
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

The s-semantics approach: theory and applications

A. Bossi, M. Gabbrielli, G. Levi, M. Martelli

Computer Science/Department of Software Technology

CS-R9408 1994

The s�semantics approach� theory and

applications

A� Bossi

Dipartimento di Matematica Pura ed Applicata

Universit�a di Padova� Via Belzoni �� ����� Padova� Italy

isa�zenone	unipd	it

M� Gabbrielli�

CWI

P	O	 Box
���
� ��
� GB Amsterdam� The Netherlands

gabbri�cwi	nl

G� Levi

Dipartimento di Informatica

Universit�a di Pisa� Corso Italia ��� �
��� Pisa� Italy

levi�di	unipi	it

M� Martelli

Dipartimento di Informatica e Scienze dell�Informazione

Universit�a di Genova� Viale Benedetto XV �� �
��� Genoa� Italy

martelli�disi	unige	it

Abstract

The paper is a general overview of an approach to the semantics of logic programs whose aim is

�nding notions of models which really capture the operational semantics� and are therefore use�

ful for de�ning program equivalences and for semantics�based program analysis� The approach

leads to the introduction of extended interpretations which are more expressive than Herbrand

interpretations� The semantics in terms of extended interpretations can be obtained as a result

of both an operational �top�down� and a �xpoint �bottom�up� construction� It can also be

characterized from the model�theoretic viewpoint� by de�ning a set of extended models which

contains standard Herbrand models� We discuss the original construction modeling computed

answer substitutions� its compositional version and various semantics modeling more concrete

observables� We then show how the approach can be applied to several extensions of positive

logic programs� We �nally consider some applications� mainly in the area of semantics�based

program transformation and analysis�

�

� Mathematics Subject Classi�cation�
�N���
�Q��	

CR Categories� D	�	
� D	�	�� F	�	�� F	�	�� I	�	�	

Keywords and Phrases� logic programming� semantics�

Note� To appear in the Journal of Logic Programming�

�On leave from Dipartimento di Informatica� Universit�a di Pisa� Corso Italia ��� Pisa� Italy�

	

� Introduction

��� Denotations as syntactic objects

The paper considers an approach to the semantics of logic programs which leads to denotations

consisting of �equivalence classes of� syntactic objects� There are two main motivations for

using syntactic domains� Namely�

� syntactic domains make possible the de�nition of program denotations which capture var�

ious computational aspects in a goal�independent way� These aspects include observable

properties such as

� computed answers� which are modeled by sets of non�ground atoms or unit clauses

��
 �see section ���

� call patterns� which are modeled by sets of binary clauses
�	
 �see section �������

� resultants� which are modeled by sets of clauses
��
 �see section �����

Goal�independence is the key issue� It means that denotations are de�ned by collecting

the observable properties starting with the most general atomic goals and that they give

a complete characterization of the program behavior for any goal�

� syntactic domains make possible the de�nition of a unique denotation in cases where there

exists no unique representative Herbrand model� Examples are

� the compositional semantics for positive logic programs
��� ��� ��� �	
� whose do�

mains are sets of clauses �see section ���

� the semantic kernel for normal logic programs
��� ��
� whose domains are sets of

negative normal clauses �see section �����

� the model state semantics for disjunctive logic programs
��� ��
� whose domains are

sets of positive disjunctive ground clauses �see section �����

The overall approach is called in this paper the s�semantics approach after the s�semantics

��
� which was the �rst example of a semantic construction featuring some of the above prop�

erties� By no means we imply that all the denotations we consider are extensions of the original

s�semantics�

��� Why a new semantics

According to a popular view of logic programming� the problem of the semantics �of de�nite

Horn clauses� was solved once and for all by logicians before logic programming was even born�

Namely� the only three important concepts are the program itself� the intended interpretation

�declarative semantics� and the theorem prover �operational semantics�� The program is a logic

theory� The declarative semantics formalizes the application the program is trying to capture�

It is an interpretation in the conventional logic sense and a model of the program� Finally� the

theorem prover is a proof procedure which must be sound �and complete� with respect to the

declarative semantics� Is that really all there is to it�

The above view is appealing but too simple minded to capture the di�erence between the�

orem proving and programming� In fact� it applies to any formal system for which there exists

a sound and complete theorem prover� Theorem proving becomes logic programming when

we restrict the class of theories so as to obtain a declarative semantics �a unique model� and

�

a proof procedure similar to the denotational and the operational semantics of conventional

programming languages� This is exactly what van Emden and Kowalski did for de�nite Horn

clauses in their seminal paper
	��
� where the proof procedure was SLD�resolution and the

model was the least Herbrand model� The semantics is then a mathematical object which is

de�ned in model�theoretic terms and which can be computed by a top�down construction �the

success set� and by a bottom�up construction �the least �xpoint of the immediate consequences

operator�� Why shouldn�t we be happy with this solution�

The answer can be found if we �rst consider a di�erent and more basic question� What is a

semantics used for� The �rst application of any semantics is to help understanding the meaning

of programs� Other useful applications include areas such as program transformation and

program analysis� One can argue that tens of thousands of logic programmers were really helped

by the declarative understanding of their programs� One can also argue that semantics�based

program transformation and analysis do require deeper results and more elaborate theories�

but still only using basically the above mentioned simple and straightforward semantics� The

above arguments can become more technical only if we understand which is the basic semantic

property of such formal activities as program transformation and analysis� The answer is

program equivalence� i�e� program understanding is based on our ability to detect when two

programs cannot be distinguished by looking at their behaviors�

��� Program equivalences and observables

De�ning an equivalence on programs � and a formal semantics S�P � are two strongly related

tasks� A semantics S�P � is correct w�r�t� �� if S�P�� � S�P�� implies P� � P�� The question

about the adequacy of the van Emden and Kowalski�s semantics can then be rephrased as

follows� Is that semantics correct w�r�t� a �natural� notion of program equivalence� This in

turn raises the problem of choosing a suitable notion of equivalence�

Equivalences can be de�ned by using logical arguments only� One can use model�theoretic

properties� such as the set of models� the set of logical consequences or the least Herbrand model�

and proof�theoretic properties� such as the set of derivable atoms� A systematic comparison of

several program equivalences has been worked out in
�	
� In particular�
�	
 shows the relations

between equivalences based on purely logical properties and equivalences induced on programs

by more �operational� aspects� For example� subsumption equivalence of two programs is

shown to correspond to the equality of their TP operators� Equivalences based on correct

answer substitutions have also been studied in
��
� However� these formalizations are not

completely satisfactory since they do not consider an important class of program equivalences�

which cannot be described by purely �standard �rst�order� logical notions� This is the class of

equivalences based on what we can observe from a computation�

One important aspect of the formalization of program execution� in addition to the infer�

ence rules which specify how derivations are made� is the concept of observable� i�e� the property

we observe in a computation� In logic programs we can be interested in di�erent observable

properties such as successful derivations� �nite failures� computed answer substitutions� partial

computed answer substitutions� �nite sets of solutions� etc� A given choice of the observable

X induces an observational equivalence �X on programs� Namely P� �X P� i� P� and P� are

observationally indistinguishable according to X � For example� if s denotes successful deriva�

tions� P� �s P� i� for any goal G� G is refutable in P� i� it is refutable in P�� This observable

is adequate to characterize a theorem prover� yet it is de�nitely too abstract to capture the

essence of logic programming� i�e� the ability to compute answers� The most adequate observ�

able is therefore computed answers �denoted by c�� P� �c P� i� for any goal G� G has the same

�

�up to renaming� computed answers in P� and in P��

As �rst shown in
��
� the van Emden and Kowalski�s semantics is not correct w	r	t	 to the

observational equivalence based on computed answer substitutions� Namely� there exist programs

which have the same least Herbrand model� yet compute di�erent answer substitutions� When

trying to understand the meaning of programs� when analyzing and transforming programs�

this semantics cannot be taken as the reference semantics� This is the reason why the need

for a di�erent formal semantics was recognized by many authors� giving rise to several new

de�nitions
��� ��� 		�� ��
� The need for better semantics was also recognized in the case of

semantics�based abstract interpretation
��
 and transformation
��
�

��� Compositionality

In addition to the problem related to modeling the computed answers observational equiva�

lences� there exists another problem with the least Herbrand model semantics� Namely a very

important property� i�e� compositionality� does not hold� Compositionality has to do with a

�syntactic� program composition operator �� and holds when the semantics of the compound

construct C� � C� is de�ned by �semantically� composing the semantics of the constituents C�

and C�� In the case of logic programs� the construct which raises a compositionality problem

is the union of clauses� The related property is called ��compositionality� ��compositionality

is interesting both for theoretical and for practical �i�e� the de�nition of semantics for modular

versions of logic programs� purposes� When also composition of programs is taken into account�

for a given observable property we obtain di�erent equivalences depending on which kind of

program composition we consider� Given an observable X and a program composition operator

�� the induced congruence ����X� is de�ned as follows� P� ����X� P� i� for any program Q�

P� �Q �X P� �Q� �i�e� i� P� and P� are observationally indistinguishable under any possible

context allowed by the composition operator��

��� Plan of the paper

In the next section we describe the general approach� In section � we consider the original

s�semantics
��� ��
� which is the �rst �non�compositional� semantics of positive logic programs

correct w�r�t� computed answers� Compositionality is discussed in section �� while in section �

we consider semantics modeling other observables� such as �nite failures and resultants� Sec�

tion � discusses the application of the approach to several extensions of positive logic programs�

including constraint logic programs� disjunctive logic programs� normal logic programs� construc�

tive negation� structured logic programs with inheritance and Prolog programs� Finally� section

� shows some applications of the approach� in the areas of program transformation� semantics�

based analysis and metaprogramming�

��� Preliminaries

The reader is assumed to be familiar with the terminology of and the basic results in the

semantics of logic programs
��� �
� Let L be the �rst order language de�ned by the signature S

consisting of a set C of data constructors� a �nite set P of predicate symbols� a denumerable set

