Data Mining: the search for knowledge in databases

M. Holsheimer, A.P.J.M. Siebes
Computer Science/Department of Algorithmics and Architecture

CS-R9406 1994

Data Mining

The Search for Knowledge in Databases

Marcel Holsheimer, Arno Siebes
{marcel,arno}@cwi.nl

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Data mining is the search for relationships and global patterns that exist in large databases, but are ‘hidden’
among the vast amounts of data, such as a relationship between patient data and their medical diagnosis.
These relationships represent valuable knowledge about the database and objects in the database and, if the
database is a faithful mirror, of the real world registered by the database.

One of the main problems for data mining is that the number of possible relationships is very large, thus
prohibiting the search for the correct ones by simple validating each of them. Hence, we need intelligent search
strategies, as taken from the area of machine learning.

Another important problem is that information in data objects is often corrupted or missing. Hence,
statistical techniques should be applied to estimate the reliability of the discovered relationships.

This report provides a survey of current data mining research, it presents the main underlying ideas,
such as inductive learning, and search strategies and knowledge representations used in data mine systems.
Furthermore, it describes the most important problems and their solutions, and provides an survey of research
projects.

CR Subject Classification (1991): Database applications (H.2.8), Information search and re-

trieval (H.3.3), Learning (1.2.6) concept learning, induction, knowledge acquisition, Clustering
(1.5.3)

Keywords € Phrases: database applications, machine learning, inductive learning, knowledge
acquisition, data summarization

Report CS-R9406

ISSN 0169-118X

CwiI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Table of Contents

Introduction

1 Overview of thereport
1.1 Inductive learning
1.2 Machine learning
1.3 Data mining

Inductive learning

1 Models . ..o
1.1 Environment
1.2 L0
1.3 Model transition function
1.4 Correctness of themodel

2 Learning oo e
2.1 Supervised learning e e
2.2 Unsupervised learning i

3 Quality . . oo

Data mining

1 Induction from databases.
1.1 Machine learning versus data mining
1.2 The training set
1.3 L0 T
1.4 CluSteringottt e e
1.5 Rules. ..o

2 Computational learning theory
21 Learning by enumeration, or exhaustive search
2.2 Probably approximate correct learning

Search algorithms

15
15
15
16
17
18
19
21
22
23

25

1 Search space e
1.1 Description space
1.2 Operations
1.3 Domain of the attributes
1.4 Quality function
2 Search algorithm
2.1 Initial description
2.2 Search graph
3 Heuristicsearch
3.1 Hill climber.
3.2 Limitations on the operations
3.3 User interaction,
3.4 Previously discovered rules and classes
4 Alternative search algorithms
4.1 Genetic algorithms
4.2 Simulated annealing
5 Problems
1 Limited information L.
1.1 Incomplete information
1.2 Sparsedata........ ...
1.3 Samples
1.4 Test set . e
2 Data corruption
2.1 NOISE . et e
2.2 Missing attribute values
3 Databaseso
3.1 Sz o e
3.2 Updates
6 Knowledge representation
1 Propositional-like representations
1.1 Decision trees
1.2 Productionrules
1.3 Decision lists
1.4 Ripple-down rulesets
2 First order logic oo

2.1 Expressive power versus computational complexity

3 Structured representations
3.1 Semanticnets
3.2 Frames and schemata
4 Neural networkso
4.1 Representation
4.2 Learning
4.3 Neural nets versus symbolic learning methods

7 Overview of data mine systems

CONTENTS

CONTENTS 5

1 I3 49
1.1 Search Spaceot 49

1.2 Search algorithm. 50

1.3 Numerical attributes.o 51

1.4 Grouping attribute values. 51

1.5 NOISE . e e 51

1.6 Missing attribute values 52

1.7 Windowso 52

1.8 Incremental learning 53

1.9 Conclusion 53

2 A LS L 53
2.1 Search Spaceo 53

2.2 Search algorithm. 54

2.3 Inconsistent data and noise i i il 55

24 Constructive induction 55

2.5 Incremental learning 55

2.6 Conclusion e 55

3 O L 56
3.1 Search Space 56

3.2 Search algorithm. 57

3.3 Conclusion 57

4 DBLearn e 57
4.1 Search Spaceot 58

4.2 Search algorithm: complete rules 58

4.3 Search algorithm: consistent rules 59

4.4 NOISE - v et 59

4.5 Incremental learning 60

4.6 Conclusion 60

5 Meta-Dendral e 60
5.1 Data structure 61

5.2 Search Spaceottt 61

5.3 Search algorithm...... 61

5.4 Conclusion 62

6 RADIX/RX .o 62
6.1 Data representation e 62

6.2 Knowledge representation. i L. 62

6.3 Discovery module 63

6.4 Study module 64

6.5 Conclusion 64

8 Numerical and hybrid learning systems 65
1 Bacon e 65
1.1 Search Space 65

1.2 Search algorithm...... 66

1.3 Intrinsic properties o 66

1.4 Conclusion 67

2 KE DS . o 67

6 CONTENTS
2.1 Search space 67

2.2 Search algorithm. 68

2.3 Conclusion 69

9 Conclusions and further research 70
1 Data mining for beginners L 70

1.1 Defining the mining task L. 70

1.2 Selecting the data 70

1.3 Knowledge representation. 71

1.4 Transformation operations 71

1.5 Quality function 71

1.6 Search algorithm. 71

1.7 Heuristicsot 72

1.8 Noise and missing information 72

2 Research topics i 73
21 Machine learning e e 73

2.2 Statistical techniques 73

2.3 Intelligent database interfaces 73

3 Future directions 74

REFERENCES . ittt e e e e e e e 75

Chapter 1

Introduction

A database is a reliable store of information. One of the prime purposes of such a store is the
efficient retrieval of information. This retrieved information is not necessarily a faithful copy
of information stored in the database, rather, it is information that can be inferred from the
database. From a logical perspective, two inference techniques can be distinguished:

Deduction is a technique to infer information that is a logical consequence of the information
in the database. Most database management systems (DBMSs), such as relational DBMSs,
offer simple operators for the deduction of information. For example, the join operator
applied to two relational tables where the first administrates the relation between employees
and departments and the second the relation between departments and managers, infers a
relation between employees and managers.

Extending the deductive expressivity of query languages while remaining computationally
tractable is pursued in the research area called deductive databases (see Ullman [60]).

Induction is a technique to infer information that is generalized from the information in the
database. For example, from the employee-department and the department-manager tables
from the example above, it might be inferred that each employee has a manager.

This is higher-level information, or knowledge: general statements about properties of ob-
jects. We search the database for regularities—combinations of values for certain attributes,
shared by facts in the database. In a sense, this regularity is a high-level summary of infor-
mation in the database. We can also formulate such a regularity as a rule, predicting the
value of an attribute in terms of other attributes.

The most important difference between deduction and induction is that the former results in
provably correct statements about the real world provided that the database is correct, while
the latter only results in statements that are supported by the database, but not necessarily
true in the real world. One of the most important aspects of the induction process is therefore
the selection of the most plausible rules and regularities, supported by the database.

8 Chapter 1. Introduction

Inference of information from a database is beyond human capabilities, if only because
of the ever growing size of databases. Hence, the inference-process should be supported by
the DBMS. However, although all DBMSs support deduction of information, none supports
induction. It is our goal to extend DBMS interfaces with inductive or date mining capabilities,
thus revealing a source of valuable information.

There is a growing interest in data mining, both in research and application. Unfortunately,
it is difficult to provide an overview of successes in the latter area since experimental results
are often confidential because of their strategic importance. Only few examples can be found
in literature. A credit card company has used a data mine tool to infer new, better, acceptance
rules based on the credit-history of current clients [9]. IBM has used data mining techniques
to predict defects during the assembly of disk drives [4]. Other applications can be found in
[42].

1. OVERVIEW OF THE REPORT

This report outlines data mining: it describes which forms of information can be derived, how
regularities and rules can be discovered, and summarizes the major obstacles and techniques
to overcome these. It also gives a survey of recent work in data mining. In the remainder of
this chapter, we introduce the major topics.

1.1 Inductive learning

Humans and other intelligent creatures (which we from here on will refer to as cognitive
systems) attempt to understand their environment by using a simplification of this environ-
ment—called a model. The creation of such a model is called inductive learning. During
the learning phase, the cognitive system observes its environment and recognizes similarities
among objects and events in this environment. It groups similar objects in classes and
constructs rules that predict the behavior of the inhabitants of such a class.

Two learning techniques are of special interest. In supervised learning, an external teacher
defines classes and provides the cognitive system with examples of each class. The system has
to discover common properties in the examples for each class—the class description. This
technique is also known as learning from examples. A class, together with its description
forms a classification rule ‘if (description) then (class)’ that can be used to predict the class
of previously unseen objects.

In unsupervised learning the system has to discover the classes itself, based on common
properties of objects. Hence, this technique is also known as learning from observation and
discovery. Models, and the above forms of learning are discussed in Chapter 2.

1.2 Machine learning

The automation of inductive learning processes has been extensively researched in machine
learning—an artificial intelligence research area. A machine learning system does not interact
directly with its environment, but uses coded observations, often stored in a set—called the
training set.

In supervised learning, the system searches for descriptions for the user defined classes,
and in unsupervised learning, it constructs a summary of the training set as a set of newly
discovered classes, together with their descriptions. In Chapter 3, we introduce training sets,
classes and a representation for the descriptions.

As we will describe in Chapter 4, descriptions are constructed using an iterative search
strategy, where the set of all constructible descriptions is searched for the best ones. First, an

1. Overview of the report 9

initial hypothesis (i.e. a description) is formulated, and verified by computing some quality
function. This function, based on statistical techniques, computes the correctness of the
hypothesis with respect to the training set. Next, the hypothesis is either accepted, rejected,
or improved until a correct hypothesis is found, as shown in Figure 1.1. A hypothesis is
improved by e.g. adding conditions on attributes, or generalizing conditions. When multiple
alternatives exist for the new hypothesis, the choice is guided by heuristics, constraints and
user-interaction.

training
set

quality
)/fgj% function

hypothesis improve hypothesis
generation verification

N

Figure 1.1: The iterative search for inductive information.

A machine learning system uses a small set of carefully selected laboratory data, and
sometimes has the ability to interact with its environment, i.e. it can request new examples
to investigate the behavior of the environment under particular conditions.

1.3 Data mining

The search for descriptions is called data mining when the training set is a database. A
database is large, and contains data that has been generated and stored for purposes, other
than learning processes. This data tends to be noisy and values for attributes are often
missing. Moreover, the data represents only a small set of all possible behavior, and the
system cannot manipulate its environment to generate interesting examples, as in machine
learning.

Hence, it is harder to discover descriptions than in the ideal conditions found in machine
learning. The size of the database makes verification of hypotheses a costly process. To reduce
these costs, advanced database techniques, such as browsing optimization and caching are
used. Statistical techniques are used to deal with noise and missing values. We discuss these
problems and their solutions in Chapter 5.

It seems worthwhile at this point to explicate that although statistical techniques may seem
ubiquitous in data mining, data mining should not be identified with statistics. An important
difference is that a data mine system assists the user in the generation of hypotheses.

In this paper, propositional logic is the vehicle chosen to represent the (inferred) knowl-
edge. Many other representations are, of course, possible. In Chapter 6 some alternative
representations are introduced and their relative merits are discussed.

The seventh and eighth chapter give an extended overview of current data mining research
placed in the framework developed in the first six chapters.

10

Chapter 2
Inductive learning

In the previous chapter we stated that inductive learning is the creation of a model of the en-
vironment. Such a model consists of classes, representing similar objects in the environment,
and rules describing changes in the environment. These models are the topic of the first
section of this chapter. Data mining, as we will discuss in following chapters, is a simple form
of inductive learning, requiring relatively simple models, therefore we restrict our discussion
to such simple models.

The second section discusses the creation of models by outlining some inductive learning
techniques. The actual construction of inductive expressions is the topic of following chapters.

There are, of course, many possible models that can be created from a finite number of
observations of the environment. Hence, criteria such as correctness and validity are needed
to select an appropriate model. These criteria are the topic of the third and final section of
this chapter.

1. MODELS

Models are used to predict changes in the environment, and to allow the cognitive system to
interact more successfully with this environment. For an extensive discussion of models and
inductive learning, the reader is referred to Holland et al. in [20].

1.1 Environment

The environment of a cognitive system depends on the context, it may be defined in very local
terms (a chess board, or all customers of a sales company), or as the whole of the universe,
including the system itself.

The status of the environment at a particular moment ¢ is described by a state S;. This
state describes the objects in the environment together with their properties and mutual
relationships. The state of the environment changes over time!, so a subsequent state S;;1
may contain new objects and relationships, or objects may have disappeared, and properties
of objects may have changed. So implicit to each environment is a state transition function

1For the sake of technical simplicity we will treat time as moving forward in discrete units.

1. Models 11

7T that specifies how the environment changes over time.

DEFINITION 1. ENVIRONMENT The environment is a state transition system, i.e., a pair
(8,7T), where S is the set of all possible states and 7 is the transition function 7 : § — S.
7T defines the next state S;y1 for any state .S;. |

ExaMPLE 1 Assume that the state consists of a single object, with properties ‘color is red’,
and ‘moving fast’. In the next state, the property ‘color’ of the object remains unchanged,
but the ‘moving fast’ property has changed to ‘motionless’, obeying the law that all moving
objects slow down. |

A straightforward way to create a model of the environment would be to make a faithful
internal copy of this state transition system. That is, we simply store all states encountered so
far and, moreover, we record all transitions. To predict the next state from the current state,
we simply compare the current state with all recorded states. For example, one could learn
to play chess, by simply observing games, and memorizing the appropriate next move for any
of the possible configurations of pieces on the chess board. Unfortunately, this representation
is only feasible for simple environments, consisting of a small variety of states. Besides
the enormous amount of storage, needed to represent all these states, it is — for realistic
environments — very unlikely that the current state will exactly match any of the previous
states.

So, rather than making a faithful copy, we will use abstractions. We only use a small
number of properties to characterize the objects in a state. Objects in the environment that
satisfy the same subset of properties are mapped to the same internal representation.

At this point, we will make a very important restriction. Most data mine systems search
for relationships within objects, i.e. relationships among properties in a single object, and
not for relationships between different objects. Hence, in our perception of the environment,
objects are completely unrelated, we assume that the effect of 7 on an object in S does not
depend on other objects in S. Note that this assumption, although implicit to most data
mine systems, is absurd, since objects in a database are seldomly unrelated (e.g. objects may
have unique keys, and other, unknown, constraints may exist in a database).

1.2 Classes

Since a state is described using a limited set of properties, distinct objects in the environment
may be represented internally as the same object. In other words, choosing a particular set
of properties to be represented in the model induces equivalence classes of objects. To each
class corresponds a unique pattern of values, the class description.

The set of all classes is denoted C, and to each class C; corresponds a description D; of values
for the selected properties. So, using these descriptions, we can construct a classification
function P : S — C, that maps an object o in state S to class C; when o satisfies D;. P
extends straightforwardly to a function P : § — P(C), that maps each state to the set of
classes corresponding with the objects in S.

ExaMPLE 2 If we select the property ‘speed’ in the above example, we can distinguish two
classes, ‘fast moving’ and ‘motionless’. On the other hand, we could also select the property
‘color’, which — in the absence of other objects — induces a single class ‘color is red’. |

12 Chapter 2. Inductive learning

Figure 2.1: An internal model representing transitions in the environment.

1.3 Model transition function

With this internal representation, the system should construct a model transition function
7', which is intended to mimic the transition function 7, operating in the real world. The
function 7" describes how the internal (class) representations C},; of an environmental state
St, leads to the internal representations Cy11 ; of the subsequent state Siii.

EXAMPLE 3 In our example, we could construct a model transition function mapping the
class ‘fast moving’ onto ‘motionless’, thus predicting that any fast moving object will slow
down. I

We illustrated this model in Figure 2.1, where an environmental state S; in the set of all
states S is transformed to a state S;11. To simplify the picture, we assume that the internal
representation of this state is just one class C; and application of the model transition function
7' to this class results in class Cy11, which is the internal representation of state S;i1.

1.4 Correctness of the model

A model is correct if it predicts the next state correctly, i.e. if, at any moment ¢, the internal
representation of the next state is identical to the representation, predicted by the model.
Since both the environment and the model are formalised as a state transition function, this
means that P should be a homomorphism between state transition systems. In other words,
the diagram must be commutative:

P(T(S1)) = T'(P(S1))

2. LEARNING
In the beginning, the cognitive system does not have any classes to represent environmental
states internally, and it has no model transition function. Moreover, when the system already
has a model to represent its environment, it can become inadequate because the environment
is changing. For successful operation in such an environment, the system has to be adaptive,
that is, it should learn.

Learning consists of finding both an appropriate internal representation, i.e. classes, and a
model transition function, acting on this representation. There are various learning strategies,
as discussed in [8]. These strategies differ in the amount of inferential skills, required by the

2. Learning 13

system. In learning by being told, knowledge is acquired from a teacher or any other organized
source, such as a textbook. Here, the only activity, performed by the system, is the translation
of this knowledge to an internal format. Another form is learning from analogy, where the
system generates new rules by transforming existing ones to make them applicable to new,
but similar situations.

However, we are mainly interested in inductive learning strategies where the system infers
knowledge itself, i.e. from observing its environment. There are two strategies that we will
use:

2.1 Supervised learning

In supervised learning or learning from examples, the teacher supports the system in the
model construction, by defining classes and supplying examples (i.e. pre-classified objects)
of each class. The system has to find the description for each class. The teacher can either
define a single class or multiple classes (see [14]):

Single class learning The teacher defines a single class C' for which a so-called characteristic
description has to be constructed: a description that singles out instances of C from any other
example that is not an instance of C. One can distinguish two cases: all examples, provided
by the teacher, are members of this class (the so-called positive examples), and the system
has to construct a description for these.

Alternatively, when both positive and negative examples are provided, the negative exam-
ples can be seen as members of (infinitely many) other classes. Useful are the near-misses,
examples that just fall outside the class and provide interesting information on the class
boundaries.

EXAMPLE 4 In an animal environment, we can define the class ‘bird’, and search for a
characteristic description, where all birds serve as positive examples, and all other animals
(e.g. fishes) as negative examples. An interesting example is the penguin—a bird that does
not fly, but has wings, thus allowing us to induce that the characteristic property is wings,
and not the ability to fly. |

Multiple class learning The teacher defines a finite number of classes Cq,Cs,. .., C,,, for
which descriptions have to be found. The system can either search for characteristic descrip-
tions, thus descriptions that distinguish instances of C; from any other example, as in single
class learning. Instances of C; form the positive examples, and all objects not in C; form the
negative examples.

Alternatively, if each example belongs to at least one class, the system can search for
discriminating descriptions: descriptions that together cover all objects, and separate an
instance of a class from instances of all other classes.

ExXAMPLE 5 In the animal environment, we can construct discriminating descriptions if
we assume that all animals belong to either the class ‘fish’ or ‘bird’. Possible descriptions
are that birds have wings and fishes do not have wings. These descriptions are sufficient
to distinguish fishes from birds. However, if the set of examples contains other animals,
belonging to (unknown) classes, characteristic descriptions have to be constructed, such as,
fishes have fins, and birds have wings, to distinguish birds and fishes from other animals. [

14 Chapter 2. Inductive learning

2.2 Unsupervised learning

In unsupervised learning, or learning from observation and discovery, the system has to find
its own classes in a set of states, without any help of a teacher. Practically, the system has
to find some clustering of the set of states S. The data mine system is supplied objects,
as in supervised learning, but now, no classes are defined. The system has to observe the
examples, and recognize patterns (i.e. class descriptions) by itself. Hence, this learning form is
also called learning by observation and discovery [29]. The result of an unsupervised learning
process is a set of class descriptions, one for each discovered class, that together cover all
objects in the environment. These descriptions form a high-level summary of the objects in
the environment.

