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Abstract

The paper is a general overview of an approach to the semantics of logic programs whose aim is
finding notions of models which really capture the operational semantics, and are therefore use-
ful for defining program equivalences and for semantics-based program analysis. The approach
leads to the introduction of extended interpretations which are more expressive than Herbrand
interpretations. The semantics in terms of extended interpretations can be obtained as a result
of both an operational (top-down) and a fixpoint (bottom-up) construction. It can also be
characterized from the model-theoretic viewpoint, by defining a set of extended models which
contains standard Herbrand models. We discuss the original construction modeling computed
answer substitutions, its compositional version and various semantics modeling more concrete
observables. We then show how the approach can be applied to several extensions of positive
logic programs. We finally consider some applications, mainly in the area of semantics-based
program transformation and analysis.
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1 Introduction

1.1 Denotations as syntactic objects

The paper considers an approach to the semantics of logic programs which leads to denotations
consisting of (equivalence classes of) syntactic objects. There are two main motivations for

using syntactic domains. Namely,

e syntactic domains make possible the definition of program denotations which capture var-
ious computational aspects in a goal-independent way. These aspects include observable

properties such as

— computed answers, which are modeled by sets of non-ground atoms or unit clauses
[47] (see section 3),

— call patterns, which are modeled by sets of binary clauses [61] (see section 5.3.2),

— resultants, which are modeled by sets of clauses [59] (see section 5.3).

Goal-independence is the key issue. It means that denotations are defined by collecting
the observable properties starting with the most general atomic goals and that they give
a complete characterization of the program behavior for any goal.

e syntactic domains make possible the definition of a unique denotation in cases where there
exists no unique representative Herbrand model. Examples are

— the compositional semantics for positive logic programs [62, 63, 22, 21], whose do-
mains are sets of clauses (see section 4),

— the semantic kernel for normal logic programs [43, 75], whose domains are sets of
negative normal clauses (see section 6.3),

— the model state semantics for disjunctive logic programs [98, 90], whose domains are
sets of positive disjunctive ground clauses (see section 6.2).

The overall approach is called in this paper the s-semantics approach after the s-semantics
[47], which was the first example of a semantic construction featuring some of the above prop-
erties. By no means we imply that all the denotations we consider are extensions of the original

s-semantics.

1.2 Why a new semantics

According to a popular view of logic programming, the problem of the semantics (of definite
Horn clauses) was solved once and for all by logicians before logic programming was even born.
Namely, the only three important concepts are the program itself, the intended interpretation
(declarative semantics) and the theorem prover (operational semantics). The program is a logic
theory. The declarative semantics formalizes the application the program is trying to capture.
It is an interpretation in the conventional logic sense and a model of the program. Finally, the
theorem prover is a proof procedure which must be sound (and complete) with respect to the
declarative semantics. Is that really all there is to it?

The above view is appealing but too simple minded to capture the difference between the-
orem proving and programming. In fact, it applies to any formal system for which there exists
a sound and complete theorem prover. Theorem proving becomes logic programming when
we restrict the class of theories so as to obtain a declarative semantics (a unique model) and



a proof procedure similar to the denotational and the operational semantics of conventional
programming languages. This is exactly what van Emden and Kowalski did for definite Horn
clauses in their seminal paper [109], where the proof procedure was SLD-resolution and the
model was the least Herbrand model. The semantics is then a mathematical object which is
defined in model-theoretic terms and which can be computed by a top-down construction (the
success set) and by a bottom-up construction (the least fixpoint of the immediate consequences
operator). Why shouldn’t we be happy with this solution?

The answer can be found if we first consider a different and more basic question. What is a
semantics used for? The first application of any semantics is to help understanding the meaning
of programs. Other useful applications include areas such as program transformation and
program analysis. One can argue that tens of thousands of logic programmers were really helped
by the declarative understanding of their programs. One can also argue that semantics-based
program transformation and analysis do require deeper results and more elaborate theories,
but still only using basically the above mentioned simple and straightforward semantics. The
above arguments can become more technical only if we understand which is the basic semantic
property of such formal activities as program transformation and analysis. The answer is
program equivalence, i.e. program understanding is based on our ability to detect when two
programs cannot be distinguished by looking at their behaviors.

1.3 Program equivalences and observables

Defining an equivalence on programs = and a formal semantics S(P) are two strongly related
tasks. A semantics S(P) is correct w.r.t. =, if S(P;) = S(P.) implies P, & P,. The question
about the adequacy of the van Emden and Kowalski’s semantics can then be rephrased as
follows. Is that semantics correct w.r.t. a “natural” notion of program equivalence? This in
turn raises the problem of choosing a suitable notion of equivalence.

Equivalences can be defined by using logical arguments only. One can use model-theoretic
properties, such as the set of models, the set of logical consequences or the least Herbrand model,
and proof-theoretic properties, such as the set of derivable atoms. A systematic comparison of
several program equivalences has been worked out in [91]. In particular, [91] shows the relations
between equivalences based on purely logical properties and equivalences induced on programs
by more “operational” aspects. For example, subsumption equivalence of two programs is
shown to correspond to the equality of their Tp operators. Equivalences based on correct
answer substitutions have also been studied in [29]. However, these formalizations are not
completely satisfactory since they do not consider an important class of program equivalences,
which cannot be described by purely (standard first-order) logical notions. This is the class of
equivalences based on what we can observe from a computation.

One important aspect of the formalization of program execution, in addition to the infer-
ence rules which specify how derivations are made, is the concept of observable, i.e. the property
we observe in a computation. In logic programs we can be interested in different observable
properties such as successful derivations, finite failures, computed answer substitutions, partial
computed answer substitutions, finite sets of solutions, etc. A given choice of the observable
X induces an observational equivalence =~x on programs. Namely P =~x P, iff P; and P, are
observationally indistinguishable according to X. For example, if s denotes successful deriva-
tions, P| =, Ps iff for any goal G, G is refutable in P; iff it is refutable in P,. This observable
is adequate to characterize a theorem prover, yet it is definitely too abstract to capture the
essence of logic programming, i.e. the ability to compute answers. The most adequate observ-
able is therefore computed answers (denoted by ¢). Py =, P, iff for any goal G, G has the same



(up to renaming) computed answers in P; and in P;.

As first shown in [47], the van Emden and Kowalski’s semantics is not correct w.r.t. to the
observational equivalence based on computed answer substitutions. Namely, there exist programs
which have the same least Herbrand model, yet compute different answer substitutions. When
trying to understand the meaning of programs, when analyzing and transforming programs,
this semantics cannot be taken as the reference semantics. This is the reason why the need
for a different formal semantics was recognized by many authors, giving rise to several new
definitions [30, 49, 113, 42]. The need for better semantics was also recognized in the case of
semantics-based abstract interpretation [94] and transformation [76].

1.4 Compositionality

In addition to the problem related to modeling the computed answers observational equiva-
lences, there exists another problem with the least Herbrand model semantics. Namely a very
important property, i.e. compositionality, does not hold. Compositionality has to do with a
(syntactic) program composition operator o, and holds when the semantics of the compound
construct C o Cy is defined by (semantically) composing the semantics of the constituents C;
and Cs. In the case of logic programs, the construct which raises a compositionality problem
is the union of clauses. The related property is called U-compositionality. U-compositionality
is interesting both for theoretical and for practical (i.e. the definition of semantics for modular
versions of logic programs) purposes. When also composition of programs is taken into account,
for a given observable property we obtain different equivalences depending on which kind of
program composition we consider. Given an observable X and a program composition operator
o, the induced congruence =, x) is defined as follows. Py =, x) P2 iff for any program @,
PioQ ~x P,oQ, (ie. iff P; and P, are observationally indistinguishable under any possible
context allowed by the composition operator).

1.5 Plan of the paper

In the next section we describe the general approach. In section 3 we consider the original
s-semantics [47, 48], which is the first (non-compositional) semantics of positive logic programs
correct w.r.t. computed answers. Compositionality is discussed in section 4, while in section 5
we consider semantics modeling other observables, such as finite failures and resultants. Sec-
tion 6 discusses the application of the approach to several extensions of positive logic programs,
including constraint logic programs, disjunctive logic programs, normal logic programs, construc-
tive negation, structured logic programs with inheritance and Prolog programs. Finally, section
7 shows some applications of the approach, in the areas of program transformation, semantics-
based analysis and metaprogramming,.

1.6 Preliminaries

The reader is assumed to be familiar with the terminology of and the basic results in the
semantics of logic programs [88, 3]. Let £ be the first order language defined by the signature S
consisting of a set C of data constructors, a finite set P of predicate symbols, a denumerable set
V' of variable symbols. Let L' be the language defined by C’, P’ and V and £ be the language
defined by C, P and V. L' is an extension of £ if C C C' and P C P’. When the language will
be subscripted by the program, as in Lp, the signature will be the one defined by the symbols
occurring in the program P. Otherwise a given signature S is assumed.



Let T be the set of terms built on C' and V. Variable-free terms are called ground. A
substitution is a mapping @ : V' — T such that the set D(9) = {X | ¥(X) # X} (domain
of 9) is finite. If W C V, we denote by ¥y the restriction of ¥ to the variables in W, i.e.
Yw(Y) =Y for Y ¢ W. Moreover if E is any syntactic object, we use the abbreviation J|p
to denote 9|y 4r(g). € denotes the empty substitution. The composition Yo of the substitutions
¥ and o is defined as the functional composition, i.e. do(z) = o(d(z)). A renaming is a

! L' = p7lp = c. The pre-

substitution p for which there exists the inverse p~™" such that pp~
ordering < (more general than) on substitutions is such that ¢ < o iff there exists ¥ such that
Y9 = o. The result of the application of the substitution ¥ to a term ¢ is an instance of t
denoted by t9. We define ¢t < ¢’ (¢ is more general than ¢') iff there exists ¢ such that ¢t = ¢'.
A substitution ¥ is grounding for t if ¢t is ground. The relation < is a preorder. = denotes
the associated equivalence relation (variance). A substitution ¥ is a unifier of terms ¢ and ¢’ if
td = t'Y. mgu(ty,ts) denotes any idempotent most general unifier of ¢t and t5. All the above
definitions can be extended to other syntactic objects in the obvious way.

A literal L is an object of the form p(t1,...,t,) (atom) or —p(t1,...,t,) (negative literal),
where p € P, t1,...,t, € T and “—=” denotes negation. A clause is a formula of the form
H:—-Ly,...,L, with n > 0, where H (the head) is an atom and Li,..., L, (the body) are

literals. “: —”

and “” denote logic implication and conjunction respectively, and all variables
are universally quantified. A definite clause is a clause whose body contains atoms only. If
the body is empty the clause is a unit clause. A normal program is a finite set of clauses
P ={cy,...,cn}. A positive program is a finite set of definite clauses. A normal (positive) goal
is a formula L4, ..., L,,, where each L; is a literal (atom).

A Herbrand interpretation I for a program P is a subset of the Herbrand base B (the
set of all ground atoms). The intersection M(P) of all the Herbrand models of a positive
program P is a model (least Herbrand model). M (P) is also the least fixpoint Tp T w of a
continuous transformation Tp (immediate consequences operator) on Herbrand interpretations.
The ordinal powers of a generic monotonic operator Tp on a complete lattice (D, <) with
bottom L are defined as usual, namely Tp 10= L1, Tp T (a+ 1) = Tp(Tp T a) for o successor
ordinal and Tp 1T a = lwb({Tp T B | B < a}) if a is a limit ordinal. If G is a positive goal,
G «ﬁp,R By,..., B, denotes an SLD-derivation of By, ..., B, from the goal G in the program
P which uses the selection rule R and such that ¢ is the composition of the mgu’s used in
the derivation. G »i)p O denotes the SLD-refutation of G in the program P with computed
answer substitution 9. A computed answer substitution is always restricted to the variables
occurring in G.

We will denote by X and £ a tuple of distinct variables and a tuple of terms respectively,
while B will denote a (possibly empty) conjunction of atoms. For any set A, A* denotes the
set of finite sequences of elements of A. :: will denote concatenation of sequences and A is the
empty sequence.

2 The s-semantics approach

The aim of the s-semantics approach [82, 56, 52, 58] is modeling the observable behaviors
(possibly in a compositional way) for a variety of logic languages. The approach is based on the
idea of choosing (equivalence classes of) sets of clauses as semantic domains. The denotations
are then defined by syntactic objects, as in the case of Herbrand interpretations. Denotations
(called m-interpretations) are not interpretations in the conventional mathematical logic sense.
As in the case of the van Emden and Kowalski semantics, denotations can be computed both by



a top-down construction (a success set) and by a bottom-up construction (the least fixpoint of
suitable continuous immediate consequences operators on w-interpretations). The link between
the top-down and the bottom-up constructions is given by an unfolding operator [82, 83]. The
equivalence proofs can be stated in terms of simple properties of the unfolding and the immediate
consequences operators [41].

It is worth noting that the aim of the approach is not defining a new notion of model. We are
simply unhappy with the traditional declarative semantics, because it characterizes the logical
properties only and we look for new notions of program denotation useful from the programming
point of view. A satisfactory solution to the simple case of positive logic programs is needed
to gain a better understanding of more practical languages, such as real Prolog and its purely
declarative counterparts.