V of variable symbols� Let L� be the language de�ned by C �� P � and V and L be the language

de�ned by C� P and V � L� is an extension of L if C � C � and P � P �� When the language will

be subscripted by the program� as in LP � the signature will be the one de�ned by the symbols

occurring in the program P � Otherwise a given signature S is assumed�

�

Let T be the set of terms built on C and V � Variable�free terms are called ground� A

substitution is a mapping � � V � T such that the set D��� � fX j ��X� �� Xg �domain

of �� is �nite� If W � V � we denote by �jW the restriction of � to the variables in W � i�e�

�jW �Y � � Y for Y �	 W � Moreover if E is any syntactic object� we use the abbreviation �jE
to denote �jV ar�E�� � denotes the empty substitution� The composition �� of the substitutions

� and � is de�ned as the functional composition� i�e� ���x� � ����x��� A renaming is a

substitution � for which there exists the inverse ��� such that ���� � ���� � �� The pre�

ordering
 �more general than� on substitutions is such that �
 � i� there exists �� such that

��� � �� The result of the application of the substitution � to a term t is an instance of t

denoted by t�� We de�ne t
 t� �t is more general than t�� i� there exists � such that t� � t��

A substitution � is grounding for t if t� is ground� The relation
 is a preorder� � denotes

the associated equivalence relation �variance�� A substitution � is a uni�er of terms t and t� if

t� � t��� mgu�t�� t�� denotes any idempotent most general uni�er of t� and t�� All the above

de�nitions can be extended to other syntactic objects in the obvious way�

A literal L is an object of the form p�t�� � � � � tn� �atom� or �p�t�� � � � � tn� �negative literal��

where p 	 P � t�� � � � � tn 	 T and ��� denotes negation� A clause is a formula of the form

H � �L�� � � � � Ln with n
 �� where H �the head� is an atom and L�� � � � � Ln �the body� are

literals� �� �� and ��� denote logic implication and conjunction respectively� and all variables

are universally quanti�ed� A de�nite clause is a clause whose body contains atoms only� If

the body is empty the clause is a unit clause� A normal program is a �nite set of clauses

P � fc�� � � � � cng� A positive program is a �nite set of de�nite clauses� A normal �positive� goal

is a formula L�� � � � � Lm� where each Li is a literal �atom��

A Herbrand interpretation I for a program P is a subset of the Herbrand base B �the

set of all ground atoms�� The intersection M�P � of all the Herbrand models of a positive

program P is a model �least Herbrand model�� M�P � is also the least �xpoint TP � � of a

continuous transformation TP �immediate consequences operator� on Herbrand interpretations�

The ordinal powers of a generic monotonic operator TP on a complete lattice �D�
� with

bottom � are de�ned as usual� namely TP � � � �� TP � �	�	� � TP �TP � 	� for 	 successor

ordinal and TP � 	 � lub�fTP �
 j
 � 	g� if 	 is a limit ordinal� If G is a positive goal�

G
�
�P�R B�� � � � � Bn denotes an SLD�derivation of B�� � � � � Bn from the goal G in the program

P which uses the selection rule R and such that � is the composition of the mgu�s used in

the derivation� G
�
���P � denotes the SLD�refutation of G in the program P with computed

answer substitution �� A computed answer substitution is always restricted to the variables

occurring in G�

We will denote by �X and �t a tuple of distinct variables and a tuple of terms respectively�

while �B will denote a �possibly empty� conjunction of atoms� For any set A� A� denotes the

set of �nite sequences of elements of A� �� will denote concatenation of sequences and � is the

empty sequence�

� The s�semantics approach

The aim of the s�semantics approach
��� ��� ��� ��
 is modeling the observable behaviors

�possibly in a compositional way� for a variety of logic languages� The approach is based on the

idea of choosing �equivalence classes of� sets of clauses as semantic domains� The denotations

are then de�ned by syntactic objects� as in the case of Herbrand interpretations� Denotations

�called
�interpretations� are not interpretations in the conventional mathematical logic sense�

As in the case of the van Emden and Kowalski semantics� denotations can be computed both by

�

a top�down construction �a success set� and by a bottom�up construction �the least �xpoint of

suitable continuous immediate consequences operators on
�interpretations�� The link between

the top�down and the bottom�up constructions is given by an unfolding operator
��� ��
� The

equivalence proofs can be stated in terms of simple properties of the unfolding and the immediate

consequences operators
�	
�

It is worth noting that the aim of the approach is not de�ning a new notion of model� We are

simply unhappy with the traditional declarative semantics� because it characterizes the logical

properties only and we look for new notions of program denotation useful from the programming

point of view� A satisfactory solution to the simple case of positive logic programs is needed

to gain a better understanding of more practical languages� such as real Prolog and its purely

declarative counterparts�

We show our construction in a language independent way by considering three separate

steps� which roughly correspond to the three standard semantics of logic programs
	��� ��� �
�

The �rst step is related to the operational semantics and leads to the de�nition of the structure

of
�interpretations� The second step is concerned with the �xpoint semantics� The third and

�nal step is concerned with the de�nition of
�models�

��� Observable properties and ��interpretations

The operational semantics is usually given by means of a set of inference rules which specify

how derivations are made� and by de�ning a proper notion of observable� Consider for example

positive logic programs with no composition and computed answer substitutions as observable�

As we will show in section �� the denotation of a program is a set of non�ground atoms� which can

be viewed as a possibly in�nite program� This is just an instance of a more general property

of denotations within our approach� Namely denotations are possibly in�nite programs and

semantic domains are made of syntactic objects� The amount of syntax which is needed in

the semantic domains depends on the observable and on the composition� For example� in

the computed answer substitutions semantics� the syntactic construct of variables is added to

the Herbrand domain� When considering ��composition also� non�ground unit clauses are not

su�cient any longer and more general clauses are needed �see section ��� Note that the approach

is feasible only if the language syntax is powerful enough to express its own semantics� Since

we have syntactic objects in the semantic domain� we need an equivalence relation in order to

abstract from irrelevant syntactic di�erences� In the above considered example� this relation is

variance� If the equivalence is accurate enough the semantics is fully abstract�

Herbrand interpretations are generalized in our setting by
�interpretations which are pos�

sibly in�nite sets of equivalence classes of clauses from the semantics domain� The operational

semantics of a program P is then a
�interpretation I � which has the following property� P and

I are observationally equivalent with respect to any goal G� This is the property which allows

us to state that the semantics does indeed capture the observable behavior�

��� Fixpoint semantics and unfolding

The aim of the second phase is the de�nition of a �xpoint semantics equivalent to the previously

de�ned operational semantics� This can be achieved by the following steps�

� The set of
�interpretations is organized in a lattice ���v� based on a suitable partial

order relation v� which in most cases is set inclusion�

�

� An immediate consequences operator T �P is de�ned and proved monotonic and continuous

on ���v�� This allows us to de�ne the �xpoint semantics F�P � for P as F�P � � T �P � ��

� The �xpoint semantics F is proved equivalent to the operational semantics� If this equiv�

alence holds� the immediate consequences operator T �P models the observable properties

and may be used for bottom�up program analysis�

Concise and elegant equivalence proofs can be obtained by introducing the intermediate notion

of unfolding semantics U
��� ��
� Unfolding is a well known program transformation rule which

allows us to replace procedure calls by procedure de�nitions� The unfolding of the clauses of

program P using the procedure de�nitions in program I is denoted by unfP �I��

The unfolding and the operational semantics are strongly related� since they are based on the

same inference rule �applied to clauses and goals respectively�� The unfolding semantics U�P �

is obtained as the limit of the unfolding process� If the unfolding rule preserves the observable

properties� U�P � is equivalent to the operational semanticsO�P � which is a
�interpretation and

therefore a program� This shows that the statement �the language syntax is powerful enough

to express its own semantics� can be rephrased as �the language is closed under unfolding��

On the other side� the unfolding operator unfP is strongly related to the immediate con�

sequences operator T �P � For example� in many cases� given a
�interpretation I � the relation

T �P �I� � unfP �I� holds� The proof of equivalence between U�P � and F�P � can be based on such

a relation� In particular the equivalence immediately holds for those immediate consequences

operators which are compatible with the unfolding rule
�	
� The above relations suggest a

methodology to obtain the immediate consequences operator by �rst de�ning the unfolding

operator� which is easier to de�ne because of its strong relation to the operational semantics�

��� Model�theoretic semantics

Let us �rst note that the original model�theoretic view of the s�semantics
��
 was based on

ad�hoc notions of s�truth and s�model� The notion of
�model� �rst introduced in
��
� �xes

the above problem� by viewing a denotation just as a syntactic notation for a set of Herbrand

interpretations� H�IP � denotes the set of all the Herbrand interpretations represented by IP �

For instance� in positive logic programs� the operational semantics O�P � is a set of non�ground

atoms and H�O�P �� is the set containing the least Herbrand model of O�P �� In general� our

aim is �nding a notion of
�model such that O�P � and F�P � are
�models and every Herbrand

model is a
�model� This can be obtained by the following de�nition�

De�nition ��� Given a program P and a
�interpretation I� I is a
�model of P i� P is true

in all the Herbrand interpretations in H�I�	

As we will show in the following� the model intersection property does not hold in general

for
�models� This is due to the fact that set inclusion does not adequately correspond to the

intended meaning of
�interpretations� Namely the information of a
�interpretation I� may

be contained in I� without I� being a subset of I�� In general� we look for a partial order

� modeling the meaning of
�interpretations� such that ����� is a complete lattice and the

greatest lower bound of a set of
�models is a
�model� According to the last property there

exists a least
�model� which� as we will see in the following� is the least Herbrand model� It is

worth noting that the most expressive
�model O�P � is a non�minimal
�model�

�

� Positive logic programs

In this section we consider the original s�semantics�� which is a non�compositional semantics

for positive programs� Compositions will be considered in section ��

��� Top�down semantics and ��interpretations

The �rst observable we consider is the computed answer substitutionswhich induces the following

program equivalence �� Other observable properties �and therefore di�erent semantics� will be

considered in Section ��

De�nition ��� Let P�� P� be positive programs	 P� � P� if for every positive goal G� G
�
���P� �

i� G
��

���P� � and � � �����jG� where � is a renaming	

The above observable is captured by the following operational semantics� Recall that �X denotes

a tuple of distinct variables�

De�nition ��� �Computed answer substitutions semantics� s�semantics� ���� Let P be a pos�

itive program	

O�P � � fA j � �X 	 V� ���

p� �X�
�
���P ��

A � p� �X�� g

In order to model O�P � the usual Herbrand base has to be extended to the set of all the

