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�� Introduction

The aim of this paper is to relate initial algebra semantics and �nal coalgebra semantics� It is
shown how these two approaches to the semantics of programming languages are each others
dual� and some conditions are given under which they coincide� More precisely� it is shown
how to derive initial semantics from nal semantics� using the initiality and nality to ensure
their equality� Moreover� many facts about congruences �on algebras� and �generalized�
bisimulations �on coalgebras� are shown to be dual as well�
Initial algebra semantics is a well�established technique in the study of programming lan�

guages� while nal coalgebra semantics is a more recent one� In initial semantics� a meaning
is assigned to programs in a compositional manner� In nal semantics� the attention is rather
focussed on describing the observational behavior of programs� once it has been decided
what should be considered as observable� programs which are observationally equivalent are
identied�
Initial semantics exploits the fact that the collection of terms of a given signature � forms

an initial ��algebra� The semantics is determined by xing another ��algebra as a semantic
domain� in which the function symbols of � are interpreted� The semantic mapping of the
terms into this semantic domain is canonically given by initiality� and is compositional with
respect to the signature�
Likewise� nal semantics exploits the fact that� given a notion of observation� say G� the

elements of a nal G�coalgebra are equal if and only if they are observationally equivalent
�w�r�t� G�� Once a �G��coalgebra structure is given to the terms of the language� the se�
mantic mapping is again canonically given� but now by nality instead of initiality� This
semantic mapping has the property of identifying terms if and only if they are observation�
ally equivalent� �The interest of observational equivalences for programming languages arose
in connection with the study of concurrent and non�deterministic languages� where�in con�
trast with sequential �imperative� languages with their clear input�output behavior�various
kinds of observations are meaningful��

Let us give some further explanation� In initial semantics� an endofunctor �� is associated
with a signature �� then a ��algebra is simply a set X and a function

� � ���X�� X�

More generally� for any endofunctor F on an arbitrary category� an F �algebra is an object C
and an arrow

� � F �C�� C�

Dually� a coalgebra of an endofunctor G is an object C and an arrow

� � C � G�C��

Certain endofunctors are suitable for formalizing observations� In this paper� the following
two functors are used� The �covariant� endofunctor Pf�A� � �� which assigns to a set S the
collection of all nite subsets of A � S� is used to describe strong bisimulation equivalence�
Its coalgebras are in one�to�one correspondence with �nitely branching� labelled transition
systems� by viewing a transition relation R on S � A � S �for a set S of states and a set A
of labels� as a �non�deterministic� function
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� � S � Pf �A�S��
Secondly� the functor � �A �r � � dened on the category of �join� semi�lattices is used to
describe trace equivalence� �Here A�r � denotes� for a given set A� the right tensor product�
which will be introduced here�� The coalgebras of this functor correspond to a proper subclass
of transition systems called linear � because they have a semi�lattice structure�

We shall formulate some general conditions under which an initial semantics can be de�
rived from a nal one� A crucial step in the construction is reminiscent of a technique used
�although for apparently di�erent reasons� in the semantics of the lambda calculus� the ex�
tension of the collection of terms �over a given signature� with the elements of the semantic
domain� regarded as constants� Another important step will be made under the assumption
that bisimulation is a congruence� As pointed out in �GV���� this can be ensured by consid�
ering only transition systems that are dened by means of a transition system speci�cation
��Plo��b��� in which the axioms and rules are of a restricted syntactic format�
First an initial semantics for strong bisimulation is derived �using the functor Pf�A� � ���

Next the construction of an initial semantics from nal semantics is formulatedmore generally
for arbitrary categories and functors �the reverse direction is brie�y discussed as well�� Then
it is applied to obtain semantics for trace equivalence �using the functor � �A �r � ��
The initial semantics� which is canonically constructed here� turns out to be�for certain

specic signatures�the same as already existing denotational models� The initial semantics
of the example in Section 
�� coincides with �a variant of� a compositional model given in
�BM���� Similarly� the linear semantics of Section � is essentially the compositional model
from �HP���� In both papers� observational and compositional semantics are dened inde�
pendently� and their equivalence is proved next using some xed�point argument �in metric
and ordered spaces� respectively�� Interestingly� such xed�point arguments are not needed
here� but rather the uniqueness of initial and nal arrows is exploited�

In Sections � and �� the denitions and properties needed for the above construction are
given in all detail� They are of some interest for their own sake� since the denitions and facts
about coalgebras will simply be dual versions of similar denitions and facts about algebras�
Let us mention the following examples� The denitions of congruence and �generalized�
bisimulation are dual� Homomorphisms of algebras are precisely those functions whose graph
is a congruence� dually� homomorphisms of coalgebras are those functions whose graph is
a bisimulation� The kernel of a homomorphism of algebras is a congruence� and the kernel
of a homomorphism of coalgebras �for most functors� is a bisimulation� As a last example�
the equality relation on an initial algebra is the smallest congruence� yielding an induction
principle� Dually� the equality relation on a nal coalgebra is the greatest bisimulation� which
can be seen as a coinduction principle�
Thus� since the world of algebras and in particular that of ��algebras has been intensively

studied �think of universal algebra�� these �and other� correspondences used in this paper
pave the way for a more systematic exploitation of results about algebras in the study of
coalgebras�
�Note that some care is needed� however� In particular� the duality between algebras and

coalgebras involves the reversal of the arrow between an object and its image under the
functor application� At the same time� the direction of the homomorphisms between algebras
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and coalgebras is the same �with respect to the underlying category���

Further References and Related Work

Given its widespread use� references to initial semantics are probably super�uous� Let us just
mention �GTW��� as an early reference� and �MG��� for an overview� For nal semantics�
instead� let us try to give a more detailed account�
One of the main features of nal semantics is that it is independent of the specic way

in which the semantic domains are constructed� It is dened in terms of their �universal�
properties only� Traditionally� semantic domains have been constructed in a recursive manner
by using sets with some additional structure� like partial orders or metric spaces� �See� e�g��
�SP��� Ken��� AR���� See also �ArM��� for an early reference on nal coalgebras of functors
on sets�� A construction of semantic domains in terms of sets with no additional structure
occurs in �Acz���� however� a non�standard set theory is used in which sets may be non�well�
founded� In the same book� the nal coalgebra of a powerset functor appears as a model
of this theory� Furthermore it is used for giving both an observational and a compositional
semantics for the language CCS � �The observational semantics is with respect to strong
bisimulation� for the compositional semantics� an adhoc method is used rather than a general
methodology�� Later� in �AM���� more attention is given to nal coalgebras in the category of
�ordinary� sets� Moreover� the notion of �generalized� bisimulation of a functor is introduced
there� In �Bar���� the results of �AM��� are expanded� �The existence of a nal coalgebra of
the functor Pf �A� � � is proved in the present paper using a theorem from �Bar�����
In our previous paper �RT���� a rst step is made towards a generalization of the above

notions to a� say universal� semantics based on nal coalgebras� Properties of arbitrary
categories of coalgebras are studied there� and the above mentioned approaches to the con�
struction of semantic domains are put into a unifying framework�
Recently� in �TJ���� it has been shown how to express trace equivalence and applicative

bisimulation �in the sense of �Abr���� in terms of coalgebras� The former is the same as the
nal semantics for trace equivalence used in the present paper� The latter is a reformulation in
terms of nal semantics of Abramsky�s observational semantics for his lazy lambda calculus�
it is given in an �order�enriched� setting� �See �Fio��� Rut��� Pit��� for related work in
order�enriched categories��
The idea of deriving compositionalmodels from observational semantics based on transition

system specications is already described in �DG��� and �Bad���� A more general construction
is given in �Rut���� which is the starting point for the present paper� here we abstract from
the specic observational equivalence used there �bisimulation� by means of nal semantics�
Moreover� we exploit the generality of this formulation for applying the same method also to
trace equivalence�

How to Read this Paper

Sections and remarks marked by three stars� as in Important			� are intended for second
reading�
Sections �� � and 
�with the exception of remarks and subsections marked by three

stars�do not presuppose any knowledge of category theory� Everything is formulated in
the category of sets and functions �at the price of omitting certain generalizations� which will
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be described elsewhere�� and the exposition is� at many places� very concrete and detailed�
Instead� Sections � and � use several constructions and results from category theory�
Readers with some categorical background might want to read the rst two sections more

quickly� They are also invited to make the generalizations that are left implicit there� Section
��� might be of particular interest since it� together with Section ��
� provides a bridge between
the construction of nal coalgebras as given in �AM��� and the one in �Bar���� Section � might
be a good example of the generality of the nal semantics approach�

�� Algebras

The well�known notion of algebra of an �endo��functor is used to describe the familiar concept
of ��algebras� There are two main reasons for choosing this somewhat abstract way of
presentation here� Firstly� it will allow for a transparent and precise formulation and proof of
our main constructions �in Sections 
 and ��� Secondly� the notion of algebra is dual to that
of coalgebra� which�as we shall argue�is very suitable for describing transition systems and
their properties� Also the notions of congruence and bisimulation will turn out to be each
others dual� As a consequence� certain facts and proofs in the world of coalgebras are simply
the dual versions of their counterparts in the dual world of algebras� Since in particular
��algebras are studied in a renowned eld of research such as universal algebra�and in fact�
the observations in this section will come as no surprise to anyone with some basic knowledge
thereof�the exploitation in the present paper of the duality between algebras and coalgebras
can furthermore be seen as a rst step towards a more systematic exploitation of results
about algebras in the world of coalgebras�
We shall work with the category Set consisting of sets and functions� and shall consider

functors from this category to itself� �One might already from the beginning want to keep in
mind� that almost all what follows equally well applies to arbitrary categories and functors�
In Section �� a di�erent category will be considered��
Let F � Set � Set be a functor� Such a functor is called an endofunctor on Set� It maps

sets to sets� and functions between sets to functions between their images� in such a way that
composition of functions is preserved and identity functions are mapped to identity functions�

Definition ��� An F �algebra is a pair �A� ��� consisting of a set A and a function � �
F �A� � A� A homomorphism f � �A� ��� �B� �� between F �algebras �A� �� and �B� �� is a
function f � A� B satisfying f � � � � � F �f��

F �A�
F �f�� F �B�

�

A

�

�

f
� B
�

�

�Such an f will also be called an F �homomorphism�� Composition of two homomorphisms f
and g between F �algebras is dened by g � f � the function composition of f and g� and yields
again a homomorphism� The collection SetF of F �algebras and algebra homomorphisms
constitutes a category� �
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An initial object in a category is an object A such that for any other object B there exists
a unique arrow from A to B� Thus an F �algebra �A� �� is initial if for any other F �algebra
�B� �� there exists a unique homomorphism I � �A� ��� �B� ���
The following result is classical�

Theorem ��� Initial F �algebras �A� �� are �xed points of F � that is� � � F �A� � A is an
isomorphism�

Proof� Let �A� �� be an initial F �algebra� Then also �F �F �A��� F ���� is an F �algebra and
by initiality of �A� ��� there exists a homomorphism I � �A� ��� �F �F �A��� F �����

F �A�
F �I�� F �F �A��

�

A

�

�

I
� F �A�

�

F ���

Since the following diagram commutes trivially�

F �F �A��
F ���� F �A�

�

F �A�

F ���

�

�
� A�
�

�

it follows that ��I � �A� ��� �A� �� is a homomorphism� Because also �A is a homomorphism
from �A� �� to itself� it follows by the initiality of �A� �� that �A � � � I� Moreover�

I � � � F ��� � F �I�
� F �� � I�
� F ��A�

� �F �A��

showing that � is an isomorphism� �

If one sees categories and functors as generalizations of preordered sets and monotone func�
tions� algebras of a functor correspond to pre�xed points� Initial algebras correspond to least
xed points�
Next the notion of a congruence is introduced �cf� �Man�����

Definition ��� An F �congruence between two F �algebras �A� �� and �B� �� is a relation R
on A� B such that it can be extended to a subalgebra of the product of �A� �� and �B� ���
That is� R is an F �algebra �R� ��� with � � F �R� � R as given below� such that its projections
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�� � R� A and �� � R� B �dened by ����a� b�� � a and ����a� b�� � b� for �a� b� � A�B�
are homomorphisms of F �algebras�

F �A� �
F ����

F �R�
F ����� F �B�

� �

A

�

�
�

��
R
�

�

��
� B
�

�

Note that there is at most one such function � making the diagram above commute� It is
determined by the requirement that for any x � F �R��

��x� � h� � F �����x�� � � F �����x�i�
�

Note that the above denition of congruence does not require R to be an equivalence� as
opposed to the standard denition of a congruence on a ��algebra �see Example ��
��

��� ��Algebras

In this section� we shall rst dene� for a given signature �� a functor �� on Set� Then
the denitions �of algebra and congruence� given above for arbitrary endofunctors on Set

will be applied to ��� We shall see that the resulting ���algebras and ���homomorphisms
are precisely the familiar ��algebras and the homomorphisms between ��algebras� Further�
a congruence on a ��algebra will turn out to be an instance of the �slightly more general�
notion of ���congruence� Finally� the usual ��algebra of �closed� terms is shown to be an
initial ���algebra�
Let ��� r� be a single�sorted signature �ranked alphabet�� consisting of a set � of function

symbols� and a ranking function r � � � N � which assigns to each function symbol f � � a
natural number r�f�� called the rank �or arity� of f � The functor �� � Set� Set is a functor
dened as follows� For a set X �

���X� �
a
f��

Xr�f��

where
�

denotes the disjoint sum �coproduct�� X� is a singleton set �nal object� � � f�g
and

Xk � fhx�� � � � � xki j x� � X� � � � � xk � Xg�
if k � �� �Note that here and in the sequel� the symbol � is used as �dening equality �
meaning that the left side is being dened� whereas the right side is assumed to be already
known�� Equivalently�

���X� �
�
f��

ffg �Xr�f��
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�Elements �f� hx�� � � � � xr�f�i� of ffg �Xr�f� will be denoted by fhx�� � � � � xr�f�i�� A function
h � X � Y is mapped by �� to the function ���h� � ���X� � ���Y �� which is dened� for
any fhx�� � � � � xr�f�i � ���X�� by

���h��fhx�� � � � � xr�f�i� � fhh�x��� � � � � h�xr�f��i�
Consider a ���algebra �X���� Since the function � � ���X� � X has a �disjoint� sum as

domain� the restriction of � to each of the components of this sum determines a family of
functions

ffX � Xr�f� � X j f � �g�
by putting� for any f � � and hx�� � � � � xr�f�i � Xr�f��

fX�hx�� � � � � xr�f�i� � ��fhx�� � � � � xr�f�i��

�Note that the argument of fX is an element of Xr�f�� whereas the argument of � is an
element of ffg�Xr�f��� Conversely� reading this denition right to left shows that any such
family determines a function � from ���X� to X � Thus the ���algebras are precisely the
usual ��algebras�
Let �X��� and �Y� �� be two ���algebras� A function h � X � Y is a homomorphism of

���algebras�

���X�
���h�� ���Y �

�

X

�

�

h
� Y
�

�

if and only if� for any f � � and hx�� � � � � xr�f�i � Xr�f��

h�fX�hx�� � � � � xr�f�i�� � fY �hh�x��� � � � � h�xr�f��i��
This follows from the observation that in the following sequence of equations�

h�fX�hx�� � � � � xr�f�i�� � h���fhx�� � � � � xr�f�i��
� �����h��fhx�� � � � � xr�f�i��
� ��fhh�x��� � � � � h�xr�f��i�
� fY �hh�x��� � � � � h�xr�f��i��

the second equality holds if and only if h is a ���homomorphism�and the other equalities hold
always�� Since a homomorphism of ��algebras is usually dened as a function h satisfying

h�fX�hx�� � � � � xr�f�i�� � fY �hh�x��� � � � � h�xr�f��i��
it follows that the notions of ���homomorphism and ��homomorphism coincide�
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���Congruences� The notion of ���congruence generalizes the standard notion of a con�
gruence� Let �X��� be a ���algebra� and let R 	 X �X be a relation on X � It is a simple
exercise to verify that R can be extended �in a unique way� to a ���congruence �R� ���

���X� �
������

���R�
������� ���X�

� �

X

�

�
�

��
R
�

�

��
� X
�

�

if and only if R is a congruence relation in the traditional sense� that is� for all f � � and
sequences hx�� � � � � xr�f�i and hx��� � � � � x�r�f�i in Xr�f��

if �xi� x
�
i� � R� for i � f�� � � � � r�f�g�

then �fX�hx�� � � � � xr�f�i�� fX�hx��� � � � � x�r�f�i�� � R�

Example ��� Consider the signature fs� �g� consisting of a unary function symbol s �for
successor� and a constant �� Let N � f�� �� �� � � �g be the set of natural numbers� and let
� � N � � � N be dened by ��n� � n � �� for n � N and ���� � �� Then �N� �� is an
example of a fs� �g��algebra�
As an example of a congruence relation on N � consider the set

E � f�n�m� � N �N j n �m is even g�
together with the function � � E �� � E mapping �n�m� in E to �n� �� m���� again in E�
and � to ��� ���
The following example shows that a congruence need not always be an equivalence relation�

Let �X��� be the fs� �g��algebra consisting of a three element set X � fx� y� zg and the
function � � �X � �� � X that is the identity on X and maps � to x� Next consider the
relation R � f�x� x�� �x� y�� �y� z�g on X � which forms a fs� �g��congruence on �X��� together
with the function � � �R���� R� which is dened as the identity on R and maps � to �x� x��
Now R is an example of a congruence relation that is neither re�exive� nor symmetric� nor
transitive� �

Definition ��� The kernel of a function h � X � Y is the set

Kh � f�x� x�� � X �X j h�x� � h�x��g�
The graph Gh of h is dened as

Gh � f�x� y� � X � Y j h�x� � yg�
�

The next two propositions state that the kernel and the graph of a ���homomorphism are
congruences� In fact they hold for arbitrary functors� As we shall see in Section �� they
have a dual counterpart in the world of coalgebras� where the kernel and the graph of a
homomorphism of coalgebras is a bisimulation �Propositions ��� and �����
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Proposition ��	 Let �X��� and �Y� �� be two ���algebras� and let h � X � Y be a function�
If h is a ���homomorphism then its kernel Kh is a ���congruence� �

A proof of this proposition� and an example showing that its converse is false� are easily
found� For the latter� consider the algebra �N� �� of the natural numbers �see Example ��
��
and the function h � N � N that takes n � N to n��� the kernel of h is the identity relation
on N � which is always a congruence� but h is not a homomorphism from �N� �� to itself�
In this respect� graphs are better behaved�

Proposition ��
 A function h � X � Y is a homomorphism of ���algebras �X��� and
�Y� �� if and only if its graph Gh is a ���congruence �Gh� �� between �X��� and �Y� ���

Proof� Let �X��� and �Y� �� be two ���algebras� and let h � X � Y be a function� Dene
a function � on ���Gh�� for any fh�x�� h�x���� � � � � �xr�f�� h�xr�f���i in ���Gh�� by

��fh�x�� h�x���� � � � � �xr�f�� h�xr�f���i� �

h��fhx�� � � � � xr�f�i�� ��fhh�x��� � � � � h�xr�f��i�i�

Note that the righthand side of the above equation is an element of Gh if and only if

h���fhx�� � � � � xr�f�i�� � ��fhh�x��� � � � � h�xr�f��i��
Since the latter term is equal to

�����h��fhx�� � � � � xr�f�i���
it follows that �Gh� �� is a congruence if and only if h is a ���homomorphism� h�� � �����h��

�

Initial Semantics� An initial ���algebra �T� �� is given by the usual free construction of
terms over �� the set T can be constructed as the union of a sequence of sets �Tn�n given by
T� � 
 and for n � ��

Tn�� � ff�t�� � � � � tr�f�� j f � � and ti � Tn for i � �� � � � � r�f�g�
�If r�f� � � then f�t�� � � � � t�� should be read as f � This implies that the set Tn� for any n

contains all constants� As a consequence� it can be proved inductively that Tn is contained in
Tn���� The function � � ���T �� T is dened� for any f � � and fht�� � � � � tr�f�i � ffg�T r�f��
by

��fht�� � � � � tr�f�i� � f�t�� � � � � tr�f���

Note that � is indeed an isomorphism� Similarly� the set TX of terms over � with variables
in a given set X � is obtained as the union of a sequence �Vn�n with V� � 
 and� for n � ��

Vn�� � X � ff�t�� � � � � tr�f�� j f � � and ti � Vn for i � �� � � � � r�f�g�
The set TX is an initial algebra of the functor ��X � Set� Set dened� on sets S� by

��X�S� � X ����S��
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Now consider an arbitrary ���algebra �X���� By the initiality of �T� �� there exists a
unique homomorphism I � �T� ��� �X����

���T �
���I�� ���X�

�

T

�

�

I
� X�

�

�

called the initial semantics for X � By the commutativity of the diagram above� it is compo�
sitional � satisfying for all f � � and ht�� � � � � tr�f�i in T r�f��

I�f�t�� � � � � tr�f��� � fX�I�t��� � � � � I�tr�f����

Example ���� continued� The construction of an initial fs� �g��algebra yields the set of
terms

I � f�� s���� s�s����� � � �g�
together with a function 	 from ���I� to I � Clearly� this initial algebra �I� 	� is isomorphic
to �N� ��� which therefore is initial as well� �In general� many initial algebras may exist but
they are all isomorphic��
For a simple example of initial semantics� consider the fs� �g��algebra �A� �� given by

A � fo� eg �for odd and even�� and � � A � � � A mapping o� e� and � to e� o� and e�
respectively� The initial semantics I � N � A then maps even natural numbers to e and odd
natural numbers to o� �

��� Smallest Congruences and Induction���

Let F � Set � Set be a functor� Let �A� �� be an initial F �algebra and let �R� �� be
an F �congruence on �A� ��� with projections ��� �� � �R� �� � �A� ��� By the initiality
of �A� �� there exists a �unique� homomorphism i � �A� �� � �R� ��� Again by initiality�
�� � i � �A � �� � i� This implies� for any a � A that i�a� � ha� ai is in R� Thus the
equality relation �A on A is contained in R� Since �A itself is an F �congruence on �A� ��� we
have proved the following theorem� It is dual to Theorem ��
� which states that the equality
relation �A on a nal F �coalgebra �A� �� is the greatest F �bisimulation on �A� ���

Theorem �� For an initial F �algebra �A� ��� the equality relation �A on A is the smallest
F �congruence�

�A�
�
fR 	 A�A j R is an F �congruence on �A� �� g�

This theorem can be interpreted as a principle of induction� as is illustrated by the following�

Example ���� continued� Applying Theorem ��� to the initial fs� �g��algebra N � the
natural numbers� yields� for every R 	 N � N such that h�� �i � R and such that� for all
hm�ni � N � N � if hm�ni � R then hm � �� n� �i � R� we have �N	 R� It is easy to see
that this is equivalent to the well�known principle of mathematical induction� for all P 	 N �

if � � P and �n � N� n � P � n � � � P � then P � N�
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�� Coalgebras

A coalgebra of a functor is dened as the dual of an algebra� Labelled transition systems
correspond to the coalgebras of a certain functor �because of a well�known bijection between
relations and non�deterministic functions�� Similarly� bisimulations are coalgebras ��AM�����
�See also �Ken��� for an early reference�� In �RT���� these ideas are further developed and
systematically employed in giving semantics �called �nal semantics since it is based on the
notion of nal coalgebra� to �generalized� transition systems� In �TJ���� this framework is
applied to linear semantics �which will be treated in Section �� and to the lazy lambda
calculus�
In this section� the main denitions and theorems of �RT��� are recalled� now formulated

for the category Set� �But again� most of it applies to arbitrary categories�� Furthermore� the
category of coalgebras of one particular functor on sets is investigated in great detail� All of
the denitions and theorems� formulated for arbitrary functors on Set� are next instantiated
for this functor� yielding familiar notions� In particular� the coalgebras of this functor exactly
correspond to the standard labelled transition systems� Many properties of such systems�
some new� some already known�are formulated and proved in an elegant way� by using some
basic properties of coalgebras and coalgebra homomorphisms�
Consider a functor F � Set� Set�

Definition ��� An F �coalgebra is a pair �A� ��� consisting of a set A and a function � �
A� F �A��
A homomorphism of F �coalgebras f � �A� ��� �B� �� �or F �homomorphism� is a function

f � A� B satisfying F �f� � � � � � f �

A
f � B

�

F �A�

�

�

F �f�
� F �B�

�

�

Composition of two homomorphisms f and g between between F �coalgebras is dened by
g � f � and yields again a homomorphism� The collection SetF of F �coalgebras and coalgebra
homomorphisms constitutes a category� �

Definition ��� An F �bisimulation between two F �coalgebras �A� �� and �B� �� is a relation
R 	 A�B that can be extended to an F �coalgebra �R� ��� for some � � R� F �R�� such that
its projections �� � R� A and �� � R� B are homomorphisms of F �coalgebras�

A �
��

R
�� � B

� �

F �A�

�

�
�
F ����

F �R�
�

�

F ����
� F �B�

�

�
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Note that in general there may be more than one such function �� �

An F �coalgebra �A� �� is �nal if for any other F �coalgebra �B� �� there exists a unique
homomorphism f � �B� �� � �A� ��� It is weakly �nal if there exists at least one such
homomorphism�

��� Basic Facts

The following theorem is the dual of Theorem ����

Theorem ��� Final F �coalgebras �A� �� are �xed points of F � that is� � � A � F �A� is an
isomorphism� �

Final F �coalgebras are of particular interest because of the following property� For any
F �coalgebra �A� ��� let �A be dened as the union of its F �bisimulations�

�A�
�
fR 	 A�A j R is an F �bisimulation on �A� ��g�

Two elements a and a� in A with a �A a� are called �F ��bisimilar � �For most functors� �A is
itself a bisimulation relation� A su!cient condition is that F weakly preserves kernels� Cf�
Remark ��� and Section ����� The following theorem �from �RT���� is easily derived from a
similar result in �AM����

Theorem ��� A �nal F �coalgebra �A� �� is strongly extensional	 For all a� a� � A�

if a �A a� then a � a��

Since the equality relation �A on any F �coalgebra �A� �� can be readily seen to be a bisimu�
lation� this implies �A��A� that is�

�A�
�
fR 	 A�A j R is an F �bisimulation on �A� ��g�

Proof� Immediate from the fact that the two projections ��� �� � �R� �� � �A� ��� of any
F �bisimulation �R� �� on �A� ��� are equal by the nality of �A� ��� �

Note that the above theorem is dual to Theorem ���� It can be seen as a proof principle�
called the principle of coinduction� in order to prove the equality of two elements� it su!ces
to establish the existence of a bisimulation between them�
Recall that the kernel of a homomorphismbetween ���algebras is a congruence �Proposition

����� To prove the dual fact that the kernel of a homomorphism of F �coalgebras is an F �
bisimulation� a condition on the functor F is needed� A su!cient condition is that F weakly
preserves kernels� All familiar functors� which are dened using constants� products� sums
and powerset constructions� satisfy this condition� In particular� all functors used in this
paper do�

Remark ��� 


 The functor F weakly preserves kernels if KF �f� can be injectively mapped
into F �Kf �� If KF �f�

�� F �Kf� then F is said to preserve kernels� It is not di�cult to show
that the function � de�ned for �a� a�� � Kf by ��a� a�� � ���a�� ��a���� maps into KF �f��
If F weakly preserves kernels this actually de�nes a function into F �Kf �� and �Kf � �� is a
bisimulation on �A� ��� A more general� categorical fact underlying this observation is that
for endofunctors F �on a category C� that preserve pullbacks� the forgetful functor from CF
to C creates pullbacks� �
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The fact that the kernel of an F �coalgebra homomorphism is a bisimulation �for functors
F that weakly preserve kernels�� is used to prove the following�

Theorem ��	 ��RT��� Let F weakly preserve kernels� Let �A� �� be a �nal F �coalgebra and
�B� �� be any F �coalgebra� Let F be the unique homomorphism from �B� �� to �A� ��� For
all b� b� � B�

b �B b� if and only if F�b� � F�b���

Proof� The implication from left to right follows from the fact that for an F �bisimulation
�R� �� on �B� ��� F � ���F � �� � �R� �� � �A� �� both are homomorphisms to the nal F �
coalgebra �A� ��� The converse is immediate from the assumption that F weakly preserves
kernels� by which KF is an F �bisimulation on �B� ��� �

��� Labelled Transition Systems

In this section� the above denitions and theorems will be applied to one particular functor�
We shall see that its coalgebras correspond to labelled transition systems� and that the
denition of F �bisimulation yields the familiar notion of strong bisimulation�
Let A be a given �possibly innite� set� Let P�A� �� � Set � Set be the functor dened�

on sets S� by

P�A�S� � fV 	 A� Sg�
P�A� �� maps a function f � S � T to the function P�A�f� � P�A�S� � P�A�T �� which
is dened� for any V � P�A�S�� by

P�A�f��V � � fha� f�s�i � A� T j ha� si � V g�
The coalgebras of this functor are in one�to�one correspondence with labelled transition sys�
tems over A� that is� triples hS�A��i consisting of a set S of states� the set A of labels�
and a transition relation �	 S � A � S� �As usual� we write s

a�� s� for hs� a� s�i ����
For to any P�A� ���coalgebra �S� ��� a labelled transition system hS�A��i can be assigned
�one�to�one� by putting� for s� s� � S and a � A�

s
a�� s� � ha� s�i � ��s��

Bisimulation� The P�A� ���bisimulations between two P�A� ���coalgebras �S� �� and
�T� �� are precisely the usual strong bisimulations between transition systems ��Par��� Mil�����
a relation R 	 S � T can be extended �not necessarily uniquely� to a P�A� ���bisimulation
�R� ���

S �
��

R
�� � T

� �

P�A�S�

�

�
�
P�A����

P�A�R�
�

�

P�A����
� P�A�T �

�

�
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if and only if R is a strong bisimulation between S and T � seen as transition systems� that
is� for all s � S and t � T with �s� t� � R�

��� if s
a�� s�� for some s� � S�

then t
a�� t� for some t� � T with �s�� t�� � R�

��� if t
a�� t�� for some t� � T �

then s
a�� s� for some s� � S with �s�� t�� � R�

The implication from left to right follows from the observation that the commutativity of the
left and right squares in the above diagram implies conditions ��� and ���� respectively�
For the converse� consider a bisimulation relation R on S�T satisfying clauses ��� and ����

As is well known� a bisimulation relation can be turned into a transition system by dening�
for �s� t� and �s�� t�� in R�

�s� t�
a�� �s�� t�� � s

a�� s� and t
a�� t��

This transition system� which has the set R for its set of states� can be turned into a P�A� ���
bisimulation �R� �� in the canonical way described at the beginning of Section ���� dene
� � R� P�A�R�� for �s� t� � R� by

���s� t��� fha� �s�� t��i j �s� t� a�� �s�� t�� �and �s�� t�� � R �g�
It follows from ��� and ��� that �R� �� is a P�A� ���bisimulation� that is� that �� � �R� ���
�S� �� and �� � �R� ��� �T� �� are homomorphisms�
Now that we have seen the correspondence between strong bisimulations and P�A� ���

bisimulations� the two notions will be used in what follows interchangeably�
The following two propositions are the duals of Propositions ��� and ���� They are for�

mulated for the functor P�A� �� but also hold for arbitrary functors �that weakly preserve
kernels��

Proposition ��
 Let �S� �� and �T� �� be two P�A� ���coalgebras� and let f � S � T be a
function� If f is a P�A� ���homomorphism then its kernel Kf is a P�A� ���bisimulation�

�

The proof is easy and therefore omitted� Its converse does not hold �and a counter example
is again easily found��

Proposition �� A function f � S � T is a homomorphism of coalgebras from �S� �� to
�T� �� if and only if its graph Gf is a bisimulation�

Proof� First note that the graph Gf is a bisimulation if and only if the following two
conditions are satised� for all s � S�

��� if s
a�� s�� for some s� � S� then f�s�

a�� f�s���

��� if f�s�
a�� t� for some t � T � then there exists s� � S with
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s
a�� s� and f�s�� � t�

Further note that� by denition� the function f is a homomorphism if and only if the following
diagram commutes�

S
f � T

�

P�A�S�

�

�

P�A�f�
� P�A�T �

�

�

which is equivalent to the equality of the following two sets� for every s � S�

� � f�s� � fha� ti � A � T j f�s� a�� s�g�

P�A�f� � ��s� � fha� f�s�i � A� T j s a�� s�g�

�Recall the correspondence between transition relations and coalgebras�� Now the theorem
follows from the observation that conditions ��� and ��� above are equivalent to the inclusions
of P�A�f� � ��s� in � � f�s�� and of � � f�s� in P�A�f� � ��s�� respectively� �

A function f � S � T satisfying condition ��� is sometimes called a morphism of transition
systems � For a category of labelled transition systems� in which�a variant of�such mor�
phisms are taken as the arrows� see �WN���� If f satises both ��� and ��� it is sometimes
called a saturating morphism ��AD����� Bisimulations like Gf are called functional �

Remark ��� 


 Both Proposition ��� and Proposition ��� could be given simple categorical
proofs by viewing the graph of a function f � S � T as the pullback of f with the identity
function on T � Such proofs could then be easily seen to be each others dual� �

With what above� one can prove that P�A� ���homomorphisms satisfy yet another useful
property�

Theorem ���� Let f � �S� ��� �T� �� be a homomorphism of P�A� ���coalgebras� For any
bisimulation R 	 S � S� the set

Rf � f�f�s�� f�s��� � T � T j �s� s�� � Rg
is a bisimulation on T � Conversely� for any bisimulation R 	 T � T � the set

Rf � f�s� s�� � S � S j �f�s�� f�s��� � Rg
is a bisimulation on S� Thus P�A� ���homomorphisms are bisimulation preserving and re�
�ecting�

Proof� The �relational� inverse of a bisimulation and the �relational� composition of two
bisimulations yields again a bisimulation� Then the theorem follows from

Rf � �Gf�
�� �R �Gf and Rf � Gf �R � �Gf�

��
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�where the composition of relations should be read from left to right�� �

Although it has not been stated� a similar property holds for congruences and algebras�

Branching Final Semantics� Clearly� there does not exist a nal coalgebra for the functor
P�A� �� � Set� Set� any nal coalgebra is a xed point� and the functor P�A� �� does not
have any xed points� for� the assumption that X � for any set X � is isomorphic to P�A�X�
leads to a contradiction� since the cardinality of the latter is �for non�empty A� strictly bigger
than the cardinality of X �
Therefore we shall consider a restriction of the functor P�A� ��� for which there does exist

a nal coalgebra� It is the functor Pf�A� �� � Set� Set� which is dened� on sets S� by

Pf�A�S� � fV 	 A� S j V is niteg�
on functions� Pf�A� �� is dened as before� The coalgebras of this functor are in one�to�one
correspondence with labelled transition systems hS�A��i that are �nitely branching � for all
s � S the set fha� s�i � A � S j s a�� s�g is nite� Note that all the observations made
in Section ��� about labelled transition systems and coalgebras of P�A� ��� also apply to
nitely branching labelled transition systems and coalgebras of Pf�A� ���
In �Bar���� it is shown that there exists a nal coalgebra �P� 
� for the functor Pf�A� ���

The set P�the elements of which will be called processes�can be obtained by rst construct�
ing the collection of all nitely branching ordered �possibly innitely deep� trees with labels
fromA� and next taking the set of all Pf�A� ���bisimulation equivalence classes of such trees�
�Recall that Pf �A� ���bisimulation coincides with the usual notion of �strong� bisimulation��
Since the construction of the nal coalgebra �P� 
� has some interest of its own� and since
it turns out that the original construction in �Bar��� can be somewhat simplied� we shall
describe it in some detail in Section ��
�

Remark ���� 


 The family of labelled transition systems hS�A��i that are image nite�
for all a � A and s � S� the set fs� � S j s a�� s�g is �nite�can be similarly described as the
category of coalgebras of the functor A� Pf ���� which maps a set S to the set of all functions
from A to the set of all �nite subsets of S� Also this functor� which occurs for the �rst time
�in a metric setting� in �Bre��� can be shown to have a �nal coalgebra in Set� �

Let �S� �� be any Pf�A� ���coalgebra �that is� nitely branching transition system�� and
let F � �S� ��� �P� 
� be the unique homomorphism given by nality of �P� 
�� called

Branching Final Semantics�

S
F � P

�

Pf�A�S�

�

�

Pf�A�F�
� Pf �A�P �

�




By the commutativity of this diagram� for s � S�
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F�s� � 
��� fha�F�s�i � A� P j ha� s�i � ��s�g ��
equivalently�

F�s� � 
��� fha�F�s��i � A� P j s a�� s�g ��
One can easily verify that the functor Pf�A� �� preserves kernels� for any function f �

S � T � the kernel of Pf�A�f� is equal to Pf�A�Kf�� Hence Theorem ��� applies to F � for
all s� s� � S�

s �S s� if and only if F�s� � F�s���

For the implication from right to left it is su!cient that KF is a bisimulation� which
follows from Proposition ��� �rather than deriving this from the fact that Pf�A� �� preserves
kernels��

��� Quotients of Coalgebras���

Some basic properties of quotients of coalgebras are discussed� in order to arrive at a char�
acterization of nal semantics in terms of canonical quotients with respect to the greatest
bisimulation� First the functor Pf�A� �� is treated� next arbitrary functors� Much of what
follows in this subsection is an expansion of similar results in �AM���� where coalgebras of
endofunctors on a category of classes are discussed�
Let �S� �� be a Pf �A� ���coalgebra and �R� �� a Pf �A� ���bisimulation on �S� ��� For

convenience it is assumed that R is an equivalence relation �if not� the smallest equivalence
containing R has to be taken in the construction below�� We dene� for any s � S�

�s�R � fs� � S j �s� s�� � Rg and SR � f�s�R j s � Sg�
moreover two functions �R � S � SR and �R � SR � Pf �A�SR� are dened by �R�s� � �s�R
and

�R��s�R� � fha� �s���Ri � A � SR j s� a�� s�� for some s� � �s�R g�
Note that �R is the unique function from SR to Pf �A�SR� making the right side of the
diagram below commute�

R
�� �

��
� S

�R � SR

� �

Pf�A�R�

�

� Pf �A�����
Pf �A����

� Pf�A�S�
�

�

Pf�A��R�
� Pf�A�SR�

�

�R

Applying the above to the greatest bisimulation �S on S yields the coalgebra �S�� ����
Interestingly� it is strongly extensional� for if R is a bisimulation on S�� then� by Theorem
�����

f�s� t� � S � S j ��s��� �t��� � R g
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is a bisimulation on S� implying ���s� � ���t�� that is �s�� � �t��� Thus R is a subset of the
identity relation on S��
As a corollary of this� �S�� ��� satises the �uniqueness half� of the denition of nality� let

�T� �� be any Pf�A� ���coalgebra� and let f� g � �T� ��� �S�� ��� be two homomorphisms�
Since �S�� ��� is strongly extensional� and since the set f�f�t�� g�t�� � S� � S� j t � Tg is a
bisimulation on S� �it is equal to �Gf�

�� �Gg�� it follows that f � g�
By the nality of �P� 
�� the following triangle commutes�

�S� ��
��� �S�� ���

�
�
�
�
�

F
R
�P� 
��
�

F�

where F and F� are the nal semantics for S and S�� By the strong extensionality of
�S�� ��� and the fact that kernels of homomorphisms are bisimulations� it follows that F�
is injective� This tells us that the nal semantics F maps S onto a subset of P that is
isomorphic to S�� and which therefore can be thought of as the canonical quotient of S�
The above can be used for the construction of an easy proof of the folklore theorem that

for any two bisimilar transition systems �S� �� and �T� ��� there exists a third transition
system �U� �� to which both of them reduce �see �Sif�
� and �Bad����� �Here a reduction is
a Pf�A� ���homomorphism that is surjective� for instance� the quotient mapping �� is a
reduction�� The proof will be easy because it uses �the canonical quotient given by� the nal
semantics�
�Note that in general it is not possible� given two bisimilar transition systems S and T �

to reduce S to T or vice versa� for a simple example consider the two transition systems
determined by

S � fs�� s�� s�g� and transitions fs� a�� s�� s�
a�� s�� s�

b�� s� g�

T � ft�� t�� t�g� and transitions ft� a�� t�� t�
b�� t�� t�

b�� t�� g��

So consider two transition systems �S� �� and �T� ��� and suppose �R� �� is a bisimulation
between them� with �� � �R� �� � �S� �� and �� � �R� �� � �T� �� surjective� Let FS �
�S� ��� �P� 
� be the nal semantics for S and FT � �T� ��� �P� 
� be the nal semantics
for T � Let U be dened as

U � FS�S�

�� fFS�s� � P j s � Sg��
and let � be the restriction of 
 to U � The fact that FS is a homomorphism implies that �
is a function from U to Pf �A�U�� Hence �U� �� is a Pf�A� ���coalgebra� By the nality of
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�P� 
�� the following diagram commutes�

�R� ��
��� �T� ��

�

�S� ��

��

�

FS

� �P� 
�
�

FT

Because �� and �� are surjective� this implies that FS�S� � FT �T �� This shows that �S� ��
and �T� �� both reduce to �U� ���

�S� ��
FS� �U� �� �

FT
�T� ���

Another proof �which is essentially the one from �Sif�
�� can be given without using the fact
that a nal coalgebra exists� It consists of taking the push�out of �� and ��� the quotient
of the disjoint union of S and T modulo the smallest equivalence relation containing R �cf�
�Bad�����
Much of the above applies also to arbitrary functors F � C � C� Let �A� �� be an F �

coalgebra� A canonical quotient �� � A� A� can be dened as the �generalized� coequalizer
�if� as in Set� it exists� of all bisimulation projections on �A� �� �thus satisfying� for all F �
bisimulations ��� �� � �R� ��� �A� ��� �� ��� � �� ����� Since the forgetful functor from CF
to C creates colimits �such as coequalizers�� A� can be extended uniquely to an F �coalgebra
�A�� ��� such that �� � �A� ��� �A�� ��� is an F �homomorphism� Taking the kernel of this
projection �� yields� if F weakly preserves kernel pairs� an F �bisimulation on �A� ��� which
is by construction the greatest bisimulation� As above� �A�� ��� is strongly extensional� and
satises the �uniqueness half� of the denition of nality� �In fact� these two notions are
equivalent for functors weakly preserving kernel pairs��

��� Final Coalgebras for Endofunctors on Sets���

In �Bar���� a method is given for computing nal coalgebras for certain functors F � Set� Set
that are not ��continuous� It is repeated here �with a somewhat simpler proof� and next
applied to the functor Pf�A� �� � Set � Set� As we shall see� the construction of a nal
coalgebra out of a weakly nal one �the last step in the proof� can be nicely characterized in
terms of bisimulation�
First let us recall a classical theorem on the construction of nal coalgebras� �It is formu�

lated as the dual of the so�called Basic Lemma from �SP����� Let C be a category with nal
object � and let F � C � C be a functor� Let " be the following chain�

� �
#

F ��� �
F �#�

F ���� �
F ��#� � � �

�with # the unique arrow into the nal object � � f�g�� Suppose that both  � D � "
and F �� � F �D� � F �"� are limiting cones� Then �D� �� is a nal F �coalgebra� where
� � D � F �D� is the mediating arrow given by the fact that  �minus its rst arrow� is also
a cone from D to F �"��
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For instance� let A be a given set and consider the functor A � � � Set � Set which
maps sets X to the Cartesian product A�X �and works on functions as one would expect��
Constructing the chain " as above yields for A � �

� �
f�

A �
f�

A� � f� � � �
where An consists of sequences of elements in A of length n� and fn takes a sequence of length
n� � and yields a sequence of length n by removing its last element� The set

D � f�xn�n �
Y
n

An j xn � An and fn�xn��� � xn g

�together with functions �n � D� An mapping sequences to their n�th component� is a limit
for "� called the projective limit� Since A � � is continuous� A �D is a limit for A � "� It
follows that there exists a function � � D � A�D such that �D� �� is a nal L�coalgebra��
maps a sequence ��� ha�� �i� ha�� a�� �i� � � �� to the pair ha�� ��� ha�� �i� � � ��i� Clearly� D is
�isomorphic to� the set of all innite sequences over A� Similarly� taking L� as the variant of
L that takes sets X to �� �A�X�� one obtains the collection of nite and innite sequences
over A�
Another example�to be used below�is the functor R � Set� Set dened� for a set X � by

R�X� �
X

��n��
�A�X�n

�� � � �A�X� � �A�X��� � � � ��
The above construction yields a nal R�coalgebra �T� ��� consisting of all nitely branching�
labelled �over A�� ordered �possibly innitely deep� trees�
The method does not apply to the functor Pf�A� ��� which is not continuous� since Pf ���

is not� �See also the last remark of this subsection�� Still a nal coalgebra exists by the
following theorem from �Bar����

Theorem ���� ��Bar��� Let F and G be two functors from Set to Set� Let � � F � G
be a natural transformation	 a family of functions f�Xg�one for each set X�with� for any
function f � X � Y �

F �X�
F �f�� F �Y �

�

G�X�

�X

�

G�f�
� G�Y �

�

�Y

Suppose �X is surjective� for any set X �the functor G is then called a quotient of F �� If F
has a �nal F �coalgebra� then also G has a �nal G�coalgebra�

The proof consists of two steps� rst it is shown that a nal F �coalgebra �S� �� is a
weakly �nal G�coalgebra �meaning that from any other G�coalgebra there is at least one
homomorphism into �S� ���� secondly� this weakly nal G�coalgebra is transformed into a
nal one�
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So let �S� �� be a nal F �coalgebra� Then �S� �S ��� is a weakly nal G�coalgebra� For let
�B� �� be an arbitrary G�coalgebra� Since �B is surjective there exists �using the axiom of
choice� a right�inverse � � G�B� � F �B� with �B � � � �G�B�� By the nality of �S� �� there
exists a homomorphism

B
f � S

�

F �B�

� � �
�

F �f�
� F �S�

�

�

Combining the above diagram with the one below�

F �B�
F �f�� F �S�

�

G�B�

�B

�

G�f�
� G�S��

�

�S

yields that f is a G�homomorphism from �B� �� to �S� �S � �� �noting that �B � � � � � ���
Secondly� there are standard techniques for constructing a nal object from a weakly nal

one� which apply to any category� �In �Bar��� two alternatives are mentioned� either take
the�generalized�coequalizer of all endomorphisms on the weakly nal object� or take the
cointersection of all its quotients�� Alternatively �in this particular category of coalgebras��
the quotient construction from Section ��� can be applied� let �S�� ��S ����� be the quotient
G�coalgebra of �S� �S � �� with respect to the greatest G�bisimulation� We saw that it is
strongly extensional� which was shown to imply �in fact� it is equivalent� to the �uniqueness
half� of the denition of nality� Because �S� �S � �� is weakly nal also �S�� ��S � ���� is
weakly nal� Thus �S�� ��S � ���� is a nal G�coalgebra� which concludes the proof of the
theorem�
It can be used to show that the functor Pf�A� �� has a nal coalgebra as follows� Recall the

denition of the �tree constructing functor� R above� and consider the family of functions �X �
R�X� � Pf �A�X�� for any set X � dened by �X��� � 
 and� for h�a�� x��� � � � � �an� xn�i �
�A�X�n�

�X�h�a�� x��� � � � � �an� xn�i� � f�a�� x��� � � � � �an� xn�g�
This denes a surjective natural transformation � � R � Pf�A� ��� Because R has a nal
coalgebra �T� ��� Theorem ���� yields the existence of a nal Pf �A� ���coalgebra �P� 
�� which
is obtained as the quotient of �T� �� with respect to the greatest Pf�A� ���bisimulation�
In conclusion� we give an explicit description of the elements in P �which are� by construc�

tion� equivalence classes�� Consider the chain

� �
# Pf�A� ����� �Pf�A� ���#� Pf�A� ������ �Pf�A� ����#� � � �
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Write Bn for Pf�A� ��n��� and �n for Pf�A� ��n�#�� and note that Bn contains all nitely
branching trees modulo bisimulation� of depth at most n� the function �n � Bn�� � Bn maps
a tree of depth n� � to one of depth n by removing all nodes at depth n��� As before� this
chain has a �projective� limit�

B � f�Xn�n �
Y
n

Bn j Xn � Bn and �n�Xn��� � Xn g�

Note that it follows from the general construction of nal coalgebras� described at the begin�
ning of this subsection� that if the functor Pf �A� �� were continuous�which it is not�then B
would be a nal Pf�A� ���coalgebra� However� the nal Pf�A� ���coalgebra P constructed
above can be seen to be �isomorphic to� a subset of B� as follows�
Let X � Bn� for some n � �� and dene for every k � � the number �k�X� as the number of

nodes in X up to depth k �a formal denition would be easy�� A projective sequence �Xn�n
in B is k�stable if the sequence

��k�X��� �k�X��� �k�X��� � � ��

becomes eventually constant� The intuition is that from that moment on� the elements in the
chain all have a xed number of nodes up to depth k� Now one can prove the following�

P �� f�Xn�n � B j �Xn�n is k�stable for every k � � g�
Note that those elements in B that are �representing� innitely branching trees are not in
�the isomorphic image of� P � like the sequence �Yn�n given� for n � �� by

Yn � X� � � � � �Xn� with X� � 
 and Xn�� � fha�Xnig�
�This example can be turned into a formal proof of the fact that Pf�A� �� is not continuous��

�� From Final Coalgebra to Initial Algebra Semantics for Strong Bisimula�

tion

Let ��� r� be a ranked alphabet and let �T� �� be the initial ���algebra dened in Section �� T
is the set of all closed terms over �� Consider a nitely branching transition system hT�A��i
or� equivalently a Pf �A� ���coalgebra �T� �� for T � It was shown in Section � that there
exists� by the nality of the Pf�A� ���coalgebra �P� 
�� a unique coalgebra homomorphism
F � �T� ��� �P� 
��

T
F � P

�

Pf�A�T �

�

�

Pf�A�F�
� Pf �A�P ��

�




called the nal semantics for T � with for all s� t � T �

s �T t if and only if F�s� � F�t��
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In this section� the set P will be turned into a ���algebra structure �P� �� by constructing
a function � � ���P � � P from the transition system specication �see below� for �� The
initiality of �T� �� then gives the existence of a unique ���homomorphism I � �T� ��� �P� ���

���T �
���I�� ���P �

�

T

�

�

I
� P
�

�

�the initial semantics for T �� satisfying for all f � � and ht�� � � � � tr�f�i � T r�f��

I�f�t�� � � � � tr�f��� � fP �hI�t��� � � � � I�tr�f��i��
�Recall that� for hp�� � � � � pr�f�i � P r�f�� fP �hp�� � � � � pr�f�i� is�by denition�equal to ��fhp�� � � � � pr�f�i���
Moreover� the construction will be such that I � F �

���T �
���I� � ���P �

�

T

�

� I � F � P
�

�

�

Pf�A�T �

�

�

Pf�A�F�
� Pf�A�P �

�




Thus a compositional description of the nal semantics is obtained� The initial semantics is
often called denotational � because of the emphasis on the assignment of denotations I�s� to
statements s� On the other hand� the nal semantics F is often called operational � since it is
based directly on a transition system�
The initial semantics� which will be canonically constructed here� turns out to be�for

certain specic signatures�the same as already existing denotational models� The initial se�
mantics of the example in Section 
�� coincides with �a variant of� a denotational model given
in �BM���� Similarly� the linear semantics of the next section is essentially the denotational
model from �HP���� In both papers� operational and denotational semantics are dened in�
dependently� and their equivalence is proved next using some xed�point argument �in metric
and ordered spaces� respectively�� Interestingly� such xed�point arguments are not needed
here� the equality of I and F is a direct consequence of the nality of their co�domain P �

��� Processes as Terms

The crux of the construction is the denition of a set TP of mixed terms � consisting of the set
of terms over the extended signature � � P � the original signature � to which all processes
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p � P have been added as constants �thus r�p� � ��� Formally� TP is an initial algebra of the
functor �� � P ��� which is dened in the same way as ���
This technique of extending the collection of syntactic entities �terms� with semantic enti�

ties �processes�� was introduced in the context of semantics for transition systems in �Rut����
It is well known in the world of models for the lambda calculus� where elements d of a model
are included into the collection of lambda terms as constants d�
Consider the signature � � f�� s��g� with � a constant� s a unary and � a binary function

symbol� Examples of terms in T are s�s���� and s��� � s�� � s����� two mixed terms in TP
are �with p � P � s�s�p�� and s��� � s�p� s�����
It follows from the denition of the functors �� and ��� P �� that� for any set S�

�� � P ���S� �� ���S� � P�

Since TP is a xed point of �� � P ��� this implies TP �� ���TP � � P � giving the existence of
two functions

���TP �

TP

�

�
�

	
P�

which are dened straightforwardly� By the initiality of T � there exists a unique homomor�
phism IP � �T� ��� �TP � ���

���T �
���IP �� ���TP �

�

T

�

�

IP
� TP

�

�

The function IP is merely the inclusion of the set T of terms into the set TP of mixed terms�
It is also possible to provide TP with a suitable Pf �A� ���coalgebra structure� For that� we

shall have to consider the way in which the transition relation � in hT�A��i �equivalently�
� in �T� ��� has been dened�

��� Transition System Specifications

A common way of dening a transition relation � is to specify a collection of rules that are
used for proving that a triple ht� a� t�i � T � A � T is in �� When the collection of states
of the transition system is well structured�here it is the set T of terms over the signature
��the form of these rules often re�ects this structure� Such an approach is therefore called
structural operational semantics ��Plo��b���
A transition systems speci�cation for the signature � �with labels in the setA� is a collection

R of rules of the form

fti ai�� t�i � i � Ig
t

a�� t�
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where I is some set of indices� a and ai �for i � I� are in A� and t� t� and ti� t
�
i �for i � I� are

in TX � the set of terms over � with variables in a given set X �see Section ��� The expressions
ti

ai�� t�i are called premises and t
a�� t� is called the conclusion of this rule� If I is empty

then the rule is called an axiom�
Such a transition system specication induces a transition relation�	 T �A�T as usual�

� contains those triples that are provable from the rules in R� �See� for instance� �Rut���
for a formal denition� We shall see an example below��
For the rest of this section� it is assumed that the �transition relation of the� transition

system hT�A��i is induced by a transition system specication R�
Now it is possible to dene a transition system hTP � A��P i for the set TP of mixed terms

as follows� Let the specication RP be dened as

RP � R� fp a�� q j ha� qi � 
�p�g�
�Recall that 
 � P � Pf�A�P ��� That is� all possible transitions in �P� 
��which is itself a
transition system�are added toR as axioms� Next let�P be the transition relation induced
by RP � Then TP can be turned into a Pf �A� ���coalgebra

TP

Pf�A�TP �

�P

�

by dening �P from �P in the familiar way� for a � A and t� t� � TP �

ha� t�i � �P �t� � t
a��P t��

We should like �TP � �P � to be such that it can be seen as a conservative extension of both
�T� �� and �P� ��� that is�

T
IP � TP �

	
P

�� ��

Pf �A�T �

�

�

Pf�A�IP �
� Pf �A�TP �

�

�P

�
Pf �A�	�

Pf�A�P �
�




As we shall see in Section 
��� the commutativity of both squares above can be guaranteed
making some mild

assumptions �� and ��

on the form of the rules in R�
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By nality of �P� 
� there exists a unique homomorphism FP � �TP � �P �� �P� 
��

TP
FP � P

�

Pf�A�TP �
�

�P

Pf�A�FP �
� Pf�A�P �

�




Note that FP �IP � F � since both FP �IP and F are homomorphisms to the nal Pf�A� ���
coalgebra �P� 
�� for the same reason� FP � 	 � �P �with �P is the identity function on P ��

��� Turning P into a ���Algebra

The next diagram collects the constructions we have described so far�

���T �
���IP � � ���TP �

� ���	�

���FP �
� ���P �

�

T

�

� IP � TP
�

�

� 	

FP

� P

�� �

Pf�A�T �

�

�

Pf�A�IP �
� Pf�A�TP �

�

�P

Pf�A�FP �
� Pf�A�P �

�




Together with the fact that FP � 	 � �P � this diagram contains all the observations that have
been made above�
As the last step in the construction� we dene the missing arrow in the diagram� let

� � ���P �� P be given by

� � FP � � � ���	��
The function � corresponds� as usual� to a family of functions

ffP � P r�f� � P j f � �g�
given� for f � � and hp�� � � � � pr�f�i � P r�f�� by

fP �hp�� � � � � pr�f�i� � ��fhp�� � � � � pr�f�i�
� FP � � ����	��fhp�� � � � � pr�f�i�
� FP � �� fh	�p��� � � � � 	�pr�f��i �
� FP � �� fhp�� � � � � pr�f�i �
� FP � f�p�� � � � � pr�f�� ��
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Thus the value of fP �hp�� � � � � pr�f�i� is obtained by rst embedding hp�� � � � � pr�f�i into the
collection of mixed terms TP by an application of � � ���	�� �Recall that 	 is the embedding
of P into TP �� Thus the mixed term f�p�� � � � � pr�f�� is obtained� It constitutes the moti�
vating example for the �processes as terms� approach� Finally� the result is obtained by the
application of FP � which is the nal semantics for mixed terms�
Now the initiality of �T� �� gives the existence of the initial semantics that has been an�

nounced at the beginning of this section�

���T �
���I�� ���P �

�

T

�

�

I
� P
�

�

��� Equality of the Initial Semantics I and the Final Semantics F
It still has to be proved that I and F are equal� Although this need not be true in general�
we shall see in a moment that the requirement that Pf�A� ���bisimulation is a congruence
forms a su!cient condition for this equality�
A proof of I � F is as follows� It is su!cient to prove that the homomorphism of

Pf�A� ���coalgebras FP � �TP � �P � � �P� 
� is also a homomorphism of ���algebras FP �
�TP � ��� �P� ��� that is�

���TP �
���FP �� ���P �

��

TP

�

�

FP

� P�
�

�

since it implies that I � FP �IP � both I and FP �IP being algebra homomorphisms between
the initial ���algebra �T� �� and �P� ��� Since also FP � IP � F the desired equality then
follows�

I � FP � IP � F �
So let us investigate how the above commutativity ���� can be established� Consider the

following elementary lemma� �Recall that for a function m � X � Y � the kernel Km is dened
as the set f�x� x�� � X �X jm�x� � m�x��g��
Lemma ��� Consider the following diagram of sets and functions	

A
f ��
g

B

�
�
�
�
�

h
R

C
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If f � g � �B and Kf 	 Kh then h � g � f � h	

A
f � B

�
�
�
�
�

h
R

C
�

h � g

Proof� For all a � A� f �g�f�a� � �B �f�a� � f�a�� thus �g�f�a�� a� � Kf � By assumption�
this implies �g � f�a�� a� � Kh� yielding the result� �

Clearly we want to apply this lemma to the following functions�

���TP �
��

��	�

���FP �
� ���P �

TP
�

�

FP

� P

Note that the rst condition of Lemma 
��� ���FP � � ���	� � ����P �� is fullled since by
assumption � made above� FP � 	 � �P � The following lemma describes when the second
condition holds�

Lemma ��� Let �A� �� be a ���algebra� B a set� and l � A� B a function	

���A�
���l�� ���B�

A

�

�

l
� B

Then Kl is a ���congruence on �A� �� if and only if K���l� 	 Kl���

A proof of this lemma can be found in Section 
���
Because the kernel KFP

of FP is equal to the greatest bisimulation relation �TP on TP
�Theorem ����� the above lemma�and consequently Lemma 
���can be applied when �TP is
a congruence �on �TP � ���� As we shall see in Section 
��� one way of proving that bisimilarity
is a congruence is to make again an

assumption ���
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on the format of the rules in R� Thus� under this assumption� an application of Lemma 
��
yields

���TP �
���FP � � ���P �

��

TP

�

�

FP

� P�
�

FP � � � ���	�

Summarizing the above� we have the following�

Theorem ��� Assume �R to be such� that

T
IP � TP �

	
P

�� ��

Pf�A�T �

�

�

Pf �A�IP �
� Pf�A�TP �

�

�P

�
Pf �A�	�

Pf�A�P �
�




Let � � FP � � � ���	�� Suppose that �R is such that �TP is a congruence� by which�

���TP �
���FP �� ���P �

��

TP

�

�

FP

� P
�

�

Then

���T �
���IP � � ���TP �

���FP � � ���P �

� ��

T

�

� IP � TP
�

�

FP � P
�

�

�� �

Pf�A�T �

�

�

Pf�A�IP �
� Pf�A�TP �

�

�P

Pf�A�FP �
� Pf�A�P ��

�




in other words�

FP � IP � �T� ��� �P� 
� is a homomorphism of Pf �A� ���coalgebras� and
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FP � IP � �T� ��� �P� �� is a homomorphism of ���algebras�

By initiality of �T� �� and �nality of �P� 
�� it follows that

I � FP � IP � F �
�

��� Assumptions on the Format of R
Consider a rule R�

fti ai�� t�i � i � Ig
t

a�� t�

�Recall that terms in R are elements of TX � the set of terms over the signature � with
variables from X �� The bound variables occurring in R are inductively dened as the ones
that either occur in t or occur in a term t�i� for some i � I � for which ti only contains bound
variables� The rule R is called pure if all variables that occur in it are bound� A transition
system specication is called pure if it contains only pure rules� �Cf� �GV��� and �Gla�����
In �Rut���� the following fact is proved� If R is pure �called inductive there�� then

T
IP � TP

��

Pf�A�T �

�

�

Pf�A�IP �
� Pf�A�TP �

�

�P

This takes care of assumption � above�
The following rule is not pure�

x
a�� x�

a
a�� a

and illustrates what can go wrong when not all rules are pure� if � is the singleton set
containing only the constant a� and if R consists of only the rule above� then ��a� is empty�
whereas �P �IP �a�� � �P �a� is not� due to the presence of process�es� p � P with ha� p�i �

�p� �for some p� � P ��
A rule R is an x�rule if the antecedent of the conclusion consists of a variable� Forbidding

x�rules in R implies that all rules that can be used in the derivation of transitions �in RP �
for processes p � P �now seen as elements of TP � formally 	�p��� are contained in

fp a�� q j ha� qi � 
�p�g�
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Since these specify precisely the transitions of the coalgebra �P� 
�� it follows that

TP �
	

P

��

Pf�A�TP �
�

�P

�
Pf�A�	�

Pf �A�P �
�




Thus the absence of x�rules is su!cient to validate assumption ��
In �GV���� a su!cient condition is given to ensure that the bisimilarity equivalence induced

by a specication R is a congruence�

Definition ��� A rule R is in tyft�format if it has the following form

fti ai�� yi � i � Ig
f�x�� � � � � xr�f��

a�� t
�

and it is in tyxt�format if it is of the form

fti ai�� yi � i � Ig
x

a�� t

where f � �� the terms t and ti� for i � I are in TX � and all of the variables in fx�� � � � � x�r�f�g�
fyi � i � Ig� in the rst case� and all of the variables in fxg�fyi � i � Ig� in the second case�
are pairwise distinct variables in X � The transition system specication R is in tyft�tyxt�
format if all its rules are either in tyft or in tyxt format� �

Theorem ��� ��GV��� If R is in pure tyft�tyxt�format then the bisimilarity relation cor�
responding to the transition system induced by R is a congruence�

It is therefore su!cient for assumption � above to hold� that RP is in pure tyft�tyxt�
format� Since the axioms we have added to R in the denition of RP have the right format�
this amounts to requiring R itself to be in pure tyft�tyxt�format�
Taking the conjunction of all conditions needed to make assumptions �� � and � valid�

we nd in summary that a su!cient condition for Theorem 
�� to hold is that R is in pure
tyft�format� Moreover the transition relation induced by R should be nitely branching�
Note� in conclusion� that in �GV��� it has been observed that a rule in pure tyxt�format

can always be translated into an equivalent set of rules in pure tyft�format� by making for
every f � � a new copy of the rule� in which the variable x is replaced everywhere by the
term f�x�� � � � � xr�f�� �the variables x�� � � � � xr�f� should not yet occur in the old rule��

��	 An Example

Consider the signature �B � Act � f�� �g � RecV ar � f���� kg� consisting of a set Act of
atomic actions� two special symbols � and �� a set �X ��RecV ar of recursion variables� and
three operators �� �� and k� �The signature �B is called Basic Process Algebra with � and
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� �see� e�g�� �GV����� here extended with recursion and parallel composition�� All elements
are constants� but for the latter three� which are binary operators� The interpretation of
�� for concatenation� �� for nondeterministic choice� and k� for parallel composition� is as
usual� Let A � Act� fpg� The label

p
is used to indicate termination� A transition system

specication RB for �B is dened as follows� It uses terms over the signature �B with
variables in fx� x�� y� y�g� For every a � A� there is an axiom

a
a�� ��

from �� one nal transition is possible �there will be no transitions from ���

�
p
�� ��

For X � RecV ar� there is the following rule�

sX
a�� y

X
a�� y

where sX is a given term in TB� the set of terms over �B� which can be seen as the body of the
recursion variable X � As usual� these statements are required to be guarded in X �excluding
statements like �X �a��b�� such that the resulting transition system will be nitely branching�
�Taking �X � a� � b for sX � there would be innitely many transitions possible from X ��
Further there are the following rules�

x
a�� x�

x� y
a�� x�

x
a�� x�

y � x
a�� x�

x
a�� x�� a �� p

x � y a�� x� � y
x

p
�� x� y a�� y�

x � y a�� y�

x
a�� x�

x k y a�� x� k y
x

a�� x�

y k x a�� y k x�

All of the above rules are in pure tyft�format�
Let � TB� A��� be the transition system induced by RB� The nal semantics F � TB � P

satises �omitting here and below the isomorphism 
�� for s � TB�

F�s� � fha�F�s��i � A � P j s a�� s�g�
For the initial semantics I � TB � P � we have� for a � A� s� t � TB�

I�a� � aP � fha� I���ig
I��� � �P � fhp� I���ig
I��� � �P � 


I�s� t� � I�s� �P I�t�
I�s � t� � I�s� �P I�t�
I�s k t� � I�s� kP I�t�
I�X� � I�sX�
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It follows from the denition of � that the function kP � for instance� satises� for p� q � P �

p kP q � FP �p k q�
� fha�FP �t�i � A� P j �p k q� a��P tg
� fha�FP �p

� k q�i � A� P j p a��P p�g �
fha�FP �p k q��i � A� P j q a��P q�g

� fha� p� kP qi � A� P j ha� p�i � pg �
fha� p kP q�i � A� P j ha� q�i � qg�

Thus kP turns out to be the�in the world of denotational semantics for concurrency�familiar
parallel composition of processes� It was introduced rst in �BZ��� �in the context of metric
spaces�� where it was dened directly on a collection of processes �very similar to our P ��
without making use of transition systems�

��
 A Proof of the Extension Lemma���

Lemma 
�� can be proved as follows� Assume that �Kl� �� is a ���congruence on �A� ��� The
kernel K���l� of the function ���l� can be easily seen to satisfy

K���l� � f �fha�� � � � � ar�f�i� fha��� � � � � a�r�f�i� � ���A�� ���A� j
f � � and �ai� a

�
i� � Kl� for i � �� � � � � r�f� g�

Dene the function � � K���l� � ���Kl�� for a pair

�fha�� � � � � ar�f�i� fha��� � � � � a�r�f�i� � ���A�� ���A��

by

��fha�� � � � � ar�f�i� fha��� � � � � a�r�f�i� � fh�a�� a���� � � � � �ar�f�� a�r�f��i�
�This actually denes an isomorphism� showing that the functor �� preserves kernels�� Now
the lemma follows from the commutativity of the the following diagram �where �� and �� are
the projections belonging to K���l���

K���l� ������ K���l� ������ K���l�

� �

���A�

��

�
��
�����

���Kl�
�

�

������� ���A�
�

��

� �

A

�

�
�

��
Kl

�

�

��
� A
�

�

�

B

l

�
������������������������� B

�

l
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For the upper two squares� this can be easily checked� the two squares in the middle commute
by the denition of ���congruence� and the rectangle below commutes by the denition of
kernel� Together this implies the commutativity of the outer rectangle� l � � � �� � l � � � ���
thus K���l� 	 Kl�� �
Conversely� suppose that the outer rectangle of the diagram above commutes� �The upper

two squares always commute�� It follows that

l � � � ������ � l � � � �������
which shows that the function h� �������� � �������i maps from ���Kl� to Kl� thus turning
Kl into a ���congruence on �A� ��� �

�� From F to I in a General Setting

In this section a rather straightforward categorical abstraction of the above �from F to I�
construction is made� The resulting general scheme will be instantiated in Section � to trace
equivalence semantics� A dual construction� say �from I to F �� will also be described in this
section� although possible semantical applications are not addressed in this paper�

��� From Set to Arbitrary Categories

The category Set generalizes to an arbitrary category C� That is� objects and arrows rather
than sets and functions�
The endo�functors ���Pf�A� � � � Set � Set generalize to arbitrary endo�functors

F�G � C � C�
The categories of algebras and coalgebras of endo�functors in Set have evident correspond�

ing notions in C� Thus CF and CG in place of SetF and SetG� respectively�
For the denition of F �congruences and G�bisimulations one needs to abstract from rela�

tions as subsets and consider relations as subobjects� That is� a relation R on two objects A
and B of C is a subobject of A � B� �See xV�� in �Lan��� for the denition of subobjects��
Notice that we need C to have nite products in order to dene relations this way� Also�
recall that relations �as subobjects� are partially ordered �write R � R�� and that� if C has
arbitrary pullbacks� the intersection of subobjects �hence of relations� is well�dened� Under
additional hypotheses� also the union is well�dened�
The kernel pair �see xIII�
 in �Lan���� Kf of an arbitrary arrow f � A� B in C generalizes

the notion of a kernel of a function� it is a subobject of A � A� Lemma 
�� generalizes to
arbitrary categories� by simply putting Kf � Kh in place of Kf 	 Kh� The same holds for
the Extension Lemma 
�� with an arbitrary endo�functor F in place of ���

��� From F to I
Let F and G be endo�functors on a category C as described above and assume the existence
of the following� An initial F �algebra

� � FT
�� T �
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a nal G�coalgebra


 � P
�� GP �

and an initial �P � F ��algebra TP �� P � FTP

FTP

TP

�
�
�

	
P

By initiality� the following diagram commutes�

FT
FIP� FTP

T

�
�
o

IP
� TP

�
�

Now� for two coalgebras � � T � GT and �P � TP � GTP such that the diagram

T
IP � TP �

	
P

GT

�

�

GIP
� GTP

�

�P

�
G	

GP




�

o

commutes� one obtains the following commutative diagram�

FT
FIP � FTP

� F	

FFP
� FP

T

�

�

o

IP � TP
�

�

� 	

FP
� P

GT

�

�

GIP
� GTP

�

�P

� G	

GFP
� GP




�

o

�����

Theorem ��� Under the hypotheses of this section� the composition

FP � IP � T � P is both initial and �nal

if KFP is an F �congruence on �TP � ��� �

In the proof of the above theorem� P is turned into an F �algebra as before� by dening
� � FP � P by � � FP � � � F	�
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��� From I to F ���

The above construction can be �easily� dualized in order to obtain F from I� The semantic
importance of this dual construction is left to be discussed elsewhere� Let us just make the
necessary dualizations explicit and mention that it might be possible to apply it for deriving
transition systems from denotational denitions�
In addition to an initial F �algebra and a nal G�coalgebra� one now needs a nal �T �G��

coalgebra PT �� T � GPT � with projections

T �
�

PT

GPT
�
�

By nality� the following diagram commutes�

PT
FT � P

GPT

�
�

GFT

� GP



�
o

The two algebras needed are now of the form � � FP � P �say� the denotations� and
�T � FPT � PT � and such that the diagram

FT �
F�

FPT
FFT � FP

T

�

�

o

�
�

PT
�

�T

FT

� P
�

�

commutes� Pasting these diagrams together one obtains the following commutative diagram�

FT
FIT ��
F�

FPT
FFT � FP

T

�

�

o
IT ��
�

PT
�

�T

FT

� P
�

�

GT
GIT ��
G�

GPT
�

�

GFT

� GP




�

o

The composition � � G� � � � IT is then the coalgebraic structure to be added to the initial
algebra T �
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	� From F to I for Trace Equivalence

The derivation of I from F will be now studied for trace equivalence� The nal arrow F will
be the linear �nal semantics given in �TJ���� The category involved will be the �monoidal
closed� category of semi�lattices � The use of semi�lattices in trace equivalence semantics dates
back at least to �HP���� The basic observation there is that the computational operations of
non�deterministic choice and sequential composition are best modelled as the join operation
on a semi�lattice and as the tensor product between semi�lattices� respectively�
Next� we shall�

� recall the denition of the category SL of semi�lattices�

� review the linear �nal semantics given in �TJ��� �for this we shall need right tensor
products��

� extend the endofunctor �� on sets to the category of semi�lattices �for this we shall
need tensor products� and show it has an initial algebra�

� apply the construction of Section ��� to the language in Section 
�� and obtain a com�
positional trace equivalence semantics for it�

	�� Semi�Lattices in Set

Semi�lattices are pairs �L�t�� with L a set and t � L � L � L a function satisfying the
following axioms� For all x� y� z in L�

x t �y t z� � �x t y� t z

x t y � y t x
x t x � x�

The join t of a semi�lattice �L�t� induces the following order on it� For every x and y in L�

x � y � x t y � y �����

Semi�lattices form a category�� called SL� by taking as arrows f � �L�t� � �K��� those
functions f � L� K such that� for every pair �x� y� in L� L�

f�x t y� � f�x� � f�y��

In the sequel� we shall simply write L for a semi�lattice� living its join implicit� When we want
to refer to the set underlying L� we shall write jLj� Notice that this operation of �forgetting�
is functorial and we shall also use the symbol U to denote this forgetful functor from SL to
Set �

Free Semi�Lattices� Let $P be the restriction of the functor Pf �dened in Section �� to non�

empty sets� It is a standard fact that $P is left adjoint to the forgetful functor U � SL� Set �
Formally� $P is an endofunctor on Set � but in the sequel we shall use the same symbol also

�In general� one can de�ne semi�lattices �internally� in any category with binary products� For instance� in
�HP	
�� semi�lattices in the category of cpo�s and strict continuous functions are used�
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for the functor from Set to SL� for any set A� the join of two elements X and Y of $PA �thus
X and Y are non�empty nite subsets of A� is simply their set�theoretic binary union� The
unit of the adjunction $P a U maps every element of a set into the singleton set containing it�

f�gA � A� $PA a ��� fag�
One way of stating �and proving� that $P � Set � SL is left adjoint to U � SL � Set is as
follows�

Proposition 	�� For every set A and semi�lattice L� and for every function f � A �jLj
there exists a unique linear function f � � $PA� L such that f � f � � f�gA� Pictorially	

Set

A
f�gA� $PA

�
�
�
�
�

f
R

jLj
�

f �

SL

$PA

L
�

f �

Proof� Immediate from the linearity of f and the fact that every non�empty and nite
subset is a nite union of singleton sets� �

The semi�lattice $PA is called the free semi�lattice on A�

An alternative description of the same adjunction is given by the following bijection�

A
f � jLj

$PA f � � L
�����

Since the functor $P � Set � SL has a right adjoint it preserves colimits �see xV�� in
�Lan����� In particular it preserves coproducts and� since SL is cocomplete �see Corollary
����� one has� for all sets A and B�

$PA� $PB �� $P�A�B�� ���
�

�Notice that this isomorphism holds in SL but not in Set �� The same holds for the initial
object�

� �� $P�� �����

Clearly� the � on the left hand side is in SL� while the one on the right hand side is in
Set � Thus the empty semi�lattice is the initial object in SL� The dual fact also holds� the
one�element semi�lattice is the nal object in SL and

� �� $P�� �����
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Completeness and Co�Completeness���� Since the forgetful functor U � Set � SL is
monadic� an alternative presentation of SL is as the category SetT of algebras of the monad
T � h $P� f�g��i given by the above adjunction �see xVI�� in �Lan�����

Proposition 	�� SL �� SetT

Then the following corollary is immediate �see Proposition ����
 in �BW�����

Corollary 	�� The category SL is �small�� cocomplete�

By the completeness of Set and the fact that the functor U � SL � Set creates limits �see
xVI�� in �Lan����� one has also the dual fact�

Corollary 	�� The category SL is �small�� complete�

	�� Linear Final Semantics

In this section we shall review the nal semantics for trace equivalence % called linear �nal
semantics % given in �TJ����
Traces �both nite and innite� on an alphabet of actions A can be categorically described

as elements of the �unique up to isomorphism� nal coalgebra of the following endofunctor
on Set �cf� Section ��
��

��A� � � Set � Set �

In trace equivalence semantics� the meaning of a program is usually given as a set of traces�
By using a suitable endofunctor on semi�lattices instead� namely

� �A �r � � SL� SL � �����

we shall be able to give a nal coalgebra description of those sets of traces of interest for
semantics� The functor �r appearing in ����� is of type

�r � Set�SL� SL �����

and is obtained by precomposing the rst component of the tensor product of semi�lattices�

with the free constructor $P on semi�lattices� One way to describe this �right� tensor product
�r� independently from the �full� tensor product �� is as �classifying� right�linear functions
in the following sense� Given a set A and two semi�lattices L and K� a right�linear function
f � A�jLj�jKj is a function which is linear in the right component� That is� for every a in
A and all l� l� in L�

f�a� lt l�� � f�a� l�t f�a� l���

A semi�lattice� say A�rL� classies right�linear functions if there exists a right�linear function

�r � A�jLj�jA �rLj
�The use of tensor products in trace equivalence semantics dates back at least to �HP	
��
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which is universal in the sense that� for every right�linear function f � A� jLj�jK j� there
exists a unique linear function f � such that the following diagram commutes�

A�jLj �
r

� jA�rLj
Z
Z
Z
Z
Z
Z
Z

f
�
jKj
�

f �

�Right�Linear�

A�rL

K
�

f �

�Linear�

�����

The existence of such a universal right�linear function is shown in Section ��� where it is also
shown that it gives rise to a functor of type as in ������ �The idea of a right tensor is already
present in �Hen���� but here we let A be an object from Set rather than from SL��
An important property of this right tensor is the following� For every two sets A and B�

A�r $PB �� $P�A�B�� ������

�For its proof� see Corollary ������

A Linear Final Coalgebra�

Theorem 	�� There exists a �nal coalgebra 
 � P
�� � �A�rP of the endofunctor

� �A �r � � SL� SL �

Moreover� P is the limit of the following �op�chain�

� �
#

� �A�r � �
� �A�r#

� �A�r �� �A�r �� � � � � ������

Proof� Let  be the universal cone given by the above limit and put

� � � �A�r�

This � is a cone from ��A�r � to the diagram in ������� which gives a unique linear function

� � � �A�rP � P

such that � �  � �� The claim is that there exists a linear function 
 � P � � �A�rP such
that 
 � ���� In order to see this� let us rst have a more concrete understanding of the
limit P � Put� for every p in P �

p�n� � n�p�� ������

Next� let Fn and fn denote the n�th object and the n�th arrow in the above diagram� respec�
tively� By ������� ����� and ���
�� one has

Fn �� $P��k�n A
k� ������
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By the standard construction of limits by products and equalizers �see xV�� in �Lan����� the
above limit P can be concretely described as follows�

jP j �� fx �
Y
n��

$P�
�
k�nA

k� j �n�x� � fn��n���x��g ����
�

The join of P is inherited from the product
Q
n��

$P��k�n A
k�� on which the join is dened

pointwise�
Firstly� notice that� for every p in P and every a in A� if a belongs to p���� then� for every

n � �� there exists a w in Fn�� such that � a�w � is in p�n��� One can then dene a partial
function

� a � P � P ������

as follows� Regard an innite tuple as function from the natural numbers� then�

pa �

�
n ��� fw j� a�w �� p�n�g if a � p���

undened otherwise

Secondly� notice that� if � belongs to p���� then it belongs to every p�n��
We can now dene� for every p in P �


�p� �
�

� tFa�p	�
 a�pa if � � p���F
a�p	�
 a�pa otherwise

One can then check that 
 is linear and that it is the inverse of �� �

Linear Transition Systems� In Section �� a one�to�one correspondence is given between
nitely branching labelled transition systems �over A� and coalgebras of the endo�functor
Pf�A� � � on Set � The existence of a nal coalgebra for that functor yields a �branching� nal
semantics for any transition system� Here it is shown that something similar % although of a
�linear� rather than of a branching nature % can be done for the endo�functor � �A �r � on
SL when applied to free semi�lattices�
Firstly� notice that� by ������� ������ and ���
��

� �A �r $P � �� $P�� �A� � � ������

Secondly� coalgebras in Set of the form

S �� $P�� � A� S�

can be seen as �nitely branching� labelled transition systems with a distinguished termina�
tion state� say a state � not belonging to S� Indeed� one can write these transition systems
as tuples hS�A��� �i� where the last symbol denotes the following predicate ranging over S�
for every s in S�

s � holds �� s can do a transition into the termination state �

�Actually� to be formal� we should write inr�a and inr�a�w� because the p�i��s are subsets of the coproduct
� � �A � � � �� Ai with injections inl � � � � � �A� � � �� Ai and inr � �A � � � �� Ai � � � �A� � � �� Ai�
But this would make the notation too cumbersome in the sequel�
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Thirdly� using the bijection ����� given by the adjunction $P aU � one obtains the isomorphism