We believe that unsupervised learning is actually not different from supervised learning,
when only positive examples of a single class are provided. Thus, we search a description
that describes all objects in the environment. If different classes exist in the environment,
this description will be composed of the descriptions of these newly discovered classes.

ExaMPLE 6 For the animal database, we could find a description stating that the database
consists of three classes: flying animals with wings, swimming animals with fins and a single-
ton class for the exception, a swimming penguin with wings. This description is correct, i.e. it
covers all objects in the environment, and moreover, it is a simplification of the environment.

3. QUALITY

The most important problem with inductive learning is that, given a set of examples, the
system can construct multiple models that are correct with respect to these examples. That
is, models that correctly predict the next state for all environmental states the system has
encountered so far. However, if the model is to be used to predict the outcome of future
situations, than it should not only be correct for states it has seen so far, but also for any
unseen state that could occur.

ExAMPLE 7 In the previous example, the system might have concluded that any animal
that does not have legs is a fish. This conclusion is correct with respect to the examples. I

The problem — addressed by many philosophers — is that we must distinguish between
really existing relationships among states and apparent relationships, that are not general
valid, but occur only because of the limited number of examples.

Since, for most environments, the number of possible states is infinite, the correctness of
a model cannot be verified by checking it for all possible situations. Therefore, we need to
estimate the validity of a model: if we can construct multiple models, some of these will
be simpler than others. We expect that simpler models are more likely to be correct. The
rationale behind this rule— also known as Ockham’s razor [58] — is that if there are multiple
explanations for a particular phenomenon, it makes sense to choose the simplest, because it
is more likely to capture the nature of the phenomenon.

15

Chapter 3
Data mining

The learning processes described in the previous chapter can also be performed by computers.
The study and computer modeling of these processes is the subject of a research area called
machine learning.

Generally, a machine learning system does not use single observations of its environment,
as cognitive systems do, but an entire, finite, set — called the training set — at once. This
set contains examples—observations coded in some machine readable form. When we use a
database as a training set, the learning process is called data mining. In this chapter, we
describe the training sets, patterns and rules as used in most data mine tools.

Given that the training set is finite, not all concepts can be learned exactly. In fact, even
with infinite training sets some concepts cannot be learned exactly, since some problems are
undecidable. However, some of these concepts can be approrimated. Although computational
learning theory, which studies these problems, is outside the scope of this survey, see e.g. [3],
we outline the basic ideas in the last section of this chapter.

1. INDUCTION FROM DATABASES

As described in the previous chapter, learning is tantamount to the construction of rules,
based on observations of environmental states and transitions. Automation of a learning
process is called machine learning. Data mining is a special kind of machine learning where
the environment is observed through a database.

1.1 Machine learning versus data mining

Figure 3.1 depicts the general framework for machine learning. The environment F represents
the real world, the environment that is learned about. FE represents a finite number of
observations, or objects, that are encoded in some machine readable format by the encoder
C. The set of encoded observations is the training set for the learning algorithm ML.

The general framework for data mining, Figure 3.2 is a variation of the machine learning
framework. The encoder C is replaced by the database DB. In the terminology of the previous
chapter, we can say that the database DB models the environment E. Each state from the
database reflects a state from E, and each state transition of DB reflects a state transition

16 Chapter 3. Data mining

examples ded |
C coded examples M L

Figure 3.1: Machine learning diagram.

I coded examples
examples D M

Figure 3.2: Data mining diagram.

in the environment F.

The learning algorithm in turn builds a model from DB. As far as the classes are concerned,
this means that the algorithm has to infer the rules that govern the classification of database
objects. The rules that govern the transitions between classes should be inferred from the
transitions in the database. Note, however, that like most data mine tools we restrict ourselves
to the learning of the classification rules.

Although the frameworks for data mining and machine learning in general may seem very
similar, there are important distinctions. First and foremost is that the database is often
designed for purposes different from data mining. That is, the representation of the real
world objects in the database has been chosen to meet the needs of applications rather than
the needs of data mining. Hence, properties or attributes that would simplify the learning
task are not necessarily present. Moreover, these properties can not be requested from the
real world.

The second important difference is that databases are invariably contaminated by errors.
Whereas in machine learning the algorithm is often supplied with judiciously chosen labora-
tory examples, in data mining the algorithm has to cope with noisy and sometimes contra-
dictory data.

For a discussion of the effect of these differences on the learning process, see Chapter 5.

1.2 The training set
The database, customarily called the training set S for the learning algorithms, represents
information about the environment. In principle there are many possible representation
formalisms, however, since most current DBMSs are relational or support at least an SQL-
interface, we assume that our database is relational. In other words, objects in the environ-
ment are represented by tuples in the database.

The assumption made in the previous chapter implies that the tuples in the database
only represent properties of the objects and not relationships between those objects. That

1. Induction from databases 17

is, each object in the environment is represented by a tuple and a tuple represents one or
more objects in the environment. A tuple can only represent more than one object, if the
distinction between those objects is deemed to be irrelevant.

The second assumption we make is the Universal Relation Assumption. That is, we assume
that the database consists of a single table. Of course, values in this table may be Nill or
unknown. This assumption may seem as severe as the above no relationships assumption.
However, it is well-known that the universal relation assumption can be applied to all database
schemata and queries (see [60]). In fact, the universal relation assumption has been defined
as a less cumbersome user interface, and that is exactly the use we will make of it.

DEFINITION 1. TRAINING SET Let A = {A4;,---,A,} be a set of attributes with domains
Domy,---,Dom,. A training set is a table over A. An example, or fact, is a tuple in a
training set. The Universe U is the full relation over A, i.e., Y = Domq x - - - X Dom,,. Hence,
each training set is a finite subset of U. |

The final assumption that we make is that each domain, and hence, I/ is assumed to be
finite.

ExAMPLE 1 We can represent the animal environment, described in the previous chapter,
as a training set. Each fact describes an animal, by enumerating properties of this animal.
Hence, the training set is:

| species | wings/fins ‘ transportation |
hawk wings fly

swan wings fly

penguin | wings swim

shark fins swim

trout fins swim

where the first attribute is the name of the species, the second denotes whether it has wings
or fins and the third argument describes its means of transportation. The domain Dom; is
the set {hawk, swan, ..., trout}, Domy = { wings, fins} and Domg = {swim, fins}. |

1.3 Classes
The database is the environment for the data mine tool, that is, the data mine tool has to
infer a model from the database. In the supervised learning case, this requires that the user
defines one or more classes, also known as concepts [29], in the database. Without loss of
generality, we may assume that the database contains one or more attributes that denote the
class of a tuple, these attributes are called the predicted attributes. The remaining attributes
are called predicting attributes.

A combination of values for the predicted attributes defines a class, or, more general, a
class is defined by condition on the attributes.

DEFINITION 2. CLASS A class C; is a subset of the training set S, consisting of all objects
that satisfy the class condition cond;:

C; ={o€ S| cond;(o)}

Objects that satisfy the condition cond; are positive examples or instances of the class C;.
The examples outside this subset of the training set are negative examples. |

18 Chapter 3. Data mining

predicting predicted % C1 D, C1

construct construct
—_— -
G] 2 Geommons D2 T C2

o D3 —C3

Figure 3.3: Learning classification rules from a database.

Learning classification rules means that the system has to find the rules that predict the
class from the predicting attributes, see Figure 3.3. First, the user has to define the conditions
for each class, and thus partition S into subsets C,...,C,. Then, the data mine system has
to construct descriptions Dy, ..., D, for these classes. There are different techniques to define
these classes in terms of the predicted attributes:

Conditions on attributes We can define a class in terms of the predicted — and possibly
some predicting — attributes. For example, in a medical database, we can define a class ‘flu’
as a condition ‘diagnosis = flu’, where diagnosis is a predicted attribute. Hence, any example
in the training set, for which the attribute diagnosis has value ‘flu’, belongs to class ‘flu’.

Conditions can also include predicting attributes, e.g., we can define a class ‘profitable’
in a company’s financial transaction database, as ‘income > expenses’, where ‘expenses’ is a
predicting attribute and ‘income’ is a predicted attribute.

Classes can also be used incorporate information that is not explicitly represented in the
database itself:

Multiple databases The training set can be composed from multiple databases. For example,
we can search for differences between customers in Texas and in New York. All customers
originally stored in the local database in Texas belong to the class ‘Texas’, and all customers
from New York belong to class ‘New York’.

Databases over time We can also look for data evolution regularities, that is, the discovery
of global changes in a database over a period [16]. Thereto, we construct a training set,
composed from two sets S; and S;, taken from the same database at different times. All
examples originally from .S; belong to class ‘at Time = i’ and examples in S; belong to class
‘at Time = j’.

If both sets S; and S; represent the same objects (but at different moments), we can use S;
as the training set, and define a class in terms of S; and S;. For example, the class ‘doubled
profits’, containing all companies which doubled their profits over the period, where profit is
an attribute).

We can either define disjunctive or overlapping classes, or we can even define entire hier-
archies of classes. In the latter case, an example can belong to multiple classes.

1.4 Clustering
If the user does not define classes, the learning is unsupervised. As we have seen in the
previous chapter, the system has to discover its own classes, i.e. the system clusters the data

1. Induction from databases 19

=====Sl

discover construct

— T = D2

subsets descriptions

SSSiss o

Figure 3.4: Discovering clusters and descriptions in a database.

in the database. This is illustrated in Figure 3.4. First, the system has to discover subsets of
related objects in the training set, and then it has to find descriptions (e.g. D1, D, and Ds)
that describe each of these subsets.

To illustrate the complexity of unsupervised learning, we give the number of possible
clusterings of a database with N tuples. If there are m clusters in the database, we partition
the set of N tuples in m non-empty disjunct subsets. Let us denote by P(N,m) the number
of ways in which this can be done. In general the number of ways to partition N elements in
m subsets is given by [15]:

P(Vm) = L3 (i) (~1P (m —)"

P(N,m) is a function that grows exponentially fast in N, in fact, for large N we have
P(N,m) = m" /m! = mN~"e™/2rm. The total number of ways in which a database of N
tuples can be clustered, denoted by C'(N) is:

C(N) = ZZI P(N,m) = ZZI i' 2:(7]”) (=1)/(m —)N

For example, for N = 8, we have:

m 1 2 3 4 5 6 7
P(8,m) || 1| 127 | 966 | 1701 | 1050 | 266 | 28 | 1

Hence, C(8) = 328 _; P(8,m) = 4140. Clearly, the data mining process is only successful
if the number of classes in the database is small. In other words, C(N) is too large as an
estimate. However, even if we assume that the number of classes we expect in the database
is small compared to the size of the database, say 10, the number of possible clusterings, i.e.,

10 P(N,m), is still staggering.

1.5 Rules
When the classes are defined, the system should infer the rules that govern the classification.
That is, the system should find the description of each class. These descriptions should, of
course, only refer to the predicting attributes of the training set. Ideally, all of the positive
examples should satisfy the description and none of the negative examples.

Since we only store attributes of objects in the training set, thus no relationships among
objects, descriptions can only consist of conditions on these attributes. The descriptions

20 Chapter 3. Data mining

commonly used in data mine tools are a subset of the selection conditions from the relational
algebra.

DEFINITION 3. DESCRIPTION Let A be the set of predicting attributes. An elementary
description is a formulae A1 =c¢; A -+ A A, = ¢, such that:

1. Aje Aand i #j — A; # Aj;
2. ¢; € Dom(A;).

A pattern or description is a (non-empty) disjunction of elementary descriptions. A condition
A; = ¢; is called an attribute-value condition. The set of all possible descriptions is called the
description space and is denoted by D. |

Some systems, e.g. LEX [36], only try to find elementary descriptions, while others allow
the full set of descriptions. Since the domain are assumed to be finite, we can count the
number of descriptions these systems can find.

For an elementary description ¢, either A; = ¢; for some ¢; € Dom(A;) is a conjunct of ¢
or A; does not occur in ¢. Hence, the number of elementary descriptions is given by:

H(|Dom(Ai)| +1)
A

Note that the number of descriptions depends on the size of the domains, and not directly on
the size of the training set. So, the fraction of (non-empty) subsets of / that can be described
with elementary descriptions is:

[T4([Dom(A)| +1) _ U]
ol [4 1Pom(A)| _ 21|

which vanishes quickly for growing |U/|. The total number of descriptions is simply given by:

ol [4(IDom(Ai)+1) _ ¢

That is, there are more descriptions than possible classes. However, not all of these descrip-
tions are distinct, since the fact that A; does not occur in ¢ is equivalent with allowing A; to
take any value in dom(A;). Thus, as to be expected, the total number of distinct descriptions
is 2lLa1Pom(ADl _ 1 That is, there is a description for each non-empty subset of /.

All examples that satisfy a description D, are said to be covered by D. In other words,
the examples in op(.5), i.e. the (relational algebra) selection D from set S, are the examples
covered by D.

For notational convenience, we allow the value of an attribute ¢; in a description in a
description to be a set of symbols 5;, rather than a single symbol. This set S; must be a
subset of Dom(A;). This is nothing but a (purely syntactical) shorthand notation for the
disjunction of descriptions!:

Al S {01,17"'7cl,m1}/\"'/\An € {Cn,ly"';cn,mn}:
(Al=Cl,1/\"‘AAn=Cn,1)V“‘V(A1=Cl,m1/\"'/\An=Cn,mn)

! Actually, this is the (UN)NEST operation in relational algebra.

2. Computational learning theory 21

There are systems (e.g. CN2, see Chapter 7), that only try to find descriptions of this form,
which we will dub set-descriptions in this paper. That is, set-descriptions are of the form
Ar€{cia, Cim b A - NAR € {en1, -+, Cnym, }- Not every descriptions can be written as
a set-description, i.e. set-descriptions form a subset of the set of all constructible descriptions.
The number of set-descriptions is given by:

H(2Dom(Ai) _ 1) ~ QEA Dom(A;)
A

In other words, the fraction of classes that can be described by set-descriptions is approx-
imated by:

QZA Dom/(A;)
o] [4 [Dom(A;)]

Since the domains are finite, we will freely use expressions like A; < ¢; and A; # c¢;, which
can be rewritten to standard descriptions in the obvious way. Moreover, if the domain is
linear, [a, b] denotes the set of all symbols, between and including a and b.

DEFINITION 4. RULE A classification rule consists of a description D and a class symbol C':
YVoeU:0€0p(S) — o€ C

or simply ‘if D then C, stating that any object that satisfies D, belongs to class C. |

Informally, a rule is correct with respect to the training set if its description covers each
positive example, and none of the negative examples of the class. That is, if op(S) = C.

EXAMPLE 2 We will continue the animals example from the previous chapter, and define two
classes, ‘fish’ and ‘bird’. To each class corresponds a subset of the training set, in particular,
‘bird’ is a set, containing the hawk, swan and penguin examples, and ‘fish’ is a set containing
the shark and trout. When the system searches descriptions for both classes, the following
classification rules could be constructed:

if Ay = wings then bird

if Ay = fins then fish

stating that the unique pattern for birds is that their second attribute is wings, and that
the second attribute of all fishes is fins. |

Note that the description for a class is not uniquely defined. Many different descriptions
can be constructed that are correct with respect to the training set. Unfortunately, not all of
these descriptions will correctly classify unseen examples. The problem, as discussed in the
previous chapter, is that not all knowledge derived from observations is valid. In the next
chapter, we discuss a rule of thumb that can be used to select those descriptions that are
most likely to be valid.

2. COMPUTATIONAL LEARNING THEORY

Until now we discussed learning algorithms, but we tacitly avoided the question whether such
algorithms exist and if they exist if such algorithms have a reasonable complexity in, e.g.,
the size of the training set. These issues are topics in the area of computational learning
theory, of which a survey is outside the scope of this paper. However, in this section we
briefly discuss some of its main results in as far as they apply to data mining. The interested
reader is referred to, e.g., [3].

22 Chapter 3. Data mining

2.1 Learning by enumeration, or exhaustive search

Clearly, there exist concepts that cannot be learned by any algorithm. For example, one can
create a training set that consists of algorithms and inputs for these algorithms and classify
these on whether the algorithm terminates on that input or not. However, since termination
is an undecidable property, we cannot hope that our learning algorithm learns to classify all
algorithm input pairs correctly.

However, our goals for data mining are more modest than the halting problem. Let us
forget for the moment that databases are polluted by noise. Then we can learn a description
for a class by exhaustive search, also known as learning by enumeration. That is, in the
supervised case, we simply try all descriptions and take that one that fits the class best.
In the unsupervised case, we simply try all clusterings, and for each clustering we try all
descriptions for all classes in this clustering. Finally, we pick the clustering and the set of
descriptions that is deemed to be the best.

There are, however, two caveats with this “solution”. The first is its staggering complexity,
the second is that we implicitly assume that all possible examples of a class are actually
present in the database. The complexity issue is discussed in this subsection, while the
second problem is discussed in the next subsection.

EXAMPLE 3 Let S be a database with n attributes and N tuples. Assume that the user has
defined classes, i.e. supervised learning. The complexity of exhaustive search clearly depends
on the kind of description we are looking for. For example, there are more set-descriptions
than elementary descriptions. Hence, the chance of finding the best description grows if
we have more possible descriptions. The next table summarises this information from the
previous section:

| Descriptions || no. of trials | P(success) |
elementary [T 4(|Dom(A;)| +1) ||/ 24
set ZZA Dom(A;) 2ZADom(Ai)/2HA |Dom(A;)|
all pl Ly [Dom40l _ 1

In the unsupervised case, matters even get worse. For we not only have to find the descrip-
tions but also the classes. That is, for each possible class in each partitioning, we have to try
each possible description. That is, if we denote the number of descriptions by D(A, N, i) and
the number of hypotheses (i.e. a clustering together with the descriptions for its classes) by
H(A, N,i), were i denotes the type of descriptions chosen, we have:

H(A,N,i) = i D(A, N,i) x m x P(N,m)

m=1

Summarizing from the previous section, we get the following table:

| Descriptions || no. of trials |
elementary ZWlel [T4(|Dom(A;)| 4+ 1) x mN+1/m!
set Efi:l 9204 DomlA) mV+!/m!
all SN alL1PomAdl sy Nt gy

For each of the entries, the chance of success is the same as that in the previous table. 1

2. Computational learning theory 23

2.2 Probably approximate correct learning

In our description of learning by enumeration, we assumed that all positive examples of class
C are contained in the training set S. However, since the training set generally represents
only part of the universe I/, this is assumption is very unlikely to be correct. All we can hope
for is that some positive examples of C are present in the training set.

The implication of the fact that not all possible examples of C are in S, is that we cannot
know for certain that the description we find for S N C is the description that describes the
class C correctly, i.e. covers all its possible instances. However, we would like to have some
certainty about the correctness of our description. More precisely, we want to minimise the
chance that our rule ‘if D then C” mis-classifies an (unseen) example.

This notion of certainty is formalised through the notion of Probably Approzimately Correct
learning or PAC-learning [62]. Before we formulate this notion, we first recall some basic
concepts from probability theory.