�possibly non�ground� atoms modulo variance�

De�nition ��� Let B be the quotient set of all the atoms w	r	t	 variance	 A
�interpretation

is any subset of B	

In the following O�P � will then be formally considered as a subset of B� Moreover� we will

denote the equivalence class of an atom A by A itself� Note that
�interpretations of de�nition

��� are not Herbrand interpretations� yet are interpretations de�ned on the Herbrand universe�

These interpretations were called canonical realizations in
	��� ��
�

Theorem ��� shows that O actually models computed answer substitutions and that it is

fully abstract� since P� � P� implies O�P�� � O�P���

Theorem ��� ���� Let P�� P� be positive programs	 P� � P� i� O�P�� � O�P��	

The following theorem asserts that the observable behavior of any �possibly conjunctive�

goal can be derived from O�P �� i�e� from the observable behaviors of atomic goals of the form

p� �X�� This property is a kind of AND�compositionality� Similar theorems will be shown to

hold for all the semantics de�ned according to the s�semantics style� This is also the key

property which allows us to use abstractions of the semantics for goal independent abstract

interpretation�

Theorem ��	 ���� Let P be a positive program and G � G�� � � � � Gn be a positive goal	 Then

G
�
���P � i� there exist �renamed apart� atoms A�� � � � � An 	 O�P � and a renaming � such

that � � ����jG where � � mgu��A�� � � � � An�� �G�� � � � � Gn��	

�s stands for �subset interpretations� used in 	�
� as semantic domains and contrasted to �closed interpreta�

tions� used to de
ne the so�called c�semantics �see De
nition �����

�

Theorem ��� shows that O�P � provides a denotation which can actually be used to simulate

the program execution for any goal G � G�� � � � � Gn� Namely the answer substitutions for

G can be determined by �executing G in O�P ��� i�e� by computing a most general uni�er of

G�� � � � � Gn and A�� � � � � An� where the Ai�s are renamed apart variants of atoms in O�P ��

Let us consider now the success set and the atomic logical consequences semantics formally

de�ned as follows�

De�nition ��
 Let P be a positive program	

�success set� O��P � � fA j A is ground and A
�
���P �g

�atomic logical consequences semantics� O��P � � fA j A
�
���P �g

Note that the semantic domain of O� is the usual Herbrand base� i�e� the set of all the ground

atoms� Note also that O� is the semantics considered in
��� ��� ��
 and called c�semantics in

��
� We will now compare the three semantics on an example�

Example ��� Consider the programs P� and P� on the signature S� de�ned by C � fan�� fn	g	

P� � f p�a�� P� � f p�X��

p�X�� q�f�a���g

q�f�a���g

O�P�� � fq�f�a��� p�X�� p�a� g

O�P�� � fq�f�a��� p�X� g

O��P�� � O��P�� � fq�f�a��� p�a�� p�f�a��� � � �g

O��P�� � O��P�� � fq�f�a��� p�X�� p�a�� p�f�X��� p�f�a��� � � �g

Note that P� � P� does not hold� since the goal p�X� computes di�erent answer substitutions

in P� and in P�	 Note also that the denotations de�ned by O are �nite� while those computed

by both O� and O� are in�nite	

Example ��� shows that the three semantics are di�erent� Indeed� if we denote by �i the

program equivalence induced by Oi� i � 	� �� the following �strict� inclusion holds
��� ��
�

� � �� � ��� i�e� � is �ner than ��� and �� is �ner than ��� This shows that the success set

semantics is not correct with respect to computed answers� Moreover the correctness cannot

be achieved by just using interpretations consisting of sets of non�ground atoms� In fact also

the c�semantics does not correctly model the computed answers�

Let I be a
�interpretation� If
I
 denotes the set of ground instances of the atoms in I �

I
 is clearly a Herbrand interpretation� The following theorem relates the s�semantics to the

success set �and therefore to the least Herbrand model��

Theorem ��� ���� If P is a positive program� then O��P � �
O�P �
	

We have shown that the success set semantics does not correctly model the computed answers�

One could still think that this is not the case in most reasonable logic programs� Which is

the class of positive programs for which the success set is correct with respect to computed

answers� This is clearly the case for the class of programs for which the s�semantics and the

least Herbrand model semantics do coincide� Theorem ��	� shows that this is exactly the class

of language independent programs as de�ned in
��
�

De�nition ��
 ���� A program P with underlying language LP is language independent i��

for any extension L� of LP � its least L��Herbrand model is equal to its least LP �Herbrand model	

�

Theorem ���� ���� Let P be a program	 Then P is language independent i� O�P � � O��P �	

A program P belongs to this class only if any goal in P returns ground answers� It is therefore

essentially the class of allowed positive programs
��
 and does not contain any program able

to compute partial data structures�

The success set semantics does not need to be the same as the s�semantics in order to

be correct with respect to computed answers� rather it needs to be isomorphic� The class of

programs for which this property holds has been studied in
�
�

Another related useful property of the s�semantics is its independence from the language�

This means that the denotation de�ned by O is not a�ected by the choice of the language

signature� The language signature a�ects the domain of
�interpretations B� Since O�P � is a

subset of B it might also be a�ected� Therefore� let us denote by OL�P � the denotation for a

given language L� If LP is the language underlying program P � the following theorem shows

the language independence property� Note that the same property does not hold for other

variable�based semantics� such as those in
��� ��
�

Theorem ���� ���� If P is a positive program� then OLP �P � � OL
�

�P � for any extension L�

of LP 	

As we will show in section ���� this is the key property which makes the s�semantics adequate

to formalize metaprogramming with the non�ground metalevel representation of object level

variables�

��� Fixpoint semantics

We will now introduce an immediate consequences operator T �P on
�interpretations whose least

�xpoint will be shown to be equivalent to the computed answer substitutions semantics O�P ��

Lemma ���� The set of all
�interpretations ����� is a complete lattice	

De�nition ���� ���� Let P be a positive program and I be a
�interpretation	

T �P �I� � fA 	 B j �C � A� � �B�� � � � � Bn 	 P�

� B��� � � � � B
�
n variants of atoms in I and renamed apart�

�� � mgu��B�� � � � � Bn�� �B
�
�� � � � � B

�
n�� and A � A�� g

Note that T �P is di�erent from the standard TP operator
	��
 in that it derives instances

of the clause heads by unifying the clause bodies with atoms in the current
�interpretation�

rather than by taking all the possible ground instances� In other words T �P de�nes a bottom�

up inference rule �hyper�resolution� based on the same rule �uni�cation� which is used by the

top�down SLD�resolution� The following theorem allows us to de�ne a �xpoint semantics for

positive logic programs�

Theorem ���� ���� The T �P operator is continuous on �����	 Then there exists the least

�xpoint T �P � � of T �P 	

De�nition ���	 ���� The �xpoint semantics of a positive program P is de�ned as F�P � �

T �P � �	

	�

It is worth noting that� since any program P is a �nite set of clauses� all the �nite �xpoint

approximations T �P � n� n
 � are �nite� The T �P operator can then e�ectively be used for the

construction of bottom�up proofs�

The equivalence between F�P � and O�P � is proved by introducing the unfolding semantics�

De�nition ���
 ���� ��� Let P and Q be positive programs	 Then the unfolding of P w	r	t	 Q

is de�ned as

unfP �Q� � f�A � ��L�� � � � � �Ln�� j �A � �B�� � � � � Bn 	 P�

�B�i � �
�Li 	 Q� i � 	� � � � � n�

renamed apart� such that

� � mgu��B�� � � � � Bn�� �B
�
�� � � � � B

�
n��g

The unfolding rule can be applied to any atom in a clause and preserves the operational

semantics� i�e� the language is closed under unfolding� Therefore it is possible to de�ne the

immediate consequences operator in terms of the unfolding rule� Theorem ���	 was proved in

��
� An alternative proof is given in
�	
 by using lemma ����� A direct proof of F�P � � O�P �

was �rst given in
��
�

De�nition ���� ���� ��� Let P be a positive program	 Then we de�ne the collection of programs

P� � P

Pi � unfPi���P �� i � 	� �� � � �

and the collection of
�interpretations Ii�P � � fA j A 	 B and A 	 Pig	 The unfolding

semantics U�P � of the program P is de�ned as

U�P � �
�

i��������

Ii�P ��

Theorem ���� �equivalence of unfolding and operational semantics� ���� ��� Let P be a pos�

itive program	 Then U�P � � O�P �	

De�nition ���
 ���� Let P�Q be positive programs	 Then T �P is compatible with unfP �Q� i�

T �
unfP �Q�

��� � T �P �T
�
Q����	

Lemma ���� ���� Let P�Q be positive programs	 Then T �P is compatible with unfP �Q�	

Since T �P is compatible with the unfolding rule and T
�
P �I� � unfP �I� �by de�nition of the

unfolding rule�� then T �P � �i� 	� � T �Pi��� � unfPi���� Therefore�

Theorem ���� �equivalence of �xpoint and operational semantics� ���� ��� Let P be a positive

program	 Then F�P � � U�P � � O�P �	

Theorem ���	 shows that F�P � is the fully abstract semantics w�r�t� computed answer

substitutions� The above equivalence between the top�down and the bottom�up semantics will

hold for all our semantics� including the abstract versions used for program analysis� This

makes available equivalent top�down and bottom�up proof methods�

		

��� Model�theoretic semantics

In order to de�ne
�models according to de�nition ��	 we have to specify the function H from