S
�� $P�� � A� S�

$PS ��� � �A�r $PS
������

Therefore� ���A�r � ��coalgebras of free semi�lattices are just transition systems transposed
across the adjunction and one can infer a linear nal semantics for them as follows�

Linear Final Semantics�

S
f�gS� $PS

�
�
�
�
�

�
R
$P���A�S�

��

�

$PS F � P

� �A�r $PS

��

�

� �A�rF
� � �A�rP




�

o ������

One can regard the coalgebra � $PS� ��� as a free linear transition system �where by a transition
system we intend now a nitely branching one with a suitable distinguished �termination
state�� as follows� For all nite and non�empty subsets S�� S� of S�

S�
a�� S� �� s� � S� �s � S� s

a��s� � S� � �� �s � S� s � ������

This denition follows from the more general case in which a transition relation and a termi�
nation predicate are derived from an arbitrary coalgebra � � L � � �A �rL� for every a in
A� and all l� l� in L�

l
a�� l� �� a�rl� � ��l� l � �� � � ��l� ������

In the sequel� when applying F to an element� we shall write

����� in place of F���� �notational convention�

Diagram ������ implies that� up to isomorphism�

��S��� �

�
� t F

S�
a�S�

a�r��S��� if S� �F
S�

a�S�
a�r ��S��� otherwise

In particular� writing s for the singleton state fsg in h $PS�A��� �i� one can derive from
������

s
a�� S� �� s� � S� s a��s� ������

and� exploiting the linearity of the semantic function� one can derive

��s�� �

�
� tF

s
a�s�

a�r��s��� if s �F
s
a�s�

a�r ��s��� otherwise
�linear�
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Notice that in branching semantics one has

��s�� �

�
f�g � S

s
a�s�

f� a� ��s��� �g if s �S
s
a�s�

f� a� ��s��� �g otherwise
�branching�

The di�erence between the two semantics becomes apparent when a further iteration step is
considered�
Let us come back to the correspondence� given in ������� between arbitrary coalgebras of

the functor ��A�r � and �linear� transition systems� it will be used later for deriving I from
F in the linear setting�
Firstly� to any coalgebra � � L� ��A�rL one can associate the following nal �semantics��

For every l in L�

��l�� �

�
� tF

l
a�l�

a�r��l��� if l �F
l
a�l�

a�r��l��� otherwise

Secondly� notice that the correspondence in ������ shows how to derive a linear transition
system from an arbitrary coalgebra of the functor � �A �r � but not the converse� namely�
it is not clear to which transition systems hL�A��� �i the correspondence in ������ can be
applied in order to obtain a linear function � � L � � �A �rL� Certainly� in order for � to
be linear� the following three conditions should hold� Their interest lies in particular in the
fact that� as it will later be shown� they can be regarded as transition system specication
rules� and used to derive a linear transition system from an ordinary specication�
For all l�� l

�
�� l�� l

�
� in L�

l�
a�� l��� l�

a�� l�� � l� t l�
a�� l�� t l��

l�
a�� l��� l� � a�� � l� t l�

a�� l��
l� � � l� t l� �

������

	�� ��Algebras in SL

The description of the endofunctor �� on Set associated to a signature � can easily be made
categorical and then instantiated to SL� Let ��� r� be a ranked alphabet and recall that in
Set

�� ��
a
f��

� � �r�f� ������

The above functor is described in terms of coproducts and Cartesian products� but� from
semantical consideration �namely� the bilinearity of the operators % but see also the con�
struction in �Plo��a� of the initial ��algebra in the category of cpo�s with strict continuous
functions� it turns out that in general the tensor product instead of the Cartesian product
has to be used� �In Set Cartesian and tensor product coincide % see below��
The tensor product of two semi�lattices is a functor of the form

� � SL�SL� SL

which �classies� bilinear functions� Bilinear functions are functions f �jL�j � jL�j�jLj which
are linear in each of the two components separately � That is� for all l�� l

�
� in L� and all l�� l

�
�

in L��
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f�l� t l��� l�� � f�l�� l�� t f�l��� l�� f�l�� l� t l��� � f�l�� l�� t f�l�� l
�
�� ������

Equivalently�

f�l� t l��� l� t l��� � f�l�� l�� t f�l��� l��t f�l�� l
�
�� t f�l��� l

�
�� ������

The tensor product L� � L� of two semi�lattices L� and L� can be dened in terms of the
existence of a bilinear function � �jLj � jK j�jL � K j which is universal among all bilinear
functions� That is� for every bilinear function f �jL�j� jL�j�jLj there exists a unique linear
function f � such that the following diagram commutes�

jL�j � jL�j
�

� jL� � L�j
Z
Z
Z
Z
Z
Z
Z

f
�

jLj
�

f �

�Bi�Linear�

L� � L�

L
�

f �

�Linear�

������

�For more details� see Section �����
The tensor product of two free semi�lattices has the following useful property� For every

two sets A and B�

$PA � $PB �� $P�A�B�� ������

�For the proof of this fact see Proposition ������
One can now dene powers

���n � SL� SL

of the tensor product inductively as follows� For every natural number n�

���� � �
���n�� � �SL � ���n

Here �SL stands for the identity functor� while � is the nal object �which is also the neutral
object for the tensor��
Using this denition of powers� the expression in ������ can be taken as a denition for an

endofunctor �� � SL� SL� For example� if � is a signature consisting of one constant� one
unary and one binary function symbol� then� for every semi�lattice L�

���L� � � � L� L� L�

Initial ���Algebras in SL�

Proposition 	�	 The endofunctor �� � SL � SL is cocontinuous� �i�e�� it preserves colim�
its�� The same holds for the endofunctor L��� � SL� SL� for any semi�lattice L�
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Proof� The endofunctor �L�� �� is dened in terms of composition of coproducts� tensor
products� �constant� and identity functors� The latter are trivially cocontinuous� Coproducts
are colimits and colimits commute with each other� therefore they are cocontinuous� The same
hold for tensor products� since� as shown in Section ���� they are coequalizers� Finally� the
composition of cocontinuous functors is always cocontinuous� �

Corollary 	�
 The initial algebra of the endofunctor �� exists and is the colimit of the
following ��chain�

�
# � �����

���#�� ���������
�������#��� � � � ������

Similarly� the initial algebra of the endofunctor P��� is the colimit of

�
#� P������

P����#�� P����P������� � � � �
�

In the sequel we shall use �� both for the endofunctor in Set and for that in SL� The
context should help in avoiding ambiguities� For instance� in the next proposition� the �� on
the left hand side of the isomorphism is on SL while the one on the right is on Set � Instead�
the two occurrences of $P both refer to the functor from Set to SL�

Proposition 	� �� � $P �� $P � ���
Proof�

�� � $P ��
a
f��

� $P � �r�f�

��
a
f��

$P����r�f�� �by Proposition �����

�� $P�
a
f��

���r�f�� �by ���
��

�� $P � ��

�

The above proposition can be used to give a concrete representation of the initial ���
algebra in SL� �A ���algebra in SL is a pair consisting of a semi�lattice L and a linear
function � � ��L� L��

Proposition 	�� Let �T� �� be the initial ���algebra in Set �see Section ����� Then the
initial ���algebra in SL is simply � $PT� $P���
Proof� By the cocompleteness of Set and the fact that the forgetful functor U � SL� Set
creates �ltered colimits �see xIX�� in �Lan����� Corollary ��� applies to SL� By ����� �for
the rst element� and Proposition ��� �for the iterated steps�� Diagram ������ in SL can be
obtained by applying $P to the corresponding diagram in Set � By applying the fact that $P %
as a left adjoint % preserves colimits� one obtains the desired result� �
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	�� From F to I in Linear Semantics

The existence of a nal coalgebra P
�� � �A �rP � and initial algebras �� $PT �� $PT and

P ���TP
�� TP � allows us to apply the formal construction described in Section � to the

endofunctors �� and ��A�r � on SL� From the form of the initial ���algebra �see Propositions
��� and ���� and from the correspondence �depicted in ������� between transition systems �in
Set� and free linear ones �in SL�� one has the following�

Set

��T

T

�

�

o

f�gT� $PT
�
�
�
�
�

�
R

$P���A�T �
�

��

SL

$P��T �� �� $PT

$PT

$P�
�

o

� �A�r $PT

��

�

������

If one can nd a coalgebra

��P � TP � � �A�rTP

such that the diagram

$PT IP � TP �
	

P

� �A�r $PT

��

�

� �A�rIP
� � �A�rTP

�

�
�
P

�� �A�r 	
� �A�rP




�

o ������

commutes� then also the following diagram % instance of ����� % commutes�

$P��T �� �� $PT ��IP � ��TP
� ��	

��FP
� ��P

$PT

$P�
�

o

IP � TP
�

�

� 	

FP
� P

� �A�r $PT

��

�

� �A �rIP
� � �A�rTP

�

��P

�� �A�r 	

� �A�rFP
� � �A�rP




�

o

����
�
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Theorem ��� gives then that

FP � IP � $PT � P is both initial and nal

if KFP is a ���congruence on �P� ��� for � � FP � � � ��	�
Let us now see how to derive ��P from �� in case � is dened by means of a transition

system specication� some care is needed because of the semi�lattice structure which makes
things more involved than in the branching case from Section 
�
Notice that� in general� transition system specications do not include rules for t� When

dealing with free semi�lattices like $PT � this is not a problem� because one can use the by
now standard transposition across the adjunction and work with T � where no join appears�
But in the above diagram� the coalgebra ��P � TP � � �A �r TP involves the semi�lattice
TP �containing �processes as terms�� which is not free� A solution would be to add to every
transition system specications the conditions given in ������ as rules� that is�

x
a�� x� y

a�� y�

x t y
a�� x� t y�

x
a�� x� y � a��
x t y

a�� x�
x �

x t y � ������

This su!ces for reducing transitions of terms of the form a t b to transitions of simpler
terms a and b� But problems arise again when dealing with terms in which joins appear
after a function symbol� like� e�g�� �a t b� k �c t d�� The solution is suggested by the way
the free algebra of terms is constructed� namely by means of tensor products� the function
symbols have to be treated bilinearly� Thus� for instance� one can reduce the above term to
�a k c� t �a k d� t �b k c� t �b k d��
Given a transition system specication R� after adding to it the rules in ������ and having

treated function symbols as bilinear� one still needs to include the �transitions� of P
��

� �A�rP as axioms� by the correspondence in ������ one derives the following� Recall that�
for every p in P � the expressions p��� and pa are dened in ������ and ������� respectively�
For every p in P and every a�rp� � 
�p� �i�e�� p� � pa�� add the axiom

p
a�� p� �

for every p such that � � 
�p� �i�e�� � � p����� add

p � �

As in the branching case� if R does not have x�rules� the commutativity of the right square
of the diagram in ������ is ensured� because� as previously mentioned� the rules in ������ are
already implied by transition systems stemming from coalgebras� As for the two remaining
assumptions for our theory to hold� namely the commutativity of the left square of the
diagram in ������ and the �congruence condition�� we do leave them to be discussed elsewhere
and turn to a specic example % the transition system specication RB for the language in
Section 
��� For that example the remaining assumptions can be veried �by hand��
Notice that a further di�erence from the branching case is here the fact that we now deal

with transition systems with a distinguished termination state� In the transition system

induced by RB � the state � plays such role and transitions of the form x
p
�� � simply corre�

spond to x �� Having settled this last problem� we can now derive the following compositional
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semantics�

�P � �����

�
p

�
r�

aP � ��a��

� a�r�

p �P q � ��p � q��

�

�
q tFa�p	�
 a�r��pa � q�� if p �F
a�p	�
 a�

r ��pa � q�� otherwise

Finally� consider� for simplicity� the remaining p �P q and p kP q only in the case in which
neither p � nor q � holds�

p �P q � ��p� q��

�
F
a�p	�
 a�

r��pa�� t Fa�q	�
 a�r��qa��

� p t q

p kP q � ��p k q��
�
F
a�p	�
 a�r��pa k q�� t Fa�q	�
 a�r ��p k qa��

Notice that the language and the transition system specication considered here is very close
to the one given in �HP���� One can then compare the compositional semantics in that paper
with the above �automatically derived� semantics and nd that� mutatis mutandis� they are
the same�

	�� Tensor Products in SL ���

In this section tensor and right tensor products are seen rst as left adjoints of suitable hom�
functors and then as quotients % more precisely� as coequalizers� The former presentation has
the advantage of being easily applied and understood also in other categories� The latter is
useful for proving the existence of such products�

Tensor Products as Left Adjoints� One way to dene tensor products is to use closed
categories and adjunctions� Informally �for a formal denition see �EK����� a category C is
closed if its hom�sets are themselves objects of the category� That is� for every two objects
C� and C� in C� the set C�C�� C�� of arrows in C can be regarded as an object of C� This is
always the case for categories of algebras� like SL� �See� e�g�� �Jac�����
For every object C in a closed category C� one has an endofunctor C�C� � � � SL� SL� If

this functor has a left adjoint� one can dene a tensor product as follows�

C � � a C�C� � �
By a standard property of adjunctions with parameters ��Lan���� this gives rise to a functor
� � C � C � C�
Clearly� the category Set is closed �hom�sets are sets#� and it is well known that� for every

set A� A� � � Set � Set is left adjoint to the hom�functor� Thus in Set tensor and Cartesian
products coincide�
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A familiar example of a tensor product in semantics is the smash product between cpo�s�
Notice that the space of strict continuous functions between two cpo�s is a cpo itself� which
shows that the category CPO	 is closed� It is possible to prove that� for every cpo C� the
smash product C � � is the left adjoint to CPO	�C� � ��
Also SL is a closed category� For every two semi�lattices L and K� the hom�set SL�K�L�

inherits a semi�lattice structure as follows� For all linear functions f� g in SL�K�L�� and for
every k in K� one can put