We show our construction in a language independent way by considering three separate
steps, which roughly correspond to the three standard semantics of logic programs [109, 88, 3].
The first step is related to the operational semantics and leads to the definition of the structure
of m-interpretations. The second step is concerned with the fixpoint semantics. The third and
final step is concerned with the definition of m-models.

2.1 Observable properties and m-interpretations

The operational semantics is usually given by means of a set of inference rules which specify
how derivations are made, and by defining a proper notion of observable. Consider for example
positive logic programs with no composition and computed answer substitutions as observable.
As we will show in section 3, the denotation of a program is a set of non-ground atoms, which can
be viewed as a possibly infinite program. This is just an instance of a more general property
of denotations within our approach. Namely denotations are possibly infinite programs and
semantic domains are made of syntactic objects. The amount of syntax which is needed in
the semantic domains depends on the observable and on the composition. For example, in
the computed answer substitutions semantics, the syntactic construct of variables is added to
the Herbrand domain. When considering U-composition also, non-ground unit clauses are not
sufficient any longer and more general clauses are needed (see section 4). Note that the approach
is feasible only if the language syntax is powerful enough to express its own semantics. Since
we have syntactic objects in the semantic domain, we need an equivalence relation in order to
abstract from irrelevant syntactic differences. In the above considered example, this relation is
variance. If the equivalence is accurate enough the semantics is fully abstract.

Herbrand interpretations are generalized in our setting by m-interpretations which are pos-
sibly infinite sets of equivalence classes of clauses from the semantics domain. The operational
semantics of a program P is then a w-interpretation I, which has the following property. P and
I are observationally equivalent with respect to any goal G. This is the property which allows
us to state that the semantics does indeed capture the observable behavior.

2.2 Fixpoint semantics and unfolding

The aim of the second phase is the definition of a fixpoint semantics equivalent to the previously
defined operational semantics. This can be achieved by the following steps.

e The set of 7m-interpretations is organized in a lattice (&, C) based on a suitable partial
order relation T, which in most cases is set inclusion.



¢ An immediate consequences operator T is defined and proved monotonic and continuous
on (3, C). This allows us to define the fixpoint semantics F(P) for P as F(P) =TF T w.

e The fixpoint semantics F is proved equivalent to the operational semantics. If this equiv-
alence holds, the immediate consequences operator 75 models the observable properties
and may be used for bottom-up program analysis.

Concise and elegant equivalence proofs can be obtained by introducing the intermediate notion
of unfolding semantics U [82, 83]. Unfolding is a well known program transformation rule which
allows us to replace procedure calls by procedure definitions. The unfolding of the clauses of
program P using the procedure definitions in program I is denoted by unfp(I).

The unfolding and the operational semantics are strongly related, since they are based on the
same inference rule (applied to clauses and goals respectively). The unfolding semantics U(P)
is obtained as the limit of the unfolding process. If the unfolding rule preserves the observable
properties, U(P) is equivalent to the operational semantics O(P) which is a 7-interpretation and
therefore a program. This shows that the statement “the language syntax is powerful enough
to express its own semantics” can be rephrased as “the language is closed under unfolding”.

On the other side, the unfolding operator unfp is strongly related to the immediate con-
sequences operator I'5. For example, in many cases, given a m-interpretation I, the relation
TE(I) = unfp(I) holds. The proof of equivalence between U(P) and F(P) can be based on such
a relation. In particular the equivalence immediately holds for those immediate consequences
operators which are compatible with the unfolding rule [41]. The above relations suggest a
methodology to obtain the immediate consequences operator by first defining the unfolding
operator, which is easier to define because of its strong relation to the operational semantics.

2.3 Model-theoretic semantics

Let us first note that the original model-theoretic view of the s-semantics [47] was based on
ad-hoc notions of s-truth and s-model. The notion of m-model, first introduced in [48], fixes
the above problem, by viewing a denotation just as a syntactic notation for a set of Herbrand
interpretations. H(Ip) denotes the set of all the Herbrand interpretations represented by Ip.
For instance, in positive logic programs, the operational semantics O(P) is a set of non-ground
atoms and H(O(P)) is the set containing the least Herbrand model of O(P). In general, our
aim is finding a notion of m-model such that O(P) and F(P) are m-models and every Herbrand
model is a m-model. This can be obtained by the following definition.

Definition 2.1 Given a program P and a w-interpretation I, I is a m-model of P iff P is true
in all the Herbrand interpretations in H(I).

As we will show in the following, the model intersection property does not hold in general
for m-models. This is due to the fact that set inclusion does not adequately correspond to the
intended meaning of m-interpretations. Namely the information of a w-interpretation I; may
be contained in I without I; being a subset of Is. In general, we look for a partial order
=< modeling the meaning of w-interpretations, such that () <) is a complete lattice and the
greatest lower bound of a set of m-models is a m-model. According to the last property there
exists a least m-model, which, as we will see in the following, is the least Herbrand model. It is
worth noting that the most expressive m-model O(P) is a non-minimal 7-model.



3 Positive logic programs

In this section we consider the original s-semantics?, which is a non-compositional semantics
for positive programs. Compositions will be considered in section 4.

3.1 Top-down semantics and 7-interpretations

The first observable we consider is the computed answer substitutions which induces the following
program equivalence ~. Other observable properties (and therefore different semantics) will be
considered in Section 5.

Definition 3.1 Let Py, P> be positive programs. Py, ~ Ps if for every positive goal G, G li)P1 O

iff G prz O and 9 = (V'p)|q, where p is a renaming.

The above observable is captured by the following operational semantics. Recall that X denotes
a tuple of distinct variables.

Definition 3.2 (Computed answer substitutions semantics, s-semantics) [47] Let P be a pos-
itive program.
OP)={A] IX eV, W,
p(X) 55 0,
A=p(X)0 }

In order to model O(P) the usual Herbrand base has to be extended to the set of all the
(possibly non-ground) atoms modulo variance.

Definition 3.3 Let B be the quotient set of all the atoms w.r.t. variance. A m-interpretation
is any subset of B.

In the following O(P) will then be formally considered as a subset of 5. Moreover, we will
denote the equivalence class of an atom A by A itself. Note that w-interpretations of definition
3.3 are not Herbrand interpretations, yet are interpretations defined on the Herbrand universe.
These interpretations were called canonical realizations in [100, 79].

Theorem 3.4 shows that O actually models computed answer substitutions and that it is
fully abstract, since Py ~ P, implies O(Py) = O(P).

Theorem 3.4 [47] Let Py, Py be positive programs. Py ~ Py iff O(P1) = O(P).

The following theorem asserts that the observable behavior of any (possibly conjunctive)
goal can be derived from O(P), i.e. from the observable behaviors of atomic goals of the form
p(X) This property is a kind of AND-compositionality. Similar theorems will be shown to
hold for all the semantics defined according to the s-semantics style. This is also the key
property which allows us to use abstractions of the semantics for goal independent abstract
interpretation.

Theorem 3.5 [/7] Let P be a positive program and G = Gy, ...,G, be a positive goal. Then

G bi>p O iff there exist (renamed apart) atoms Ay,..., A, € O(P) and a renaming p such
that ¥ = (vp)|¢ where v = mgu((Ai,...,A,),(G1,...,Gn)).

25 stands for “subset interpretations” used in [47] as semantic domains and contrasted to “closed interpreta-
tions” used to define the so-called c-semantics (see Definition 3.6).



Theorem 3.5 shows that O(P) provides a denotation which can actually be used to simulate
the program execution for any goal G = G41,...,G,. Namely the answer substitutions for
G can be determined by “executing G in O(P)”, i.e. by computing a most general unifier of
G1,...,Gp and Ay, ..., A,, where the A;’s are renamed apart variants of atoms in O(P).

Let us consider now the success set and the atomic logical consequences semantics formally
defined as follows.

Definition 3.6 Let P be a positive program.
(success set) O1(P) = {A| A is ground and A ——p O}
(atomic logical consequences semantics) O(P) = {A | A ——p O}

Note that the semantic domain of O; is the usual Herbrand base, i.e. the set of all the ground
atoms. Note also that Oy is the semantics considered in [30, 42, 62] and called c-semantics in
[47]. We will now compare the three semantics on an example.

Example 3.7 Consider the programs Py and Ps on the signature S, defined by C = {a\0, f\1}.

P ={ p(a). Py ={ p(X).
p(X). q(f(a))-}
q(f(a)).}
owp) = {a(f(a)), p(X), p(a) }
o) = {a(f(a)), p(X) }
O1(P1) = O1(P) = {q(f(a)), p(a), p(f(a)), ...}
O2(P1) = O2(P2) = {q(f(a)), p(X), pla), p(f(X)), p(f(a)), ...}

Note that Py ~ P, does not hold, since the goal p(X) computes different answer substitutions
in P; and in P,. Note also that the denotations defined by O are finite, while those computed
by both Oy and Oy are infinite.

Example 3.7 shows that the three semantics are different. Indeed, if we denote by =; the
program equivalence induced by O;, i = 1,2, the following (strict) inclusion holds [47, 48].
~ C =5 C =, i.e. ~ is finer than =,, and =5 is finer than =;. This shows that the success set
semantics is not correct with respect to computed answers. Moreover the correctness cannot
be achieved by just using interpretations consisting of sets of non-ground atoms. In fact also
the c-semantics does not correctly model the computed answers.

Let I be a w-interpretation. If [I] denotes the set of ground instances of the atoms in I,
[I] is clearly a Herbrand interpretation. The following theorem relates the s-semantics to the
success set (and therefore to the least Herbrand model).

Theorem 3.8 [47] If P is a positive program, then O1(P) = [O(P)].

We have shown that the success set semantics does not correctly model the computed answers.
One could still think that this is not the case in most reasonable logic programs. Which is
the class of positive programs for which the success set is correct with respect to computed
answers? This is clearly the case for the class of programs for which the s-semantics and the
least Herbrand model semantics do coincide. Theorem 3.10 shows that this is exactly the class
of language independent programs as defined in [37].

Definition 3.9 [37] A program P with underlying language Lp is language independent iff,
for any extension L' of Lp, its least L' -Herbrand model is equal to its least Lp-Herbrand model.



Theorem 3.10 [85] Let P be a program. Then P is language independent iff O(P) = O1(P).

A program P belongs to this class only if any goal in P returns ground answers. It is therefore
essentially the class of allowed positive programs [88] and does not contain any program able
to compute partial data structures.

The success set semantics does not need to be the same as the s-semantics in order to
be correct with respect to computed answers, rather it needs to be isomorphic. The class of
programs for which this property holds has been studied in [5].

Another related useful property of the s-semantics is its independence from the language.
This means that the denotation defined by O is not affected by the choice of the language
signature. The language signature affects the domain of w-interpretations B. Since O(P) is a
subset of B it might also be affected. Therefore, let us denote by O*(P) the denotation for a
given language £. If Lp is the language underlying program P, the following theorem shows
the language independence property. Note that the same property does not hold for other
variable-based semantics, such as those in [30, 49].

Theorem 3.11 [85] If P is a positive program, then O*F (P) = O~ (P) for any extension L'
Of LP.

As we will show in section 7.4, this is the key property which makes the s-semantics adequate
to formalize metaprogramming with the non-ground metalevel representation of object level
variables.

3.2 Fixpoint semantics

We will now introduce an immediate consequences operator 75 on m-interpretations whose least
fixpoint will be shown to be equivalent to the computed answer substitutions semantics O(P).

Lemma 3.12 The set of all w-interpretations (I, C) is a complete lattice.

Definition 3.13 [}7] Let P be a positive program and I be a w-interpretation.

Tp(I)={AeB| IC=4":-By,...,B, € P,
3 Bi,...,B] variants of atoms in I and renamed apart,

39 = mgu((By,...,Bn),(By,...,Bl)) and A = A"Y }

Note that T'F is different from the standard Tp operator [109] in that it derives instances
of the clause heads by unifying the clause bodies with atoms in the current w-interpretation,
rather than by taking all the possible ground instances. In other words 75 defines a bottom-
up inference rule (hyper-resolution) based on the same rule (unification) which is used by the
top-down SLD-resolution. The following theorem allows us to define a fixpoint semantics for
positive logic programs.

Theorem 3.14 [47] The TF operator is continuous on (¥,C). Then there exists the least
fizpoint TS Tw of T'S.

Definition 3.15 [47] The fizpoint semantics of a positive program P is defined as F(P) =
Tp Tw.

10



It is worth noting that, since any program P is a finite set of clauses, all the finite fixpoint
approximations TS5 T n,n < w are finite. The T5 operator can then effectively be used for the
construction of bottom-up proofs.

The equivalence between F(P) and O(P) is proved by introducing the unfolding semantics.

Definition 3.16 [82, 83] Let P and Q be positive programs. Then the unfolding of P w.r.t. Q
is defined as

unfp(Q)= {(A:—Ly,...,L,)9| 3JA:—-B,...,B, €P,
B! :-L;€Q,i=1,...,n,
renamed apart, such that

¥ =mgu((B1,...,Bn),(Bi,...,B.))}

The unfolding rule can be applied to any atom in a clause and preserves the operational
semantics, i.e. the language is closed under unfolding. Therefore it is possible to define the
immediate consequences operator in terms of the unfolding rule. Theorem 3.21 was proved in
[83]. An alternative proof is given in [41] by using lemma 3.20. A direct proof of F(P) = O(P)
was first given in [47].