�interpretations to sets of Herbrand interpretations�

De�nition ���� ���� Let I be a
�interpretation	 Then H�I� � f
I
g where
I
 is the set of

ground instances of atoms in I or� equivalently� the least Herbrand model of I	

Proposition ���� ���� Let P be a program	 Then every Herbrand model of P is a
�model of

P 	 Moreover O�P ��O��P ��O��P � are
�models of P 	

The program P� of example ��� shows that the model intersection property does not hold

any longer� In fact� O�P�� � O��P�� � O��P�� � fq�f�a��g which is not a
�model of P�� This

is not surprising� since set theoretic operations do not adequately model the operations on

non�ground atoms� which stand for all their ground instances� A more adequate partial order

relation � on the set � of
�interpretations was de�ned in
��
�

De�nition ���� ���� Let I�� I� be
�denotations	 We de�ne�

� I�
I I� i� �A� 	 I�� � A� 	 I� such that A�
 A�	

� I� � I� i� �I�
I I�� and �I�
I I� implies I� � I��	

� allows us to prove the following properties

� ����� is a complete lattice� B is the top element and � is the bottom element�

� If M is a set of
�models of P � then glb�M� is a
�model of P �

� The least
�model M�P � � glb�fI 	 � j I is a
�model of Pg� is the least Herbrand

model�

It is worth noting that� according to proposition ����� the s�semantics O�P � is simply a

non�ground representation of the least Herbrand model O��P �� From the Herbrand models

viewpoint the two semantics are therefore equivalent� However O�P � contains more useful

information� On one side� it correctly models computed answers� On the other side� it has

nice properties also from the model�theoretic viewpoint� This can be shown by considering the

properties of the �atomic logical consequences� semantics O� and the relation between O and

O��

Theorem ���	 ����
�� Let P be a positive program and A be a �possibly non�ground� atom	

Then P j� �A i� A 	 O��P �	

Theorem ���
 ���� Let P be a positive program	 Then

O��P � � fAj�B 	 O�P � and �� such that A � B�g

This allows us to determine from O�P � the correct answer substitutions� as shown by the

following corollary� which can easily be derived from theorems ���� and �����

Corollary ���� Let P be a program and G � A�� � � � � An be a goal	 Then � is a correct answer

substitution for G in P �i	e	 P j� ��A� � � � � � An��� i� all the atoms Ai� are instances of

atoms in O�P �	

Note that� as shown in
��
� correct answer substitutions cannot be determined from the

least Herbrand model�

	�

� A compositional semantics

The semantics de�ned in section � is compositional w�r�t� the AND operator� We consider here

��compositionality� i�e� composition w�r�t� to union of programs� A semantics S is compositional

w�r�t� the union of programs� if for any pair of programs P� and P�� S�P� � P�� can be derived

from S�P�� and S�P��� The semantics O that we have considered so far is not compositional

w�r�t� the union of programs� as shown by the following example�

Example ��� Consider the following programs	

P � f r�b� � �p�b�� Q � f p�b�� g R � f p�a�� g

p�a�� g

O�P � � O�R� � fp�a�g

O�Q� � fp�b�g

O�P � Q� � fp�a�� p�b�� r�b�g while O�R � Q� � fp�a�� p�b�g	 The same problem arises if we

consider O� or O�	

Example ��	 shows that O does not contain enough information to be able to model ��

composition� This can formally be shown by considering the ��compositional observational

equivalence ��� given in de�nition ��� for the computed answers observable� and by proving

that O is not correct w�r�t� ���

De�nition ��� Let P�� P� be positive programs	 P� �� P� if� for every positive goal G and for

every program Q� G
�
���P��Q � i� G

��

���P��Q � and � � �����jG� where � is a renaming	

From de�nition ��� one can note that a semantics correct w�r�t� �� is essentially a function

from interpretations to interpretations� As a matter of fact two ��compositional semantics

�correct w�r�t� the successful derivations observable� are the semantics in which the denotation

of P is the associated immediate consequences operator TP and the functional semantics de�ned

in
�	
� Gaifman and Shapiro �rst suggested to use sets of �equivalence classes of� clauses as a

representation of one such a function� modeling the successful derivations
��
 and the computed

answers
��
 observables� This idea �ts quite naturally within the s�semantics approach since

the semantic domains are syntactic objects� i�e� programs�

The ��semantics
��� �	
 is similar to one of the semantics in
��
� yet it is de�ned according

to the general s�semantics approach� It was originally de�ned for a more general composition

operator ��� de�ned on ��open programs� An ��open program
��
 P is a positive program in

which the predicate symbols belonging to the set � are considered partially de�ned in P � P can

be composed with another program Q which may further specify the predicates in � and use

clauses in P to complete its own predicate de�nitions� Such a composition is denoted by ���

Formally� given the ��open programs P�� P�� if Pred�P�� � Pred�P�� � � then P� �� P� is the

��open program P��P�� otherwise P���P� is unde�ned� A more general notion of composition

which allows di�erent sets of open predicates for the composed programs is considered in
�	
�

The semantics of open programs must be compositional w�r�t� ��� i�e� the semantics of P���P�
must be derivable from the semantics of P� and P�� Note that if � contains all the predicate

symbols then �� is the same as the standard union�

The ���compositional observational equivalence �� of de�nition ��� is the straightforward

extension of de�nition ����

	�

De�nition ��� Let P�� P� be ��open programs	 P� �� P� if� for every positive goal G and for

every program Q such that� for i � 	� �� Pi �� Q is de�ned� G
�
���P���Q � i� G

��

���P���Q �

and � � �����jG� where � is a renaming	

The above observational equivalence is captured by the following operational semantics� We

denote by Id� the set of clauses fp� �X� � �p� �X� j p 	 �g where � is a set of predicate symbols�

De�nition ��� ���compositional computed answer substitutions semantics� ���� Let P be a

positive program� � be a set of predicate symbols� P �be the augmented program P � Id� and R

be a fair selection rule	 Then we de�ne

O��P � � fc j � �X 	 V�

� a derivation

p� �X�
�
�P�R D�� � � � � Dm

�
�P��R B�� � � � � Bn�

and Pred�B�� � � � � Bn� � ��

c � p� �X��� � �B�� � � � � Bng

Note that O��P � is a set of resultants
��� �
 obtained from goals of the form p� �X� in P

and is strongly related to partial evaluation
��
��

The set of clauses Id� in the previous de�nition is used to delay the evaluation of open

atoms� This is a trick which allows us to obtain a denotation which is independent from the

�fair� selection rule�

The semantic domain C� for the denotation O��P � is the set of clauses whose body predi�

cates are all in � �conditional atoms� modulo the following equivalence �	�

De�nition ��	 Assume c� � A� � �B�� � � � � Bn and c� � A� � �D�� � � � � Dn	 Then c� �	 c� i�

� a renaming � such that A� � A�� and fjB�� � � � � Bn jg � fjD��� � � � � Dn� jg where fj jg denotes

a multiset	

De�nition ��
 A
�interpretation for an ��open program P is any subset of C�	

O��P � is then a
�interpretation for ��open programs� Note that we consider bodies of

clauses as multisets�

Example ��� Consider the following ��open program P � where � � fqg	

P � f p�X� � �q�X��

r�X� � �s�X��

q�a��

s�b�� g

Then O��P � � fp�X� � �q�X�� p�a�� q�a�� r�b�� s�b�g	

The following results show that O� actually models computed answer substitutions in a

compositional way�

Theorem ��� �compositionality� ���� Let P� P�� P� be programs and assume

Pred�P�� � Pred�P�� � �	 Then the following facts hold

� O��O��P�� �� O��P��� � O��P� �� P���

�The relation between the semantics and partial evaluation will be discussed in section ����

	�

� P �� O��P �	

As usual O��P � can be characterized as the least �xpoint of an immediate consequences

operator� We can simply de�ne such an operator in terms of the unfolding rule of de�nition

��	�� Note that we consider a
�interpretation also as a set of �renamed apart� syntactic clauses�

Moreover operators such as unfP are considerd as operators on C�� These �semantic� versions

are well de�ned since clauses are always renamed apart�

De�nition ��
 ���� Let P be an ��open program and let I � C�	 Then

T �P�� � unfP �I � Id���

Lemma ���� ���� Let P be an ��open program	 Then T �P�� is continuous on ������	

De�nition ���� ���� ��� The �least� �xpoint semantics of an ��open program P is de�ned as

F�P � � T �P�� � �	

Theorem ���� �equivalence of the �xpoint and the operational semantics� ���� Let P be an

��open program	 Then F�P � � O��P �	

The denotation O��P � can be viewed as a function which� when provided with the deno�

tation of a program Q� returns the denotation of P �� Q� If we move from denotations to

Herbrand models� we can associate to the denotation �
�interpretation� I the set of the least

Herbrand models of all the programs which can be obtained by �completing� the denotation I

�considered as a program�� by taking the union of I with a suitable set of ground atoms de�ning

the open predicates� This is formalized by the function H in the following de�nition�

De�nition ���� ���� Let I be a
�interpretation for an ��open program	 Then H�I� �

fO��I �� J�g where J is any set of ground atoms p��t� such that p 	 � and p��t� is an in�

stance of an atom in the body of a clause in I	

If we consider the program P of example ��� on the signature S� de�ned by C � fan�� bn�g�

then

H�O��P ��� ffp�a�� q�a�� r�b�� s�b�g� fp�a�� q�a�� p�b�� r�b�� s�b�� q�b�gg�

�models are then those de�ned according to de�nition ��	 and have the following properties�

Proposition ���� ���� Let P be an ��open program	 The following statements hold

� every Herbrand model of P is a
�model of P �

� O��P � is a
�model of P 	

The main idea behind the compositional semantics is the use of sets of clauses as semantic

domain� This is the syntactic device which allows us to obtain a unique representation for a

possibly in�nite set of Herbrand models when a unique representative Herbrand model does not

exist� Similar domains consisting of clauses have been used to model non�standard observables