A probability distribution on ¢ is a function? p : P(U) — [0, 1] such that:

L. pu(0) = 0;
2. pth) = 1;
3. for pairwise disjoint sets S1,...,S, € P(U), u(Uiz; Si) = 2ieq u(Si).

For a set £ CU, u(E) denotes the change that a randomly chosen = € U belongs to E. If
we use C as a predicate, with C(z) = true iff z € C, then we want to minimise:

Ery(D,C) = p{z e U | D(z) # C(z)}

For Er,(D,C) is the probability that our rule misclassifies an example. Clearly, the de-
scription D we discover depends on the database we use. So, if we denote by L(C,S) the
description our learning algorithm L finds for clags C' in a database S, we want to minimise:

eTH(L7 c, S) =u{zel| L(O7 S)(x) # C’(l‘)}

Since we cannot choose a particular database state, but are given one at random, we want
to minimise er(L,C, S) regardless of the particular database state S. To formalise this, we
need the distributions u™ : P(U™) — [0, 1], where u™(Y") denotes the chance that a random
sample of n elements belongs to Y. Then:

DEFINITION 5. A n algorithm L learns C probably approximately correct or PAC if

VO<e<l, VO<6<1, dmg, Ve e, Yu, Ym > mg :
pm{S | m=|S|ANer,(L,C,S) <e} > 1-6

In other words, if we choose a small € and 6, then for almost all databases whose size
exceeds myg result in a rule that is almost always correct.

A learning algorithm is called consistent if it is correct on its training set. An important
result in computational learning theory implies that all consistent algorithms for data mining
are PAC, under the assumption that ¢/ is finite.

2Remember, U is assumed to be finite.

24 Chapter 3. Data mining

The importance of this result for data mining in practice, is however, far from clear for two
reasons. The first reason is that databases invariably suffer from missing information. Hence,
we cannot demand that our learning algorithm is consistent on a given database. The second,
and perhaps even more important, reason is that the proof of the theorem depends on the
assumption that the examples in a database are independent. However, real life databases
are invariably subject to all kinds of, perhaps even unknown, constraints. Through these
constraints, the examples in the database are no longer independent. In other words, the
theorem no longer applies.

25

Chapter 4
Search algorithms

Given a training set, and possibly some user-defined classes, a data mine system can con-
struct many descriptions. Some of these descriptions are more correct than others, i.e. some
descriptions are more likely to classify unseen examples correctly and thus describe some of
the — unknown — relationships that underly the data. So, once we have defined a measure-
ment for the quality of a description, the construction of a description is nothing but a search
problem: finding the best description in the set of all constructible descriptions D.

As we have seen in the previous chapter, this set is generally too large to explore using an
exhaustive search. Hence, we need a more efficient search algorithm. Most data mine systems
choose an initial description, and iteratively modify it, thereby improving its quality. These
modifications are operations on the description. The set of descriptions, together with these
operations, and the quality function, is called the search space (see [41]), as we will discuss
in the first section.

The second section is devoted to search strategies: the choice of an initial description, and
the order in which different alternatives are explored, e.g. back-tracking or irrevocable search.
Often, a description can be modified using multiple operations. To find a correct solution
as fast as possible, we have to select the most promising operation. In the third section, we
will discuss how heuristics and domain specific knowledge can be used to guide the search
process.

In the fourth, and final section, we review alternatives search strategies, such as genetic
algorithms and simulated annealing.

1. SEARCH SPACE
The search space (D, f,O) consists of a set of descriptions D, a set of operations on these
descriptions O and a quality function f.

1.1 Description space

The description space D is the set of all constructible descriptions, in a particular representa-
tion. In this chapter, we adopt the set-descriptions, as introduced in the previous chapter. To
each description D in D corresponds a subset of the training set S, called the cover op(S).

26 Chapter 4. Search algorithms

1.2 Operations

We can divide the set of all operations O in generalization operations, that ‘weaken’ the
description, i.e. make it cover more objects, and specialization operations, that ‘strengthen’
the description, and reduce its coverage.

Generalization Applying a generalization operation to a description D, results in a new
description D’ that covers more objects i.e. op(S) C op/(S). Hence, if an object is covered
by the description D, it is also covered by description D’, but the reverse does not hold. Hence,
the generalization operation is not truth preserving, i.e. if a rule classifies the objects correctly,
then a generalization of this rule need not be correct as well. However, generalization rules
are falsity preserving: if an object is incorrectly classified by the rule (i.e. the object is covered
by D, but is not an example of class C, so the object falsifies the rule), then it will also falsify
any of the generalizations of this rule.

DEFINITION 1. GENERALIZATION A set-description D = (A; € S1A---ANA; € S;A---ANA, €
Sy) is generalized by extending the set of values for a particular attribute A; to S! where
S; C Sz/- C Dom,. |

A special case of this operations is the dropping condition operation, where the set S; is
extended to the entire domain Dom;. Another special case, used in e.g. the DBLearn system,
is the climbing generalization tree operation. Often, we want to make generalizations that
provide a more compact representation of the class. Replacing sets of permissible values with
larger sets is obviously not an operation that results in a simpler description. Therefore, it
would be convenient if we could replace entire sets of symbols with single symbols.

We define a partial order on the symbols in the domain of attribute A;, that is, the values in
Dom; form a hierarchy. A subset W of S; is replaced with a single value s, that is larger than
all values in W. These generalization hierarchies are a form of domain specific knowledge, as
we will discuss in the following section.

Specialization The specialization operation is the inverse of the generalization operations,
where the set S; is replaced with SI, and S; D S.. We will not discuss this operation into
detail, since its definition is straightforward.

Now we have defined descriptions, and operations on descriptions, we can represent the
search space as a directed graph, where descriptions form the nodes and the operations form
the arcs.

1.3 Domain of the attributes

The generalization and specialization operations need some information about the structure
of the domain of the attributes. For each of the domains Dom;, the user has to specify the
structure of the domain, which can be one of the following basic types:

Nominal (categorical) The domain consists of independent symbols or names, i.e. the values
are unordered. For example, blood-types or first names.

Linear The domain is totally ordered, e.g. a numerical domain. This allows us to use
intervals instead of sets of values. Linear domain are either ordinal, such as {low, medium,
high}, where an ordering is defined, but other operations, say ‘low + low = medium’, make
no sense. Alternatively, the domain can be an interval domain, where addition is defined, but
multiplication is not defined, e.g., the temperature 20°C is not twice as warm as 10°C. Finally,

1. Search space 27

the domain can be a ratio domain, such as numbers, where both addition and multiplication
have useful interpretations.

Partially ordered The domain is partially ordered, thus forming a hierarchy, where a parent
node denotes a more general concept than its children. By definition, any symbol is smaller
than the top-symbol, which denotes the entire domain.

For example, the user could define that ‘Holland’ is a parent node for ‘Amsterdam’, ‘Rot-
terdam’ and ‘The Hague’.

1.4 Quality function

The quality function assigns a value, e.g. in the domain [0, 1], to each description, indicating
its quality. There are two aspects to the quality of a description. A description should
be general valid, that is, it should classify any unseen object correctly. Furthermore, the
description should be correct with respect to classes defined by the user. We can combine
these criteria, by assigning a value for each criterion, and use a function to compute the
overall quality. We first discuss validity, then correctness, which differs for supervised and
unsupervised learning, and finally we discuss how these criteria can be combined.

Validity In general, the validity of a rule can never be proven, because its correctness cannot
be verified for all possible situations. Hence, we need some indication for the likelihood
that a description is valid. Most data mine systems rely on Ockham’s razor: the simpler
a description, the more likely it is that it describes some really existing relationship in the
database. This complexity can be measured e.g. in the size of the description. The validity
fv is higher for simpler descriptions.

Correctness, supervised learning A description D for a class C is correct if it covers all
positive, and none of the negative examples, i.e. if op(S) = C.

During the iterative process of constructing a correct description, the system will encounter
many descriptions that are not correct, but nevertheless useful, because the serve as compo-
nents for new, and hopefully better, descriptions. To be able to select the most promising
description out of a set of incorrect descriptions, we need to extend our notion of correctness,
by allowing it to be a continuum of values, rather than a boolean. With each description D
for a class C, we can associate the following values.

DEFINITION 2. CLASSIFICATION ACCURACY We define the classification accuracy as the
probability that the rule classifies correct, thus the probability that an object covered by the
description actually belongs to the class. The classification accuracy is the relative portion
of op(S) that is also covered by C":

lop(S)NC]|
lon(5)]

classification accuracy =

28 Chapter 4. Search algorithms

DEFINITION 3. COVERAGE We define the coverage of a description as the probability that
an arbitrary object, belonging to the class C, is covered by the description D:

lop(S) N C|
C|

coverage =

Based on these values, we can distinguish the following kinds of rules:

DEFINITION 4. COMPLETE RULES If the coverage equals 1, the rule is complete, that is, any
object belonging to the class is covered by the description for this class, i.e. C' C op(S). In
other words, the description is a necessary condition for the class [7, p. 222]. |

DEFINITION 5. DETERMINISTIC RULES If the classification accuracy is 1, the rule is deter-
ministic, i.e. always classifies correct. Any object covered by the description belongs to class,
C 2 op(S). Hence the description is a sufficient condition for the class. |

DEFINITION 6. CORRECT RULES If both the classification accuracy and the coverage are
1, the rule is correct as we defined above. The description is both a necessary and sufficient
condition. |

The correctness-criterion f. is assigned a value 1 if the description is correct, the value
for any incorrect rules is smaller than 1. In [43], Piatetsky-Shapiro proposes principles for
the construction of a function which assigns a numerical value to any description in D,
indicating its correctness. This correctness depends on the size of the set op(S), covered by
the description, the size of the class C' and the size of their overlapping region op(S) N C,
such that:

1. fo = 0if D and C are statistically independent. If the probability that a particular
example covered by description D belongs to class C' as well is equal to the probability
that an arbitrary example in the set of examples S belongs to C, i.e.

on($)nal _[c|
L GIE

then D and C' are statistically independent, and the description is not interesting.

2. f. monotonically increases with |op(S) N C|: the number of tuples in the overlapping
region, when op(S) and C remain the same.

3. f. monotonically decreases with |op(S)| (or |C|) when op(S) N C remains the same.

EXAMPLE 1 The simplest function satisfying these principles is:

lon(S)IIC]

|UD(S)OO|_ |S|

This function can intuitively be understood as the difference between the actual number of
examples for which the rule classifies correct and the number expected if C' were independent
of D. |

2. Search algorithm 29

Correctness, unsupervised learning When the training set contains only positive examples,
or when no classes are defined by the user (i.e. unsupervised learning), application of the
above correctness criterion will result in over-generalization. Any simple description that
covers the entire training set will be assigned a high quality. Especially, the description true,
covering all objects in the training set, will rate very good, because it is extremely simple,
and assigns all examples to their correct (and only) class.

In [34], Michalski and Stepp suggest that a quality function should not only dependent
on the simplicity of the description, but also on the fit: how close does the description
approximate the set of examples. Thus, for a description, we should compute the ratio of
|op(S)|, the number of examples in the training set, covered by the description, to |op(U)],
the total number of examples in the universe, covered by this description.

This ratio is exactly one if the description covers only examples in S, and none of the
examples outside S. Thus, we search for the simplest description with the best fit.

Combining criteria The quality of a description depends on its validity f, and correctness
fe. The quality function could also take some other factors into account, such as the cost of
evaluating the description, or the cost of measuring attributes, used in the description.

We have to combine these criteria to compute the overall quality. We can either assign
a weight to each criterion that denote its relative importance. The overall quality is the
weighted sum of the qualities for these criteria. Finding the optimal weights is a form of
fine-tuning the system. An alternative to this weighted sum is the lezicographic evaluation
functional (LEF) [29]. The criteria fi, fa,... are ordered and the overall quality is computed
as the LEF of these criteria:

LEF = ((f1,t1), (f2,t2),...)

where t1,%s,... are tolerances. Given a set of descriptions, the LEF determines the most
preferable ones in the following way: all descriptions are ordered, based on their score for the
first criterion. Only the best, or within the range defined by the threshold ¢; from the best
are retained. These are ordered according to the next criterion, and again only the best are
retained. After evaluating the last criterion, the best description is returned.

Application of the quality function to the set of all constructible rules results in a landscape
where peaks denote rules of high quality and basins denote rules of low quality.

2. SEARCH ALGORITHM
Different algorithms are used to traverse the search space. The basic idea is to start with an

initial description D1, and iteratively modify this description until its quality exceeds some
user-defined threshold.

2.1 Initial description
There are two approaches, differing in the choice of the initial description, and in the opera-
tions that are applied to improve the quality of this description:

Bottom-up or data-driven. The initial description is simply the set!, formed of all examples
of the target class. This description is of course correct, but it is too complex. To reduce the
complexity, the description is modified by repeated generalizations. This results in a more
general rule, that classifies the examples correctly (or correct within a certain tolerance).

!Note that bottom-up strategies require that descriptions can cover an arbitrary subset of S, e.g. we cannot
use set-descriptions.

30 Chapter 4. Search algorithms

¢ e, ¢ e, ¢ o,

° ° L ° L4 °
o ° o o o o

(@) (b) (©)

Figure 4.1: A bottom-up learning process.

An example of this technique is the DBLearn system, as we will discuss in Chapter 7.
The bottom-up technique is illustrated in Figure 4.1. The learning task consists of finding a
simple description that covers all positive examples (filled circles) and none of the negative
examples (empty circles). The initial description (the shaded area) covers only the four
positive examples, as denoted in (a). The second description is more general, i.e. covers a
larger area, as shown in (). The final description (¢) covers all positive examples and none
of the negative examples.

Top-down or model-driven, where we search the description space D, to find the ‘best’
rule. We choose an initial description, e.g. the description covering the entire universe.
We transform this description by applying a sequence of generalization and specialization
operations, until its quality exceeds the threshold. Examples of a top-down approach are the
META-DENDRAL system, the BACON system and the ID3-system, as we will discuss in
Chapter 7.

o o o

(@)

o o o

(b)

o o o

(©)

Figure 4.2: A top-down learning process.

This top-down technique is illustrated in Figure 4.2. In (a), the initial relationship covers
two positive and one negative example. This gradually improves until in (¢) a relationship is
found that covers all positive and none of the negative examples.

2.2 Search graph

To the initial description D7, we can apply some of the operations in O, say o1, 09,...,0, and
application of any of these operations o; results in a new description Ds;. To this description,
we can again apply any of the operations, resulting in n new descriptions D31, ..., D3,. Thus,
by repeatedly applying all operations, we can construct a search graph, where descriptions
form the nodes, and operations form the arcs, as denoted in Figure 4.3. Mind that this graph
need not be a tree, since different sequences of operations can result in the same description.

2. Search algorithm 31

oD

m
® D21 D2 0 Dy;

YU T AT

o 000 00 0 (0

3

Figure 4.3: A search graph.

The aim is to find a description of sufficient quality, say one of the marked goal nodes in the
figure, as fast as possible. The construction of a rule can thus be characterized as a search
process, where operations are tried until some sequence of them is found that produces a
rule of sufficient quality. The way in which these sequences are checked is called the search
strategy. Basically, there are two kinds of search strategies, as discussed by Nilsson in [41]:

Irrevocable search In an irrevocable search strategy, an operation is selected and applied
irrevocably without provision for reconsideration later. Only a single sequence of operations,
i.e. a single path in the graph is evaluated.

Tentative search In a tentative search strategy, an applicable operation is selected and
applied, but provision is made to return later to this point in the computation to apply some
other operation.

We distinguish two different types of tentative strategies. In backtracking, a backtracking
point is established when an operation is selected. Should subsequent computation encounter
difficulty in producing a solution, the state of the computation reverts to the previous back-
tracking point, where another operation is applied instead, and the process continues. At
any moment during computation, the system does not only store the current description, but
also the path to the initial description, and for each node on this path it has to keep track of
all operations that have been tried so far.

In a graph search strategy, the system stores the entire section of the search graph that has
been explored so far. This allows for a greater flexibility, new descriptions can be generated
at any place in this graph, but it requires more storage.

These search strategies can be uninformed—no heuristic information is used to guide the
search: the operations are chosen arbitrarily. When the irrevocable strategy is used, there
should either be only a single applicable operation, or the order in which operations are
applied should be irrelevant. In tentative search, nodes can be examined in a depth-first
manner, where a single path is examined, and backtracking is performed upon failure. If
graph search is used, nodes can also be examined using breadth-first search, where nodes on
equal distance from the starting node are examined.

Uninformed strategies are expensive, because they generate many descriptions, and for each
of these descriptions, the quality has to be computed, which is a very expensive (database)
operation. Thus, the performance of the system would benefit from a reduction of the number

32 Chapter 4. Search algorithms

of generated nodes, by choosing the operations that are most likely to be on the shortest path
to a goal node.

3. HEURISTIC SEARCH

The idea of heuristic search is to reduce the search effort by carefully selecting operations
such that a description of sufficient quality is found as soon as possible. In other words, the
system needs information that can be used to select the nodes on the shortest path to a goal
node. Since this path is unknown in advance, the strategy requires information about the
search domain, so-called heuristic or domain knowledge.

3.1 Hull climber

The hill climber strategy chooses always the operation that results in the greatest quality
improvement. Hence, the system has to compute (or estimate, if computation is to expensive)
the quality of all possible extensions. We define an expectation function, that returns the
quality of the description that would be generated by applying a particular operation.

DEFINITION 7. EXPECTATION FUNCTION The expectation function F': Dx O — [0, 1] could
thus be defined as:

F(D,0) = f(o(D))

where f is the quality function, as defined above, and o(D) is the description, resulting from
application of operation o on D. We can generalize the expectation function, by looking n
levels ahead, instead of a single level:

F™(D,0) =max F" Y (o(D),0;)

0,€0

where F(U) is the simple expectation function F, as defined above. Thus, the expectation of
operation o is the maximal quality of the descriptions that can be constructed within n steps,
starting with the application of o. |

Instead of computing the quality of all possible extensions, one can also estimate the proba-
bility that applying a particular operation will result in a description of sufficient quality. For
example, the ID3 system uses an information theoretic measurement, based on information
about the training set, to estimated the likelihood that application of a particular operation
will result in a simple, but correct, knowledge structure.

3.2 Limitations on the operations

Domain knowledge can be used to guide the search process. This information is specific to a
particular domain, and has to be supplied by the user. Michalski distinguishes the following
forms of domain knowledge (see [29]):

Irrelevant attributes Not all attributes in the examples are relevant. For example, first
name is not considered to be a relevant attribute for medical diagnoses. For each attribute,
the user could define whether it could be relevant for the classification or not, and thus reduce
the number of constructible descriptions.

Sometimes, the relevance of an attribute depends on the value of other attributes. For
example, the attribute pregnant is only meaningful if the person under consideration is female.
So for particular classes, this attribute can be discarded.

4. Alternative search algorithms 33

This domain knowledge can be incorporated in the search algorithm by e.g. modifying the
expectation function, such that it returns a high value for operations removing a condition
on irrelevant attributes, and a low value for operations adding such a condition.

Interrelationships between attributes For some applications, there may exist known rela-
tionships between attributes that constrain their set of possible values. For example, the
length of an object can be defined to be always greater or equal to its width, or the area of
a rectangle always equals the product of its width and its length.

Hence, the quality of a description will not improve when adding a condition, that is already
implied by conditions in this description. The expectation of such operations is therefore low.

3.3 User interaction

Another source of heuristic knowledge is the user, an expert in the domain. The system
presents multiple descriptions, possibly together with their expected or estimated quality.
The user selects one or more of these descriptions for further investigation by the system.
Any information that is known to the user, but not coded as domain knowledge, can thus be
incorporated in the search process.

3.4 Previously discovered rules and classes

Previously discovered rules, classes and their descriptions can be used to guide the search
process. Classes can form a hierarchy, and can be used to construct new classes, or they can
be refined during the search process. This is especially important when the set of examples
is updated, and previously generated descriptions have to be refined, to be consistent with
the new set of examples (see also incremental learning, Chapter 5).