Definition 3.17 [83, 41] Let P be a positive program. Then we define the collection of programs

and the collection of w-interpretations I;(P) = {A | A € Band A € P;}. The unfolding
semantics U(P) of the program P is defined as

1=0,1,...

Theorem 3.18 (equivalence of unfolding and operational semantics) [83, 41/ Let P be a pos-
itive program. Then U(P) = O(P).

Definition 3.19 [{1] Let P,(Q be positive programs. Then TF is compatible with unfp(Q) iff
Tinse@(®) = TE(TE ()
Lemma 3.20 [41] Let P,Q be positive programs. Then TF is compatible with unfp(Q).

Since T'F is compatible with the unfolding rule and TE(I) = unfp(I) (by definition of the
unfolding rule), then T 1 (i +1) = T5 (0) = unfp,(0). Therefore,

Theorem 3.21 (equivalence of fixpoint and operational semantics) [83, 41] Let P be a positive
program. Then F(P) =U(P) = O(P).

Theorem 3.21 shows that F(P) is the fully abstract semantics w.r.t. computed answer
substitutions. The above equivalence between the top-down and the bottom-up semantics will
hold for all our semantics, including the abstract versions used for program analysis. This
makes available equivalent top-down and bottom-up proof methods.
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3.3 Model-theoretic semantics

In order to define m-models according to definition 2.1 we have to specify the function H from
m-interpretations to sets of Herbrand interpretations.

Definition 3.22 [48] Let I be a w-interpretation. Then H(I) = {[I|} where [I] is the set of
ground instances of atoms in I or, equivalently, the least Herbrand model of I.

Proposition 3.23 [/8] Let P be a program. Then every Herbrand model of P is a w-model of
P. Moreover O(P),01(P),O3(P) are w-models of P.

The program P, of example 3.7 shows that the model intersection property does not hold
any longer. In fact, O(Py) N O1(Py) N O2(P,) = {q(f(a))} which is not a m-model of P,. This
is not surprising, since set theoretic operations do not adequately model the operations on
non-ground atoms, which stand for all their ground instances. A more adequate partial order
relation < on the set & of m-interpretations was defined in [48].

Definition 3.24 [48] Let I, I be w-denotations. We define:
o I) <; I, iff VA) € I, 3 Ay € I, such that Ay < A;.
o Ih XL iff (I <1 L) and (I2 <1 I implies I) C I).
= allows us to prove the following properties
e (3, =) is a complete lattice. B is the top element and () is the bottom element.
e If M is a set of m-models of P, then glb(M) is a m-model of P.

e The least m-model M(P) = glb({I € S | I is a m-model of P}) is the least Herbrand
model.

It is worth noting that, according to proposition 3.23, the s-semantics O(P) is simply a
non-ground representation of the least Herbrand model O;(P). From the Herbrand models
viewpoint the two semantics are therefore equivalent. However O(P) contains more useful
information. On one side, it correctly models computed answers. On the other side, it has
nice properties also from the model-theoretic viewpoint. This can be shown by considering the
properties of the (atomic logical consequences) semantics Oy and the relation between O and

0.

Theorem 3.25 [47, 62] Let P be a positive program and A be a (possibly non-ground) atom.
Then P =EVA iff A€ Oy(P).

Theorem 3.26 [47] Let P be a positive program. Then
O2(P) = {A|3B € O(P) and 39 such that A = BY}

This allows us to determine from O(P) the correct answer substitutions, as shown by the
following corollary, which can easily be derived from theorems 3.25 and 3.26.

Corollary 3.27 Let P be a program and G = Ay, ..., A, be a goal. Then 9 is a correct answer
substitution for G in P (i.e. P = Y(A; A ... AN A,)0) iff all the atoms A;¥ are instances of
atoms in O(P).

Note that, as shown in [88], correct answer substitutions cannot be determined from the
least Herbrand model.
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4 A compositional semantics

The semantics defined in section 3 is compositional w.r.t. the AND operator. We consider here
U-compositionality, i.e. composition w.r.t. to union of programs. A semantics S is compositional
w.r.t. the union of programs, if for any pair of programs P; and P», S(P; U P,) can be derived
from S(P;) and S(P,). The semantics O that we have considered so far is not compositional
w.r.t. the union of programs, as shown by the following example.

Example 4.1 Consider the following programs.
P={ r():—pb). Q={ p®). } R={ pla). }

O(P) = O(R) = {p(a)}
O(Q) = {p(b)}
O(PUQ) = {p(a),p(d),r(b)} while O(RU Q) = {p(a),p(b)}. The same problem arises if we

consider Oy or Os.

Example 4.1 shows that O does not contain enough information to be able to model U-
composition. This can formally be shown by considering the U-compositional observational
equivalence ~, given in definition 4.2 for the computed answers observable, and by proving
that O is not correct w.r.t. ~>~.

Definition 4.2 Let Py, P> be positive programs. Py ~ P if, for every positive goal G and for

every program Q, G 'i’PluQ Oiff G ’LPZUQ O and 9 = (¥'p)|q, where p is a renaming.

From definition 4.2 one can note that a semantics correct w.r.t. ~, is essentially a function
from interpretations to interpretations. As a matter of fact two U-compositional semantics
(correct w.r.t. the successful derivations observable) are the semantics in which the denotation
of P is the associated immediate consequences operator Tp and the functional semantics defined
n [81]. Gaifman and Shapiro first suggested to use sets of (equivalence classes of) clauses as a
representation of one such a function, modeling the successful derivations [62] and the computed
answers [63] observables. This idea fits quite naturally within the s-semantics approach since
the semantic domains are syntactic objects, i.e. programs.

The Q-semantics [22, 21] is similar to one of the semantics in [62], yet it is defined according
to the general s-semantics approach. It was originally defined for a more general composition
operator Ug, defined on Q-open programs. An Q-open program [22] P is a positive program in
which the predicate symbols belonging to the set () are considered partially defined in P. P can
be composed with another program () which may further specify the predicates in () and use
clauses in P to complete its own predicate definitions. Such a composition is denoted by Ugq.
Formally, given the Q-open programs P, Pe, if Pred(P;) N Pred(P,) C Q then P, Ug P, is the
Q-open program Py U P,, otherwise P; Ug P is undefined. A more general notion of composition
which allows different sets of open predicates for the composed programs is considered in [21].
The semantics of open programs must be compositional w.r.t. Ug, i.e. the semantics of P; Ug P»
must be derivable from the semantics of P, and P,. Note that if {2 contains all the predicate
symbols then Ug is the same as the standard union.

The Uq-compositional observational equivalence ~q of definition 4.3 is the straightforward
extension of definition 4.2.
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Definition 4.3 Let Py, P> be Q-open programs. P, ~q Py if, for every positive goal G and for
every program ) such that, for i = 1,2, P; Ug Q ts defined, G 'i’PﬂJnQ Osff G bi)pzunQ O
and ¥ = (9'p)|q, where p is a renaming.

The above observational equivalence is captured by the following operational semantics. We
denote by Idq the set of clauses {p(X) : —p(X) | p € Q} where Q is a set of predicate symbols.

Definition 4.4 (Q-compositional computed answer substitutions semantics) [21] Let P be a
positive program, () be a set of predicate symbols, P*be the augmented program P U Idq and R
be a fair selection rule. Then we define

Oq(P)={c| IX €V,
3 a derivation
p(X) ’\’YAPVR Dl,...,Dm ’é’P*,R Bl,...,Bn,
and Pred(By,...,B,) CQ,
c=p(X)y¥:—By,...,B,}

Note that Oq(P) is a set of resultants [89, 3] obtained from goals of the form p(X) in P
and is strongly related to partial evaluation [78]3.

The set of clauses Idgq in the previous definition is used to delay the evaluation of open
atoms. This is a trick which allows us to obtain a denotation which is independent from the
(fair) selection rule.

The semantic domain Cq for the denotation Oq(P) is the set of clauses whose body predi-
cates are all in Q (conditional atoms) modulo the following equivalence = .

Definition 4.5 Assumec; = Ay : —By,...,Bp and cg = Ay : —Dq,...,Dy. Then ¢ =4 co iff
3 a renaming p such that Ay = Agp and {|B1,...,Bn [} = {{D1p,...,Dpnp [} where {| |} denotes

a multiset.
Definition 4.6 A w-interpretation for an Q-open program P is any subset of Cq.

Oq(P) is then a m-interpretation for -open programs. Note that we consider bodies of
clauses as multisets.

Example 4.7 Consider the following Q2-open program P, where Q = {q}.

P={ p(X): —q(X).
(X) : —s(X).

(

(

<

a

b)

~—

» Q

.. }
Then Oa(P) = {p(X) : =4(X), pla), q(a), r(b), s()}.

The following results show that Oq actually models computed answer substitutions in a
compositional way.

Theorem 4.8 (compositionality) [21] Let P, Py, Py be programs and assume
Pred(Py) N Pred(Py) C Q. Then the following facts hold

. OQ(OQ(Pl) Ug OQ(PQ)) = OQ(Pl Ug Pg),

3The relation between the semantics and partial evaluation will be discussed in section 5.3.
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e P ~q Oq(P).

As usual Oq(P) can be characterized as the least fixpoint of an immediate consequences
operator. We can simply define such an operator in terms of the unfolding rule of definition
3.16. Note that we consider a m-interpretation also as a set of (renamed apart) syntactic clauses.
Moreover operators such as unfp are considerd as operators on Cq. These “semantic” versions
are well defined since clauses are always renamed apart.

Definition 4.9 [21] Let P be an Q-open program and let I C Cq. Then
Tp o =unfp(IUIdg).
Lemma 4.10 [21] Let P be an Q-open program. Then T q is continuous on (S, C)).

Definition 4.11 [22, 21] The (least) fixpoint semantics of an Q-open program P is defined as
FP)=Tfq Tw.

Theorem 4.12 (equivalence of the fixpoint and the operational semantics) [21] Let P be an
N-open program. Then F(P) = Oq(P).

The denotation Oq(P) can be viewed as a function which, when provided with the deno-
tation of a program @, returns the denotation of P Ug @. If we move from denotations to
Herbrand models, we can associate to the denotation (w-interpretation) I the set of the least
Herbrand models of all the programs which can be obtained by “completing” the denotation I
(considered as a program), by taking the union of I with a suitable set of ground atoms defining
the open predicates. This is formalized by the function H in the following definition.

Definition 4.13 [21] Let I be a w-interpretation for an Q-open program. Then H(I) =
{O1(I Uq J)} where J is any set of ground atoms p(t) such that p € Q and p(t) is an in-
stance of an atom in the body of a clause in I.

If we consider the program P of example 4.7 on the signature S, defined by C = {a\0,b\0},
then
H(Oa(P))= {{p(a), q(a),r(b),s(b)},{p(a), q(a), p(b),r(b), 5(b), q(b)}}.

m-models are then those defined according to definition 2.1 and have the following properties.

Proposition 4.14 [21] Let P be an Q-open program. The following statements hold
e cvery Herbrand model of P is a m-model of P,

e Oq(P) is a m-model of P.

The main idea behind the compositional semantics is the use of sets of clauses as semantic
domain. This is the syntactic device which allows us to obtain a unique representation for a
possibly infinite set of Herbrand models when a unique representative Herbrand model does not
exist. Similar domains consisting of clauses have been used to model non-standard observables
[61, 59] (see section 5.3) and to characterize logic programs with negation [43, 75, 60] (with the
aim of delaying the evaluation of negative literals).

The delayed evaluation of open predicates which is typical of Oq(P) can easily be generalized
to other logic languages, to achieve compositionality w.r.t the union of programs. By modifying
Oq(P) we can obtain semantics compositional w.r.t. other composition operators, as for example
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inheritance mechanisms [18] (see section 6.6). Oq(P) can be considered as the semantic basis
for modular program analysis, since by using suitable abstractions of Oq(P), we can analyze
program components and then combine the results to obtain the analysis of the whole program
[32].

Let us finally mention that Ogq is strongly related to abduction [44]. If Q is the set of
abducible predicates, the abductive consequences of any goal G can be found by executing G

5 Other observables

5.1 Finite failures

There exist other useful observables for positive logic programs, such as, for example, finite
failures. Indeed the standard semantics of positive logic programs should correctly model both
the successful computed answers and the finite failures. The following definition formalizes the
observational equivalence ~pr based on finite failures.

Definition 5.1 Let Py, P be positive programs, G be a positive goal and Ty and T3 be SLD-
trees (defined by a fair selection rule) for G in Py and Py respectively. Then P, ~pp Py if for
every goal G, Ty is finitely failed if and only if T is finitely failed.

We will not consider the finite failure semantics, even because a correct and fully abstract
generalization of the s-semantics modeling finite failures does not yet exist. Let us just mention
that the (ground) finite failure set is not correct w.r.t. ~pp, as shown by the following example.

Example 5.2 Consider the following programs P; and Ps.
P ={ p(f(X)):-p(X). Py ={ p(f(X)): —p(X),p(a).

q(a). } q(a). }
The Finite Failure set of both P1 and P2 is

{p(a),p(f(a)),q(f(a)),p(f(f(a))),-- .},

while Py ~pp P» does not hold, since the goal p(X) finitely fails in Py only.