�	� ��
 �see section ���� and to characterize logic programs with negation
��� ��� ��
 �with the

aim of delaying the evaluation of negative literals��

The delayed evaluation of open predicates which is typical ofO��P � can easily be generalized

to other logic languages� to achieve compositionality w�r�t the union of programs� By modifying

O��P � we can obtain semantics compositional w�r�t� other composition operators� as for example

	�

inheritance mechanisms
	�
 �see section ����� O��P � can be considered as the semantic basis

for modular program analysis� since by using suitable abstractions of O��P �� we can analyze

program components and then combine the results to obtain the analysis of the whole program

��
�

Let us �nally mention that O� is strongly related to abduction
��
� If � is the set of

abducible predicates� the abductive consequences of any goal G can be found by executing G

in O��P ��

� Other observables

��� Finite failures

There exist other useful observables for positive logic programs� such as� for example� �nite

failures� Indeed the standard semantics of positive logic programs should correctly model both

the successful computed answers and the �nite failures� The following de�nition formalizes the

observational equivalence �FF based on �nite failures�

De�nition 	�� Let P�� P� be positive programs� G be a positive goal and T� and T� be SLD�

trees �de�ned by a fair selection rule� for G in P� and P� respectively	 Then P� �FF P� if for

every goal G� T� is �nitely failed if and only if T� is �nitely failed	

We will not consider the �nite failure semantics� even because a correct and fully abstract

generalization of the s�semantics modeling �nite failures does not yet exist� Let us just mention

that the �ground� �nite failure set is not correct w�r�t� �FF � as shown by the following example�

Example 	�� Consider the following programs P� and P�	
P� � f p�f�X�� � �p�X�� P� � f p�f�X�� � �p�X�� p�a��

q�a�� g q�a�� g
The Finite Failure set of both P� and P� is

fp�a�� p�f�a��� q�f�a��� p�f�f�a���� � � �g�

while P� �FF P� does not hold� since the goal p�X� �nitely fails in P� only	

It can be shown that the non�ground �nite failure set as de�ned in
��
 is indeed correct

w�r�t� �FF � However� the AND�compositionality property does not hold� i�e� it is not possible

to decide whether a conjunctive goal �nitely fails by just looking at the non�ground �nite failure

set� We believe that a correct and AND�compositional semantics for �nite failure needs to be

based on a semantics similar to the one of section ����

��� Multisets of answers

The s�semantics was extended in
��
 to deal with multisets rather than sets� Such an extension

was needed to investigate properties which make possible improvements in the performance of

the bottom�up �xpoint evaluation� Algorithms such as the Seminaive evaluation
�
 try to avoid

repeating inferences by comparing the new facts computed at each iteration with previously

generated facts to eliminate duplicates� To study properties of these algorithms and their

specializations for certain classes of programs� it is then necessary to consider duplicates� and

hence multisets of atoms�

We show here the de�nition of the multiset version of the s�semantics �ms�semantics for

short� from
��
� For the sake of uniformity we use a TP �like construction� A more general

	�

formulation which allows us to express di�erent evaluation algorithms and di�erent semantics

is given in
��
�

Thems�semantics can be obtained by simply replacing sets by multisets in all the de�nitions

of section �� Therefore� in the following an interpretation will be a multiset of atoms modulo

variance and a program will be a multiset of clauses� We use fj jg as multiset constructor� while

set�X� denotes the set obtained from the multiset X by ignoring multiplicities� In this section�

	 is used for multiset membership� For example fjn� j n 	 fj�� �� �jg jg � fj�� �� �jg� Given

an in�nite chain S� � S� � � � of multisets� where X � Y denotes multiset inclusion� its limit

S � limn��Si is de�ned as the multiset S where the multiplicity of any s 	 S is the least

upper bound �in Z � f�g� of the multiplicities of s in Sn� In the following de�nition� as usual�

we assume that all the atoms and all the clauses are renamed apart�

We denote bymset�X� the set obtained from the multisetX by replacing any element a with

multiplicity n by n �di�erent� elements a�� � � � � an� When atoms are uni�ed the superscripts are

simply ignored�

De�nition 	�� �
�� Let P be a positive program and I be an interpretation	 Then we de�ne

TmP �I� � fj A 	 B j H � �B�� � � � � Bn is a clause in P�

fCj�
� � � � � � C

jn
n g � mset�I��

� � mgu��B�� � � � � Bn�� �C�� � � � � Cn�� and A � H� jg

Example 	�� Let P be the program

P � f p�a� � �q�a�� q�a�� g

and I be the interpretation I � fj q�a�� q�a� jg	 Then

TmP �I� � fj p�a�� p�a�� p�a�� p�a� jg�

The ms�semantics is de�ned as follows�

De�nition 	�	 Let P be a positive program	 Then we de�ne

Fm�P � � limn�� TmP � n

By considering a suitable notion of complete lattice of multiset interpretations� the previous

de�nition can be shown to correspond to the least �xpoint of TmP �

The ms�semantics Fm�P � contains all the �possibly repeated� computed answers for atomic

goals of the form p� �X�� Repeated answers correspond to di�erent �parallel� derivations which

give the same computed answers for a given goal �by parallel derivation we mean a derivation

where all the atoms in each resolvent are rewritten at each step��

Example 	�
 Let P be the program

P � f p�X� � �q�X�� q�X��

p�a��

q�a�� g

The ms�semantics of P is

Fm�P � � fj p�a�� p�a�� q�a� jg

	�

Accordingly� by using a parallel derivation� we can obtain the answer X�a for the goal p�X� in

the program P in two di�erent ways �by using either the �rst or the second clause�	 Analogously�

for the goal p�X� in the program Q

Q � f p�X� � �p�X��

p�a�� g

we have in�nitely many di�erent ways to obtain the answer X�a �corresponding to derivations

of increasing length�	 Then� the ms�semantics of Q is the in�nite multiset

Fm�Q� � fj p�a�� p�a�� � � � jg

�while the s�semantics contains only one copy of p�a��	

By using a parallel derivation rule� we can then de�ne an operational semantics equivalent to

Fm�P � and hence an observational equivalence based on the �multiple answers� observable� for

which the semantics Fm�P � would be fully abstract� Finally note that� as shown by the following

proposition� the s�semantics can be obtained from the ms�semantics by ignoring multiplicities�

Proposition 	�� �
�� Let P be a positive program	 Then F�P � � set�Fm�P ��	

��� Resultants

We will consider now less abstract observables which make visible internal computation details�

If we are only concerned with the input�output behavior of programs we should just observe

computed answers and �nite failures� However there are tasks� such as program analysis and

optimization� where we are forced to observe and take into account other features of the deriva�

tion� In principle one could be interested in the complete information about the SLD�derivation�

namely the sequences of goals� most general uni�ers and variants of clauses� The resultants�

introduced in
��
 in the framework of partial evaluation� are a compact representation of the

relation between the initial goal and the current hgoal�mgui pair� They are useful �see
�
� to

formalize the properties of SLD�resolution� Our basic observable� for given goal G and selection

rule R� will then be the set of all the pairs hRi��ii� where Ri is a resultant derived from G by

R and �i is the corresponding sequence of clauses� We will then consider a semantics ORR �P ��

de�ned according to the s�semantics approach� modeling the resultants� We obtain a kind of

�collecting semantics� which gives the maximum amount of information on computations and

allows us to observe all the internal details of SLD�derivations� It is essentially the collecting

semantics with selection rule de�ned in
�	� ��
 extended with the information on the sequence

of clauses�

As we will discuss later� several semantics useful for program analysis can be obtained by

abstraction from ORR �P �� Let us �rst give the de�nition of resultant�

De�nition 	�� �Resultant with clauses� Let P be a positive program� G�� � � � � Gn be a goal

and R be a selection rule	 If there exists an SLD�derivation �using the rule R� of the goal

B�� � � � � Bm� m
 � from G�� � � � � Gn and if the derivation computes the answer � and is ob�

tained by using the sequence of clauses
c�� � � � � ck
� k
 � �denoted by G�� � � � � Gn
�
�

c������ck�

P�R

B�� � � � � Bm� m� k
 ��� then h�G� � � � � � Gn�� � B�� � � � � Bm�
c�� � � � � ck
i is a resultant with

clauses of the goal G�� � � � � Gn in the program P with selection rule R	

	�

Note that we denote by G�� � � � � Gn
�
�

 �

P�R G�� � � � � Gn a derivation of length � and hence we

consider also the resultants with clauses of the form

hG� � � � � �Gn � G�� � � � � Gn�

i�

The set of resultants is clearly dependent upon the selection rule� If we take the selection

rule into account� the ordering of atoms in the goal �and in the body of a clause� is relevant�

Therefore� the right hand sides of resultants are sequences of atoms� Note that the resultant

is a de�nite clause �with the body viewed as a sequence of atoms� if the initial goal is atomic�

The observable for a goal G in a program P with a selection rule R is the set RG
�R�P � of all

the resultants with clauses for G in P via R� Resultants which are variants of each other are

equivalent�

We can now de�ne the observational equivalence�

De�nition 	�
 Let P�� P� be positive programs and R be a selection rule	 Then P� �R P� if

for every goal G� RG
�R�P��

� RG
�R�P��

	