4. ALTERNATIVE SEARCH ALGORITHMS

So far we discussed the traditional symbolic computation approach: a systematic exploration
of the search space, guided by heuristics. This approach has some shortcomings: in the
absence of good heuristics, the strategy performs poorly, it takes unacceptable long times to
find a description of sufficient quality. Another problem is that the search process is sometimes
not able to escape a local maximum. To overcome these problems, other strategies have been
proposed.

4.1 Genetic algorithms

Genetic Algorithms (GAs) originated from the studies of cellular automata, conducted by
Holland et al. [18, 19]. A GA is a search procedure modelled on the mechanics of natural se-
lection rather than a simulated reasoning process. The basic idea is to use a set of candidate
descriptions—called a population, and to gradually improve the quality of this population
by constructing new descriptions, assembled from parts of the best descriptions in the cur-
rent population. These newly generated descriptions form the second generation G1, and
again, the best descriptions are recombined to form the next generation, until descriptions of
sufficient quality are found or no further improvement occurs.

The candidate descriptions, also called organisms, are strings of symbols from a particular
alphabet, generally the binary alphabet {0, 1}. Each set-description is coded as a fixed length
bit string. This string contains a substring for each attribute A;, and in this substring, each
position represents a value in the domain Dom; for this attribute. If a value belongs to the
set S;, the corresponding bit-value is 1, otherwise it is 0.

34 Chapter 4. Search algorithms

EXAMPLE 2 Assume a training set with two attributes, ‘color’ and ‘shape’, where the re-
spective domains are {red, blue} and {rectangle,circle}. The set-description ‘color € {red,
blue} A shape € {circle}’ can thus be coded as the string 11 01. |

Genetic algorithms do not use the generalization and specialization operations, as discussed
earlier, but use two other operations instead: crossover, where part of a string is replaced by
part of another string, i.e. two strings (the parents) are combined into a single new string.
The other operation is mutation, a random change of a bit value in a string.

There are two approaches for learning classification rules, named after their university.
These approaches differ in the representation of the rules, the crossover operations and the
quality function. An overview of learning classification rules can be found in [22, 59):

The Michigan approach developed by Holland. An organism represents a set-description.
Consequently, all organisms are of the same length. The entire population together forms a
classification rule, that is, a rule whose description consists of the disjunction of all descrip-
tions, represented by the organisms.

The crossover operation consists of cutting both parent strings at the same position, and
creating two new strings by combining the lower part of one parent string with the upper
part of the other string, and vice versa.

The quality of an organism in this population dependents on its classification accuracy,
i.e. the ratio of positive and negative examples covered, and its generality, i.e. the number of
examples covered by the organism, relative to the total number of examples, covered by the
entire population.

The Pittsburgh approach An organism is not a single description, as in the Michigan ap-
proach, but a disjunction of set-descriptions. So each organism represents a complex de-
scription, and the population consists of a set of competing descriptions. The length of each
organism is thus a multiple of the length of a single set-description.

In the crossover operation, both parents are cut at the same place, modulo the set-
description length. This guarantees that the children are (complex) descriptions as well.

The quality of an organism can be computed using the quality function, i.e. a function
based on the correctness, classification accuracy and coverage.

Genetic Algorithms outperform traditional learning techniques, especially when the de-
scriptions that have to learned are complex, i.e. include multiple conjunctions and disjunc-
tions, or when no domain knowledge is available. However, GAs suffer from two impor-
tant drawbacks: firstly, they outperform traditional techniques only when almost no domain
knowledge is available. Although domain knowledge can be incorporated in the GA by either
modifying the genetic operators, choosing a particular initial population, or modifying the
quality function, the use of domain knowledge is limited, compared to traditional techniques.

A second drawback is the number of evaluations. A GA typically requires 500-1000 samples
of the search space, i.e. about 10 generations of 50-100 organisms each, before it finds qual-
itative good solutions. Moreover, in a comparison of a genetic and a decision tree classifier,
Quinlan concludes that an incremental genetic classifier Boole needed a much larger training
set to achieve a similar accuracy as decision trees [50].

Hence, GAs are suited for learning tasks on small databases, where no domain knowledge,
such as heuristics, is available. It may be possible to use GA in combination with traditional
approaches, where the GA is used for a rough exploration of the search space, and traditional

4. Alternative search algorithms 35

techniques are used to improve the result.

4.2 Simulated annealing

So far we used the hill-climber search strategy, i.e. at any moment during the search process,
we apply the operation that results in the highest quality increase. However, this search
process may result in a local maximum, that is, a non-optimal solution that has no neighbours
of a higher quality. If we visualise the search space as a landscape, we could say that in an
attempt to climb the highest mountain, we ended up on top of a small hill, where all routes
— including the one to the mountain — lead down.

A solution for this problem is simulated annealing, a technique where we traverse the
search space with a certain amount of arbitrariness. That is, we do not necessarily apply the
operation that results in the highest quality increase, but use a selection process where each
applicable operation has a probability of being chosen. This probability depends on:

Quality increase/decrease Operations that increase the quality are assigned a higher prob-
ability than operations that decrease the quality of the description. But the extend to which
the quality influences this probability is controlled by another factor:

Temperature The randomness of the selection process is controlled by a global parameter
temperature. If the temperature is high, then all operations are chosen with more or less equal
probability. In particular, if the temperature is maximal, then all operations are assigned
equal probability. On the other hand, if the temperature is low, operations that increase
the quality are preferred to operations that decrease the quality. At the extreme, when the
temperature is zero, the selection process reduces to a hill-climber strategy, where the best
operation is always chosen.

The idea is to start the search process with a high temperature, such that the search
process is able to escape from local maxima. The temperature is slowly decreased during the
search process, and the process stabilizes in the global maximum.

The SAMIA system combines a bottom up strategy with simulated annealing (see [6]).
Here, the next operation is randomly chosen, if application of this operation results in a
positive change in quality Af. Otherwise, if Af is negative, the operation is applied with
probability e2f/7 where T is the temperature.

36

Chapter 5
Problems

In previous chapters we discussed the discovery of descriptions in data. We implicitly assumed
that these descriptions exist, e.g. in supervised learning, we assumed that there exists a
deterministic classification rule. Although this may be a valid assumption for some artificial
data sets, used in machine learning, it is certainly not correct when databases are used. Using
a database as a training set causes several problems.

In this chapter, we discuss these problems and possible solutions. There are three cate-
gories of problems: first of all, the information supplied to the system is limited, so not all
information, essential for the determination of the object’s class, is available. Secondly, the
available information can be corrupted or even partly be missing. Finally, the size and the
dynamic behavior of databases introduce problems.

1. LIMITED INFORMATION

In supervised learning, we attempt to find a relationship between the predicting variables and
a class. We can envisage this as some process 7, where the input consists of the predicting
variables, and the output is the predicted class, as depicted in Figure 5.1.

_»,
known —
_»,
predicting PIOCES | p Class
variables | T
unknown —
_»,

Figure 5.1: The environmental process 7.

1. Limited information 37

1.1 Incomplete information

So far, we assumed that this process is deterministic, i.e. the class is uniquely determined by
the predicting variables. However, often not all these variables are known: we can assume a
set of unknown predicting variables, that are relevant for the classification, but not recorded
in the database. Hence, it may not always be possible to construct a rule that classifies each
example correctly in terms of the known predicting variables.

Basically, there are two approaches towards unknown variables: we can either restrict
ourselves to deterministic rules, that is, we only construct rules when all variables relevant
to the classification are known. This is the discovery of strong rules, as discussed in [43].
A disadvantage is that much valuable information that is hidden in the database cannot be
found.

Alternatively, we can look for rules that do not necessarily classify examples correctly,
but merely indicate the probability that an object, covered by the description, belongs to a
class. These probabilistic rules provide very important information about relationships in the
environment. For example, the (causal) relationship between smoking cigarettes and cancer
is not a correct relationship, i.e. smoking is not a sufficient nor necessary condition for cancer,
still, this relationship is considered very important.

If none of the known predicting variables is relevant for the classification, the variables and
the class are unrelated, and even a probabilistic rules cannot be found. For example, finding
a rule, predicting somebody’s lastname in terms of medical data is impossible.

1.2 Sparse data

When the data mine system constructs a classification rule, it has to discover the class
boundaries. The exact position of these boundaries can only be investigated if the database
contains examples located just within or outside the class—the so-called near misses and near
hits. In other words, the examples should represent a large variety of behavior, i.e. should be
located throughout the universe U (the entropy should be high).

Unfortunately, facts in a database generally represent only a small subset of all possible
behavior. Hence, class boundaries cannot be determined exactly, and will be either vague or
incorrect. Previously unseen objects that are located outside the training set, are likely to
be incorrectly classified.

As a solution, the system could interact with its environment, that is, the environment acts
as an oracle: the system generates an interesting example, supplies it to the environment,
which determines the corresponding class. An example of such a system is MARVIN [56].
Unfortunately, a data mine system is not able to manipulate its environment, since it uses
an already existing database. A solution might be to search this database specifically for
interesting examples, i.e. browse for additional information.

1.8 Samples
The training set S can be seen as a sample of the set of all constructible objects—the Universe
U. A data mine system searches for rules in this training set. A rule consists of a description
D and a class C, and this description covers a subset op(S). This subset can again be seen
as a sample.

Now assume that an arbitrary object in S belongs to class C with probability p, and that
an object in set op(.S) belongs to this class with probability p/, and p # p’. The main question
is: is the difference between p and p’ statistically significant? In other words, did we locate a
probabilistic relationship, or is the observed difference just due to chance? Data mine systems

38 Chapter 5. Problems

have to rely on statistical techniques to check the validity of discovered relationships.

1.4 Test set
The correctness of the discovered descriptions can be tested by splitting the database in two
sets: a training set, used to construct descriptions, and a test set, used to test the accuracy
of these descriptions. A data mine system is correct if the actual probability of each rule does
not significantly differ from the predicted probability of this rule.

For adaptive systems — systems that adjust their rules over time — we can use a sliding

window, i.e. compute the actual probability of a rule over the last n classifications (as used
in [59]).

2. DATA CORRUPTION

So far, the information supplied in the set of examples has been assumed to be entirely
correct. Sadly, learning systems using real-world data are unlikely to find this assumption
to be tenable. The examples may include attributes based on measurement or subjective
judgements, both of which may give rise to errors in the value of attributes. Some of the
examples may even be misclassified. Non-systematic errors of this kind in either the values
of attributes or class information are usually referred to as noise.

2.1 Noise
Noise causes two problems: first of all when generating descriptions using a noisy training
set, and secondly when noisy objects are classified using these descriptions.

Constructing descriptions If the system has to construct descriptions in a noisy environ-
ment, it should be prevented from constructing descriptions that attempt to cover corrupted
examples as well. Therefore, it must be able to decide that a particular example — or an
attribute in this example — is corrupted, and thus should be ignored.

In [48], Quinlan uses statistical techniques to decide if an attribute should be added to a
classification tree. The basic idea is that a small amount of exceptional data is considered to
be caused by noise, and can therefore be neglected.

Noise can also affect the class information of an example, which has a dramatic impact on
the classification accuracy of the generated rules. Therefore, an attempt should be made to
eliminate noise that affects the class information of the objects in the training set.

Classifying examples Once descriptions have been constructed from the training set, they
can be used in classification rules to determine the class of previously unseen examples. In
experiments with some systems, adding noise to the data resulted in graceful degradation:
adding even substantial noise resulted in low levels of misclassification of unseen examples.

An interesting phenomenon, discussed in [47, 48], is that rules, learned from a corrupted
training set, perform superior on classifying noisy data when compared to rules that are
learned on the same, but noise free training set. In [47], Quinlan concludes that “it is
not worthwhile expending effort to eliminate noise from the attribute values of objects in the
training set if there is going to be a significant amount of noise when the induced classification
rule is used in practice”.

2.2 Missing attribute values
Another problem that also arises in using a database, is that attribute values may be missing.
However, we would like a data mine system to construct descriptions even when some of the

3. Databases 39

attribute values are missing, and to be able to apply classification rules, containing these
descriptions, to data where some attribute values are missing as well.

Constructing descriptions Examples with missing attributes can be simply discarded, or
an attempt can be made to replace the missing value with some ‘most likely’ value. In [48],
Quinlan suggests to construct rules that predict the value of a missing attribute, based on the
value of other attributes in the example, and the class information. These rules are then used
to ‘fill in’ the missing attribute values, the resulting set is used to construct the descriptions.

Another approach is to treat unknown values as a separate value, i.e. add the value ‘un-
known’ to the domain of each attribute, and use this value in the descriptions.

Classifying examples The constructed rules can be used to classify unseen examples from
which attribute values are missing. When a rule contains conditions on some of these at-
tributes, it cannot be applied.

A technique to overcome this deficiency is to compute the probability that a certain rule
applies. This probability is the product of the probabilities that each missing attribute value
is the value, required in the condition of the rule. The probability that an attribute has
a particular value can be estimated by analysing the relative frequency of values for this
attribute in examples in the training set.

So, given a set of classification rules, we compute for each rule the probability that the
example is consistent with this rule. Next, we sum the probabilities for each class, the result
of the classification is the class with the highest value. Straightforward though it may be,
this technique has been found to give a very graceful degradation as the number of unknown
values increases.

3. DATABASES

As we stated in Chapter 3, data mining is machine learning using a large database as a
training set. These databases differ in some aspects from the training sets used in machine
learning.

3.1 Size

Machine learning systems use small training sets, e.g. thousand objects is considered to be
large. Databases are generally very large, both in the amount of information per object, as
in the number of objects in the database:

Information per object Most databases contain many attributes. For example, in Chapter 7,
we describe the RADIX/RX project, where the ARAMIS (American Rheumatism Association
Medical Information System) database is used. This database contains information about
clinical visits of patients. Fach visit is stored in a record with 400 attributes, and for each
patient 50 to 100 visits are stored. So for each patient, in total 20 to 40,000 attributes are
recorded.

First of all, we should notice that it is an advantage that much information is provided,
because the more information (per object) is provided, the more likely it is that relation-
ships actually exist. However, more information also increases the number of constructible
descriptions, i.e. the size of the description space.

The number of descriptions depends on the size of the domains, e.g. using set-descriptions,
the number of constructible descriptions is roughly 2!, where [is the sum of the domain-
sizes of the attributes. Clearly, for any realistic database (where { > 1000), the description

40 Chapter 5. Problems

space becomes very large. We can use constraints and heuristics to search this space for near
optimal solutions, as we discussed in Chapter 4.

Number of objects During the search process, the quality of each generated description
has to be verified. As discussed before, we need statistical tests to check if the description
actually describes some regularity in the data. This test needs information about the set of
examples, such as the number of examples covered by the description, or the distribution of
values in this set. In other words, computing the quality of a rule requires database access.

The databases used in data mining are large (typically > 100,000 objects), hence query-
ing the entire database is expensive. To overcome this problem, we can use the following
techniques:

1. Multiple descriptions can be constructed in a single iteration of the search process,
and their quality can be computed simultaneously, that is, by a single (but complex)
database access. We run down the entire database and for each object update the
information for each description.

2. Windows. We can compute the quality of a description using a representative sample
of the database, called a window. A small subset — containing a few thousand objects
— is used to construct descriptions. The best descriptions are then tested on the entire
database, i.e. the database is browsed for additional proof.

As long as the actual probability of the rules is not equal to the predicted probability,
we add some of the incorrectly classified examples to the window, and modify the rules
using this window. This modification process is called incremental learning, as we will
discuss in the next section.

3.2 Updates

Databases are frequently updated: information is added, modified or removed. Any knowl-
edge that was previously extracted from this database can therefore become inconsistent. It
is obvious that a learning system should adapt to such changes. Moreover, the reliability of
rules increases when the sample size increases, so if rules are learned on a small database,
and this database is extended over time, it makes sense to keep rules consistent.

It is essential to keep rules consistent with the most recent information, because character-
istics of examples can change over time, due to trends and processes in the environment. For
this reason, the most recent information should be valuated higher then older information,
i.e. we should use some learning bias, assigning higher weights to recent experiences in the
learning process.

Cognitive systems adjust their rules when too many incorrect predictions are made (see
Holland et al. [20]). This could also trigger rule adjustment in data mine systems: when the
actual probability of a rule is out of pace with its predicted probability over a certain period,
the rule is adjusted.

We can either reconstruct the rule from scratch, but it would be more convenient to al-
low some kind of incremental learning, where previously generated knowledge is used in the
reconstruction process. There are two forms of incremental learning: learning with full mem-
ory, where the system remembers all examples that were seen so far. By this method, as
opposed to learning with partial memory, new rules are guaranteed to be correct with respect
to all (old and new) training examples. In Chapter 7, we describe some systems that support
incremental learning.

41

Chapter 6
Knowledge representation

In previous chapters we represented knowledge using (relational algebra) selection conditions,
either as the condition in classification rules (supervised learning) or to describe the entire
database (unsupervised learning). We will briefly review some other representations, starting
with logic formulae in propositional form.

As we will see, propositional representations suffer from some disadvantages, which has
been a reason to move to a more powerful representation, such as First Order Logic (FOL).
We shortly outline the advantages of FOL, and discuss some representations with equivalent
expressive power that offer a better structuring of the knowledge, such as semantic networks
and frames. For a more extensive discussion of these representations, the reader is referred
to [8, 11, 54].

The last part discusses neural networks, a non-symbolic representation, together with a
highly parallel learning algorithm. We compare this representation with symbolic represen-
tations.

1. PROPOSITIONAL-LIKE REPRESENTATIONS

Propositional representations use a logic formulae, consisting of attribute value conditions.
For example, ‘(color = red V color = green) A shape = circle’ is a formula in Conjunctive
Normal Form (CNF), i.e. a conjunction of clauses, where clauses are disjunctions of attribute
value conditions. In previous chapters, we represented knowledge as set-descriptions, which
is actually a formula in CNF. For example, the above formula could be represented as the
set-description ‘color € {red, green} A shape € {circle}’.

An alternative is the Disjunctive Normal Form (DNF), a disjunction of terms, where terms
are conjunctions of attribute value conditions. However, as shown in [37], the CNF performs
surprisingly well, that is, the generated descriptions are smaller than the DNF representations
for the same learning tasks.

Actually, both representations are not really propositional, because they involve a varia-
ble—the object itself. For example, when the above formulae is used in a production rule, it
is a condition on an object X, stating ‘P(X) = (X .color = red V X.color = green) A X .shape
= circle’. For this reason, we refer to these representations as ‘propositional-like’.

42 Chapter 6. Knowledge representation

1.1 Decision trees
A decision tree is a simple knowledge representation that has successfully been used in super-
vised machine learning systems, e.g. in Quinlan’s ID3 system, as we will discuss in Chapter 7.
A decision tree classifies examples to a finite number of classes. Nodes in the tree are
labeled with attribute names, the edges are labeled with possible values for this attribute,
and the leaves are labeled with the different classes. An object is classified by following a
path down the tree, by taking the edges, corresponding to the values of the attributes in the
object.