It can be shown that the non-ground finite failure set as defined in [84] is indeed correct
w.r.t. ~pp. However, the AND-compositionality property does not hold, i.e. it is not possible
to decide whether a conjunctive goal finitely fails by just looking at the non-ground finite failure
set. We believe that a correct and AND-compositional semantics for finite failure needs to be
based on a semantics similar to the one of section 5.3.

5.2 Multisets of answers

The s-semantics was extended in [92] to deal with multisets rather than sets. Such an extension
was needed to investigate properties which make possible improvements in the performance of
the bottom-up fixpoint evaluation. Algorithms such as the Seminaive evaluation [9] try to avoid
repeating inferences by comparing the new facts computed at each iteration with previously
generated facts to eliminate duplicates. To study properties of these algorithms and their
specializations for certain classes of programs, it is then necessary to consider duplicates, and
hence multisets of atoms.

We show here the definition of the multiset version of the s-semantics (ms-semantics for
short) from [92]. For the sake of uniformity we use a Tp-like construction. A more general
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formulation which allows us to express different evaluation algorithms and different semantics
is given in [92].

The ms-semantics can be obtained by simply replacing sets by multisets in all the definitions
of section 3. Therefore, in the following an interpretation will be a multiset of atoms modulo
variance and a program will be a multiset of clauses. We use { [} as multiset constructor, while
set(X) denotes the set obtained from the multiset X by ignoring multiplicities. In this section,
€ is used for multiset membership. For example {n? | n € {2,2,3} } = {4,4,9}. Given
an infinite chain S; C Sy ... of multisets, where X C Y denotes multiset inclusion, its limit
S = lim,_9; is defined as the multiset S where the multiplicity of any s € S is the least
upper bound (in Z U {oco}) of the multiplicities of s in S,,. In the following definition, as usual,
we assume that all the atoms and all the clauses are renamed apart.

We denote by mset(X) the set obtained from the multiset X by replacing any element a with
multiplicity n by n (different) elements a,...,a™. When atoms are unified the superscripts are
simply ignored.

Definition 5.3 [92] Let P be a positive program and I be an interpretation. Then we define

T (I)={ AeB| H:—B,...,By is a clause in P,
{C,...,Cin} C mset(),
¥ =mgu((B1,...,Bn),(C1,...,Cy)) and A=HY [}

Example 5.4 Let P be the program
P ={pla): —q(a),q(a). }
and I be the interpretation I =] q(a), q(a) [}. Then
Tp(I) =A{l pla), p(a), p(a), p(a) [}
The ms-semantics is defined as follows.
Definition 5.5 Let P be a positive program. Then we define
F(P) =limp_0o TP T

By considering a suitable notion of complete lattice of multiset interpretations, the previous
definition can be shown to correspond to the least fixpoint of T5".

The ms-semantics Fp, (P) contains all the (possibly repeated) computed answers for atomic
goals of the form p(X) Repeated answers correspond to different “parallel” derivations which
give the same computed answers for a given goal (by parallel derivation we mean a derivation

where all the atoms in each resolvent are rewritten at each step).

Example 5.6 Let P be the program

P={ p(X):—q(X),q(X).

The ms-semantics of P is
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Accordingly, by using a parallel derivation, we can obtain the answer X/a for the goal p(X) in
the program P in two different ways (by using either the first or the second clause). Analogously,
for the goal p(X) in the program Q)

Q=1 p(X):—p(X).
p(a). }

we have infinitely many different ways to obtain the answer X/a (corresponding to derivations
of increasing length). Then, the ms-semantics of Q is the infinite multiset

Fm(Q) ={ pla), pla),...}
(while the s-semantics contains only one copy of p(a)).

By using a parallel derivation rule, we can then define an operational semantics equivalent to
Fm(P) and hence an observational equivalence based on the “multiple answers” observable, for
which the semantics F,,, (P) would be fully abstract. Finally note that, as shown by the following
proposition, the s-semantics can be obtained from the ms-semantics by ignoring multiplicities.

Proposition 5.7 [92] Let P be a positive program. Then F(P) = set(Fn(P)).

5.3 Resultants

We will consider now less abstract observables which make visible internal computation details.
If we are only concerned with the input-output behavior of programs we should just observe
computed answers and finite failures. However there are tasks, such as program analysis and
optimization, where we are forced to observe and take into account other features of the deriva-
tion. In principle one could be interested in the complete information about the SLD-derivation,
namely the sequences of goals, most general unifiers and variants of clauses. The resultants,
introduced in [89] in the framework of partial evaluation, are a compact representation of the
relation between the initial goal and the current (goal, mgu) pair. They are useful (see [3]) to
formalize the properties of SLD-resolution. Our basic observable, for given goal G and selection
rule R, will then be the set of all the pairs (R;, ¥;), where R; is a resultant derived from G by
R and X; is the corresponding sequence of clauses. We will then consider a semantics Og(P),
defined according to the s-semantics approach, modeling the resultants. We obtain a kind of
“collecting semantics” which gives the maximum amount of information on computations and
allows us to observe all the internal details of SLD-derivations. It is essentially the collecting
semantics with selection rule defined in [61, 59] extended with the information on the sequence
of clauses.

As we will discuss later, several semantics useful for program analysis can be obtained by
abstraction from OF(P). Let us first give the definition of resultant.

Definition 5.8 (Resultant with clauses) Let P be a positive program, Gy,...,G, be a goal
and R be a selection rule. If there exists an SLD-derivation (using the rule R) of the goal

By,...,Bn, m >0 from Gy,...,G, and if the derivation computes the answer ¢ and is ob-
9 [617---,%]

tained by using the sequence of clauses [c1,...,ct],k > 0 (denoted by Gi,...,Gn ~pp
Bi,...,By, m,k>0), then (Gi A...ANGp)9 < By,...,Bp,[c1,...,ck]) is a resultant with
clauses of the goal G1,...,G, in the program P with selection rule R.
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Note that we denote by G1,...,G, '\E»[P]’R G1,...,G, a derivation of length 0 and hence we

consider also the resultants with clauses of the form
(GiA...NGp — Gy,...,Gp, [ ]).

The set of resultants is clearly dependent upon the selection rule. If we take the selection
rule into account, the ordering of atoms in the goal (and in the body of a clause) is relevant.
Therefore, the right hand sides of resultants are sequences of atoms. Note that the resultant
is a definite clause (with the body viewed as a sequence of atoms) if the initial goal is atomic.
The observable for a goal G in a program P with a selection rule R is the set R(GR,P) of all
the resultants with clauses for G in P via R. Resultants which are variants of each other are
equivalent.

We can now define the observational equivalence.

Definition 5.9 Let Py, Py be positive programs and R be a selection rule. Then P, ~r Py if
for every goal G, R(GR’PI) = R(GR,PZ)'

In order to obtain the top-down definition of a semantics O (P) correct w.r.t. ~x, we use
the s-semantics technique, namely we consider the sets of resultants with clauses for atomic
goals of the form p(X). We will show later that this denotation allows us to determine the
observable for any goal. The semantic domain C is then the set of all the (equivalence classes
of) pairs composed of a clause and a sequence of clause identifiers and a w-interpretation is any
subset of C.

Definition 5.10 Let P be a positive program and R be a selection rule. Then

9 [e1)emsch]

OR(P) = { (R,Y)] p(X)'\»BR Bi,...,Bn, m,k>0,
R=p(X)¥:—By,...,Bny,
Y=ler,. ..,k }

Consider the program in the following example.
Example 5.11 P={ ¢ = p(a). cs = q(b,a).

C2 = p(X) : _T(X)vq(va)' C4 = T(b) }
If we choose the leftmost selection rule <, definition 5.10 gives the following denotation.

OR(P) = { (p(X):—p(X),[]), {p(a), [e1]),
(p(X) : =r(X), g(X,Y), [ea]),
(p(b) : =q(b,Y), [e2, ca]), (p(b), [c2, ca, c3]),
(¢(X,Y): —¢(X,Y),[]), {q(b, a), [es]),
(r(X) : =r(X), 1), (r(b), [ca]) }

OF(P) can be proved to be correct w.r.t. ~z. As a matter of fact, since OR (P) is essentially
the collecting semantics with selection rule defined in [61, 59], all the theorems proved in [59] can
easily be extended to our definition. In particular, if we want a bottom-up definition equivalent
to the top-down one, we have to consider “local” selection rules only. A local selection rule is
defined in [112] as a rule which always selects in a goal N one of the most recently introduced
atoms in the derivation from the initial goal to V. Note that the PROLOG leftmost rule is
local and that in general local rules produce SLD-trees with a simpler structure, suitable for
efficient searching techniques [112]. For the sake of simplicity, we will give the next definitions
in the case of the leftmost selection rule only. The general complete formalization can be found

n [59].
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The intuition behind the immediate consequences operator in definition 5.12 is the following.
We can unfold the atom By in the clause H : —By,..., By,..., B, if all the atoms B;, j =
1,...,k — 1 have been (completely) evaluated and have therefore already unit clauses among
their resultants. The resultants with clauses of level 0, for a program P with the set of predicate

symbols II, are given by the m-interpretation Id = {(p(X): —p(X),[]) | p € II}. In definition
5.12 both clauses and resultants from X U I'd are standardized apart.

Definition 5.12 Let P be a positive program and X C C. Then
Tipry(X)=IdU{(R,2)| Jc¢ = A:-DBy,...,B,...,Bn € P,
3 <B1721>7"'7<B;c—172k—1> € X7
(B, :—Di,...,D,, %) € X UId,
19:mgu((Bla"'7Bk)7(B17"'7B2;))7
R = (A:—-Ds,...,Dn,Bgi1,...,Bn)Y,
Y =X Xy }

(where :: denotes concatenation of sequences)

Since the operator T{ p ) is continuous on the lattice of 7-interpretations, we can define the
fixpoint semantics of P, Fr(P), as the least fixpoint of T{p,r) in the usual way. The following
theorem shows the equivalence of the top-down and bottom-up semantics, while theorem 5.14
shows that the denotation Fg(P) actually collects all the information on the resultants in
SLD-derivations using the leftmost selection rule. The proofs of both theorems can easily be
obtained from the proofs of Theorems 23 and Lemma 22 in [61].

Theorem 5.13 Let P be positive program. Then O (P) = Fr(P).

Theorem 5.14 Let P be a positive program and G = Ay, ..., Ay be a goal. Then (R,X) is a re-
sultant with clauses of goal G in P via the leftmost selection rule iff I{(H1,%1),. .., (Hs—1, 251}, (Hs :
_Bi,..., B, 5,)} € Fr(P)
such that
¥ =mgu((4s,...,As), (Hi,...,Hy)),
R' =((A1AN...ANAp) < By,...,Br, Agy1,..., Ap)?0,
=% ... X,
¥ =% and R is a variant of R'.

Let us finally mention that, from the model theory point of view, one can define the following
function from w-interpretations to Herbrand interpretations.

Definition 5.15 Let I be a w-interpretation. Then H(I) is the set consisting of the set of
ground instances of the unit resultants in I.

By using the notion of m-model given by definition 2.1, we have the following result, which
shows that the semantics modeling different observables are all 7-models, yet provide different
information on the observable program behavior.

Proposition 5.16 Let P be a program. Then O1(P) (the least Herbrand model of P), O(P)
(the computed answers semantics of P) and OR(P) (the resultants semantics of P) are all
w-models of P.

As already mentioned, both the resultants semantics and the compositional semantics of
section 4 are strongly related to partial evaluation, a program transformation technique first
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applied to logic programs in [78] and later fully formalized in [89]. The result of partial eval-
uation is a (finite) set of resultants, obtained from a program P and an atomic goal A. The
selected set of resultants corresponds to a “cut” of the SLD-tree. A is atomic but not nec-
essarily of the form p(X) The aim of partial evaluation is in fact to obtain a specialization
of P for the goal A. The construction of the compositional semantics of section 4 and of the
resultants semantics is based on goals of the form p(X) which trivially satisfy the A-closedness
condition [89], which guarantees the completeness of partial evaluation. The relation between
the procedural behaviors of a program and of its (compositional and resultants) semantics can

then be understood in terms of soundness and completeness of partial evaluation.

5.3.1 Finite success

Let us give now an example of an observable semantics which can be derived as an abstraction
of OR. If we want to characterize finite success [40] we must be able to distinguish between unit
resultants (representing successful derivations) and non-unit resultants (representing possibly
non-terminating computations). Non-atomic resultants are abstracted upon resorting to the
notion of hypothetical atoms. Each resultant of the form A:-B is represented as the hypothet-
ical atom ?A. 7A conveys all the relevant information provided by A:-B (that the associated
derivation is partial) and abstracts from the body B, which is in fact irrelevant in this context.
The extended Herbrand base B consists of hypothetical as well as standard atoms.

Interpretations are defined as subsets of the extended base By = BU?B, where 7B = {?A |
A € B}. Two selectors, Certain and Uncertain are used to project any subset I of By into
one of the base components.

Certain(I) ={A| AeBnNI} Uncertain(I)={A|Ae?BNI}.

The frontier semantics £ defined in [40] is obtained by collecting information computed at each
iteration of the immediate consequences operator. Let F; be the abstraction of the frontier
computed at the i-th iteration level, then

£ = U C; U ﬂ U;
1=0,... 1=0,...

where C; = Certain(F;) and U; is the set of all the hypothetical atoms which unify with
elements of Uncertain(F;). Thus Certain(€) is the s-semantics while Uncertain(€) contains
all the atomic goals whose SLD-tree has at least one infinite branch. Clearly £ captures finite
success and failure of both ground and non ground atoms.