In order to obtain the top�down de�nition of a semantics ORR �P � correct w�r�t� �R� we use

the s�semantics technique� namely we consider the sets of resultants with clauses for atomic

goals of the form p� �X�� We will show later that this denotation allows us to determine the

observable for any goal� The semantic domain C is then the set of all the �equivalence classes

of� pairs composed of a clause and a sequence of clause identi�ers and a
�interpretation is any

subset of C�

De�nition 	��� Let P be a positive program and R be a selection rule	 Then

ORR �P � � f hR��i j p� �X�
�
�

c������ck�

P�R B�� � � � � Bm� m� k
 ��

R � p� �X�� � �B�� � � � � Bm�

� �
c�� � � � � ck
 g

Consider the program in the following example�

Example 	��� P � f c� � p�a�� c� � q�b� a��

c� � p�X� � �r�X�� q�X�Y �� c� � r�b�� g
If we choose the leftmost selection rule �� de�nition �	�� gives the following denotation	
OR��P � � f hp�X� � �p�X��

i� hp�a��
c�
i�

hp�X� � �r�X�� q�X�Y ��
c�
i�

hp�b� � �q�b� Y ��
c�� c�
i� hp�b��
c�� c�� c�
i�

hq�X�Y � � �q�X�Y ��

i� hq�b� a��
c�
i�

hr�X� � �r�X��

i� hr�b��
c�
i g

ORR �P � can be proved to be correct w�r�t� �R� As a matter of fact� since O
R
R �P � is essentially

the collecting semantics with selection rule de�ned in
�	� ��
� all the theorems proved in
��
 can

easily be extended to our de�nition� In particular� if we want a bottom�up de�nition equivalent

to the top�down one� we have to consider �local� selection rules only� A local selection rule is

de�ned in
		�
 as a rule which always selects in a goal N one of the most recently introduced

atoms in the derivation from the initial goal to N � Note that the PROLOG leftmost rule is

local and that in general local rules produce SLD�trees with a simpler structure� suitable for

e�cient searching techniques
		�
� For the sake of simplicity� we will give the next de�nitions

in the case of the leftmost selection rule only� The general complete formalization can be found

in
��
�

	�

The intuition behind the immediate consequences operator in de�nition ��	� is the following�

We can unfold the atom Bk in the clause H � �B�� � � � � Bk� � � � � Bn if all the atoms Bj � j �

	� � � � � k � 	 have been �completely� evaluated and have therefore already unit clauses among

their resultants� The resultants with clauses of level �� for a program P with the set of predicate

symbols � are given by the
�interpretation Id � fhp� �X� � �p� �X��

i j p 	 g� In de�nition

��	� both clauses and resultants from X � Id are standardized apart�

De�nition 	��� Let P be a positive program and X � C	 Then
T�P�R��X� � Id

S
fhR��i j �c � A � �B�� � � � � Bk� � � � � Bm 	 P�

� hB�����i� � � � � hB
�
k����k��i 	 X�

� hB�k � �D�� � � � � Dn��ki 	 X � Id�

� � mgu��B�� � � � � Bk�� �B
�
�� � � � � B

�
k���

R � �A � �D�� � � � � Dn� Bk	�� � � � � Bm���

� �
c
 �� �� �� � � � �� �k g

�where �� denotes concatenation of sequences�

Since the operator T�P�R� is continuous on the lattice of
�interpretations� we can de�ne the

�xpoint semantics of P � FR�P �� as the least �xpoint of T�P�R� in the usual way� The following

theorem shows the equivalence of the top�down and bottom�up semantics� while theorem ��	�

shows that the denotation FR�P � actually collects all the information on the resultants in

SLD�derivations using the leftmost selection rule� The proofs of both theorems can easily be

obtained from the proofs of Theorems �� and Lemma �� in
�	
�

Theorem 	��� Let P be positive program	 Then OR��P � � FR�P �	

Theorem 	��� Let P be a positive program and G � A�� � � � � Am be a goal	 Then hR��i is a re�

sultant with clauses of goal G in P via the leftmost selection rule i� �fhH����i� � � � � hHs����s��i� hHs �

�B�� � � � � Bk��sig 	 FR�P �

such that
� � mgu��A�� � � � � As�� �H�� � � � � Hs���

R� � ��A� � � � � � Am�� B�� � � � � Bk� As	�� � � � � Am���

�� � �� �� � � � �� �s�

� � �� and R is a variant of R��

Let us �nally mention that� from the model theory point of view� one can de�ne the following

function from
�interpretations to Herbrand interpretations�

De�nition 	��	 Let I be a
�interpretation	 Then H�I� is the set consisting of the set of

ground instances of the unit resultants in I	

By using the notion of
�model given by de�nition ��	� we have the following result� which

shows that the semantics modeling di�erent observables are all
�models� yet provide di�erent

information on the observable program behavior�

Proposition 	��
 Let P be a program	 Then O��P � �the least Herbrand model of P �� O�P �

�the computed answers semantics of P � and ORR �P � �the resultants semantics of P � are all

�models of P 	

As already mentioned� both the resultants semantics and the compositional semantics of

section � are strongly related to partial evaluation� a program transformation technique �rst

��

applied to logic programs in
��
 and later fully formalized in
��
� The result of partial eval�

uation is a ��nite� set of resultants� obtained from a program P and an atomic goal A� The

selected set of resultants corresponds to a �cut� of the SLD�tree� A is atomic but not nec�

essarily of the form p� �X�� The aim of partial evaluation is in fact to obtain a specialization

of P for the goal A� The construction of the compositional semantics of section � and of the

resultants semantics is based on goals of the form p� �X� which trivially satisfy the A�closedness

condition
��
� which guarantees the completeness of partial evaluation� The relation between

the procedural behaviors of a program and of its �compositional and resultants� semantics can

then be understood in terms of soundness and completeness of partial evaluation�

	���� Finite success

Let us give now an example of an observable semantics which can be derived as an abstraction

of ORR � If we want to characterize �nite success
��
 we must be able to distinguish between unit

resultants �representing successful derivations� and non�unit resultants �representing possibly

non�terminating computations�� Non�atomic resultants are abstracted upon resorting to the

notion of hypothetical atoms� Each resultant of the form A�� �B is represented as the hypothet�

ical atom �A� �A conveys all the relevant information provided by A�� �B �that the associated

derivation is partial� and abstracts from the body �B� which is in fact irrelevant in this context�

The extended Herbrand base BE consists of hypothetical as well as standard atoms�

Interpretations are de�ned as subsets of the extended base BE � B��B� where �B � f�A j

A 	 Bg� Two selectors� Certain and Uncertain are used to project any subset I of BE into

one of the base components�

Certain�I� � fA j A 	 B � Ig Uncertain�I� � fA j A 	�B � Ig�

The frontier semantics E de�ned in
��
 is obtained by collecting information computed at each

iteration of the immediate consequences operator� Let Fi be the abstraction of the frontier

computed at the i�th iteration level� then

E �
�

i������

Ci �
�

i������

Ui

where Ci � Certain�Fi� and Ui is the set of all the hypothetical atoms which unify with

elements of Uncertain�Fi�� Thus Certain�E� is the s�semantics while Uncertain�E� contains

all the atomic goals whose SLD�tree has at least one in�nite branch� Clearly E captures �nite

success and failure of both ground and non ground atoms�

Theorem 	��� ���� Let P be a positive program and A be a non�ground atom	

� A uni�es with A�� � � � � An in E with mgu ��� � � � � �n respectively� and �A �	 E i� the goal

A has an SLD�tree of �nite success with c	a	s	 ��� � � � � �n	

� A uni�es with A�� � � � � An in E and �A 	 E i� the goal A has a successful SLD�tree with

at least one in�nite branch	

� A does not unify with any atom in E and �A �	 E i� the goal A has a �nitely failed

SLD�tree	

� A does not unify with any atom in E and �A 	 E i� the goal A has an SLD�tree with no

success branches but at least an in�nite one	

�	

Example 	��� Consider the program P consisting of the following clauses	
P � f p�a��� p�b� � �p�b��� q�a�� g

E � f p�a�� �p�X�� �p�b�� q�a� g�
We can note that q�X� has �nite success� p�X� succeeds with an in�nite branch� q�b� �nitely

fails and p�b� fails	

The construction of E recalls the theoretical characterization of termination of logic programs

developed by Vasak e Potter in
		�
� They compare terminating queries under di�erent choices

of the selection rule �thus dealing with di�erent notions of universal termination� while we

consider fair selection rules in theorem ��	� and Prolog selection rule in section ���� Another

di�erence lays on the fact that we use a single immediate consequences operator in the style

of the s�semantics approach while they use various bottom�up constructions similar to the

c�semantics �see De�nition ����� Moreover� they do not obtain a speci�c goal independent

denotation such as E � which encompasses all the necessary information �as shown in theorem

��	�� to characterize success� �nite and in�nite failure�

	���� Other abstractions of the resultants semantics

Several other existing equivalent top�down and bottom�up semantics can be derived as abstrac�

tions of ORR � including

� the resultants semantics de�ned �for any local rule R� in
�	� ��
� where we don�t care

about the sequences of clauses�

� the resultants semantics with depth de�ned �for the leftmost rule� in
		
� where a sequence

of clauses is abstracted by its length�

� the partial answers semantics OPAR de�ned �for any local rule R� in
�	� ��
� where we

only keep the heads of the resultants by labeling as partial those heads that were heads

of a non�unit resultant�

� the call patterns semantics OCPR de�ned in
�	� ��
� where �in the case of the leftmost

selection rule� we delete all the atoms in the clause bodies but the �rst�

We list in the following some of the program properties which can be studied on the above

semantics�

� The call patterns� i�e the procedure calls� for a goal G can be determined from OCPR � Let

H � �B� be a clause in OCPR � Then if �� � mgu�G�H�� then B�� is a call pattern� The

knowledge about the call patterns is useful in program optimization� The above property

makes feasible a bottom�up characterization of �possibly abstract versions of� the call

patterns�

� The partial answers� originally de�ned in
��
� are the answers computed at any inter�

mediate computation step� They can be determined from the partial answers seman�

tics OPAR as follows
�	� ��
� � is a partial answer for a goal G�� � � � � Gn i� there exist

fH�� � � � � Hng 	 OPAR such that � � mgu��G�� � � � � Gn�� �H�� � � � � Hn��� Partial answers

are useful in program analysis and to characterize the semantics of concurrent languages�

� A goal G has the universal termination property i� there exists a frontier of a partial SLD�

tree for G �obtainable using a suitable abstraction of the resultant semantics and theorem

��	��� such that all the atoms in the frontier are not labeled as partial answers� This