�f t g��k� � f�k� t g�k�� ������

where the join on the left hand side is the join of L� Thus the join in SL�K�L� is dened
pointwise and� for every semi�lattice K� SL�K� � � is an endofunctor on SL�
For proving the existence of this tensor in SL one can use Freyd�s Adjoint Functor Theorem

�xV�� in �Lan���� as well as a concrete quotient construction �see Section ����� What the
adjunction then gives is the following bijection�

L� � L�
� L

L�
� SL�L�� L�

Summarizing the above� we have the following�

Definition 	��� For every L in SL�

L� � � SL� SL

is dened as the �unique up to isomorphism� left adjoint of SL�L� � � � SL � SL� By a
standard property of adjoints with parameters �xIV�� in �Lan����� this gives rise to a bifunctor

� � SL�SL� SL

which is called the tensor product between semi�lattices�

One can check that �SL��� �� forms a monoidal closed category � In particular�

L� � �� �� L �� L �

The above denition can be easily varied to obtain a right tensor product classifying only
�right�linear� functions� instead of bilinear �i�e�� right� and left�linear� ones� The hom�functor

SetSL� � � � � � Setop�SL� SL

to be used is dened as follows� Given a set A and a semi�lattice L� SetSL�A�L� is the semi�
lattice having as elements all functions % thus not only the linear ones# % from the set A to
the set underlying L� and as join the pointwise one as in ������� This is well dened� since in
������ only the join of the target L is used�

Definition 	��� For every A in Set �

A�r � � SL� SL
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is dened as the left adjoint of SetSL�A� � � � SL� SL� This gives rise to a bifunctor

�r � Set�SL� SL

which is called the right tensor product between sets and semi�lattices�

The above adjunction is a natural isomorphism of the form

A�rL � K

L � SetSL�A�K�

An alternative way of understanding the right tensor product is in terms of the �full� tensor
product� Indeed� it can be obtained by simply precomposing the left component of the tensor
product with the free constructor on semi�lattices�

Set

SL

$P
�

Set � SL

�
�
�
�
�

�r

R
SL� SL

$P � �SL

�

�
� SL

Tensor Products of Free Semi�Lattices� The tensor product of two free semi�lattices
has the following useful property�

Proposition 	��� For every two sets A and B�

$PA � $PB �� $P�A� B��

Proof� By uniqueness �up to isomorphism� of adjoints� it is enough to prove that� for every
semi�lattice L� there exists a natural isomorphism between linear functions from $P�A�B�
to L and linear functions from $PB to SL� $PA�L��

$P�A� B� � L

$PB � SL� $PA�L�
Because of the adjunction $P aU � this amounts to the following natural isomorphism between
functions in Set �thus not necessarily linear��

A �B � jLj
B � jSL� $PA�L�j

A second application of the above argument yields�

A �B � jLj
B � Set�A� jLj�

The latter immediately follows from the adjunction A� �aSet�A� � �� �

Notice that since in Set � coincides with � one could rephrase the above proposition by
saying that $P �as a monad� preserves tensors� �Cf� �Jac��� % also for a more abstract proof
of the above proposition��
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Corollary 	��� For every two sets A and B�

A�r $PB �� $P�A�B��

Proof� Immediate from the above proposition and the fact that the right tensor product is
obtained by precomposing the rst component of the tensor product with $P � �

Tensor Products as Quotients� Next� we give a direct construction of tensor products
based on quotients �more precisely� coequalizers�� �Cf� �Lin��� and �LM�����
Let L and K be two semi�lattices and let l� l� and k� k� be generic elements of L and K�

respectively� Let the same symbol t denote the join of both L and K� In order to obtain
L�K from L�K� one needs to put

� l t l�� k t k� ��� l� k � t � l� k� � t � l�� k � t � l�� k� � �yes�

but not

� l t l�� k t k� ��� l� k � t � l�� k� � �no�

as it is the case with the join in the Cartesian product� This can be neatly expressed by
means of coequalizers as follows�
Consider the two functions

jLj� � jKj�
��

�
� $P�jLj � jKj� ������

dened as follows�

� � � l� l�� k� k� ���� f� l� k ��� l� k� ��� l�� k ��� l�� k� �g
� � � l� l�� k� k� ���� f� l t l�� k t k� �g

Take now the coequalizer of their transposes �� and � � across the adjunction $P aU �

$P�jLj� � jKj��
���

� �
� $P�jLj � jKj� q� Coequalizer���� � �� ���
��

This coequalizer gives the desired tensor product�

Proposition 	��� For �� and � � as in �������

L�K �� Coequalizer���� � ��

Moreover� by transposing the universal arrow given by the coequalizer �in the other direction
than in ������� one obtains the universal bilinear function described in ������ More formally�
let �� be the inverse of the above ��� Then

� � q� � jLj�jKj�jL�Kj �
�
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A quotient construction is possible also for right tensor products� The following few
straightforward modications of the above construction are needed�
Let A be a set and L a semi�lattice� Let a be an element of A and l� l� elements of L� The

denition of ������ becomes

�� � � A�jLj�� $P�A�jLj�
� � � a� l� l� � ��� f� a� l ��� a� l� �g
� � � a� l� l� � ��� f� a� lt l� �g

and� similarly� Diagram ���
�� becomes

$P�A�jLj��
���

� �
� $P�A�jLj� q� Coequalizer���� � �� ���
��

Proposition 	��� For �� and � � as in �������

A�rL �� Coequalizer���� � ��

Moreover�

�
r � q� � A�jLj�jA �rLj

�

Acknowledgements

Discussions with and suggestions made by the following persons are gratefully acknowledged�
Michael Barr� Eric Badouel� Jaco de Bakker� Marcello Bonsangue� Franck van Breugel�
Philippe Darondeau� Elena Marchiori� Fer�Jan de Vries� and the members of the Amsterdam
Concurrency Group� Special thanks to Bart Jacobs for joint work on linear nal semantics�

References

�Abr��� S� Abramsky� The lazy lambda calculus� In D�A� Turner� editor� Research Topics
in Functional Programming� pages ��%���� Addison�Wesley� �����

�Acz��� P� Aczel� Non�well�founded sets� Number �
 in CSLI Lecture Notes� Stanford
University� �����

�AD��� A� Arnold and A� Dicky� An algebraic characterization of transition system equiv�
alences� Information and Computation� ������%���� �����

�ArM��� M�A� Arbib and E�G� Manes� Parameterized data types do not need highly con�
strained parameters� Information and Control� ������%���� �����

�AM��� P� Aczel and N� Mendler� A nal coalgebra theorem� In D�H� Pitt� D�E� Ryeheard�
P� Dybjer� A�M� Pitts� and A� Poign&e� editors� Proceedings Category Theory and
Computer Science� volume ��� of Lecture Notes in Computer Science� pages ���%
���� �����



References ��

�AR��� P� America and J�J�M�M� Rutten� Solving re�exive domain equations in a category
of complete metric spaces� Journal of Computer and System Sciences� �������
�%
���� �����

�Bad��� E� Badouel� Une construction syst&ematique de mod'eles 'a partir de sp&ecications
op&erationnelles structurelles� Technical Report ��
� INRIA� Rennes� �����

�Bad��� E� Badouel� Models of concurrency� Handout at the fth ESSLLI� Faculdade de
Letras� Universidade de Lisboa� �����

�Bar��� M� Barr� Terminal coalgebras in well�founded set theory� Theoretical Computer
Science� ��
�������%���� ����� A revised version has appeared under the title
�Terminal coalgebras for endofunctors on sets � McGill University� Montreal� �����

�BM��� J�W� de Bakker and J��J�Ch� Meyer� Metric semantics for concurrency� BIT� �����
%
���� �����

�Bre��� F� van Breugel� Three metric domains of processes for bisimulation� Report CS�
R����� CWI� Amsterdam� ����� To appear in Proceedings of the �th Interna�
tional Conference on MathematicalFoundations of Programming Semantics� LNCS�
Springer�Verlag� �����

�BW��� M� Barr and C� Wells� Toposes� Triples and Theories� Springer�Verlag� �����

�BZ��� J�W� de Bakker and J�I� Zucker� Processes and the denotational semantics of con�
currency� Information and Control� �
���%���� �����

�DG��� P� Darondeau and B� Gamati&e� Modelling innitary behaviours of communicating
systems� Technical Report �
�� INRIA� Rennes� �����

�EK��� S� Eilenberg and G�M� Kelly� Closed categories� In S� Eilenberg et al�� editor� Proc�
of La Jolla Conf� on Categorical Algebra� pages 
��%���� Springer�Verlag� �����

�Fio��� M� Fiore� A coinduction principle for recursive data types based on bisimulation� In
Proceedings of the Eighth IEEE Symposium on Logic In Computer Science� �����

�Gla��� R�J� van Glabbeek� Full abstraction in structural operational semantics �extended
abstract�� In M� Nivat� C� Rattray� T� Rus� and G� Scollo� editors� Proceedings of the
Third International Conference on Algebraic Methodology and Software Technology�
pages ��%�
� Springer�Verlag� �����

�GTW��� J�A� Goguen� J�W� Thatcher� and E�G� Wagner� An initial algebra approach to the
specication� correctness and implementation of abstract data types� In R� Yeh�
editor� Current Trends in Programming Methodology� pages ��%�
�� Prentice�Hall�
�����

�GV��� J�F� Groote and F� Vaandrager� Structured operational semantics and bisimulation
as a congruence� Information and Computation� ����������%���� �����

�Hen��� M�C�B� Hennessy� A fully abstract denotational model for higher�order processes� In
Proceedings �th Annual Symposium on Logic in Computer Science� IEEE Computer
Society Press� �����

�HP��� M�C�B� Hennessy and G�D� Plotkin� Full abstraction for a simple parallel pro�
gramming language� In J� Be(cv&a(r� editor� Proc� �th Int�l Symp� on Mathematical



References ��

Foundations of Computer Science� volume �
 of Lecture Notes in Computer Science�
pages ���%���� Springer�Verlag� �����

�Jac��� B� Jacobs� Semantics of weakening and contraction� To appear in Annals of Pure
and Applied Logic� �����

�Ken��� R�E� Kent� The metric closure powerspace construction� In M� Main� A� Melton�
M� Mislove� and D� Schmidt� editors� Proceedings of the �rd MFPS� volume ��� of
Lecture Notes in Computer Science� pages ���%���� Springer�Verlag� �����

�Lan��� S� Mac Lane� Categories for the Working Mathematician� volume � of Graduate
Texts in Mathematics� Springer�Verlag� �����

�Lin��� F�E�J� Linton� Autonomous equational categories� J� of Mathematics and Mechan�
ics� ���
�����%�
�� �����

�LM��� S� Mac Lane and I� Moerdijk� Sheaves in geometry and logic	 a �rst introduction
to topos theory� Universitext� Springer�Verlag� �����

�Man��� E�G� Manes� Algebraic theories� volume �� of Graduate Texts in Mathematics�
Springer�Verlag� �����

�MG��� J� Meseguer and J�A� Goguen� Initiality� induction� and computability� In M� Ni�
vat and J�C� Reynolds� editors� Algebraic Methods in Semantics� pages 
��%�
��
Cambridge University Press� �����

�Mil��� R� Milner� Communication and Concurrency� Prentice Hall� �����

�Par��� D�M�R� Park� Concurrency and automata on innite sequences� In P� Deussen�
editor� Proceedings �th GI Conference� volume ��
 of Lecture Notes in Computer
Science� pages ���%���� Springer�Verlag� �����

�Pit��� A�M� Pitts� A co�induction principle for recursively dened domains� Technical
Report ���� Computer Laboratory� University of Cambridge� ����� To appear in
Theoretical Computer Science�

�Plo��a� G�D� Plotkin� Post�graduate lecture notes in advanced domain theory �incorporat�
ing the �Pisa Notes �� Department of Computer Science� University of Edinburgh�
�����

�Plo��b� G�D� Plotkin� A structured approach to operational semantics� Technical Report
DAIMI FN���� Computer Science Department� Aarhus University� �����

�RT��� J�J�M�M� Rutten and D� Turi� On the foundations of nal semantics� Non�
standard sets� metric spaces� partial orders� In J�W� de Bakker� W��P� de Roever�
and G� Rozenberg� editors� Proceedings of the REX workshop on Semantics	
Foundations and Applications� volume ��� of Lecture Notes in Computer Sci�
ence� pages 
��%���� Springer�Verlag� ����� FTP�available at ftp�cwi�nl as
pub�CWIreports�AP�CS�R��
��Z�

�Rut��� J�J�M�M� Rutten� Processes as terms� non�well�founded models for bisimulation�
Mathematical Structures in Computer Science� �����%���� �����

�Rut��� J�J�M�M� Rutten� A structural co�induction theorem� Technical Report CS�R��
��
CWI� ����� To appear in Proceedings of the Ninth Conference on the Mathemat�



References ��

ical Foundations of Programming Semantics� Lecture Notes in Computer Science�
Springer�Verlag� ���
�

�Sif�
� J� Sifakis� Property preserving homomorphisms of transition systems� In E� Clarke
and D� Kozen� editors� Logics of programs� volume ��
 of Lecture Notes in Computer
Science� pages 
��%
��� Springer�Verlag� ���
�

�SP��� M�B� Smyth and G�D� Plotkin� The category�theoretic solution of recursive domain
equations� SIAM J� Comput�� ������%���� �����

�TJ��� D� Turi and B� Jacobs� On nal semantics for applicative and non�deterministic
languages� Fifth Biennal Meeting on Category Theory and Computer Science�
Amsterdam� September �����

�WN��� G� Winskel and M� Nielsen� Models for concurrency� Handout at the TEMPUS
Summer School on Algebraic and Categorical Methods in Computer Science� �����


