclusions and comparison with related work

Related work. After the definition given in [LP76], a number of papers have used out-
erjoins to formulate certain classes of queries, e. g. [DH84, Dat86b, Day87, GW87, Mur89,
OMO89, WM90, Dav91]. But a key problem with outerjoins is their lack of associativity
[Dat86b, Dat86a, Mai83], which makes more difficult the appropriate formulation of queries,
as well as their evaluation. Papers dealing with evaluation of queries containing outerjoins
include [RR84, Che90, RGL90, GLR92, GLR93, PMC93].

The current paper follows the trend of [RGL90, GLR92, GLR93] in that it studies
queries that can be represented without an explicit order of evaluation, but, in contrast,
those papers focus on query reordering and evaluation based on binary operator trees. Our
focus here is an order-independent representation that can be used to prove identities and
show equivalence easily (see section 2), study expressiveness (see section 3), and explore
evaluation strategies other than binary operator trees (see section 4), while also removing
the restriction of binary predicates on outerjoins found in [GLR93].

In terms of approach, [RGL90, GLR92, GLR93| could be called bottom-up, in the sense
that they start with algebraic identities and then consider evaluation orders allowed by those
identities. This paper uses a top-down approach, in the sense that it starts by describing
which tuples must be in the result, and then considering how to obtain them.

Contributions. The core of this paper is the proposal of join-disjunctive queries as a
formal, intuitive view of queries containing joins and outerjoins. Those queries form a
natural and important class, as they correspond closely to SQL2 query blocks.

The number of terms in a join-disjunction is, in the worst case, exponential on the num-
ber of relations of the query, which may limit their direct use in query languages. Neverthe-
less, we believe they provide the appropriate primitives to reason both about specification
and evaluation of queries containing outerjoins.

In terms of specification, we revisited the outerjoin associativity problems described in
[Dat86b, Dat86a, Mai83], and showed that they arise exactly in the case of cyclic query
graphs. In addition, we showed that the natural data-merging query on a cyclic graph
cannot be computed using binary outerjoins only.

In terms of evaluation, we outlined the use of semijoin reduction programs, as well
as other evaluation strategies based on operators with multiple output streams. These
strategies seem more suitable for parallel or distributed systems, but the principles could
also be used in a centralized system.

Semijoin reductions may prove to be particularly useful, because they are likely to
eliminate irrelevant tuples early. Then, evaluation of the query on the reduced relations

15

may be less sensitive to join ordering, as all the tuples that remain after the reduction do
appear in the result. In addition, distributed databases may already implement semijoins.

Acknowledgements. I am grateful to Martin Kersten, Arjan Pellenkoft, Arnie Rosen-
thal, and Arno Siebes for encouragement and comments on earlier versions of this paper.
They helped improve both the contents and presentation of this work.

References

[ANS92] ANSI. Working draft of sql2/sql3. Technical report, American National Standards
Institute, 1992.

[Che90] A. L. P. Chen. Outerjoin optimization in multidatabase systems. In 2nd. Intl.
Symposium on Databases in Parallel and Distributed Systems, 1990.

[Cod79] E. F. Codd. Extending the relational database model to capture more meaning.
ACM Transactions on Database Systems, 4(4):397-434, December 1979.

[CP85] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.
McGraw-Hill, New York, 1985.

[Dat86a] C. J. Date. An Introduction to Database Systems, volume II. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1986.

[Dat86b] C. J. Date. Relational Database Selected Writings. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1986.

[Dav9l] M. David. Advanced capabilities of the outer join. ACM SIGMOD Record,
21(1):65-70, March 1991.

[Day87] U. Dayal. Of nests and trees: A unified approach to processing queries that
contain nested subqueries, aggregates, and quantifiers. In Proceedings of the
Thirteenth International Conference on Very Large Databases, Brighton, pages
197208, 1987.

[DH84] U. Dayal and H. Hwang. View definition and generalization for database inte-
gration in a multidatabase system. IEEE Transactions on Software Engineering,
November 1984.

[GL92] C. Galindo-Legaria. Algebraic Optimization of Outerjoin Queries. PhD thesis,
Harvard University, 1992. Technical report TR-12-92.

[GLR92] C. Galindo-Legaria and A. Rosenthal. How to extend a conventional optimizer to
handle one- and two-sided outerjoin. In Proceedings of the Eighth International
Conference on Data Engineering, 1992.

[GLR93] C. Galindo-Legaria and A. Rosenthal. Outerjoin simplification and reordering for

query optimization, 1993. Submitted for publication.

16

[GW87]

[IM92]

[LP76]

[Mai83|

[Mur89]

[NPS91]

[OMO8Y]

[PMC93]

[RGLYO]

[RR84]

Shi81]

[SL90]

[U1189)

[WM90]

R. A. Ganski and H. K. T. Wong. Optimization of nested sql queries revisited. In
Proceedings of ACM-SIGMOD 1987 International Conference on Management of
Data, San Francisco, pages 23-33, 1987.

T. Hartley and T. Martyn. ORACLE/SQL: A Professional Programmer’s Guide.
McGraw-Hill, New York, 1992.

M. Lacroix and A. Pirotte. Generalized joins. ACM SIGMOD Record, 8(3),
September 1976.

D. Maier. The theory of relational databases. Computer Science Press, Rockville,
MD, 1983.

M. Muralikrishna. Optimization and dataflow algorithms for nested tree queries.
In Proceedings of the Fifteenth International Conference on Very Large Databases,
Amsterdam, pages 77-85, 1989.

M. Negri, G. Pelagatti, and L. Sbatella. Formal semantics of SQL queries. ACM
Transactions on Database Systems, 17(3):513-534, September 1991.

G. Ozsoyoglu, V. Matos, and Z. M. Ozsoyoglu. Query processing techniques in
the summary-table-by-example database query language. ACM Transactions on
Database Systems, 14(4):526-573, December 1989.

H. Pirahesh, C. Mohan, and J. Cheng. Sequential and parallel algorithms for
unified execution of outer join and subqueries. Technical report, IBM Almaden
Reseach Center, San Jose, June 1993.

A. Rosenthal and C. Galindo-Legaria. Query graphs, implementing trees, and
freely-reorderable outerjoins. In Proceedings of ACM-SIGMOD 1990 Interna-
tional Conference on Management of Data, Atlantic City, New Jersey, 1990.

A. Rosenthal and D. Reiner. Extending the algebraic framework of query process-
ing to handle outerjoins. In Proceedings of the Tenth International Conference
on Very Large Databases, Singapore, 1984.

W. Shipman. The functional data model and the data language DAPLEX. ACM
Transactions on Database Systems, 6(1):140-173, March 1981.

A. P. Sheth and J. A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3):183-236, September 1990.

J. D. Ullman. Principles of Database and Knowledge-base Systems, volume II.
Computer Science Press, Rockville, MD, 1989.

Y. R. Wang and S. E. Madnick. A polygen model for heterogeneous database
systems: The source tagging perspective. In Proceedings of the Sizteenth Inter-
national Conference on Very Large Databases, Brisbane, pages 519-538, 1990.

17