Theorem 5.17 [}0] Let P be a positive program and A be a non-ground atom.

o A unifies with Aq,..., A, in € with mgu 01,...,0, respectively, and 7A & & iff the goal
A has an SLD-tree of finite success with c.a.s. 61,...,0,.

o A unifies with Ay,..., A, in &€ and 7A € € iff the goal A has a successful SLD-tree with

at least one infinite branch.

e A does not unify with any atom in € and TA &€ £ iff the goal A has a finitely failed
SLD-tree.

e A does not unify with any atom in € and TA € & iff the goal A has an SLD-tree with no
success branches but at least an infinite one.
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Example 5.18 Consider the program P consisting of the following clauses.

P={ pla), pb):—p®). qa). }

€={ pla), 7?p(X),7p(b), q(a) }.

We can note that q(X) has finite success, p(X) succeeds with an infinite branch, q(b) finitely
fails and p(b) fails.

The construction of € recalls the theoretical characterization of termination of logic programs
developed by Vasak e Potter in [110]. They compare terminating queries under different choices
of the selection rule (thus dealing with different notions of universal termination) while we
consider fair selection rules in theorem 5.17 and Prolog selection rule in section 6.5. Another
difference lays on the fact that we use a single immediate consequences operator in the style
of the s-semantics approach while they use various bottom-up constructions similar to the
c-semantics (see Definition 3.6). Moreover, they do not obtain a specific goal independent
denotation such as £, which encompasses all the necessary information (as shown in theorem
5.17) to characterize success, finite and infinite failure.

5.3.2 Other abstractions of the resultants semantics

Several other existing equivalent top-down and bottom-up semantics can be derived as abstrac-
tions of OF, including

e the resultants semantics defined (for any local rule R) in [61, 59], where we don’t care
about the sequences of clauses,

e the resultants semantics with depth defined (for the leftmost rule) in [11], where a sequence
of clauses is abstracted by its length,

e the partial answers semantics OR* defined (for any local rule R) in [61, 59], where we
only keep the heads of the resultants by labeling as partial those heads that were heads
of a non-unit resultant,

e the call patterns semantics O%F defined in [61, 59], where (in the case of the leftmost
selection rule) we delete all the atoms in the clause bodies but the first.

We list in the following some of the program properties which can be studied on the above
semantics.

e The call patterns, i.e the procedure calls, for a goal G can be determined from O%P. Let
H : —B; be a clause in O%P. Then if 39 = mgu(G, H), then B¢ is a call pattern. The
knowledge about the call patterns is useful in program optimization. The above property
makes feasible a bottom-up characterization of (possibly abstract versions of) the call
patterns.

e The partial answers, originally defined in [46], are the answers computed at any inter-
mediate computation step. They can be determined from the partial answers seman-
tics (’)EA as follows [61, 59]. ¥ is a partial answer for a goal Gi,...,G, iff there exist
{Hy,...,H,} € OFA such that ¥ = mgu((G1,...,Gn),(Hy,...,Hy,)). Partial answers

are useful in program analysis and to characterize the semantics of concurrent languages.

e A goal G has the universal termination property iff there exists a frontier of a partial SLD-
tree for G (obtainable using a suitable abstraction of the resultant semantics and theorem
5.14), such that all the atoms in the frontier are not labeled as partial answers. This
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information is very important for the semantics of PROLOG [11, 17] and of all-solutions
metapredicates [40].

e A goal G finitely fails iff

— there exist a finite number of frontiers for G,

— all the atoms in the frontiers of G are labeled as partial.

This information is useful to get a bottom-up characterization of SLDNF-resolution [95].
The information in the frontiers can also be useful to get a fixpoint characterization of
constructive negation.

6 Extending the s-semantics to other logic languages

6.1 Constraint logic programs

The s-semantics extends quite naturally to the Constraint Logic Programming paradigm as
defined by Jaffar and Lassez [71], where constraints are interpreted over an algebraic structure
A. A constraint ¢ is solvable iff there exists a valuation 9 (solution) mapping variables to
elements of the domain of A, such that ¢ is true in A. We denote by sol(c) the set of
solutions of the constraint ¢. A CLP derivation step of a goal cOA;,..., A, in a program
P results in a goal of the form ¢OBy, ..., By, if there exist n (renamed apart) clauses in P,
H; . —ciDBi,i: 1,...,n,such that c=cAciA...Ach NA1 = H A...N A, = H, is solvable
(p(t) = p(l) is an abbreviation for the unification atom = (Z,1)).

A successful derivation of a goal G (denoted by G |—§R>P cO) is a finite sequence of goals such
that every goal is obtained from the previous one by means of a derivation step and the last
goal has the form cO where c is the answer constraint. The observable we consider is then the
answer constraint. All the definitions and results on the answer constraint semantics are from
[55]. The observational program equivalence ~ based on answer constraints is the following.

Definition 6.1 Let P, P>, be CLP programs. P, ~ Ps iff for every goal G the following hold

o if G i)Pl cO and ¥ € sol(c) then G i)Pz 'O and there exists v € sol(c') such that
Yvar(@) = VVar(a), and vice versa.

Definition 6.2 (Answer constraint semantics) Let P be a CLP program.

OP)= {p(X):—ceB | truedp(X)—Spca }.

The interpretation base B is now the set of all the ~ equivalence classes of constrained
atoms (CLP unit clauses of the form p(X) : —¢). A m-interpretation is any subset of B. The
equivalence ~ is introduced in order to abstract from irrelevant syntactical details and is defined
as p(X) : —c; ~ p(Y) : —cy iff for any solution ¥ of ¢, there exists a solution 7 of ¢; such that
p(X)¥ = p(Y )y and vice versa. Note that the previous definition of ~ is semantic. The existence
of a syntactic representation for ~ depends on A (e.g. variance for the Herbrand universe).
O is correct (and fully abstract) w.r.t. answer constraints. Note that this semantics was not
considered in the original report on the CLP semantics [72]. The usual AND-compositionality

holds for O.
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Theorem 6.3 [55] Let P be a CLP program and G = ¢o0A,,..., A, be any goal. Then

G I—R>P CansD iff there exist n (renamed apart) constrained atoms

B;:—c; € O(P), i=1,...n, such that for any ¥ € sol(cans) there exists v € sol(co Acy A... A
cn NAp =By A... AN Ay = By) such that Vv ar(q) = Y var(a), and vice versa.

The immediate consequences operator of definition 6.4 allows us to define a fixpoint seman-
tics equivalent to O.

Definition 6.4 Let P be a CLP program and I be a w-interpretation.

THI) ={ p%):-ceB| ~ ]
3 a renamed clause p(t) : —coOp1(t1), ..., pn(tsn) in P,
3 pZ(X,) :—c;0€ 1,1 <i<n which share no variables,
c=(cAX;=tiA... ANXp=th At Ao Aen AX = 1)

1s solvable }.

The function H, on which the model theory is based, maps O(P) onto the least .A-model of
P. The following proposition holds.

Proposition 6.5 Let P be a CLP program. Then every A-model of P is a w-model of P.
Moreover O(P) is a w-model of P.

It is straightforward to extend also the compositional semantics. The equivalent top-down
and bottom-up semantics modeling the answer constraints have also an elegant algebraic char-
acterization oriented towards abstract interpretation [66], that will be discussed in section 7.2.

The s-semantics of CLP and its compositional version have been applied to obtain the
semantics of two new instances of the CLP scheme, namely CLP(H/E) and CLP(AD).
CLP(H/E) [1, 2] is a logic 4+ equational language, where constraints are equations to be solved
in an equational theory and the constraint solver is a narrowing algorithm. CLP(AD) [15]
models a deductive database language with updates. The semantics provides a nice charac-
terization of the intensional part w.r.t. the extensional one and of the notion of transaction.
The corresponding equivalence notions can profitably be used to prove interesting properties of
optimization procedures.

The approach has finally been applied to concurrent constraint programs as defined in [101],
leading to the definition of equivalent top-down and bottom-up semantics, defined as sets of
unit clauses [45, 57], which are trees of ask and tell constraints. The denotation correctly
models computed answers, finite failures and deadlocks, even if it is not U-compositional and
fully abstract and there is no model-theoretic semantics.

6.2 Disjunctive logic programs

Disjunctive logic programs [90], where clause heads are disjunctions of atoms, have in general
more than one minimal Herbrand model. We can get a unique model characterization by

4

capturing the disjunctive consequences as a set of positive disjunctive ground clauses* (-

interpretations, called states in [98]), defined over the disjunctive Herbrand base.

Definition 6.6 (disjunctive Herbrand base) [98] Let P be a disjunctive program. The disjunc-
tive Herbrand base of P, denoted by DH Bp, is the set of all positive disjunctive ground clauses
which can be formed using distinct ground atoms from the Herbrand base of P, such that no
two logically equivalent clauses are in the set.

4A positive disjunctive clause is a disjunctive clause with an empty body.
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Definition 6.7 (7-interpretation, state) [98] Let P be a disjunctive program. A state for P is
a subset of DHBp.

Definition 6.8 [98] Let P be a disjunctive program and I be a state.
Ti(I)={C € DHBp| C':—-By,...,B,

s a ground instance of a clause in P,
{BVvCi,...,B,vVC,} C1I,
C"=C'vCiV...VC,,
where C;,Vi,1 <1i <mn, can be empty,
C' is the smallest factor of C"}

Example 6.9 Let P be the disjunctive program

t(X) : —q(X)
p(b) v q(b).
r(a) V s(a). }

and I be the state I = {p(b) v q(b),r(a) V s(a)}.
TE(I) = {p(b) V q(b),r(a) V s(a),p(a) V a(f(a)) V s(a),p(b) V t(b)}.

Theorem 6.10 [98] Let P be a disjunctive program. T8 is continuous on the complete lattice
(2PHBr C).

Definition 6.11 [98] Let P be a disjunctive program. The fizpoint semantics of P is F(P) =
TE T w.
Example 6.12 Let P be the disjunctive program
P={ pX,Y)Vp(ZY):-r(X,Y, f(Z)),q(Y).
r(a,b, f(c)).
q(b). 2
f(P) = {Q(b)a T(aa b, f(C)),p(CL, b) \ p(C, b)}

A state clearly represents a set of Herbrand interpretations. This can be formalized by
defining the function H from states to states.

Definition 6.13 Let P be a disjunctive program and I be a state for P. Then H(I) is the set
of minimal Herbrand models of I (viewed as a disjunctive program,).

The following theorem is a straightforward consequence of some theorems in [98] and shows
that the fixpoint semantics is indeed a m-model (called model state in [98]).

Theorem 6.14 Let P be a disjunctive program. Then H(F(P)) is the set of all the minimal
Herbrand models of P.

Example 6.15 One can easily check that by applying the function H to the fizrpoint semantics
of example 6.12 we obtain the Herbrand interpretations

{q(b),r(a,b, f(c)),p(a,b)} and {q(b),r(a,b, f(c)),p(c,b)} which are exactly the minimal Her-
brand models of the program P in example 6.12.

Theorem 6.14 shows the essence of the construction. As was the case for the compositional
semantics of section 4, we obtain a unique denotation which syntactically represents all the
relevant models. A similar mechanism, related to normal programs, will be considered in the
next section.
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6.3 Normal logic programs

We consider here the semantic kernel defined in [75] as a first step in the transformation
of normal logic programs into constraint logic programs. It is a fixpoint construction which
generalizes to the non-ground case the fixpoint semantics first proposed in [43]>. The idea
of the semantic kernel construction is to evaluate all the positive atoms in the clause bodies
by unfolding them until there are no more positive atoms left. The semantic kernel is then a
(possibly infinite) program consisting of negative clauses only®. The result of the transformation
can be viewed as a m-interpretation (called quasi-interpretation in [75]).

Definition 6.16 (quasi-interpretation) [75/ Let P be a normal program. A quasi-interpretation
for P is a set of negative clauses over the alphabet of P modulo variance.

The semantic kernel is the least fixpoint of the immediate consequences operator T1’§ which
maps quasi-interpretations onto quasi-interpretations.

Definition 6.17 (immediate consequences operator) [75] Let P be a normal program and I be
a quasi-interpretation. Then we define

T};(I) = {Aﬂ:—(—IB%,...,—IB}”,...,—IB?,...,—IBZ",—!Bl,...,—!Bm)IS‘)|
JA: -A,,...,A,,By,..., B, €P
3 AL —ﬁB{',...,—'BfLi el,i=1,...,n,
s.t. 9 = mgu((Aq,...,A,), (AL, ..., A))) }

Definition 6.18 (semantic kernel) [75] F*(P) = Tk 1 w.

The semantic kernel is just an intermediate step in the process of defining a semantics for
normal programs. It can be viewed as a compact representation of a set of models of the normal
program, as shown by the following theorem.

Theorem 6.19 [75] Every model of the completion of F*(P) is a model of the completion of
P.

It is also strongly related to the stable model semantics [64] of P, as shown by the following
very important theorem.

Theorem 6.20 [/3] Every Herbrand model of the completion of F*(P) is a stable model of P.

As we will show in the next section the semantic kernel construction can be useful even in
relation to constructive negation.