EXAMPLE 1 An example, taken from [48], consists of a small training set, storing objects that
describe the weather at a particular moment. Objects contain information on the outlook,
which is either sunny, overcast or rain, the humidity, which is either high or normal, and
some other properties. Some objects are positive examples of a class P, other are negative
examples. The classification task consists of constructing a simple tree that classifies all
objects in the training set correctly. The following tree could be constructed:

outlook

humidity P windy
higl normal true fase

N P N P

1.2 Production rules

A disadvantage of decision trees is that they tend to grow very large for realistic applica-
tions, and are thus difficult to interpret by humans. Hence, there has been some research in
transforming decision trees into other representations. In [49], Quinlan describes a technique
to generate propositional-like production rules from decision trees. This transformation is
useful because:

1. production rules are widely used for representing knowledge, e.g. in expert systems,

2. they can eagsily be interpreted by human experts, because of their extreme modularity,
i.e. a single rule can be understood without reference to other rules,

3. the classification accuracy of a decision tree can be improved by transforming it into a
set of production rules, thereby eliminating tests that are attributable to peculiarities
in the training set.

Here we consider simple, propositional-like production rules, i.e. if-then rules, where the
conditional part consists of a propositional expression, e.g. an expression in CNF, or simply a

1. Propositional-like representations 43

term. The consequence is the class. Michalski’s AQ15 system (see Chapter 7) uses production
rules as a knowledge representation.

ExaMPLE 2 Each path in a decision tree corresponds to a term: a conjunction of conditions
on attributes. The above tree is equivalent to the following set of production rules:

if outlook = sunny and humidity = high then class = N
if outlook = rain and windy = true then class = N

default class = P |

1.3 Decision lists

Another propositional-like representation, proposed in [55], is the decision list representation.
This representation strictly generalizes both decision trees, DNF and CNF representations,
i.e. any knowledge structure in these representations can be transformed to a decision list. A
decision list is a list of pairs

(¢1a C'1)7 (¢2a 02)7 ey (d)ry Cr)

where each ¢; is an elementary description, and each C; is a class, and the last description
¢, is the constant true. The class of an object o is Cj if j is the least index of a description
¢; that covers object o. Such an index always exists, since the last term is always true, i.e.
the default class.

We may think of a decision list as an extended ‘if ¢; then C elseif ¢4 ... else C,.’ rule. Or we
may think of a decision list as defining a class by giving the general pattern with exceptions.
The exceptions correspond to the early terms in the decision list, whereas the more general
patterns correspond to the later terms. Decision lists are used in the CN2 system, which we
will discuss in Chapter 7.

1.4 Ripple-down rule sets

From a knowledge representation point of view, one of the main features of rules is that they
tend to have exceptions. More realistic rules are of the form ‘if ¢; then C; unless ¢;’. We
can represent this in a decision list by placing an exception rule ‘if ¢; then C);’ into the list
before the actual rule ‘if ¢; then C;’. However, the main disadvantage of using decision lists
is that this exception is global, i.e. any object for which ¢; is true will be assigned to class
C;, whereas we wanted the exception to be local to the rule ‘if ¢; then C;’.

This lack of locality makes decision lists difficult to understand, since the rules in the list
are only meaningful in the context given by all the preceding rules. Hence, there is a need
for representing exceptions in a more localized manner, e.g. by using ripple-down rule sets
[13]. These rules consist of conditions and exceptions to these conditions that are local to
the rule. In fact, these rules are nested if-then statements, e.g.

if ¢; then
if ¢; then C}
else C;
else C;

is a ripple-down rule set of depth 2. Note that by giving all the exceptions locally, we have
eliminated the need for a global ordering of the rules, as in decision lists. In [24], an efficient
algorithm for the construction of ripple-down rule sets is presented.

44 Chapter 6. Knowledge representation

2. FIRST ORDER LOGIC
The simple propositional-like representation has been successfully used in many machine
learning systems. Along with the successes of this technology, the following limitations are
becoming apparent [39]:

Restricted representation Propositional-like representations strongly limit the form of re-
lationships and patterns that can be represented. Patterns that are defined in terms of
relationships among objects or attributes cannot be represented.

For example, consider a class consisting of all persons with ‘identical first and lastname’.
Using a propositional-like representation, we would end up with an over-fitted pattern, enu-
merating all persons in the database with identical first and last name. Using a more powerful
representation allows us to state that any person where ‘firstname = lastname’ belongs to
the class, thereby capturing the true nature of this class.

Inability to make use of domain knowledge 1t is difficult to incorporate domain knowledge
in the learning process. A commonly used technique is to regard domain knowledge as
constraints on the descriptions, generated by the system. Since domain knowledge is rarely
complete and consistent, this constraint is generally believed to be over-restrictive.

Strong bias to vocabulary Present inductive systems construct descriptions within the limits
of a fixed vocabulary of propositional attributes. For many applications, it might be useful
to increase the set of patterns that can be found and to improve the comprehensibility of the
representation by inventing auxiliary predicates.

The above shortcomings can be overcome by moving towards a more powerful represen-
tation. A growing number of machine learning systems employ some kind of First Order
Logic (FOL) to represent learned knowledge (for an overview see Muggleton [39]). In this
area, called Inductive Logic Programming (ILP) the aim is to construct a FOL-program that,
together with the domain knowledge, has the training set as its logical consequence. If we
regard the program as a logical theory, then the training set is a model of this theory. An
example of an ILP system is Quinlan’s FOIL system (see [51]).

There are some extensions to FOL that may prove to be very useful for representing
knowledge in a data mine system. Constraint logic programming languages (see Jaffar and
Lassez in [21]) allow complex constraints between numerical variables. These constraints can
be very useful for representing numerical relationships, as we discuss in Chapter 8.

The language LIFE (Logic Inheritance Functions Equations), developed by Ait-Kaci (see
[1, 2]), is a synthesis of three different programming paradigms: logic programming, functional
programming and object-based programming. In LIFE one can define hierarchies of values,
that are useful for representing domain knowledge. Also, LIFE allows functions to be used
in a logic language.

2.1 FEzxpressive power versus computational complexity

Using a powerful representation such as FOL allows us to find simple descriptions for classes,
that would have a very complex description (or could not even be described) in a less powerful
representation. So on one hand, the computational complexity decreases, since the system
can find a simple description for the class. Thus enlarging the set of possible descriptions
may make learning easier, rather than harder. The reason is that it may be easier for the

3. Structured representations 45

learning algorithm to produce a nearly correct answer from a rich set of alternatives than
from a small set of possibilities, as discussed in Section 2 in Chapter 3, and in [55].

On the other hand, when using a more expressive formalism, more different descriptions can
be constructed, i.e. the description space extends, and finding the best description becomes
harder. A solution is to search for particular descriptions only. For example, when using a
FOL representation we could only consider single clause programs. Actually, this is the same
problem as in database query languages, where, by restricting queries to a small subset of
FOL (say SQL), queries remains computational. An alternative solution is to develop good
heuristics, needed to guide the search in the increased search space.

3. STRUCTURED REPRESENTATIONS

The representation of knowledge can be improved by using more expressive formalisms, as
we stated above, but systems can also benefit from using a more comprehensible structured
representation. We discuss two such representations, semantic nets and frames. Although
they are not more powerful than FOL (they can easily be expressed as a FOL program), they
provide a more comprehensible representation, e.g. by explicitly stating subtype relationships
among objects, or allowing for an exception based representation.

3.1 Semantic nets
A semantic network is a graph, where the nodes denote concepts, or meanings, and the arcs
denote relationships between these concepts (see Minsky [35]).

EXAMPLE 3 The semantic network below states that John is the spouse of Mary, and Mary
has red hair. Furthermore, John and Mary are both instances of the sort humans, which are
again mammals.

isa
human — mammal

instance of instance of

John «—— Mar

—
spouse y haircolor red

As we can see from this example, there are actually two forms of relationships: relationships
between concepts (spouse, and hair color) and relationships between concepts and classes
(instance_of, and isa). Because storing both relationships in the same network is confusing,
the latter relationships — subtype relationships — are sometimes represented in a separate
network.

A semantic network can easily be mapped to FOL, where each arc is a binary predicate,
with its nodes as terms. This representation can also be used for the subtype relations, but
a better representation might be:

spouse(mary, john).
haircolor(mary, red).
human(john).

human(mary).

VX.human(X) — mammal(X).

46 Chapter 6. Knowledge representation

The main advantage of semantic nets is that all information related to a particular object
can easily be found by following the links from this object. When semantic nets are used
for data mining, each example is a semantic net. Operations on the examples consist of
graph-manipulations, in order to find patterns, i.e. subgraphs, shared by all examples of the
same class.

3.2 Frames and schemata
A frame, also called schema, is a structured object, consisting of a name, and named attri-
butes—called slots, filled with values for particular instances.

ExAMPLE 4 The information about Mary in the previous example can be stored in a frame
with four slots:

framename | person

slot 1 isa: mammal
slot 2 name: Mary

slot 3 spouse: John
slot 4 haircolor: red

As can be seen from the example, we can incorporate subtype information in frames as
well, by using ‘isa’ slots. An isa slot refers to another frame, in this case the mammal frame.
This frame stores information about mammals, e.g. that all mammals are viviparous. Slots
and their values, defined at higher levels in the hierarchy are inherited by the lower levels.
However, these values may eventually be overridden, i.e. at a high level, default values are
defined for slots (all mammals are viviparous), but these can be overridden for exceptional
cases at lower levels (a platypus is a mammal, but not viviparous).

Although frames can be represented in FOL, they provide a better insight in the structure
of knowledge than a set of — logically equivalent but unstructured — first order predicates.
The EURISKO system uses frames for the representation of the acquired knowledge [27].

4. NEURAL NETWORKS

Artificial neural networks, also known as connectionist models, are densely interconnected
networks of simple computational elements (for an introduction, see [28, 40]). In Figure 6.1
such an element, called neuron is shown. The input consists of N values zg,z1,...,zxy_1 and
a single output y, all having continuous values in a particular domain, e.g. [0, 1].

X
X1 20 L
w f(x)
input y output
W —
Xn 0 X

Figure 6.1: A neuron and a sigmoid function.

The neuron computes the weighted sum of its inputs, subtracts a threshold €, and passes

4. Neural networks a7

Figure 6.2: A multi-layer perceptron.

the result to a non-linear function f, e.g. the sigmoid, shown in Figure 6.1. Hence, each
neuron in a network computes a function

1
1+e®

N-1
y=1f (Z w;T; — 9) where f(x) =

=0

and w; are the weights.

Neural networks are constructed by connecting the output of a neuron to the input of one
or more other neurons, and by assigning unconnected inputs of some nodes as the input of
the network, and particular nodes as the output nodes of the network. There exist many
different network topologies, such as the Kohonen or Hopfield network. Here, we will discuss
a network called the multi-layer perceptron, as depicted in Figure 6.2. This network consists
of multiple layers, such that the output of each neuron in a layer is connected to the input
of nodes in the next layer. The inputs of the first layer—the input layer, form the input of
the network, where the outputs of the highest layer—the output layer, form the output of the
network.

4.1 Representation
A multi-layer perceptron is especially useful for implementing a classification function that as-
signs an object, denoted by an input vector [zg, z1, ..., Z,], to one or more classes C1, Co, ...,
Con. If the object belongs to class C; then the network output C; has a high value (typically
1) and a low value (typically 0) if it is a negative example of class C;.

So by selecting appropriate weights and thresholds for all nodes, the network can represent
a wide range of classification functions. Choosing correct weights can be done by supervised
learning, where the network is provided with examples. An example is an input vector
together with the desired output vector, that is, a vector where C; has value 1 if the example
belongs to class C; and 0 otherwise.

4.2 Learning

In learning algorithms, examples are provided one at a time. For each of these examples,
the actual output vector is computed and compared to the desired output. Then weights
and thresholds are adjusted, where weights that contributed to a correct output remain
unchanged, and weights that contributed to an incorrect output are decreased if the actual

48 Chapter 6. Knowledge representation

output value is higher than the desired value, and increased if the actual value is lower than
the desired value. The algorithm terminates when all weights stabilize.

An algorithm that is often used is the back-propagation algorithm, discussed in [17, 28].
This algorithm uses an iterative method to propagate error terms (i.e. the difference between
the actual and the desired output) required to adapt weights back from nodes in the output
layer to nodes in lower layers.

4.8 Neural nets versus symbolic learning methods
The error rates of neural nets are equivalent to error rates of rules produced by symbolic
learning methods, although neural nets perform slightly better when dealing with noisy data.

However, there are some disadvantages in using neural nets for data mining. First of
all, learning processes in neural nets are very slow, compared to symbolic learning systems.
In benchmarks described by Quinlan in [45], the ID3 system outperforms back propagation
neural nets by a factor 500 to 100, 000.

Another disadvantage is that knowledge, generated by neural nets, is not explicitly rep-
resented in the form of rules or conceptual patterns, but implicitly in the network itself, as
a vast number of weights. One of the objects of data mining is to generate knowledge in a
form suitable for verification or interpretation by humans. There has been some research on
transforming this knowledge to a format better suited for human reading, as in [23, 57], but
this mainly concerns single layer networks, that model simple, linear functions.

As with genetic algorithms, it is difficult to incorporate any domain knowledge or user inter-
action in the learning process. Hence, neural nets perform best in areas where no additional
information is available, which is generally not the case with data mining.

49

Chapter 7
Overview of data mine systems

In Chapters 3 and 4, we presented a framework for data mine systems. As an illustration of
this framework, and to make the reader familiar with techniques used in this area, we will
discuss a few data mine systems. Several aspects of these systems will be discussed: the
representation for the training examples and for the generated knowledge, the operations on
knowledge structures, and the quality function. We also discuss the search strategy, and the
heuristics, used to guide the search.

We do not intend to provide a complete overview of the research, neither to compare
systems. Moreover, one should keep in mind that most of these systems are actually ma-
chine learning systems, i.e. they assume small sets of relatively noise-free training examples,
and attempt to construct deterministic rules. All systems that we discuss are designed for
supervised learning.

1. ID3

The system that had the greatest impact on machine learning research in the last years is ID3,
developed in the first half of the eighties by Quinlan (see [46, 48]). ID3 stands for Induction
of Decision Trees, and is a supervised learning system that constructs decision trees from
a set of examples. These examples are tuples, where the domain of each attribute in these
tuples is limited to a small number of values, either symbolic or numerical.

Farly versions of the ID3 system generated descriptions for two classes, i.e. positive and
negative examples, but this restriction has been removed in later systems. Classes have to
be mutually disjunct: there are no inconsistent examples. ID3 generates descriptions that
classify each object in the training set correctly, i.e. it generates strong classification rules.

1.1 Search space
Knowledge is represented as a decision tree, as we described in Section 1.1 in Chapter 6.
The search space for a particular problem consists of all trees that can be constructed with
attributes and values in the test set. To traverse this space, a transformation operation is
defined: extend the tree by replacing a leaf with a new subtree (of depth one).

Among all trees in the search space, the system needs to find the ‘best’ tree. The quality

50 Chapter 7. Overview of data mine systems

function, i.e. the quality of a tree, depends on both the classification accuracy, and the size
of the tree. Trees that classify all objects in the test set correctly, and are simple as well, are
preferred. The rationale behind the latter is that a decision tree captures some meaningful
relationship between an object’s class and the values of its attributes. Given a choice between
two decision trees, each of which is correct over the training set, it seems sensible to prefer
the simpler one on grounds that it is more likely to capture structure inherent to the problem
(i.e. Ockham’s razor). The simpler would therefore be expected to classify more ‘unseen’
objects correctly.

1.2 Search algorithm

The ID3 system uses a top-down irrevocable strategy that searches only part of the search
space, guaranteeing that a simple — but not necessarily simplest — tree is found. A tree is
constructed as follows:

1. an attribute is selected as the root of the tree, and branches are made for all different
values this attribute can have;

2. the tree is used to classify the training set. If all examples at a particular leaf belong to
the same class, this leaf is labeled with this class. If all leaves are labeled with a class,
the algorithm terminates;

3. otherwise, the node is labeled with an attribute that does not occur on the path to the
root, and branches are created for all possible values. The algorithm continues with
step 2.

The above algorithm always creates a tree that classifies all data objects in the set of
examples correct, but this tree is not necessarily simple. A simple tree can be generated by a
suitable selection of attributes. In ID3, an information-based heuristic is used to select these
attributes. The heuristic selects the attribute providing the highest information gain, i.e. the
attribute which minimizes the information needed in the resulting subtrees to classify the
elements.

We define two classes: a class P containing all positive examples, and a class N for the
negative examples. Let the set of examples S contain p elements of class P and n elements of
class N. In information theory, a measure is defined for the amount of information, needed
to decide if an arbitrary example in S belongs to P or N:

p b
I(p,n)=— lo —
(p,n) p+n g2p+n ptn

lo
g210+n

Note that I(p,n) depends on p and n only, and that I(p,n) = 0 for p =0 or n = 0, and
I(p,n) > 0 otherwise. Assume that using attribute A as the root in the tree will partition S in
sets {S1,S9,...,S,}. If S; contains p; examples of P and n; examples of N, the information,
needed to decide if an element in S; belongs to P or N is I(p;,n;). So the information —
needed to classify an element of S using a tree with attribute A as root — is the weighted
average of the information, needed to classify objects in all subtrees .S;:

. pi+ny

E(A) =
- P +n

The attribute A is selected such that the information gain is maximal, that is, E(A) is
minimal. However, a known problem with this criterion is that it tends to favor attributes
with many values. Different solutions to this problem are discussed in [48].

1. ID3 51

1.3 Numerical attributes
A condition on an attribute, i.e. an internal node of the decision tree, is a test on the
value of an attribute, with branches for all possible values. Although this is convenient
for symbolic attributes, it would be useful if one could test on ranges of numerical attributes.
An extension of the ID3 algorithm, called C4.5 (see [52]) allows tests on the inequality of
numerical attributes, such as A; < N and A; > N, with two possible outcomes (branches).
The information gain of such a test is computed as follows: the examples are first sorted
on the values of the attribute being considered. There are only a finite number of these
attributes, say {v1,va,..., v, }. In this set, there are m — 1 possible splits on the attribute,
all of which are examined. It may seem expensive to examine all m — 1 splits, but, when the
examples have been sorted as above, this can be carried out in one pass, updating the class
distributions to the left and right of the threshold on the fly. For each possible threshold, the
information gain is computed, and used in the process of selecting the next test, as described
above.

1.4 Grouping attribute values

Another test implemented in the C4.5 system is a test whether the value of an attribute
belongs to a particular set of values, such as A; € {v1,v9,...,v,}. The node is labeled with
the attribute, and the branches are labeled with sets of values, rather than singleton values.
For some situations, this can reduce the complexity of the resulting tree, e.g. when values are
related in some sense.

However, for m different values, there are 2™~! — 1 different binary partitions, which ex-
cludes the possibility of an exhaustive search for the best partitioning. C4.5 uses a irrevocable
bottom up search, based on iteratively merging of groups. The initial groups are just the
individual values of the attribute under consideration and, at each cycle, C4.5 evaluates the
consequences of merging every pair of groups. (Any division of values into groups is reflected
in the split of examples by that attribute, and so in the corresponding split information and
gain.) The process continues until just two value groups remain, or until the gain cannot be
further improved by merging.

1.5 Noise
Noise can affect both attribute values and class information (see [47]). A corrupted set of
examples causes two problems:

1. It is no longer possible to generate a tree that classifies all examples correctly, i.e. the
consistency condition is violated. When classes overlap, at step 3 in the algorithm there
will occur a set S; of objects that do not belong to the same class, and there are no
attributes that can be used to further branch at this leaf.

The solution consists of labeling this leaf with the class that dominates .S;, or with all
classes in \S;, together with their probability.

2. Corrupted examples can cause the tree to grow to accommodate these examples. For
example, generally the algorithm will not branch on an attribute A which hardly re-
duces the information needed after branching. However, if values for this attribute are
corrupted for some examples, branching on A might give an apparent information gain,
even though values in A are random, and form no indication for the classification.

To overcome this problem, we can require the information gain to exceed some thresh-
old. However, experiments suggest that a threshold which is high enough to rule out

52 Chapter 7. Overview of data mine systems

irrelevant attributes, will also rule out relevant ones.

An alternative is the x? test: if attribute A is irrelevant to the class of an object in S,
i.e. attribute A and the class are statistically independent, the expected value p) of p;
(the number of elements of class P in S;), would be:

/:ppi +n; =p|Si|
p+n S|

If n! is the corresponding expected value of n;, the statistic

" (pi—p))? | (g —nb)?
D ,

=1 p; n;

is approximately x? with v — 1 degrees of freedom. The tree construction procedure is
modified such that only attributes whose irrelevance can be rejected with a very high
confidence level will be used. Application of this test results in a pruned tree.

1.6 Missing attribute values

Another problem concerns missing attribute values, resulting in problems in the construction
of a decision tree, and in problems arising when we attempt to classify an object with missing
values.

1. For the construction of a tree, several methods have been proposed to deal with missing
attribute values. We can either treat missing values as the value most appearing in
their class, or simply discard examples with missing values, or we can treat missing
values as a special value unknown. However, the latter technique increases the expected
information gain for an attribute if some values are unknown, which is not a desirable
property. Therefore, a better technique is proposed, where the distribution of unknown
values is assumed to be in proportion to the relative frequency of these values in .S.

2. During classification, objects with missing attribute values cannot be classified, if
branching on one of these attributes is required. All branches for this attribute are
then explored, and for each resulting path, ID3 estimates the probability that this is
the correct choice of values for the attributes. This probability is the product of the rel-
ative frequencies of the chosen values for the unknown attributes. Then, for all classes,
these probabilities are summed , and the result of the classification is the class with
the highest probability. This procedure offers a very graceful degradation when the
incidence of unknown values increases.

1.7 Windows
At each cycle in the algorithm, the training set has to be queried to determine the information
gain for attributes. (Note that we only have to query the subset of examples that have not yet
been classified.) Instead of the entire training set, a randomly chosen subset—called window
can be used. Using this window, a tree is generated, and all examples in the training set
are classified using this tree. As long as not all examples are correctly classified, some of the
incorrectly classified examples are added to the window and the process continues: a new
tree is generated for these examples, however, this tree is generated from scratch (see below).
Experimental results show that correct decision trees are found within a few iterations,
and that this method is usually faster than forming the tree using the entire database.

2. AQ1s 53

1.8 Incremental learning

The ID3 algorithm performs well when the entire training set is supplied at once. However,
if the examples are supplied one at a time, the ID3 algorithm can still be used, but it would
construct a new decision tree from scratch, every time a new example is observed. For such
serial learning tasks, one would prefer an incremental algorithm, on the assumption that it
is more efficient to revise an existing tree than it is to generate a new tree every time.

An adaptation of the ID3 algorithm, called ID5R (see [61]), does not create a new tree for
each new example, but instead restructures the tree to make it consistent with the current
and all previous examples. These previous examples are retained, but not reprocessed, they
are used for restructuring purposes only. ID5R constructs exactly the same tree as the ID3
system on the same data set.

Even for non-serial training tasks, incremental algorithms can perform superior. Experi-
ments show that selecting training instances one at a time, based on inconsistency with the
current tree, leads to a smaller tree than selecting many instances at a time, as done in
ID3. The latter will find the identical tree if the initial window contains just one example,
and the window is grown by one instance at a time. But as we saw above, this approach is
prohibitively expensive.

1.9 Conclusion

The system performs very well on a wide range of application domains, such as medical do-
mains, artificial domains, and e.g. the analysis of chess end games. The classification accuracy
is high. However, the system does not make any use of domain knowledge. Furthermore, trees
are not easy to understand, however, they can be transformed to decision rules, as described
in [49].

2. AQ15

Michalski’s AQ15 system (see [32, 33]) is an inductive learning system that generates decision
rules, where the conditional part is a logical formulae. A special feature of this system is
constructive induction, i.e. the use of domain knowledge to generate new attributes, that are
not present in the input data.

As ID3, and many other machine learning systems, AQ15 is primarily designed for the
construction of strong rules, i.e. for each class, a decision rule is produced that covers all
positive examples and no negative ones. The system handles incomplete and inconsistent
examples by pre and post processing. Number and size of the discovered rules are drastically
reduced by applying a post processing technique, called rule truncating, that does not affect
the classification accuracy.

Examples in the training set are vectors of attribute values. Attributes can be of three
types: nominal, linear or (hierarchically) structured.

2.1 Search space
Rules are represented in the VL; (Variable-valued Logic system 1) notation, a multiple-valued
logic attributional calculus with typed variables. A selector is an attribute value condition
that relates an attribute to a value or to a disjunction of values, e.g. ‘color = red V green’.
A conjunction of selectors is called a complez (i.e. a set-description). The conditional part of
a decision rule is formed of a disjunction of complexes, called a cover.

When building a decision rule, AQ performs a heuristic search through the space of all
logical expressions to determine those that account for all positive and no negative examples.

54 Chapter 7. Overview of data mine systems

Because there are (in machine learning problems) usually many such strong rules, the goal
of AQ is to find the most preferred one. This preference criterion is defined by the user, to
reflect the needs of the application domain.

The operations on the knowledge structure are the addition of a complex to the cover of
a rule, and the intersection of a set of complexes with a set of selectors. The intersection of
two sets A and B is the set of all combinations of conjunctions of elements from both sets,
ie.{cAy|xz€Aye B}

2.2 Search algorithm

The system generates a decision rule for each class in turn, using a top down irrevocable
search algorithm (actually a beam search: multiple hill climbers in parallel). At each step
in the algorithm, the best complex is added to the cover. Each step starts with focussing
attention on one selected positive example—called the seed. The algorithm generates a set of
all complexes (a star) that cover the seed and do not cover any negative examples, and then
selects the best complex from the star according to the user defined criteria. This complex
is added to the cover. The basic covering algorithm is:

While partial cover does not cover all positive examples
do

1. select a seed, i.e. an uncovered positive example,

2. generate a star, i.e. determine maximally general complexes covering the seed
and no negative examples (see below),

3. select the best complex, as defined by quality function,
4. add the complex to the cover.

The algorithm starts with an initial cover that is either empty, previously learned, or sup-
plied by the user. Step 2, generating a star, consists of:

While partial star covers negative examples
do

1. select a covered negative example,

2. generate a partial star: all maximal general selectors that cover the seed and
exclude the negative example,

3. generate a new partial star by intersecting the current partial star with the
partial star constructed so far,

4. trim the partial star, i.e. retain only the maxstar best complexes.

If the star generating procedure were to work exhaustively, the search space for covers
might grow very rapidly. Therefor, the user can define a parameter mazstar, that controls how
many disjoint complexes may be kept in a partial star. Only the best complexes are retained,
according to user specified criteria such as ‘maximize the number of positive examples covered
and negative examples excluded’, or ‘minimize the number of selectors’.

So, for a given partial star, the above procedure computes the quality of the complexes in

2. AQ15 55

the intersection, retains maxstar of these (the beam width), and intersects these again, until
none of the negative complexes is covered.

2.8 Inconsistent data and noise

The training set can be inconsistent, that is, some positive and negative examples are iden-
tical, so a correct rule can never be constructed. AQ provides three options, it treats these
inconsistent examples either as positive examples, negative examples or simply neglects them.
If statistical information about the probability of inconsistent examples is available, they are
preclassified according to the maximum likelihood.

When the training set contains incorrect examples, it may be advantageous to apply the
constructed rules in a probabilistic manner. So, apart from the strict matching, where one
tests if an instance satisfies the description, one can distinguish another method of testing
class membership: flexible matching, where the degree of similarity (or conceptual closeness)
determines the class.

If flexible matching is used, it is possible to simplify a description by removing one or more
complexes. This technique, called truncation, removes the complex that covers the least
examples. If the training set is noisy, these complexes may be indicative of errors in the data.
The resulting rule is no longer correct, but probabilistic, since similarities for different classes
are compared. But these rules are simpler to understand, and the size of the knowledge base
reduces.

At each truncation step, the classification accuracy is measured. Each step produces a
different trade off between the complexity of the description and the accuracy of the rule. At
some step, the best overall result may be achieved. Several experiments show that rules can
be truncated without affecting the classification accuracy.

2.4 Constructive induction
The AQ system uses domain knowledge, expressed in the form of rules, to generate new
attributes. These rules are of two types: logic rules that define values of new variables,
and arithmetic rules that introduce new variables as functions of numerical attributes. The
system attempts to use these new variables to produce better decision rules.

The logic rules represent background class definitions, constraints among classes, general-
ization hierarchies, causal dependencies, etc. Classes and their descriptions, learned by the
program, are added to stock of rules.

2.5 Incremental learning

AQ15 has an incremental learning facility. The user may supply decision hypotheses as initial
rules. The system implements the method of learning with full memory, where it remembers
all examples that were seen so far, as well as the rules it formed. By this method, as opposed
to learning with partial memory, new decision rules are guaranteed to be correct with respect
to all (old and new) learning examples.

2.6 Conclusion
AQ15 focusses on the discovery of strong rules, and inconsistent and noisy data are handled
by preprocessing (inconsistent examples), and postprocessing (rule truncation).

The system has been tested for several medical domains, such as diagnosis in lymphography,
prognosis of breast cancer recurrence, and the location of a primary tumor. It discovered
decision rules that performed at the level of accuracy of human experts. The training sets
are small, typically a few hundred examples.

56 Chapter 7. Overview of data mine systems

A potentially significant result of these tests is that application of the proposed method
of rule truncation and flexible matching (i.e. constructing some kind of probabilistic rules)
drastically decreases rule complexity without affecting classification accuracy.

3. CN2

The CN2 system, by Clark and Niblett (see [12]), is an adaptation of the AQ system. As we
mentioned above, a disadvantage of the AQ algorithm is that the algorithm handles noise not
by itself, but uses pre- and postprocessing (e.g. rule truncation). As Clark and Niblett point
out, it is difficult to adapt the algorithm itself, because it strongly depends on specific training
examples during search (the seed). The objective of CN2 is to remove this dependency, and
incorporate noise handling technique (e.g. search space pruning) in the algorithm itself. CN2
combines the best features of both ID3 and AQ, where it uses pruning techniques similar to
the techniques used in ID3, and the conditional rules used in AQ.

3.1 Search space

The output of the CN2 system is a decision list, i.e. an ordered set of if-then rules (see
Section 1.3 in Chapter 6). The rules in this list resemble the ones used in the AQ system,
that is, ‘if (complex) then (class)’, with the exception that the conditional part is a complex
and not a disjunction of complexes — a cover — as with the AQ rules.

During the search process, complexes are specialized by adding a conjunctive selector or
by removing a disjunctive value in one of the selectors. The CN2 algorithm generates all
possible specializations of a set of complexes (a star) by intersecting this set with the set of
all possible selectors.

The quality criterion for complexes consists of two tests, a test to determine if the complex is
accurate (has a high accuracy on the training set when predicting the majority class covered),
and significant (the high accuracy on the training set is not due to chance).

Computing the accuracy of a complex involves first finding the set £ of examples that are
covered by the complex, and the probability distribution P = (p1, pa,...,pn) of examples in
E among the n classes. CN2 uses the information theoretic entropy measure

Entropy = — > p;logy(p;:)
=1

to evaluate the quality (the lower the entropy, the better the quality). This function thus
prefers complexes covering a large number of examples of a single class and few examples
of other classes. These complexes score well on the training set when used to predict the
majority class covered.

The complex should be significant as well, that is, the complex should locate a regularity
unlikely to have occurred by chance, and thus reflect a genuine correlation between attribute
values and classes. CN2 compares the observed distribution of examples among classes with
the expected distribution that would result if the complex selected examples randomly. The
system uses the likelihood ratio statistic, given by

2 filog(fi/e:)
i=1

where the distribution F' = (f1,..., fn) is the observed frequency distribution, and E =
(e1,...,ey) is the expected frequency distribution. The statistic provides an information

4. DBLearn 57

theoretic measure of distance between the two distributions. Under suitable assumptions,
this statistic is distributed approximately as y? with n — 1 degrees of freedom. The lower
the score, the more likely that the apparent regularity is due to chance. Only complexes that
pass a user defined minimum threshold of significance are taken into consideration.

3.2 Search algorithm

The CN2 algorithm generates a decision list in an iterative fashion, constructing a rule at
each iteration. A rule is constructed by searching for a complex that covers a large number of
examples of an arbitrary class C; and few of other classes (the construction of such a complex
is described below). Having found a good complex, the algorithm removes those examples it
covers from the training set and adds the rule ‘if (complex) then predict C;’ to the end of the
decision list. For the remaining set, a new rule is constructed, until no further complexes of
sufficient quality are found.

The best complex in a training set is found using a beam search, i.e. the construction of a
search graph, where at each iteration, the graph is extended at at most mazstar leaves. The
beam width maxstar is defined by the user. At any moment during the search, the active
leaves (i.e. complexes) are stored in a size limited set, called star. The system also keeps
track of the best complex found so far.

Initially, the star contains only the root of the search graph, which is the empty complex,
covering the entire training set. All specializations of all complexes in the star are examined by
computing the intersection of the star and the set of all possible selectors. Complexes whose
significance does not exceed the threshold are discarded. From the remaining complexes, the
most interesting ones — as defined by the quality criterion — form the new star.

The process of searching the best complex terminates when no further complexes that pass
the significance test can be found. The best complex, found in the search graph is returned,
and forms the conditional part of a new rule. If no complex is found at all, a new rule cannot
be constructed and the default rule is added to the end of the decision list.

3.3 Conclusion
CN2 constructs simple, comprehensible production rules in domains where noise may be
present. It construct probabilistic rules, i.e. the conditional parts cover examples of a single
class, but possibly a few examples of other classes as well. The result is not dependent on
the order in which particular examples are chosen, as with the AQ system, and it searches a
larger area of the search space, since it considers all possible extensions of a star. But the
principal advantage of CN2 over AQ15 is that since the former supports a cut off mechanism,
it does not restrict its search to only those rules that are consistent with the set of examples.
The performance of ID3, AQ, and CN2 has been compared on medical and artificial do-
mains. The discovered knowledge structures are equivalent in terms of accuracy and com-
plexity.

4. DBLEARN

The DBLearn system, designed by Cai, Han and Cercone (see [7, 16]), uses domain knowledge
to generate descriptions for predefined subsets in a relational database. Special features of
this system are its bottom up search strategy, its use of domain knowledge in the form of
hierarchies of attribute values, and its use of relational algebra. The set of examples is a
relational table, that is, a set of n-ary tuples.

58 Chapter 7. Overview of data mine systems

4.1 Search space

The system uses relational tables as knowledge structures: for each class, it constructs a
relational table, whose attribute (column) names are a subset of the attribute names in the
set of examples. A tuple can be seen as a logical formula, formed by the conjunction of
its attribute-value pairs. A table, a set of tuples, can thus be seen as a disjunction of these
conjunctions. Hence, the starting node in the search space is the set of examples, and the aim
is to generalize this table to a class description: a much smaller table, covering all examples
belonging to this class. The maximum number of tuples in the resulting table is specified by
a user defined threshold.

There is a trade off in the size of this threshold. A small threshold leads to a simple rule
with fewer disjuncts, but it can result in overgeneralization and the loss of some valuable
information. However, a large threshold can preserve some useful information, but this can
result in a relatively complex rule with many disjuncts and some inadequately generalized
results.

The domains of some attributes are partially ordered, and form semi upper lattices, i.e. all
values are smaller than the greatest value ‘ANY’. The values form an IS A-hierarchy, where
values denote generalizations of the values below them.

Two generalization operations are used to generate a class description from a set of exam-
ples:

Dropping conditions A tuple is a logical conjunction. Dropping all attribute-value pairs for
a particular attribute in the table eliminates a conjunct, and thus generalizes the rule. This
is a projection in relational algebra.

Climbing generalization tree Values in a particular attribute are replaced with a larger value
in the hierarchy, thus generalizing the relation.

Applying the above operations to a relational table may result in identical tuples. These
tuples are removed, thus reducing the size of the table.

4.2 Search algorithm: complete rules

The system constructs rules that are complete but not necessarily consistent, that is, the class
description covers all examples for this class, and possibly some examples of other classes as
well. The algorithm uses only positive examples and consists of four steps:

1. Task-relevant data is selected from the database, i.e. a single table, containing all pos-
itive examples is retrieved.

2. The attribute-oriented induction consists of applying the generalization operations on
the table. A simple heuristic is used: if there are many distinct values in an attribute,
and a higher level value is provided, the attribute is generalized by substituting each
value with its higher level value. On the other hand, if there are many distinct values
for an attribute, but no higher level value is provided, the attribute is simply dropped
in all tuples in the table.

Duplicated tuples are removed from the table, and the generalization process continues
until the number of tuples is no more than the specified threshold.

4. DBLearn 59

3. If possible, the resulting table is simplified, i.e. transformed into a table, covering the
same set. For example, if some tuples have identical values for all, except one, attributes,
and the values for this attribute form all descendants of a symbol in the hierarchy, these
tuples can be replaced with a single tuple, where the varying attribute has the symbol
as value.

4. The table is transformed into a logic formula.

4.3 Search algorithm: consistent rules

The other algorithm, designed by Cai et.al. is the learning of consistent rules that are not
necessarily complete, i.e. all examples covered by the description belong to the class, but not
necessarily all positive examples are covered. This algorithm uses both positive and negative
examples.

The algorithm is similar to the algorithm for the learning of characteristic rules, only the
second step is slightly different. Instead of using a single table for positive examples, two
tables, one containing positive and the other containing negative examples are used. However,
both tables can share tuples. These tuples — called the overlapping tuples — are marked, and
these marks are inherited when the tuples are generalized. Because generalization can produce
new overlaps, a check should be performed after every generalization operation. Finally, the
unmarked tuples in each table form the class descriptions for both classes.

4.4 Noise
Both algorithms are extended to handle noise and exceptions. A small number of unusual
examples is regarded as noisy and exceptional data, and should be discarded. The algo-
rithm is extended by adding quantitative information to the generalization process, and the
elimination of tuples from the table is based on this information.

A special attribute votes is added to each tuple in the table. This attribute registers the
number of tuples in the initial table that are generalized to this tuple in the current table.
Based on the votes, two weights are defined for each tuple in the generalized table:

1. The t-weight is a measure for the generality of the description represented by this tuple.
This weight is the ratio of the number of tuples covered by tuple ¢; to the number of
tuples covered by the entire table {q1,...,qx}:

votes(q;)

tweight(¢j) = =
wetg (QJ) n_, votes(q;)

A high t-weight implies that the tuple is induced from the majority of the data, and a
low t-weight implies that the tuple is induced from some rare, exceptional cases. Tuples
with a low t-weight are therefore removed from the table.

2. The d-weight is a measure for the discriminating ability of the description represented
by the tuple. This weight is the ratio of the number of tuples that belong to the class
and are covered by this tuple to all tuples that are covered by this tuple.

The d-weight can only be constructed if the number of classes is two or more, i.e. only
for consistent rules. A high d-weight indicates that the tuple is mainly generalized
from the original tuples in the target class, a low d-weight indicates that the tuple is
mainly derived from the contrasting class and from only a few (probably exceptional)
cases in the target class. Hence, only tuples with a high d-weight are included in the
classification rule.