6.4 Constructive negation

The inference rule for negation which is the most adequate to be handled by the s-semantics
approach is clearly constructive negation introduced in [27, 28], because it allows the negative
literals to compute answers.

The first attempt to extend the s-semantics to negation is described in [108]. It is a bottom-
up semantics for stratified normal programs which generalizes to the non-ground case the
construction of [4]. The resulting denotation has several similarities with the s-semantics,

5The same construction was independently proposed in [25].
8A negative clause [75] is a normal clause of the form A : —=By,...,=By,.
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namely the fixpoint characterization and the use of sets of clauses (with constraints) as -
interpretations. However, there is no explicit relation to an observational equivalence based
on an existing operational semantics (even if the reference derivation rule is clearly Chan’s
constructive negation). As a matter of fact, as it is the case for most declarative semantics of
negation, the semantics in [108] tries to model the abstract intended meaning of the program
and can be viewed as the ideal semantics to be approximated by effective operational semantics.

Essentially the same semantics (in the case of stratified programs) is obtained by the two-
steps fixpoint construction in [60]. According to the last semantics, at each step we obtain a
unique denotation, where some program fragments (the non-positive and the non-stratified frag-
ments, respectively) are left uninterpreted. The first step consists of the fixpoint construction
of the semantic kernel described in section 6.3, while the second step interprets the stratified
component according to constructive negation, essentially following the approach in [108]. As
a result of this step, the negation in the stratified component has been completely evaluated
(and replaced by constraints), while the non-stratified negation is still there in some clauses.

The above approaches have been overriden by [23], which considers constructive negation in
constraint logic programs as defined in [105], for which there exists a very strong completeness
result w.r.t. 3-valued models of the completion. 7-interpretations are pairs of sets of (equivalence
classes of) constrained atoms (similar to those used in the CLP semantics discussed in section
6.1). The two elements of the pair specify the positive and negative components of the -
interpretation. The function H now maps w-interpretations onto partial A-interpretations [50,
51]. The denotation O°Y(P) of a normal CLP program P has two equivalent top-down and
bottom-up characterizations and is correct w.r.t. the answer constraints observable. Finally,
H(OCN(P)) is Kunen’s semantics [80], namely ®p T w, where ®p is Fitting’s map on partial
A-interpretations [50]. It is worth noting that a similar bottom-up characterization can be
obtained by the non-ground extension of ®p defined in [105].

6.5 PROLOG

We first consider pure PROLOG programs, i.e. programs without cut, built-in’s or negation.
Ouly the leftmost (<) selection rule and the PROLOG search strategy are taken into account.
The resultants semantics O (P) defined in section 5.3 contains enough information to capture
the computational behavior of such programs. In fact it embeds the PROLOG selection rule,
while the sequence of clauses associated to each resultant identifies a specific path in the partial
SLD-tree. These paths can be ordered according to the lexicographic ordering induced by the
ordering on program clauses. Moreover theorem 5.14 shows us how to select from the semantics
the set of all the resultants with clauses of a given goal. Therefore, the semantics encodes the
ordered trees of resultants for any goal. Clearly, if we are interested in some specific observable,
the semantics O™ (P) contains too much information and can usefully be abstracted.

One such abstraction is presented in [17]. It has been designed to capture the set of (PRO-
LOG) computed answer substitutions (p.a.s.) as observable, i.e. the set of answers which can
be reached by using PROLOG’s control. The observational equivalence induced by p.a.s. is the
following.

Definition 6.21 Let P, P> be pure PROLOG programs. P, =p 4.5 P if for any goal G, 0 is a
p.a.s for G in Py if and only if 0 is a p.a.s for G in Ps.

We can reconstruct the semantics presented in [17], by first mapping O (P) into an ordered
set of sequences of resultants, such that the i-th sequence represents the frontiers of the partial
SLD-trees of depth ¢ for the most general goals.
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Example 6.22 Consider the program P consisting of the following (sequence of) clauses:
p(b,X). = p(X,Y): —r(Y). = p(¢,Y). = 7(a): —p(a,a). = r(b): —q(b).
The frontiers of the partial SLD-trees are:
fo=p(X,Y): =p(X,Y) r(X): —r(X) :q(X): —g(X)

fi=pb,X) =p(X,Y):—r(Y) =p(c,Y) ur(a): —pla,a) =r(b): —q(b)
fo=p0b,X) =p(X,a): —pla,a) : p(X,b): —q(b) :p(c,Y) :r(a):—r(a)
f3=pb,X) =p(X,a): —r(a) :p(c,Y) =r(a): —pla,a)

fa=pb,X) =p(X,a): —pla,a) ::p(c,Y) :r(a): —r(a)

They are defined modulo variance and modulo the ordering among resultants with different
predicate symbols in the head.

We may apply to each frontier the same abstraction introduced in section 5.3.1 for the
frontier semantics €. Namely, each non-atomic resultant of the form A:-B is represented as
the hypothetical atom ?A.7 An abstraction function f maps any sequence of resultants (clauses)
into the corresponding sequence of abstractions.

Example 6.23 Consider the program P of example 6.22. The abstract frontiers are:
FE=mp(X,Y) = (X)) = 2g(X)
fltj =pb,Y) = (X,)Y) = p(e,Y) = ?r(a) i 7r(b)

fu =pb,Y) = p(X,a) = p(X,b) = p(c,Y) :: 7r(a)
fi=pb,Y) = 2(X,a) = p(e,Y) : 7r(a)
fﬁ:p(b,Y) 2 p(X,a) op(e,Y) i ?r(a)
Note that in the previous example f§ = fﬁ = ..., i.e. there are finitely many different

abstractions of frontiers even if there are infinitely many partial SLD-trees for the goals p(X,Y")
and 7(X). This is not always the case. Consider, for instance, the following example.

Example 6.24 Consider the program @Q: p(0). :: p(s(X)): —p(X).
There are infinitely many abstractions of frontiers {fo,..., f;,...}, where for each j

Fi=p(0) 5w psiH(0) 5 2p(s (X)),

Any abstract frontier encodes a partial, yet safe, information on the p.a.s. of any goal. The
following examples are meant to illustrate this fact.

Example 6.25 Consider the (abstract) frontier f3’j of example 6.23 and the goal p(X,b). Recall
that the hypothetical atom 7p(X,a) represents a node which could have descendants in the SLD-
tree of the most general goal p(X,Y). The goal p(X,b) unifies with the first element p(b,Y")
of fg This implies that {X/b} is the first p.a.s. for p(X,b). It does not unify with p(X,a),
hence it will also not unify with any possible descendant of the resultant abstracted by ?p(X,a).
Since it unifies with p(c,Y’), its second answer will be {X/c}. No more answers are possible,
since there are no other atoms with predicate symbol p in the sequence. Therefore f3'j gives us a
complete information on the p.a.s. for the goal p(X,b).

Example 6.26 Consider now the non-atomic goal G = p(X,b),p(X,Y) and the same frontier
f:E of example 6.23. We first consider the first atom and extract information on it. In this case

7Actually in [17] hypothetical atoms are called divergent and denoted by A. Here we adopt the notation
introduced in section 5.3.1.
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we will find the two answers {X/b} :: {X/c}. Then we consider the corresponding instances of
the second atom, i.e. p(X,Y){X/b} and p(X,Y){X/c}.

Since the goal p(b,Y") unifies with p(b,Y), the empty substitution ¢ will be its first answer.
Since it unifies also with p(X,a), then we cannot exclude that it may enter an infinite loop after
producing the first answer. Thus, even if the goal p(c,Y) unifies with p(c,Y), i.e. it has a first
answer g, the only safe answer for the goal G is {X/b} since we cannot safely say that the other
answer {X/c} will be reached when executing G under the PROLOG'’s control.

The reachability function p; formalizes these ideas. Let Subst* be the set of finite sequences
of substitutions and Subst’ = Subst*USubst* :: { L} be the set of extended sequences, i.e. finite
sequences which may end with the special symbol L, used to represent possible divergence. A
strict concatenation © is defined on elements of Subst’ .

Definition 6.27 Let s1,s2 € Subst’. The strict concatenation ® : Subst’ +— Subst] is
defined as:
©(s1,82) = s1 82 if s1 € Subst*
s1 otherwise.

For any goal G and abstract frontier S, p, (G, S) will return the sequence of p.a.s. for G
which can be recognized as reachable by looking at the partial SLD-trees abstracted by S. The
following definition is an extension of the one given in [17] for atomic goals only.

Definition 6.28 Let S be a sequence in B, G be a goal, A, A" € B, Ap € Bg. The reachability
function p, : B* x By — Subst’ is the function inductively defined as follows:

e If G = A is an atomic goal and S = A, then p, (G, \) = A.

o If G = A is an atomic goal and S = Ag :: S’, then
pL(G, Ag = S")Y= 0:pi(A,S")
Zf Ap = Aland 6§ = mgu(A7 AI)"U!I’I‘S(A)
pL(G, Ap = S")= L
if Ap =?A'and there exists an mgu(A, A')
pL(G, Ap = S') = pL(4,5)

otherwise.

e If G = A, B is non-atomic, then

pL(G, S)= pL(Bb, S)®- O pL(Bby, S)

if pL(A, S)=06y -6
pL(G,S)= piL(B6,S)®---©pL(Bby, S) L

if pr(A, S)=01 -0, L
pL(Gv S): A

ipr_(A, S) =A

We may define a function ¢p : B}, — B} which, given the abstraction of a frontier, returns
the abstraction of a subsequent one.

Definition 6.29 [17] Let P be the program ¢y :: -+ i ¢n. ¢p : By — By is defined clause-wise
as the concatenation ¢pp(S) = ¢, (S) 1 -+ 2 ¢, (S), for any sequence S. Let ¢ be a clause
standardized apart from S. We distinguish two cases, for unit and non-unit clauses.
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o If c is the unit clause A., then ¢4.(S) = A.

e Otherwise, let c = A:-B,D and S =dy :: -+ :: dy. Then
$c(S) = aj - nay
7A0; if d; =?B' and 0; = mgu(B, B'),
where a; = ‘z’(A:—D)o,-(S) ifdi=B' and 6; =mgu(B,B’),
A otherwise.

Note that ¢p is an abstract version of the unfolding operator applied to sequences.

Interpretations are elements of the complete lattice (P(B}%),C, L, T,U,N), i.e. sets of se-
quences representing abstractions of frontiers. The immediate consequences operator ®p ex-
tends ¢p to interpretations.

Definition 6.30 [17] The immediate consequences operator ®p : P(By) — P(BYg) is defined
in terms of ¢p as follows. Let I € P(BY),

Tp(I) = {¢p(S)|Sel} U {P.

®p is continuous on the lattice of interpretations and the fixpoint semantics Sppr(P)
defined in [17] is its least fixpoint. It contains a possibly infinite set of abstractions of increasing
frontiers.

Sprr(P) has been defined by considering most general goals. According to the s-semantics
style, it encodes the information on any goal. To extract this information we use the reachability
function p;. Any Prolog answer substitution (p.a.s.) for a goal G in the program P can be
characterized in terms of the reachability of G in one of the sequences in Sppr,(P).

Theorem 6.31 [17] Let G be a goal and P be a program. 0 is a p.a.s for G in P if and only
if there exists S € Sprr(P) such that § € pi (G, S).

Therefore Sprr(P) is correct with respect to &, 4.5.. Actually, the idea behind the definition
of reachability is to capture also other issues involved in the computation of a Prolog answer
substitution such as sequences of answers and termination. In fact, the analogous of theorem
5.17 holds for the Prolog search strategy, i.e. when p.a.s. instead of c.a.s. are considered.

Theorem 6.32 [17] Let G be a goal and P be a program. Then

G universally terminates with p.a.s. 01,...,0, iff there exists S € Sppr(P) such
that p) (G,S) =61 ::...::0,.

G has an infinite computation iff for every S € Sprr(P) p(G,S) = s :: L for some
sequence s of p.a.s for G.

There are analogies between Sprr(P) and other functional semantics for PROLOG devel-
oped in the denotational style. For instance, in [14] the semantics is a function which associates
to any goal an extended or infinite sequence of p.a.s. which clearly recalls the sequence com-
puted by p;. The difference is in the style of the semantics construction. The semantics
according to the functional style is a function defined as the (least) solution of a given recursive
set of equations. The semantics defined according to the the s-semantics approach is instead a
syntactic object, which encodes information on the observable, collected in a goal independent
way.
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Another semantics which can be viewed as an abstraction of O® (P) is presented in [11].
The sequence of clauses is abstracted by its length, while the solution to the control problem
of Prolog is solved by resorting to a notion of oracle, which defines, at each computation step,
the set of clauses applicable to rewrite the current resolvent. The use of the oracle induces
an elegant semantics characterization in which the logical and control components of Prolog
are dealt with independently. The logical reading of a program results thus unaffected. The
program’s semantics is defined parametrically on the oracle. This gives to the approach a quite
general flavour. The semantics in [11] has only a top-down definition. However, a more recent
version of [11] contains two equivalent (top-down and bottom-up) semantics much in the style
of O%(P) and more similar to the semantics in [17].

Other extensions of the s-semantics approach which are not related to the frontiers semantics
defined in section 5.3 are presented in [6, 10].

In [10] a compilative approach to model Prolog control is defined. Instead of collecting infor-
mation concerning the control of the program in the semantics, the program itself is enhanced
so that its standard meaning reflects the required control. A logic program P is transformed
into a program P7 defined on a constraint language which contains ask-tell constrained clauses.
Ask constraints are interpreted by an associated termination theory which captures the control
of a Prolog program.

In [6] various Prolog built-in’s that include arithmetic operations and metalogical relations
like var and ground are considered. Only the Prolog leftmost selection rule is taken into
account. Interpretations are sets of pairs (A4,7n), where A is an atom and 7 is a substitution
whose domain is contained in the set of variables occurring in A. 7 is meant to represent a
computed answer substitution for the goal A. Suitable notions of truth and model are defined
on these interpretations and the existence of a least model is shown. The primitive predicates
considered in [6] are called first-order built-in’s to distinguish them from those built-in’s which
refer to clauses and goals like call. In [97] this second class of built-in’s is considered.

6.6 Modular logic programs with inheritance

As already mentioned, by modifying Oq(P) we can obtain semantics which are compositional
w.r.t. other composition operators. In this section we will show an extension of such a semantics
introduced in [18] to model several inheritance mechanisms in a compositional way.

In [18] inheritance is viewed as a mechanism for differential programming, i.e. a mechanism
for constructing new program components by specifying how they differ from the existing ones.
Differential programming is achieved by using “filters” to modify the external behavior of
existing components. Accordingly, a modified version of a component is obtained by defining a
new component that performs some special operations and possibly calls the original one. An
intuitive justification for such an interpretation can be found in [35]. See also [26] for a survey
on inheritance mechanisms in logic programming.

Differential programs [18] are program components, i.e. logic programs annotated by three
sets of exported predicate symbols (the external interface):

¥: statically inherited predicates (a la Simula-67);

A: dynamically inherited predicates (a la Smalltalk);

O: extensible predicates.

The three sets are mutually disjoint and their union is contained in the set w(P) of the predicate
symbols occurring in P. The remaining predicates, 7(P)\ (XUAU®) will be henceforth referred
to as internal predicates and denoted by ¢(P).
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Similarly to classes in the O-O paradigm, differential programs can be organized in isa
hierarchies and can use inherited definitions according to their external interfaces. Intuitively,
in a hierarchy P isa ) the unit P can inherit some of the classes and some of the methods
defined by the unit Q). Statically and dynamically inherited predicates are evaluated according
to an overriding semantics. The distinction between the two sets ¥ and A reflects the distinction
between two different forms of inheritance (static and dynamic respectively). The idea is that
a differential program P is to be understood as part of a structured context of the form C isa P
isa D and that the evaluation of a goal depends on the annotation of its predicate symbols. A -
predicate is evaluated in P using P’s local definition or any definition inherited from the context
D. The local definition, if there is any, overrides the inherited one. Hence, any occurrence in
P of a goal for a static predicate which is also defined in P is bound to the local definition
independently of the context in which P occurs. Conversely, the evaluation of a A-predicate
in P uses the local definition or the inherited one, only if no definition for the same predicate
name is provided by the context C'. If C' contains a definition, then this definition overrides in
P the local or inherited one.

The annotation ® models an orthogonal composition mechanism defined according to an
extension semantics whereby local definitions are extended by inherited ones. Therefore, the
definition of a ©-predicate in P can be extended (not overridden) by the definitions in C' and
in D.

The isa specialization operator should be thought of as right-associative, i.e. the hierarchy
P, isa P,,_; isa - -- isa Py is to be understood as P, isa (P,_1 isa (--- isa (P isa P;)---)). The
following example shows the use of these composition mechanisms.

Example 6.33 [18] Consider two classes Student and CS_Student (computer science stu-
dent). CS_Student is a subclass of Student and redefines one of its superclass’ methods. The
two classes can be defined as differential logic programs as follows.

CS_Student isa Student

whoAmI(aCS_Student). whoAmI(aStudent).
whoAreYou(X):-whoAmI(X).

address(theCS_Dept). address(univ_hall).

adm_addr(X):-address(X).
course(X) : -required(X).
required(logicProg). required(4thLevel).

where, in both Student and CS_Student, whoAmlI and whoAreYou are annotated as A-
predicates, address and adm_addr as X-predicates, course and required as ©-predicates. The use
of different annotations for the exportable predicates of the two programs is motivated by the be-
havior we expect in response to the different queries for the hierarchy CS_Student isa Student.
Consider first the query whoAreYou(X). Here, the expected answer is X /aCS_Student and can
be obtained by taking whoAml to be a A-predicate. Note that CS_Student inherits the def-
wnition of whoAreYou from Student and, since whoAml is a A-predicate, the evaluation of
the call whoAmI(X) uses the definition contained in CS_Student. Consider now the query
adm_addr(X). Here, the expected answer is X /univ_hall because we assume that the adminis-
trative address of a student is independent of the department where that student belongs. This
behavior can be modeled by defining address to be a X-predicate. This guarantees that the
evaluation of the call address(X) uses the definition local to Student.
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Finally, we can model the fact that a CS_Student is expected to take all of the courses
required for a Student by defining course and required to be © predicates.

The operational semantics for hierarchies is formally given by defining a suitable inference
rule - obtained by modifying SLD-resolution to take into account the inheritance mechanisms
expressed by the ¢sa construct. HP Fy G denotes the derivation of the goal G in the hierarchy
HP with computed answer . Two isa-hierarchies HP and HP' are observationally equivalent
(=isq) With respect to answer substitutions if for every goal G and every substitution 8, HP
G ifft HP' by G, and 9|yar(q) = 1911“"(6;).

The corresponding observational equivalence ~z4;55 for differential programs is defined as

Definition 6.34 Let P, P, be differential programs. P; =gqiry P if for every differential
program @) and for every hierarchy H P

Q isa (P isa HP) =5, Q isa (Py isa HP).

In order to obtain a compositional semantics for isa hierarchies, a syntactic composition
operator < on programs has been introduced in [18]. Such an operator makes it possible to
translate an isa hierarchy HP = P, isa...isa P; into an equivalent “flat” program HP, =
P, < ... d4 P, to be evaluated by standard SLD-derivation. The next theorem shows the
equivalence between the - derivations in HP and SLD-derivations (denoted by ~) in H Px.

Theorem 6.35 [18] Let HP = P, isa...isa Py be an isa-hierarchy and HP, = P, < ... <4 P,
be the corresponding (X, A, O)-differential program. Then for any goal G such that Pred(G) C
(XUAUO)

HPry G <= G-dyp, O

and ’Y|var(G) = 19|'uar(G)'

For the sake of simplicity we do not give here the formal definition of < (which essentially uses
renamings to simulate the overriding mechanisms of dynamic and static predicates). However
it is worth noting that, according to the correspondence with isa hierarchies stated by the
previous theorem, such an operator allows us to capture several specialized mechanisms such
as static and dynamic inheritance and composition by union of clauses. The following is just
an example of program composition obtained by using <.

Example 6.36 Consider the two programs CS_Student and Student as defined in example
6.33 with ¥ = {address,adm_addr}, A = {whoAmI,
whoAreYou} and © = {course,required}. Then the < composition of the programs is given

by:
CS_Student < Student

whoAmI(aCS_Student).
whoAreYou(X):-whoAmI(X).
address(theCS_Dept). s_address(univ_hall).
s_adm_addr(X): -s_address(X).
course(X): -required(X).
required(logicProg). required(4thLevel).
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Note that the evaluation of the goal whoAreY ou(X) in the program

CS_Student < Student by using SLD-derivation produces the answer

X/aCS_Student while the query adm_addr(X) gives the answer X/univ_hall, which corre-
sponds to the answers obtained by using - in CS_Student isa Student.

A fixpoint semantics, compositional with respect to the < operator and correct with respect
to =a;ff, has been obtained by a generalization of the semantics Oq(P) of section 4. The
next example shows that Oq(P) does not contain enough information to model the program
composition we are considering. Hence the generalization is truly necessary.

Example 6.37 [18] Let (¥1,A1,01)-P; and (X2, Ay, 05)-Ps be the programs

o).},

where Ay = {r}, Ag = {r,p} and ¥; = ©; = 0 fori = 1,2. The composition P, <1 P, corresponds
to the program {r(a)., p(X):-r(X).} where the clause r(b) € Py has been overriden by the clause
r(a) € Py. According to the definition of the Oq semantics we have

Oa (P U Py) = {r(b), p(b), 7(a), p(a), p(X): -r(X)}

In order to obtain the semantics of Py <1 Py, we should then delete from Oq (P, U P2) not only
r(b), which is an obvious consequence of the overriding semantics of <, but also everything
derived from 7(b) (p(b) in this case). Thus, when defining the semantics of Py, we need a
mechanism for recording that p(b) has been obtained by using the definition of the A-predicate
r, local to Py, which could be overridden by the context.

The problem shown by the previous example is solved by introducing context sensitive
clauses as elements of the semantic domain.

Definition 6.38 [18] A context sensitive clause (cs-clause) is an object of the form

A:-{q1,...,9,}0By,..., By (1)
where qi,...,q, are predicate symbols.
The intuitive meaning of (1) is that the logical implication A « By,..., By is true in any
context which does not override the definitions of ¢i,...,¢,. A standard clause can be viewed

as a cs-clause with an empty set of names. The equivalence ~; on clauses (definition 4.5)
naturally extends to cs-clauses. Let Ca be the set of all the equivalence classes of cs-clauses
A:-s O B such that s C A. A cs-interpretation I for a (X, A, ©)-program P is any I C Ca.

The fixpoint semantics of differential programs is given in terms of an immediate conse-
quences operator for cs-interpretations, T'5°, and this, in turn, can be simply defined in terms
of a modified unfolding rule unfpy a. Let P be a (¥, A, ©)-program and x(P) be the set of
predicates defined in P. The set of predicates whose definitions can be modified by composing
P is the set (open predicates) Open(P) = (X \ k(P))UA U O.

Definition 6.39 [18] Let P be a (X,A,0)-program and let I be a cs-interpretation for P.
Then

TI%S (I) = uﬂfpyopen(p)’A (I U IdOpen(P) ) .
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where, given two sets of predicate names ¥ and A,

unfpy a(I)={ A9:-sUCUC,...UC, O (Ly,...,Lt)8 |
dA:-s0 By,...,B, € P,
del; = B;:—CiEIIZi,i =1,...,k, variants
of cs-clauses in I U Idy and renamed apart,
0 = mgu((B1,...,Bk),(B,...,B}L)),
C = {Pred(B;) | Pred(B;) € A and cl; ¢ Idg} }

It is worth noting that when all the clauses in the cs-interpretations have empty sets of predicate
names, the previous operator is exactly the operator defined in definition 4.9. Moreover, when
cs-interpretations contain unit clauses only and Open(P) = (), the previous definition boils
down to the operator of definition 3.16.

T is continuous on (Ca, C). Hence the fixpoint semantics is the following.

Definition 6.40 [18] Let P be a (X, A, ©)-program. The fizpoint semantics [P] of P is defined

as
[P = T 1w\ (AU B)
where ~
A={H:—sOB| Pred(H) € (P)} and
B={H:—-sOB| 3H':-s'0B € T§ 1w such that
s'Cs,H :-B'~, H:-B }

We refer to [18] for the details on the previous construction and in the following we will
only show the main results which hold for the [P] semantics. Compositionality of [P] wrt <
has been proven by introducing a (right associative) semantic operator < on cs-interpretations
which corresponds to the syntactic composition <1 of differential programs.

Theorem 6.41 (compositionality) [18] Let (Xp,Ap,Op)-P and
(X0,Aq,00)-Q be differential programs. Then

[P<@] = [P]<]Q]

Note that, according to the previous remarks, the [P] semantics has as an instance (for the
case Open(P) = ) the s-semantics. Therefore, by using the correctness of the s-semantics, it
is easy to show that [P] correctly models computed answers. By exploiting the correspondence
between < composition and isa hierarchies (theorem 6.35) and the compositionality (theorem
6.41) we can then obtain the following result which shows that the computed answers of an isa
hierarchy can be obtained, in a compositional way, from the semantics of the components of
the hierarchy.

Theorem 6.42 [18] Let HP = P, isa...isa P, be an isa-hierarchy, HPy = P, < ... < P; be
the corresponding (X, A, ©)-program and G = Ay, ..., Ay be a goal with Pred(G) C (XUAUO).

Then
HPFy G <= 1H;,:-s; 0€[P,]<...<[P],

1=1,...,k,

Ay = mgu((A1, ..., Ax)(Hi, ..., Hy)),

Yvar(G) = ﬂ\var(G)-
In terms of observational equivalences, we have the following result which shows the correctness
of [[P]] wrt diff-
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Corollary 6.43 (correctness)/18] Let Py and Py be two differential programs. Then
[P] =[] = P =airs P

It is worth noticing that this semantics is the first compositional semantics of units and inher-
itance which correctly models computed answer substitutions.

7 Applications

As already mentioned, the main motivation of the s-semantics approach is to provide a semantics
useful for program analysis and transformation. There exist already several applications which
show that this is really the case.

7.1 Program transformation

A main concern when transforming a program is the preservation of its semantics. When this
is the case, the transformation is called safe. However a transformation can be safe with respect
to one semantics but not with respect to another one. For instance, in the program
{p(X):—q(X),q(X).  q([a,Y]). o([Z,0]). }

the duplicated atom ¢(X) in the first clause is superfluous when considering the least Herbrand
model semantics and then it can be safely deleted from the body of the clause. The same
operation is not safe when the computed answers semantics is considered. In fact the answer
substitution X/[a,b] would be missed in the transformed program.