60 Chapter 7. Overview of data mine systems

4.5 Incremental learning

Incremental learning is implemented by using the votes information. If a tuple is added to the
database, it is generalized to the same class level as the tuples in the generalized table. If the
tuple is already in the table, the votes information for this tuple is incremented. Otherwise,
it is inserted as a new tuple in the generalized table, and if the number of tuples in this table
exceeds the threshold, further generalization of the table is performed.

4.6 Conclusion

The DBLearn system is a relatively simple system, using two generalization operations to
construct descriptions. It is an instructive example of the use of domain knowledge in the
generalization process.

The system uses an attribute-oriented generalization process. Hence, a description is a dis-
junction of conjunctions of attribute value conditions. Each of these conjunctions consists of
conditions on the same attributes. This limits the set of descriptions that can be constructed
(compared to the set of descriptions in e.g. AQ). The performance of the system is good,
the time-complexity of the algorithm is O(N log N), where N is the number of tuples in the
initial relation.

In incremental learning, only the votes information is updated, and possibly new tuples
are added to the description. It is unclear whether this kind of incremental learning is
correct, i.e. the resulting description need not be the same as the description that would be
constructed from scratch using the updated database. In the latter case, another sequence
of generalization operations could be performed (because the database has been updated),
resulting in a different description, that cannot be constructed by updating votes information
in the initial description.

The DBLearn approach can very well be integrated with database operations, since general-
ization operations are set-oriented, and both data and knowledge are represented as relational
tables. In fact, both generalization operations are identical: dropping a condition is equivalent
to replacing the values with a single top-value ANY, thus climbing a (very flat) generalization
tree. A useful extension would be not to generalize all values for a particular attribute, but
to allow partial generalization, i.e. replace only some of the values with a higher level value.

The system has been extended to deal with noise, and constructs probabilistic rules (using
the votes information). Techniques to deal with noise are primitive, application of statistical
techniques, such as the x2 test, could improve results. There are no techniques to deal with
missing attribute values.

5. META-DENDRAL
The Meta-Dendral system is a special purpose machine learning system (see [14, 63]), designed
for the automated discovery of rules of mass spectroscopy. We discuss this system, because
it applies machine learning techniques to an entirely different data representation.

Mass spectroscopy is a technique to analyze the three dimensional structure of a molecule.
A spectrometer shoots high energy electrons at the molecule, breaking the molecule into
fragments. The spectrometer measures the spectrogram: the relative abundance of the frag-
ments of each mass. Whether a molecule breaks at a particular bond depends on the struc-
ture around this bond, e.g. a carbon-oxygen (C' = O) double bond will rarely break, while
carbon-carbon (C' — C) single bonds break more easily. Thus, a mass spectrogram provides
information on the structure. The aim of the Meta-Dendral system is the discovery of rules
that define where a molecule will break, given its structure.

5. Meta-Dendral 61

5.1 Data structure

The input of the system consists of a set of related molecule structures and their mass spectro-
grams. Meta-Dendral generates a set of rules defining the relationship between substructures,
found in these molecules, and broken bonds.

5.2 Search space

Knowledge is represented as rules of the form R;x Ry, where both R; and Ry denote fragments
of arbitrary form and % is the broken bond. A rule states that any molecule containing this
structure will break at this bond.

To each rule corresponds a subset of elements in the training set whose broken bonds are
explained (i.e. covered) by this rule. Rules are refined using a specialization operation, where
fragments R; or Rs are replaced by molecule structures, specifying more information, such
as (R3 — C) x (C' — Ry), specifying that the bond between two carbon atoms is broken. The
rules that can be constructed form a hierarchy, where the general rules are predecessors of
more specific rules, and the coverage of a rule subsumes the coverage of the rule below it. An
example of such a hierarchy is shown in Figure 7.1.

*C_a

RS—C*C—Ig R7*C:O

Figure 7.1: A hierarchy of Meta-Dendral rules.

The quality function is based on the generality of the rule, the classification accuracy, and
the number of predicted fragmentations.

5.3 Search algorithm
The algorithm consists of three stages:

Preprocessing The Intsum subsystem uses the mass spectra to define which bonds in each
molecule broke. It then generates possible fragmentations for each molecule and tests if these
fragments fit into the spectrogram. The output consists of a list of proposed breaks, i.e. sets
of fragments.

Inductive learning The Rulegen subsystem uses these fragments to recognize common con-
stellations around broken bonds. The subsystem attempts to find a set of correct rules, i.e.
rules that correctly predict the breakpoint in the molecules covered by this rule. Hereto, the
system employs a top down search algorithm, starting with the most general rule R; x Rs
and stepwise refining it, using all possible applications of the generalization operation. The
refinement process continues iteratively, specifying more complex structures on both sides of
the broken bond, until the quality of none of the generated children is better than its parents.
The output of the induction stage consists of a list of generated rules.

62 Chapter 7. Overview of data mine systems

Post-optimization The Rulemod subsystem modifies these rules to a smaller set of rules,
that better explain the examples. Often, two or more rules can explain observed peaks in
the spectrogram. Rulemod removes the rules that give too many false predictions, or rules
that are more specific without having a higher classification accuracy. It also generalizes too
specific rules, as long as this does not introduce false predictions. Typically, post-optimization
decimates the number of rules, while increasing the quality.

The generated rules can be used by human analysts, or by an expert system—called
Dendral. This system generates all possible structures for an unknown chemical structure,
and uses rules to compute the fragments in which these structures would break. It then
compares these fragments with the observed mass spectrum to find the best-fit.

5.4 Conclusion

The Meta-Dendral system was successful in finding previously unknown fragmentation rules
for particular molecules. However, the search strategy is inefficient, since a large area of the
search space is explored and many rules are constructed, of which many are discarded in the
optimization stage. It is very difficult to find heuristics that guide the search. This limits
the size of the molecules that could be explored using Meta-Dendral. There are no explicit
techniques to handle noise and exceptional data in the rule construction algorithm, but post
optimization is used to remove those rules that are due to noisy data.

6. RADIX/RX

The RX system is used for the discovery of relationships in a clinical database (see [5, 63, 64]).
A very important difference with other systems is that the notion of time is included: the
data objects in the set of examples store information on patients at different times and the
generated knowledge consists of causal relationships. Furthermore, the system employs a
two stage discovery process: first, it generates hypotheses, and afterwards it uses advanced
statistical techniques to validate these.

6.1 Data representation

The training set consists of objects, where each object represents the information about a
single patient. For each attribute in this object, values are recorded at different moments.
We could thus represent the set of examples as a three dimensional matrix P x A x T
one dimension for P patients, one for A attributes for each patient and one for T different
moments at which the value of each attribute is recorded, as shown in Figure 7.2.

6.2 Knowledge representation
The discovered knowledge is represented as a causal model: a directed labeled graph, where
nodes represent properties and arcs represent causal relationships between properties. These
properties can be either attributes directly stored in the database, such as temperature, or
they can be derived from other attributes in the database, such as a diagnosis, using domain
knowledge.

The arcs represent causal relationships between properties, thus A causes B means that:

1. Correlation: A is correlated with B, if an example has property A, it also has property
B, and vice versa. However, causal relationships also denote some order in which the
events take place:

6. RADIX/RX 63

Gl

patientq

patienty, am
ty th

Figure 7.2: A 3D matrix storing patient data.

2. Time precedence: A is generally followed by B, that is, A is the cause and B is the
effect;

3. Nonspuriousness: A and B are correlated if there is no known third property C
responsible for the correlation, that is, there is no causal relationship between C' and
A, and C' and B. C is called a confounding property.

Fach arc is labeled to denote some extra information about the relation, such as:
intensity: the expected change in the effect given a change in the cause;
frequency: the distribution of the effect across patients;
direction: does B increase or decrease when A increases;
validity: to distinguish tentative associations from widely confirmed causal relationships.

The aim of the RX system is to find new causal relationships in a model, when provided
part of this model and a training set. Finding these relationships is a two stage process:
firstly, all possible relationships are generated and their quality is computed. Secondly, the
validity of the most plausible of these relationships is tested. These stages are implemented
in different modules. Both modules use a knowledge base, storing information about known
relationships, statistical techniques, functional definitions of derived properties, etc.

6.3 Discovery module

The discovery module generates relationships and tests their probability by computing their
covariation and checking their time-precedence. It produces a list of hypothesis ranked accord-
ing to their probability. The main problem is that, given a set of N properties, a maximum
of N(N — 1) binary relationships can be generated. In RX, the number of generated rela-
tionships is reduced by using techniques such as marking particular properties to be causes
only (sources in the graph) and mark others as effects only (sinks in the graph).

Fach generated relationship has to be tested. The correlation between the two properties is
computed for different time lags, so that effects that were not immediate can also be observed,
and the time precedence can be verified. A score for time precedence is computed based on
correlations obtained when the cause is shifted forward and backward in time.

64 Chapter 7. Overview of data mine systems

7
5
time W% effect

%7

| 7

shift

Figure 7.3: The principle underlying lagged correlation.

In Figure 7.3, this technique is illustrated. If the cause is shifted forward in time, the
correlation (the shaded area) increases. Hence, the cause takes place before the effect, and
both are correlated. However, the nonspuriousness of the relationship is not checked at this
stage, but this is done by the study module.

6.4 Study module

The study module designs statistical models for the relationships with the highest probability.
Information from the knowledge base is used to identify confounding properties, i.e. properties
that influence both dependent and independent properties, and that may give false results
if not controlled. If such properties exist, a method is chosen to control the effects, such as
excluding the patients who have the confounding property, or using statistical techniques to
control the influence of the property.

A statistical package is invoked by the study module to test the statistical model. It chooses
an appropriate statistical method, generally multiple regression applied to individual patient
records, and retrieves the relevant data from the database. The results of the evaluation are
returned to the study module for interpretation.

If the relationship is statistically significant and important in the domain, it is incorporated
in the model, i.e. stored in the knowledge base, labeled with some information such as validity,
evidential basis, and so on.

6.5 Conclusion

The RX system used the ARAMIS database of rheumatology. One of the major results of
the RX system was in conforming and quantitating the hypothesis that the drug prednisone
increases cholesterol in the blood. The main drawback of the RX system is that it does not
use domain knowledge to guide the search for interesting relationships. A new version of the
system, called RADIX, uses medical knowledge to focus discovery.

65

Chapter 8
Numerical and hybrid learning systems

Most supervised learning systems construct knowledge structures that classify objects to a
finite number of classes. For some applications however, we would like to predict the value
of an unknown attribute in an object. A problem arises if the domain of this attribute is
infinite, typically numerical. We can construct rules that predict the unknown value, but
generally, we would end up with as many rules as there are different values.

A solution is to discretize these values, by mapping them to a finite number of symbols,
e.g. {high, medium, low} or {[0,999],[1000,1999],...}. Although this may be convenient for
some situations, discretization involves a loss of information. Therefore, we would like the
result of the data mining process to be a knowledge structure that predicts numerical values,
i.e. a function that returns a numerical value.

In this chapter we review two numerical learning systems, i.e. systems where both the
predicting variables and the predicted variable are numerical.

1. BAcoN
The Bacon system uses a data analysis algorithm to discover mathematical relationships in
numerical data [26, 63]. It rediscover relationships such as Ohm’s law for electric circuits and
Archimedes’ law of displacement.

The training set consists of numerical data, possibly generated at some previous experi-
ment. Each example — a tuple — consists of the values that are measured for various variables
in this experiment.

1.1 Search space

Bacon attempts to find a relationship between these variables that holds for all examples.
A relationship is a numerical expression over these variables—a term. If this term has a
constant value for all examples, then it describes a numerical relationship.

The search space consists of all terms that can be constructed from the variables, using some
elementary numerical operations such as multiplication, addition and quotient. Operations
on these terms, i.e. operations that transform terms in other terms (and thus allow the search
algorithm to traverse the search space) include:

66 Chapter 8. Numerical and hybrid learning systems

1. numerical operations such as multiplication or division of the term with a variable,

2. specialization of the term, by restricting the set of examples to a particular subset of
the data,

3. creating terms for the slope and intercept of linear relations between two variables,

4. creating terms for constant modulo-n relations.

The preference criterion, i.e. the extend to which a term correctly describes a relationship
in the training set, is simple: a term is correct if it has a constant value for all examples.

1.2 Search algorithm

The Bacon system employs a top down search, by generating a term, and checking the
correctness of this term for the set of examples. As long as the preference criterion is not
met, the term is modified by employing one of the above operations on the term.

The choice for these operations is guided by heuristics; the value of the term is computed for
all objects, and these values are compared with the values for previously constructed terms.
Examples of these heuristics are: If the values for the term and a previously constructed term
increase monotonously, the ratio of the term and the variable is taken, or: if two terms vary
inversely, the product is taken.

EXAMPLE 1 As an example, we will demonstrate the use of this algorithm to rediscover
Kepler’s third law—the law stating that the ratio of a planet’s distance to the sun d, and the
period of its revolution p are related as d®/p? = k, where k is a constant.

p [d]d/p | &#/p]| &/p*
1 |1]10 |10 |10
8 14|05 [20 |10
27 19103330 |1.0

Table 8.1: Planet distances and periods of revolution.

A set of examples, i.e. the values of p and d for some (strictly hypothetical) planets, are
depicted in the first two columns of Table 8.1. Based on the observation that d and p
increase monotonically, the term d/p is constructed. This term is not constant, as we can
see in the third column, so the term is modified. Since d and d/p vary inversely, a new term
(d/p)d = d?/p is constructed. This term varies inversely with d/p, so their product d*/p? is
computed. Computation of this term results in a constant for all examples and the algorithm
halts. |

1.8 Intrinsic properties

Sometimes the set of examples consists of tests for different entities, instead of tests on a single
entity. Each example is then labeled with its entity. If Bacon cannot construct a constant
term for the entire set, but only a term which is constant for each entity, it assumes that
these entities have some intrinsic property. For example, assume a test where we measure
the current I and the resistance R of different batteries. Bacon would come up with a term
IR, and notice that this term is constant for all tests for a particular battery, but differs for

2. KEDS 67

all batteries. It then proposes that the value of IR is an internal property of the batteries,
which is of course correct, since TR =V, the voltage of the battery.

1.4 Conclusion

The Bacon system successfully rediscovered some empirical laws in chemistry and other areas.
However, there are some drawbacks to the system: first, it assumes noise free, complete data,
since it has no facilities to deal with inexact and incomplete data. An enhancement would
be to use a more sophisticated preference criterion, such as the smallest squares method, to
define the matching between a term and a set of numerical data.

Furthermore, the system assumes that all variables are relevant, and attempts to find a
relationship between all these variables. Of course, some variables may be unrelated, or even
have random values, thus prohibiting the construction of a correct term. A third problem is
the efficiency of the algorithm. The rule, used in the selection of the appropriate operation
is non-deterministic, so multiple paths in the search graph have to be explored. This results
in an increasing number of terms that can be used to construct new terms. Hence, the
performance of the system is very bad, even for small data sets. A solution may be to use
more sophisticated heuristics.

2. KEDS

The Bacon system, and related systems such as Fahrenheit [65] and Fortyniner [66], construct
a global function, i.e. a relationship that holds for all examples. This can only be successful
when relationships in the data are actually homogeneous, that is, when the same relationship
among variables holds for the entire training set.

However, many real-life engineering phenomena are multi-dimensional and nonhomoge-
neous: different relationships hold between variables in different subsets of the training set.
Even if one is able to construct a single homogeneous function that accurately models the
data, this function can be overly complicated and incomprehensible for humans.

The KEDS system (Knowledge based Equation Discovery System, see [53]) uses a divide-
and-conquer strategy, where it breaks the problem space into smaller regions, and constructs
functions for each of these regions. These functions are comprehensible and since they form
a more expressive knowledge representation they are more likely to describe the relationships
among the data correctly.

2.1 Search space
The model generated by the system consists of rules called region-equation pairs:

Ri = Y= fi(x17$27---)

where R; is the description of a region, i.e. a condition on attribute values. Variable y is
the predicted variable, and x1,z2,... are predicting variables. Regions are hyperrectangles,
hence their description consists of intervals for each attribute, e.g. [.1 < z1 < .7][3 < x5 < 7].

A function y =?ax?+?bxy+7c is called a template, i.e. a function with unknown coefficients.
The user defines a set of templates. These templates represent domain knowledge, i.e. they
represent the user’s expectations about possible forms of the numerical relationships.

The equation f; in the region-equation pair is an instantiation of one of the user-defined
templates. The model is a set of region-equation pairs, such that the regions form a parti-
tioning of the training set.

63 Chapter 8. Numerical and hybrid learning systems

2.2 Search algorithm

The KEDS algorithm is an iterative two phase top-down search process involving discovery
and partitioning. Each invocation of the KEDS algorithm for a chosen template produces
zero or more candidate region-equation pairs. KEDS uses some parameters to control the
search: the majority trend factor m (the minimum fraction of the training set that must be
described by the region-equation pair), and the error bound e.

In the discovery phase, an equation is constructed that predicts part of the examples. First,
a template is chosen, and examples are randomly chosen to compute the unknown coefficients
in this template (if the template has n coefficients, n examples are needed to compute the
values of these coefficients). The instantiated template — the equation f; —has a cover, i.e. the
set of examples whose response attributes are predicted with at most € error by the equation.

If the fraction of the training set covered by the equation is greater than m, then the
training set is partitioned into positive and negative examples, where positive examples are
the examples covered by the equation.

These positive and negative examples are then used to determine the region in the second
phase: the partitioning phase. A conventional supervised learning technique (a continuous
version of the AQ algorithm) is used to find the description R; of the covered region.

The search process is iterative, the discovery phase can be invoked to refine the equation,
using only examples from the region. The refined equation is again passed to the partitioning
phase, to find a refined region, and this process can be repeated until the region-equation
pair stops improving (either in accuracy or in covering more data points).

EXAMPLE 2 The following example, taken from [53], uses the training set depicted in Fig-
ure 8.1. The horizontal axis is multidimensional, representing the p-dimensional space = of
predicting variables. In the initial discovery phase, the linear template y =7ax+7b is chosen.
To determine the coefficients, two example points from the training set are chosen (since
there are two unknowns in this template). Two different candidate equations are shown in
Figure 8.1a.

predicted variable
predicted variable
predicted variable

Y

Y
Y

predictor space

@ (b) (©

predictor space predictor space

Figure 8.1: An example in KEDS: (a) sampling the training set, (b) computing the covers
and (c) partitioning the training set.

The cover for each candidate equation is computed, and the equations that do not cover
enough example points (according to the majority trend factor m) are discarded. Only
contiguous regions are considered, so of the regions A and B (see Figure 8.1¢), B is rejected

2. KEDS 69

because it covers fewer events than permitted by the majority trend factor m. For the
remaining region A, the description is computed. |

2.3 Conclusion

Region-equation pairs are a more powerful knowledge representation than purely numerical
functions, as used in the Bacon system. The models constructed by this system are compre-
hensible for humans. However, there is a trade off between comprehensibility and accuracy,
but this can be controlled by the user. The learning speed is quite low, even on small datasets.
Heuristics would be needed to guide the search, if we want to make this technique applicable
to databases.

An improvement has been to use a probabilistic cover, which does not use an e tolerance,
but for each event in the training set, the probability that the value is correctly predicted
by the equation is determined. The construction of regions is done using these probabilistic
(fuzzy) sets. This makes the algorithm less sensitive to noise.

The system could be made applicable to hybrid domains (examples with symbolic and
numerical attributes) by allowing the region descriptions to range over symbolic attributes
as well. Such a representation would generalize both numerical and propositional-like repre-
sentations.

70

Chapter 9
Conclusions and further research

We first summarize the most important topics in this paper by presenting them as a short
course for data miners. Then, we will take a look in the future, and attempt to describe the
most important research topics for data mining.