As a matter of fact, all the program transformation techniques, such as unfold/fold [107] and
partial evaluation [78], are defined so as to preserve some observational equivalences. In most of
these techniques, the relevant observables are computed answers (and sometimes finite failures).
There exists at least one technique, the partial evaluation of “open” programs [111, 106, 86],
whose aim is to preserve a U-compositional program equivalence®.

Most of the transformation techniques are proved to be safe w.r.t. the declarative semantics
only, thus failing to capture the safeness w.r.t. the more complex observable behavior. In some
cases the observational equivalences related to computed answers [76, 89] and to finite fail-
ures [102] are considered. Usually proving that the transformation preserves the observational
equivalence is rather complex (see, for example, the proofs of the partial evaluation theorems in
[89]). The same goal could more easily be achieved by proving that the transformation preserves
a semantics which correctly models the relevant observable. The proof can in fact be based
on general theorems (such as AN D-compositionality) and on powerful technical tools such as
the specialized immediate consequences operators. This is the approach taken in [19] and [7],
where the reference semantics are the answer substitution semantics and the semantic kernel
respectively.

In [19] some transformation operations which are basic for all the transformation techniques
for logic programs, such as partial evaluation, program specialization, program synthesis and
optimization, are considered. For each operation, applicability conditions which guarantee the
safeness of the trasformation with respect to the s-semantics of section 3 are defined. Not sur-
prisingly, unfolding does not need any applicability condition. All the other operations, if not
correctly applied, may lead to undesiderable observable behaviors. With only one exception, the

8The U-compositional semantics of section 4 is essentially the result of the partial evaluation, where derivations
terminate at open predicates (i.e. predicates in ).
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s-semantics of a given program contains enough information to characterize correct transforma-
tions. In fact all the applicability conditions are given in terms of properties of the s-semantics
of the program to be transformed. The only exception is the folding operation. Safeness of
folding cannot be ensured by just inspecting the s-semantics as the following example shows.

Example 7.1 Consider the following program.

P={ p:—-r, r:—q, q }

op)= {pgr} ;
The definition p = q 1is consistent [19] with P, since both p and q belong to O(P), but, if we
use it to fold the body of the second clause we obtain

P ={ p:—r, r:—p, q. }
which is by no means equivalent to the previous program. In fact O(P') = {q}.

This problem has been partially overcome in [20] where a notion of semantic delay between
atoms is introduced to give applicability conditions for folding. Semantic delay is not properly
a property of the s-semantics, rather it depends on its fixpoint construction.

Turning to normal logic programs, [7] gives a very elegant proof of the correctness of un-
fold/fold w.r.t. several non-monotonic semantics (as, for example, the stable model and the
well-founded model semantics), by showing that it preserves the semantic kernel considered in
section 6.3.

7.2 Program analysis

In the area of program analysis, the s-semantics has been used as a foundation of several frame-
works for abstract interpretation [13, 65, 77, 31]. Abstract interpretation is inherently semantics
sensitive and different semantic definition styles lead to different approaches to program anal-
ysis. In the case of logic programs (see [38] for a broad overview), two main approaches exist,
namely the top-down and the bottom-up ones [94]. The most popular approach is the top-down
one, which propagates the information as SLD-resolution does. In this class there are ad-hoc
algorithms, frameworks based on an operational semantics, and frameworks based on a denota-
tional semantics. The bottom-up approach propagates the information as in the computation of
the least fixpoint of the immediate consequences operator Tp. The idea of bottom-up analysis
was first introduced in [93]. The main difference between the top-down and the bottom-up
approach is usually related to goal dependency. In particular, a top-down analysis starts with
a specific goal, while the bottom-up approach determines an approximation of the success set
which is goal independent. As we will argue later, the application of the s-semantics approach
to abstract interpretation shows that the real issue is goal dependency vs. goal independency
rather than top-down vs. bottom-up. Another relevant feature of the analysis method is its
ability to determine call pattern information [24, 73, 94], i.e. information about the procedure
calls (atoms selected in an SLD-derivation). The ability to determine call patterns is also usu-
ally associated to goal dependent top-down methods. Again, the s-semantics approach shows
that the choice of an adequate (concrete) semantics allows us to determine goal independent
information on the call patterns and that this information can be computed both top-down and
bottom-up.

The s-semantics approach to abstract interpretation was started by defining a framework
for bottom-up abstract interpretation [13] based on the concrete semantics of section 3, which
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correctly models computed answer substitutions. An instance of the framework consists in the
specialization of a set of basic abstract operators, i.e. abstract unification, abstract substitution
application and abstract union. Instances have been defined for ground dependency analysis
[13], type inference [12] and for analysis of properties related to AND-parallelism [67, 68]. The
emphasis in [13] is on the bottom-up definition of an abstract model, i.e. a goal independent
approximation of the concrete denotation. Early attempts [93, 94] of defining bottom-up ab-
stract interpretations based on the immediate consequences operators corresponding to the least
Herbrand model semantics or to the semantics in [30] failed on non-trivial analyses (like mode
analysis). In fact, the corresponding concrete semantics do not contain enough information on
the program behavior, i.e. they are too abstract to be useful to capture program properties like
variable sharing or ground dependencies.
The overall abstract interpretation methodology can be described as follows.

e Select an observable o, such that the property to be considered by the analysis is an
abstraction a(o) of o.

e According to the s-semantics approach, select a concrete semantics O, correct w.r.t. o.
O, can equivalently be determined by

— A top-down construction, obtained by collecting the observables for the atomic goals

of the form p(X).

— A bottom-up construction, obtained by computing the least fixpoint of an immediate
consequences operator.

e Define a suitable abstraction O () of O,, by providing the abstract versions of the oper-
ators involved in the top-down and bottom-up definitions and by proving the correctness
theorems. If the abstraction satisfies suitable properties [70, 66], we have two equivalent
methods for computing the goal independent abstract denotation Oy (0)(P) of the program
P.

e The result of the analysis for a specific goal G can be determined by exploiting the
AND-compositionality property of all the semantics defined by the s-semantics approach,
including their abstract versions. Namely, the result can be obtained by ezecuting G in

Ou(0)(P).
Let us discuss some specific analysis problems in the framework of the above methodology.

e If we are interested in properties of the answer substitutions (such as aliasing and sharing)
we have to choose a concrete semantics correct w.r.t. answer substitutions. Therefore the
least Herbrand model semantics is not adequate and a semantics at least as detailed as
the one in section 3 has to be chosen.

e If we want to perform analysis of program components in a modular way, we need a se-
mantics compositional w.r.t. program union. As a matter of fact the framework in [13] has
been extended to handle modularity [32], by replacing the s-semantics with its composi-
tional version (the Q-semantics of section 4), which has clauses as semantic objects. This
extension requires a notion of abstract program and a uniform treatment of concrete and
abstract objects (i.e. programs and 7-interpretations). The abstract meaning of a module
is the result of the module analysis. The result of the analysis for the composition of the
modules is obtained by composing the module abstract meanings. The extension intro-
duces several technical complications in the abstract semantics construction dealing with
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termination and space complexity. Namely an additional layer of abstraction (obtained
by applying fixpoint acceleration techniques) is needed to provide finitary descriptions for
arbitrary large clauses (and therefore to ensure termination), thus introducing a further
approximation which makes the analysis less precise.

While this is needed to handle generic (possibly infinite) abstract domains, there exists
[54] a wide class of compositionally tractable abstract domains (e.g Sharing [70] and Prop
[36]) for which a finite description of the compositional abstract semantics can be ob-
tained without a further level of abstraction. In fact, when considering compositionally
tractable domains we are essentially considering the {2-semantics over a finite function free
signature. As shown in [54], by imposing such a restriction we can always obtain a finite
characterization of the compositional semantics. This result can be applied also to the
abstraction of other semantics consisting of sets of clauses, as for example the resultants
semantics in [61, 59].

If we want to determine abstract properties of the call patterns, we should use a concrete
semantics which gives more information on the computation than just the computed
answers. Namely, we have to model an observable consisting of all the procedure calls.
The problem of analyzing properties of the call patterns has been considered in [53],
where the concrete semantics is the call patterns semantics derived according to a local
selection rule, as defined in [61, 59]. The resulting abstract semantics are goal independent,
parametric w.r.t. the (local) selection rule and allow us to characterize properties of the
correct call patterns [61, 59], which are those call patterns which belong to successful
derivations.

A similar (yet goal dependent) result can be obtained by using a transformational ap-
proach [31, 99]. A program P and a goal G are transformed (by using a transformation
similar to the magic set transformation) into a program P’, such that every call pattern
of G in P is a success pattern of P'. An abstraction of the operator T}, of definition 3.13
can now be used to compute in a bottom-up way information on the call patterns of G
in P. Recently, the approach was made goal independent [33], by using the 2-semantics.
The result is a denotation consisting of clauses very similar to the one in [53].

It is worth noting that the top-down operational or denotational frameworks [24, 94, 104,
74] do indeed contain a lot of information on the “internal” computation details. By
choosing a semantics like the one of section 5.3, we can model the same observables and
still get a goal independent top-down and bottom-up construction of the abstract model.

When applied to CLP, the above approach leads to a framework where abstraction sim-

ply means abstraction of the constraint system. The construction is based on a generalized

algebraic semantics® [66], defined in terms of a constraint system and a general (constraint

system independent) notion of denotation, which is as usual characterized both top-down and

bottom-up. Different abstract semantics can be defined by choosing suitable abstract constraint

systems. The main new result is that abstract interpretation, i.e. the construction of an abstract

denotation, can be viewed as computation in a suitable instance of the same C'LP framework,

where the program is transformed into an abstract program, obtained by abstracting the con-

crete constraints. A similar result, in a framework based on the generalization of the top-down

9This semantics generalizes the approach in [39] which gives an algebraic description of a class of fixpoint
semantics (including ground and non-ground concrete semantics, and various abstract semantics) in terms of
abstract notions of “instance” and “normalization”.
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operational semantics, is described in [34]. The ability to use the CLP interpreter to analyze
CLP programs has been exploited in some interesting applications [§].

7.3 Declarative debugging

The application of the s-semantics approach to semantics-based (declarative) debugging [16]
has the following features when compared to the existing methods [103, 49, 87].

e The s-semantics, when taken as specification of the intended semantics, allows us to obtain
a more accurate diagnosis than the one that can be obtained using the least Herbrand
model or the e-semantics (which is used in [49]).

e The properties of the s-semantics (equivalent top-down goal independent denotations
and bottom-up denotations) make possible to devise new elegant and powerful diagnosis
methods. In particular, the top-down diagnosis can be based on the execution of atomic

goals of the form p(X).

e The relation between concrete and abstract semantics, allows us to consider abstract
declarative debugging, where the intended semantics is an abstraction of the concrete
semantics. The intended semantics is usually represented by an oracle [103], which tells
us whether a given object belongs to the semantics. Since abstract denotations are finite,
they can explicitely be used as oracles. Then we can test a program in a uniform way
w.r.t. different specifications of the program properties.

7.4 Metaprogramming

We consider here a formalization of metaprogramming [85] with the non-ground metalevel
representation of object level variables. In the case of the wanilla metainterpreter, let P be
a program and Pp; be its non-ground metalevel representation. The problem is that there
exists no one-to-one correspondence between the semantics of P and the semantics of Vp =
vanillaU Pys. The problem is related to differences in the languages used at the metalevel and
at the object level and was solved either by considering typed programs [69], or by considering
language independent programs only [37]. If we consider the s-semantics of P and Vp, due to
the property stated by theorem 3.11, the language problem disappears and we can easily prove
the following theorem.

Theorem 7.2 [85, 96] Let P be a positive program and Vp be its vanilla metainterpreted ver-
stomn, where the proof procedure is defined by the relation demo. Then, for every n-adic predicate
symbol p in P,

demo(p(t1,...,tn)) € O(Vp) iff p(t1,...,tn) € O(P).

A similar result was also proved [85] for a metainterpreter defining the inheritance mecha-
nism described in [18].

8 Conclusions

We have shown several semantics, which exhibit similar properties and which are all defined
according to the same methodology. We have also shown that at least some of the above
semantics have successfully been used to solve real problems.
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As shown in [59, 52], the various semantics are mutually related by means of abstractions.
The same relation holds between concrete and abstract semantics. In particular, the general-
ized semantics of CLP in [66, 65] shows that one can derive from a single semantics several
specializations obtained by abstracting the constraints in the program.

One interesting open research problem, which is currently under investigation, is whether
the approach can be extended to cope with the various concrete observables. One could start
with a program which has as regular semantics the most concrete one (for example, a semantics
similar to the one considered in section 5.3). Such a semantics should have the usual top-down
and bottom-up definitions. Moreover, the usual s-semantics theorems (AND-compositionality,
correctness w.r.t. the observable, equivalence of the two definitions) should hold. All the other
(concrete and abstract) semantics should then be derivable simply by abstracting the constraints
in the program, thus obtaining for free the validity of all the theorems, once the correctness
of the abstraction on the constraint system has been proved. The theory should also allow us
to discuss in general terms of properties such as the independence from the selection rule, the
U-compositionality and the full abstraction.
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