1. DATA MINING FOR BEGINNERS

The construction of a data mine system for a particular application consists of the following
stages, although their order should not be seen as strict. At each stage, we outline the most
important design considerations, and describe which techniques have been used in the systems
that we described in previous chapters.

1.1 Defining the mining task

First of all, the user should define which relationships he or she wants to discover in the data.
In the case of supervised learning, the user has to define which characteristics (e.g. classes)
of objects the knowledge structures (rules, decision trees etc.) should predict, and which
information (predicting variables) can be used for this prediction.

1.2 Selecting the data

Once the task has been defined, the data can be collected. Often, the training set will be
extracted from a relational database, hence examples are tuples. These tuples should contain
as much relevant information as available, and if possible, contain no irrelevant information.
However, the relevance of information cannot always be determined in advance, so selecting
information reflects the user’s expectations about the hidden relationships, and therefore
restricts the relationships that can be found.

Once the information per object is defined, the training set has to be selected from the
database. Either the entire table can serve as a training set, or a randomly chosen subset
can be used. The remaining information in the database can be used to check the quality of
the discovered rules, i.e. serve as a test set.

1. Data mining for beginners 71

1.3 Knowledge representation

Choosing an appropriate knowledge representation is one of the key decisions in the construc-
tion of a data mine system. The knowledge representation must fit the application domain,
i.e. it should be able to describe hidden relationships in the data.

This poses a problem: to describe the relationships accurately, the representation has to
be sufficiently complex. On the other hand, the acquired knowledge structure should be
comprehensible for humans, hence it should be limited in size, and simple in structure. The
optimal solution for a particular application is some compromise between these requirements.

Most systems that we discussed in this report use some variant of the relational algebra
selection operator in their propositional-like representation, either decision trees (e.g. ID3),
production rules (e.g. AQ, DBlearn), or decision lists (as in CN2). Some systems, such as
Meta-Dendral, use representations that are suited for special application domains (chemistry),
other, such as RX, use representations for expressing special kinds of relationships (e.g. causal
relationships).

Some of the systems make use of domain knowledge (constructive induction in AQ15,
generalization hierarchies in DBlearn). It is our believe that a data mine system should be
able to use application specific knowledge, supplied by the user. It may be useful to employ a
single representation formalism for both the knowledge structures and the domain knowledge.
This representation has to be sufficiently expressive, e.g. first order logic.

1.4 Transformation operations

Most intelligent search algorithms, as we describe below, rely on operations that transform
one knowledge structure into another. An algorithm uses these operations to traverse the
search space. Care should be taken with these operations. First of all, the entire space should
be connected under these operations, guaranteeing that the optimal solution can always be
reached from the initial structure. Secondly, it would be preferable if the quality of the
knowledge structure changes only smoothly under application of the operations. In other
words, the operations should be chosen such that they align as much as possible with the
quality function.

1.5 Quality function

Next, we have to construct a quality function. With each knowledge structure, we associate
a certain quality that describes how ‘interesting’ the structure is, i.e. some measure for its
information content. This criterion can be defined in terms of the classification accuracy of
the knowledge structure with respect to its class, i.e. the higher the accuracy, the higher the
quality. The criterion can be based on its understandibility for humans as well, thus, the
criterion would prefer simple structures.

1.6 Search algorithm

The data mine system has to find the most preferred knowledge structure in the space of all
structures. A search algorithm can be either bottom up, applying a sequence of generalization
operations to the training set, or top down, where it repeatedly modifies an initial knowledge
structure until it is correct with respect to the training set.

The simplest strategy, applicable to small spaces only, is ezxhaustive search. However,
the search space is often too large, so only a small part can be searched. This part can be
represented as a tree, where the nodes are structures, the edges are operations, and the initial
structure is the root of the tree. The system navigates its way through the search space by

72 Chapter 9. Conclusions and further research

selecting a sequence of operations. At each step, either a single operation is applied (a hill
climber), or the n best operations (a beam search, i.e. multiple hill climbers in parallel, where
n is the beam width), as depicted in Figure 9.1.

AWML A

exhaustive search beam search hill climber

Figure 9.1: Search strategies.

1.7 Heuristics

Generally, the search algorithm does not chose the next operation at random, but uses heuris-
tics to select the operations that are most likely to be on the shortest path towards an optimal
solution. An often used heuristic is to estimate the improvements resulting from the applica-
tion of operations to the current knowledge structure. The quality of the resulting structure
can either be computed (using the quality function), or if this is too expensive, the quality
can be estimated, using another (cheaper) criterion.

The algorithm can either estimate the quality of all possible extensions, or the quality of
only some extensions. Some heuristics do not estimate the quality, but use other information
from the training set, e.g. the Bacon system uses rules to select the next operation. The table
below provides an overview of the search algorithms used in the different systems.

extensions
system search strategy estimated
1D3 top down hill climber all
AQ15 top down beam search some
CN2 top down beam search all
DBlearn bottom up hill climber all
Meta-Dendral top down exhaustive -
RX top down exhaustive (constrained) | —
Bacon top down hill climber none
KEDS (discovery) top down exhaustive -
KEDS (partitioning) || top down beam search some

1.8 Noise and missing information
Data mining algorithms should be enhanced with techniques to deal with noise and missing
information. These problems have been discussed extensively in Chapter 5, so we only briefly
overview different techniques.

Most systems use some kind of pruning to deal with noise. The basic idea is that a small
number of exceptional data is caused by noise, and can therefore be ignored. Hence, data

2. Research topics 73

mine systems need a statistical test to decide whether an observed relationship is due to
chance or actually existent. Structures that do not stand this test are removed, i.e. pruned,
either in the algorithm itself (e.g. decision tree pruning in ID3), or by postprocessing the
knowledge structures (e.g. rule truncation in AQ).

Information can be incomplete, i.e. no value may be given for some attributes. A data
mine system can either preprocess the training set (remove examples with missing values,
or replace the missing value with the most likely one), or the algorithm can be adapted to
handle missing values itself (e.g. ID3).

2. RESEARCH TOPICS

As we stated in the introductory chapter, data mining becomes increasingly more important
as the amount of information, stored in databases, grows. Hence, we may expect a growing
interest for data mine tools, which in turn, is a reason for research in this area. The devel-
opment of these tools benefits from research in three well founded area’s: machine learning,
statistics and databases.

2.1 Machine learning

Machine learning has a long tradition of design and experiments with knowledge representa-
tions and search strategies. Besides important theoretical results, e.g. PAC learnability, many
learning algorithms and their implementations have been designed and tested for a wide vari-
ety of applications. Most of these systems search for totally deterministic relationships, and
assume irregularities to be caused by noise. However, most systems have been enhanced with
techniques to deal with noise, which makes them, to some extend, applicable to data mining
applications, where most relationships will be probabilistic instead of deterministic.

2.2 Statistical techniques

However, we believe that results can be improved once we recognize that relationships in
the data are actually probabilistic in nature. In searching for these relationships, the use of
statistical techniques seems to be a natural choice. Experiments show that application of
even very simple statistical techniques is a very promissing direction, as for example shown
in [12]. Here, the performance of the AQ, CN2 and ID3 algorithms is compared with the
performance of a simple bayesian classifier on several domains. This classifier did not perform
significantly worse in terms of accuracy than other algorithms, and completely outperformed
all other systems in learning speed.

2.3 Intelligent database interfaces

One of the main obstacles in applying machine learning techniques to databases, is the size of
the database. As we outlined in Chapter 5, this has consequences for the cost of evaluating
the quality of a rule, and for the size of the search space.

A solution for the first of these problems is the application of database optimization tech-
niques. Instead of using the entire database, only a subset will be used for the initial search
phase. During the search process this set will be incrementally extended with data (i.e. addi-
tional proof) from the database, using incremental browsing optimization techniques. These
techniques exploit the fact that previous database queries already loaded part of the data the
current query has to load. Another topic will be the design of efficient caching algorithms,
that closely interact with the search algorithm, and removes any obsolete data from the cache.

Solutions for the second of the above problems, i.e. the size of the search space, include using

74 Chapter 9. Conclusions and further research

effective search strategies and heuristics. A very valuable source of heuristic information is the
user—an expert in the application domain, so part of the research will focus on designing user
interaction during the search process, and understandible representations for the knowledge.

Furthermore, domain knowledge, provided by the user may allow the discovery of rela-
tionships that would remain hidden otherwise. Representation of domain knowledge, and its
application in the search algorithm will be an important topic.

3. FUTURE DIRECTIONS

Current research focusses mainly on the discovery of classification rules (supervised learning)
from database relations. This can be extended to the discovery of relationships involving
database aggregates such as summation of values.

If multiple copies, taken at different times, of the same database are available, a data mine
tool can search for trends (i.e. global changes over time), thus exploring another source of
valuable information. However, the potentially most interesting direction may be in applying
unsupervised learning techniques to a database. This would generate a compact representa-
tion of the information in the database, representing it as a number of subsets, each subset
with its own description. In such a representation, again trends can be discovered, i.e. one
can search for migration streams of objects from one subset to another over a period of time.
Furthermore, supervised learning techniques can be used to search for characteristics for each
of these migration streams.

Morik (in [38]) foresees three different scenarios for the application of machine learning
techniques. So far, we followed the first scenario: the application of machine learning systems
to current applications, such as databases. However, for many applications, using only a single
learning strategy will not work. Multistrategy learning techniques use different algorithms
depending on the application domain, or a combination of algorithms. Intelligent systems
could select an appropriate learning technique themselves (see [10]). A third scenario consists
of enhancing all kinds of conventional systems (e.g. editors, databases management systems,
user-interfaces) by incorporating learning capabilities in these systems. As a result, computers
will learn from their environment, thus narrowing the gap between man and computer.

REFERENCES 75

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

Hassan Ait-Kaci and Patrick Lincoln. LIFE, a natural language for natural language.
T. A. Informations, Revue Internationale du traitement automatique du langage, 30(1-
2):51-89, 1989.

Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185-215, 1986.

Martin Anthony and Norman Biggs. Computational learning theory: an introduction,
volume 30 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1992.

Chidanand Apté, Sholom Weiss, and Gordon Grout. Predicting defects in disk drive
manufacturing: a case study in high-dimensional classification. In Proceedings of the 9th
Conference on Artificial Intelligence for Applications, pages 212 — 218, Orlando, Florida,
1993.

Robert L. Blum. Discovery and Representation of Causal Relationships from a Large
Time-Oriented Clinical Database: The RX Project, volume 19 of Lecture Notes in Medical
Informatics. Spinger-Verlag, 1982.

Pierre Brézellec and Henri Soldano. Samia: a bottom-up learning method using a simu-
lated annealing algorithm. In Proceedings of the European conference on Machine Learn-
ing, Lecture notes in Artificial Intelligence, pages 297 — 309. Springer-verlag, 1993.

Yandong Cai, Nick Cercone, and Jiawei Han. Attribute-oriented induction in relational
databases. In Piatetsky-Shapiro and Frawley [44], pages 213 — 228.

Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell. An overview of machine
learning. In Michalski et al. [30], pages 3 — 24.

Chris Carter and Jason Catlett. Assessing credit card applications using machine learn-
ing. IEEE Ezpert, Fall 1987:71 — 79, 1987.

Philip K. Chan and Salvatore J. Stolfo. Experiments in multistrategy learning by meta-
learning. In Proceedings of the second international conference on information and knowl-
edge management, pages 314 — 323, Washington, DC, 1993.

Peter Clark. Knowledge representation in machine learning. In Yves Kodratoff and Alan
Hutchinson, editors, Machine and Human Learning, advances in European Research,
pages 35 — 49. Michael Horwood, London, 1989.

Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning, 3:261 —
283, 1989.

P. Compton and R. Jansen. Knowledge in context: a strategy for expert system main-
tenance. In Proceedings of the 2nd Australian Joint Artificial Intelligence conference,
volume 406 of Lecture Notes in Artificial Intelligence, pages 292 — 306, Adelaide, 1988.
Springer.

Thomas G. Dietterich and Ryszard S. Michalski. A comparative review of selected meth-
ods for learning from examples. In Michalski et al. [30], pages 41 — 81.

Benjamin S. Duran and Patrick L. Odell. Cluster analysis: a survey, volume 100 of
Lecture Notes in Economics and Mathematical Systems. Spinger-Verlag, 1974.

Jiawei Han, Yandong Cai, and Nick Cercone. Knowledge discovery in databases: An

76

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

REFERENCES

attribute-oriented approach. In Proceedings of the 18th VLDB Conference, pages 547 —
559, Vancouver, British Columbia, Canada, 1992.

Geoffrey E. Hinton. Connectionist learning procedures. In Kodratoff and Michalski [25],
pages 555 — 610.

John H. Holland. Adaptation in natural artificial systems. University of Michigan Press,
Ann Arbor, 1975.

John H. Holland. Escaping brittleness: the possibilities of general purpose algorithms
applied to parallel rule-based systems. In Michalski et al. [31], pages 593 — 623.

John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and Paul R. Thagard. Induction:
processes of inference, learning and discovery. Computational models of cognition and
perception. MIT Press, Cambridge, 1986.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Conference record
of the 14th annual ACM symposium on principles of programming languages, pages 111
— 119, Munich, Germany, 1987.

Kenneth De Jong. Genetic-algorithm-based learning. In Kodratoff and Michalski [25],
pages 611 — 638.

H.J. Kappen. Neurale netwerken, fuzzy rules en artificiele intelligentie. Foundation for
Neural Networks.

Jyrki Kivinen, Heikki Mannila, and Esko Ukkonen. Learning rules with local exceptions.
Technical report, University of Helsinki, 1993.

Yves Kodratoff and Ryszard S. Michalski, editors. Machine Learning, an Artificial In-
telligence approach, volume 3. Morgan Kaufmann, San Mateo, California, 1990.

Pat Langley, Gary L. Bradshaw, and Herbert A. Simon. Rediscovering chemistry with
the Bacon system. In Michalski et al. [31], pages 307 — 329.

D. Lenat. EURISKO: A program that learns new heuristics and domain concepts. The
nature of heuristics III: Background and examples. Artificial Intelligence, 21:61 — 98,
1983.

Richard P. Lippmann. An introduction to computating with neural nets. IEEE ASSP
Magazine, April:4 — 22, 1987.

Ryszard S. Michalski. A theory and methodology of inductive learning. In Michalski
et al. [30], pages 83 — 134.

Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors. Machine
Learning, an Artificial Intelligence approach, volume 1. Morgan Kaufmann, San Mateo,
California, 1983.

Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors. Machine
Learning, an Artificial Intelligence approach, volume 2. Morgan Kaufmann, San Mateo,
California, 1986.

Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The AQ15 inductive
learning system: an overview and experiments. Technical Report UITUCDCS-R-86-1260,
University of Illinois, July 1986.

Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The multi-purpose

REFERENCES 77

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.
49.

50.

51.

incremental learning system AQ15 and its testing application to three medical domains.
In Proceedings of the 5th national conference on Artificial Intelligence, pages 1041 — 1045,
Philadelphia, 1986.

Ryszard S. Michalski and Robert E. Stepp. Learning from observation: conceptual clus-
tering. In Michalski et al. [30], pages 331 — 363.

Marvin Minsky. A framework for representating knowledge. In Patrick Henry Winston,
editor, The Psychology of Computer Vision, pages 211 — 277. McGraw-Hill, New York,
1975.

Tom M. Mitchell, Paul E. Utgoff, and Ranan Banerji. Learning by experimentation:
acquiring and refining problem-solving heuristics. In Michalski et al. [30], pages 163 —
190.

Raymond J. Mooney. Encouraging experimental results on learning CNF. Technical
report, University of Texas, October 1992.

Katharina Morik. Applications of machine learning. In Proc. 6th European Knowledge
Acquisition Workshop, pages 9 — 13. Springer-Verlag, Berlin, 1992.

Stephen Muggleton. Inductive Logic Programming, volume 38 of A.P.I.C. series. Aca-
demic Press Ltd., London, 1992.

Berndt Miiller and Joachim Reinhardt. Neural Networks, an introduction. Physics of
Neural Networks. Springer-Verlag, Berlin, 1991.

Nils J. Nilsson. Principles of Artificial Intelligence. Symbolic Computation. Springer-
Verlag, 1982.

Kamran Parsaye and Mark Chignell. Intelligent databases: tools & applications, chap-
ter 4. John Wiley & Sons, New York, 1993.

Gregory Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In
Piatetsky-Shapiro and Frawley [44], pages 229 — 248.

Gregory Piatetsky-Shapiro and William J. Frawley, editors. Knowledge Discovery in
Databases. AAAI Press, Menlo Park, California, 1991.

J. Ross Quinlan. Comparing connectionist and symbolic learning methods.

J. Ross Quinlan. Learning efficient classification procedures and their application to chess
end games. In Michalski et al. [30], pages 463 — 482.

J. Ross Quinlan. The effect of noise on concept learning. In Michalski et al. [31], pages
149 — 166.

J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81 — 106, 1986.

J. Ross Quinlan. Generating production rules from decision trees. In Proceedings of the
10th International Joint Conference on Artificial Intelligence, pages 304 — 307, Milan,
1987.

J. Ross Quinlan. An emperical comparision of genetic and decision-tree classifiers. In
Proceedings of the 5th International Conference on Machine Learning, pages 135 — 141,
Ann Arbor, 1988.

J. Ross Quinlan. Determining literals in inductive logic programming. In Proceedings
of the 12th International Joint Conference on Artificial Intelligence, pages 746 — 750,

78

52.
53.

54.

55.
56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

REFERENCES

Sydney, Austalia, 1991.
J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1992.

R. Bharat Rao and Stephen C-Y. Lu. A knowledge-based equation discovery system for
engineering domains. IEEFFE Fxpert, August 1993:37 — 42, 1993.

Gordon A. Ringland and David A. Duce, editors. Approaches to Knowledge Representa-
tion: An Introduction. Research studies press Ltd., Letchworth, England, 1988.

Ronald L. Rivest. Learning decision lists. Machine Learning, 2:229 — 246, 1987.

Claude Sammut and Ranan B. Banerji. Learning concepts by asking questions. In
Michalski et al. [31], pages 167 — 191.

Sabrina Sestito and Tharam Dillon. Using single layered neural networks for the extrac-
tion of conjunctive rules and hierarchical classifications. Journal of Applied Intelligence,
1:157 — 173, 1991.

David C. Sills. William of Ockham. In International Encyclopedia of the Social Sciences,
pages 269 — 270. Macmillan Company & The Free Press, New York, 1968.

William M. Spears and Kenneth De Jong. Using genetic algorithms for supervised concept
learning. In Proceedings of tools for Al 1990.

Jeffrey D. Ullman. Principles of database and knowledge-base systems, volume 2, vol-
ume 14 of Principles of Computer Science. Computer Science Press, 1989.

Paul E. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161 — 186,
1989.

Les G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134 — 1142,
1984.

Michael G. Walker. How feasible is automated discovery. IEEE Ezpert, Spring 1987:69 —
82, 1987.

Gio C.M. Wiederhold, Michael G. Walker, Robert L. Blum, and Stephen M. Downs.
Acquisition of knowledge from data. In ACM SIGART International Symposium on
Methodologies for Intelligent Systems, pages 74 — 84, Knoxville, Tennessee, 1986.

Jan M. Zytkow. Combining many searches in the FAHRENHEIT discovery system. In
Proceedings of the fourth international workshop on machine learning, pages 281 — 287,
San Mateo, California, 1987. Morgan Kaufmann.

Jan M. Zytkow and John Baker. Interactive mining for regularities in databases. In
Piatetsky-Shapiro and Frawley [44], pages 31 — 53.