��

information is very important for the semantics of PROLOG
		� 	�
 and of all�solutions

metapredicates
��
�

� A goal G �nitely fails i�

� there exist a �nite number of frontiers for G�

� all the atoms in the frontiers of G are labeled as partial�

This information is useful to get a bottom�up characterization of SLDNF�resolution
��
�

The information in the frontiers can also be useful to get a �xpoint characterization of

constructive negation�

� Extending the s�semantics to other logic languages

��� Constraint logic programs

The s�semantics extends quite naturally to the Constraint Logic Programming paradigm as

de�ned by Ja�ar and Lassez
�	
� where constraints are interpreted over an algebraic structure

A� A constraint c is solvable i� there exists a valuation � �solution� mapping variables to

elements of the domain of A� such that c� is true in A� We denote by sol�c� the set of

solutions of the constraint c� A CLP derivation step of a goal c�A�� � � � � An in a program

P results in a goal of the form �c� �B�� � � � � �Bn� if there exist n �renamed apart� clauses in P �

Hi � �ci� �Bi� i � 	� � � � � n� such that �c � c � c� � � � � � cn �A� � H� � � � � �An � Hn is solvable

�p��t� � p��l� is an abbreviation for the uni�cation atom � ��t� �l���

A successful derivation of a goal G �denoted by G
	

���P c�� is a �nite sequence of goals such

that every goal is obtained from the previous one by means of a derivation step and the last

goal has the form c� where c is the answer constraint� The observable we consider is then the

answer constraint� All the de�nitions and results on the answer constraint semantics are from

��
� The observational program equivalence � based on answer constraints is the following�

De�nition
�� Let P�� P� be CLP programs	 P� � P� i� for every goal G the following hold

� if G
	
���P� c� and � 	 sol�c� then G

	
���P� c�� and there exists � 	 sol�c�� such that

�jV ar�G� � �jV ar�G�� and vice versa	

De�nition
�� �Answer constraint semantics� Let P be a CLP program	

O�P � � fp� �X� � �c 	 B j true�p� �X�
	

���P c� g�

The interpretation base B is now the set of all the � equivalence classes of constrained

atoms �CLP unit clauses of the form p� �X� � �c�� A
�interpretation is any subset of B� The

equivalence � is introduced in order to abstract from irrelevant syntactical details and is de�ned

as p� �X� � �c� � p� �Y � � �c� i� for any solution � of c� there exists a solution � of c� such that

p� �X�� � p� �Y �� and vice versa� Note that the previous de�nition of� is semantic� The existence

of a syntactic representation for � depends on A �e�g� variance for the Herbrand universe��

O is correct �and fully abstract� w�r�t� answer constraints� Note that this semantics was not

considered in the original report on the CLP semantics
��
� The usual AND�compositionality

holds for O�

��

Theorem
�� ���� Let P be a CLP program and G � c��A�� � � � � An be any goal	 Then

G
	

���P cans� i� there exist n �renamed apart� constrained atoms

Bi � �ci 	 O�P �� i � 	� � � � n� such that for any � 	 sol�cans� there exists � 	 sol�c� � c� � � � ��

cn � A� � B� � � � � �An � Bn� such that �jV ar�G� � �jV ar�G�� and vice versa	

The immediate consequences operator of de�nition ��� allows us to de�ne a �xpoint seman�

tics equivalent to O�

De�nition
�� Let P be a CLP program and I be a
�interpretation	
T �P �I� � f p� �X� � �c 	 B j

� a renamed clause p��t� � �c��p�� �t��� � � � � pn� �tn� in P�

� pi� �Xi� � �ci� 	 I� 	
 i
 n which share no variables�

c � �c� � �Xi � �t� � � � � � �Xn � �tn � c� � � � � � cn � �X � �t�

is solvable g�

The function H� on which the model theory is based� maps O�P � onto the least A�model of

P � The following proposition holds�

Proposition
�	 Let P be a CLP program	 Then every A�model of P is a
�model of P 	

Moreover O�P � is a
�model of P 	

It is straightforward to extend also the compositional semantics� The equivalent top�down

and bottom�up semantics modeling the answer constraints have also an elegant algebraic char�

acterization oriented towards abstract interpretation
��
� that will be discussed in section ����

The s�semantics of CLP and its compositional version have been applied to obtain the

semantics of two new instances of the CLP scheme� namely CLP �H�E� and CLP �AD��

CLP �H�E�
	� �
 is a logic � equational language� where constraints are equations to be solved

in an equational theory and the constraint solver is a narrowing algorithm� CLP �AD�
	�

models a deductive database language with updates� The semantics provides a nice charac�

terization of the intensional part w�r�t� the extensional one and of the notion of transaction�

The corresponding equivalence notions can pro�tably be used to prove interesting properties of

optimization procedures�

The approach has �nally been applied to concurrent constraint programs as de�ned in
	�	
�

leading to the de�nition of equivalent top�down and bottom�up semantics� de�ned as sets of

unit clauses
��� ��
� which are trees of ask and tell constraints� The denotation correctly

models computed answers� �nite failures and deadlocks� even if it is not ��compositional and

fully abstract and there is no model�theoretic semantics�

��� Disjunctive logic programs

Disjunctive logic programs
��
� where clause heads are disjunctions of atoms� have in general

more than one minimal Herbrand model� We can get a unique model characterization by

capturing the disjunctive consequences as a set of positive disjunctive ground clauses� �
�

interpretations� called states in
��
�� de�ned over the disjunctive Herbrand base�

De�nition
�
 �disjunctive Herbrand base� �
�� Let P be a disjunctive program	 The disjunc�

tive Herbrand base of P � denoted by DHBP � is the set of all positive disjunctive ground clauses

which can be formed using distinct ground atoms from the Herbrand base of P � such that no

two logically equivalent clauses are in the set	

�A positive disjunctive clause is a disjunctive clause with an empty body�

��

De�nition
�� �
�interpretation� state� �
�� Let P be a disjunctive program	 A state for P is

a subset of DHBP 	

De�nition
�� �
�� Let P be a disjunctive program and I be a state	

T dP �I� � fC 	 DHBP j C � � �B�� � � � � Bn

is a ground instance of a clause in P�

fB� � C�� � � � � Bn � Cng � I�

C �� � C � � C� � � � � � Cn�

where Ci��i� 	
 i
 n� can be empty�

C is the smallest factor of C ��g

Example
�
 Let P be the disjunctive program

P � f p�X� � q�f�X�� � �r�X��

t�X� � �q�X��

p�b� � q�b��

r�a� � s�a�� g

and I be the state I � fp�b� � q�b�� r�a� � s�a�g	

T dP �I� � fp�b� � q�b�� r�a� � s�a�� p�a� � q�f�a�� � s�a�� p�b� � t�b�g	

Theorem
��� �
�� Let P be a disjunctive program	 T dP is continuous on the complete lattice

h�DHBP ��i	

De�nition
��� �
�� Let P be a disjunctive program	 The �xpoint semantics of P is F�P � �

T dP � �	

Example
��� Let P be the disjunctive program

P � f p�X�Y � � p�Z� Y � � �r�X�Y� f�Z��� q�Y ��

r�a� b� f�c���

q�b�� g�

F�P � � fq�b�� r�a� b� f�c��� p�a� b� � p�c� b�g	

A state clearly represents a set of Herbrand interpretations� This can be formalized by

de�ning the function H from states to states�

De�nition
��� Let P be a disjunctive program and I be a state for P 	 Then H�I� is the set

of minimal Herbrand models of I �viewed as a disjunctive program�	

The following theorem is a straightforward consequence of some theorems in
��
 and shows

that the �xpoint semantics is indeed a
�model �called model state in
��
��

Theorem
��� Let P be a disjunctive program	 Then H�F�P �� is the set of all the minimal

Herbrand models of P 	

Example
��	 One can easily check that by applying the function H to the �xpoint semantics

of example
	�� we obtain the Herbrand interpretations

fq�b�� r�a� b� f�c��� p�a� b�g and fq�b�� r�a� b� f�c��� p�c� b�g which are exactly the minimal Her�

brand models of the program P in example
	��	

Theorem ��	� shows the essence of the construction� As was the case for the compositional

semantics of section �� we obtain a unique denotation which syntactically represents all the

relevant models� A similar mechanism� related to normal programs� will be considered in the

next section�

��

��� Normal logic programs

We consider here the semantic kernel de�ned in
��
 as a �rst step in the transformation

of normal logic programs into constraint logic programs� It is a �xpoint construction which

generalizes to the non�ground case the �xpoint semantics �rst proposed in
��

� The idea

of the semantic kernel construction is to evaluate all the positive atoms in the clause bodies

by unfolding them until there are no more positive atoms left� The semantic kernel is then a

�possibly in�nite� program consisting of negative clauses only�� The result of the transformation

can be viewed as a
�interpretation �called quasi�interpretation in
��
��

De�nition
��
 �quasi�interpretation� ���� Let P be a normal program	 A quasi�interpretation

for P is a set of negative clauses over the alphabet of P modulo variance	

The semantic kernel is the least �xpoint of the immediate consequences operator T kP which

maps quasi�interpretations onto quasi�interpretations�

De�nition
��� �immediate consequences operator� ���� Let P be a normal program and I be

a quasi�interpretation	 Then we de�ne

T kP �I� � fA� � ���B�
� � � � � ��B

�
h�
� � � � ��Bn

� � � � � ��B
n
hn
��B�� � � � ��Bm��� j

�A � �A�� � � � � An��B�� � � � ��Bm 	 P

� A�i � ��B
i
�� � � � ��B

i
hi
	 I� i � 	� � � � � n�

s	t	 � � mgu��A�� � � � � An�� �A
�
�� � � � � A

�
n�� g

De�nition
��� �semantic kernel� ���� Fk�P � � T kP � �	

The semantic kernel is just an intermediate step in the process of de�ning a semantics for

normal programs� It can be viewed as a compact representation of a set of models of the normal

program� as shown by the following theorem�

Theorem
��
 ���� Every model of the completion of Fk�P � is a model of the completion of

P 	

It is also strongly related to the stable model semantics
��
 of P � as shown by the following

very important theorem�

Theorem
��� ���� Every Herbrand model of the completion of Fk�P � is a stable model of P 	

As we will show in the next section the semantic kernel construction can be useful even in

relation to constructive negation�

��� Constructive negation

The inference rule for negation which is the most adequate to be handled by the s�semantics

approach is clearly constructive negation introduced in
��� ��
� because it allows the negative

literals to compute answers�

The �rst attempt to extend the s�semantics to negation is described in
	��
� It is a bottom�

up semantics for strati�ed normal programs which generalizes to the non�ground case the

construction of
�
� The resulting denotation has several similarities with the s�semantics�

�The same construction was independently proposed in 	����
�A negative clause 	
�� is a normal clause of the form A � ��B�� � � � ��Bn�

��

namely the �xpoint characterization and the use of sets of clauses �with constraints� as
�

interpretations� However� there is no explicit relation to an observational equivalence based

on an existing operational semantics �even if the reference derivation rule is clearly Chan�s

constructive negation�� As a matter of fact� as it is the case for most declarative semantics of

negation� the semantics in
	��
 tries to model the abstract intended meaning of the program

and can be viewed as the ideal semantics to be approximated by e�ective operational semantics�

Essentially the same semantics �in the case of strati�ed programs� is obtained by the two�

steps �xpoint construction in
��
� According to the last semantics� at each step we obtain a

unique denotation� where some program fragments �the non�positive and the non�strati�ed frag�

ments� respectively� are left uninterpreted� The �rst step consists of the �xpoint construction

of the semantic kernel described in section ���� while the second step interprets the strati�ed

component according to constructive negation� essentially following the approach in
	��
� As

a result of this step� the negation in the strati�ed component has been completely evaluated

�and replaced by constraints�� while the non�strati�ed negation is still there in some clauses�

The above approaches have been overriden by
��
� which considers constructive negation in

constraint logic programs as de�ned in
	��
� for which there exists a very strong completeness

result w�r�t� ��valued models of the completion�
�interpretations are pairs of sets of �equivalence

classes of� constrained atoms �similar to those used in the CLP semantics discussed in section

��	�� The two elements of the pair specify the positive and negative components of the
�

interpretation� The function H now maps
�interpretations onto partial A�interpretations
���

�	
� The denotation OCN �P � of a normal CLP program P has two equivalent top�down and

bottom�up characterizations and is correct w�r�t� the answer constraints observable� Finally�

H�OCN �P �� is Kunen�s semantics
��
� namely !P � �� where !P is Fitting�s map on partial

A�interpretations
��
� It is worth noting that a similar bottom�up characterization can be

obtained by the non�ground extension of !P de�ned in
	��
�

��� PROLOG

We �rst consider pure PROLOG programs� i�e� programs without cut� built�in�s or negation�

Only the leftmost ��� selection rule and the PROLOG search strategy are taken into account�

The resultants semantics OR��P � de�ned in section ��� contains enough information to capture

the computational behavior of such programs� In fact it embeds the PROLOG selection rule�

while the sequence of clauses associated to each resultant identi�es a speci�c path in the partial

SLD�tree� These paths can be ordered according to the lexicographic ordering induced by the

ordering on program clauses� Moreover theorem ��	� shows us how to select from the semantics

the set of all the resultants with clauses of a given goal� Therefore� the semantics encodes the

ordered trees of resultants for any goal� Clearly� if we are interested in some speci�c observable�

the semantics OR��P � contains too much information and can usefully be abstracted�

One such abstraction is presented in
	�
� It has been designed to capture the set of �PRO�

LOG� computed answer substitutions �p�a�s�� as observable� i�e� the set of answers which can

be reached by using PROLOG�s control� The observational equivalence induced by p�a�s� is the

following�

De�nition
��� Let P�� P� be pure PROLOG programs	 P� �p�a�s P� if for any goal G� � is a

p�a�s for G in P� if and only if � is a p�a�s for G in P�	

We can reconstruct the semantics presented in
	�
� by �rst mapping OR��P � into an ordered

set of sequences of resultants� such that the i�th sequence represents the frontiers of the partial

SLD�trees of depth i for the most general goals�

��

Example
��� Consider the program P consisting of the following �sequence of� clauses�

p�b�X�� �� p�X�Y � � �r�Y �� �� p�c� Y �� �� r�a� � �p�a� a�� �� r�b� � �q�b��

The frontiers of the partial SLD�trees are�
f� � p�X�Y � � �p�X�Y � �� r�X� � �r�X� �� q�X� � �q�X�

f� � p�b�X� �� p�X�Y � � �r�Y � �� p�c� Y � �� r�a� � �p�a� a� �� r�b� � �q�b�

f� � p�b�X� �� p�X� a� � �p�a� a� �� p�X� b� � �q�b� �� p�c� Y � �� r�a� � �r�a�

f� � p�b�X� �� p�X� a� � �r�a� �� p�c� Y � �� r�a� � �p�a� a�

f� � p�b�X� �� p�X� a� � �p�a� a� �� p�c� Y � �� r�a� � �r�a�

� � �

They are de�ned modulo variance and modulo the ordering among resultants with di�erent

predicate symbols in the head	

We may apply to each frontier the same abstraction introduced in section ����	 for the

frontier semantics E � Namely� each non�atomic resultant of the form A�� �B is represented as

the hypothetical atom �A�� An abstraction function � maps any sequence of resultants �clauses�

into the corresponding sequence of abstractions�

Example
��� Consider the program P of example
	��	 The abstract frontiers are�

f �� ��p�X�Y � �� �r�X� �� �q�X�

f �� � p�b� Y � �� �p�X�Y � �� p�c� Y � �� �r�a� �� �r�b�

f �� � p�b� Y � �� �p�X� a� �� �p�X� b� �� p�c� Y � �� �r�a�

f �� � p�b� Y � �� �p�X� a� �� p�c� Y � �� �r�a�

f �� � p�b� Y � �� �p�X� a� �� p�c� Y � �� �r�a�

� � �

Note that in the previous example f �� � f �� � � � �� i�e� there are �nitely many di�erent

abstractions of frontiers even if there are in�nitely many partial SLD�trees for the goals p�X�Y �

and r�X�� This is not always the case� Consider� for instance� the following example�

Example
��� Consider the program Q� p���� �� p�s�X�� � �p�X�	

There are in�nitely many abstractions of frontiers ff�� � � � � fj � � � �g� where for each j

fj � p��� �� � � � �� p�sj������ �� �p�sj�X��	

Any abstract frontier encodes a partial� yet safe� information on the p�a�s� of any goal� The

following examples are meant to illustrate this fact�

Example
��	 Consider the �abstract� frontier f �� of example
	�� and the goal p�X� b�	 Recall

that the hypothetical atom �p�X� a� represents a node which could have descendants in the SLD�

tree of the most general goal p�X�Y �	 The goal p�X� b� uni�es with the �rst element p�b� Y �

of f ��	 This implies that fX�bg is the �rst p	a	s	 for p�X� b�	 It does not unify with p�X� a��

hence it will also not unify with any possible descendant of the resultant abstracted by �p�X� a�	

Since it uni�es with p�c� Y �� its second answer will be fX�cg	 No more answers are possible�

since there are no other atoms with predicate symbol p in the sequence	 Therefore f �� gives us a

complete information on the p	a	s	 for the goal p�X� b�	

Example
��
 Consider now the non�atomic goal G � p�X� b�� p�X�Y � and the same frontier

f �� of example
	��	 We �rst consider the �rst atom and extract information on it	 In this case

�Actually in 	�
� hypothetical atoms are called divergent and denoted by bA� Here we adopt the notation

introduced in section ������

��

we will �nd the two answers fX�bg �� fX�cg	 Then we consider the corresponding instances of

the second atom� i	e	 p�X�Y �fX�bg and p�X�Y �fX�cg	

Since the goal p�b� Y � uni�es with p�b� Y �� the empty substitution � will be its �rst answer	

Since it uni�es also with p�X� a�� then we cannot exclude that it may enter an in�nite loop after

producing the �rst answer	 Thus� even if the goal p�c� Y � uni�es with p�c� Y �� i	e	 it has a �rst

answer �� the only safe answer for the goal G is fX�bg since we cannot safely say that the other

answer fX�cg will be reached when executing G under the PROLOG�s control	

The reachability function �
 formalizes these ideas� Let Subst
� be the set of �nite sequences

of substitutions and Subst�
 � Subst��Subst� �� f�g be the set of extended sequences� i�e� �nite

sequences which may end with the special symbol �� used to represent possible divergence� A

strict concatenation � is de�ned on elements of Subst�
�

De�nition
��� Let s�� s� 	 Subst�
	 The strict concatenation � � Subst�
 �� Subst�
 is

de�ned as�
��s�� s�� � s� �� s� if s� 	 Subst�

s� otherwise�

For any goal G and abstract frontier S� �
�G� S� will return the sequence of p�a�s� for G

which can be recognized as reachable by looking at the partial SLD�trees abstracted by S� The

following de�nition is an extension of the one given in
	�
 for atomic goals only�

De�nition
��� Let S be a sequence in B�E� G be a goal� A�A� 	 B� AE 	 BE	 The reachability

function �
 � B
� B�E �� Subst�
 is the function inductively de�ned as follows�

� If G � A is an atomic goal and S � �� then �
�G� �� � �	

� If G � A is an atomic goal and S � AE �� S
�� then

�
�G� AE �� S
�� � � �� �
�A� S

��

if AE � A�and � � mgu�A�A��jvars�A�

�
�G� AE �� S
�� � �

if AE ��A
�and there exists an mgu�A�A��

�
�G� AE �� S
�� � �
�A� S

��

otherwise�

� If G � A� �B is non�atomic� then
�
�G� S� � �
� �B��� S�� � � � � �
� �B�k� S�

if �
�A� S� � �� �� � � � �� �k

�
�G� S� � �
� �B��� S�� � � � � �
� �B�k� S� ���

if �
�A� S� � �� �� � � � �� �k ���

�
�G� S� � �

if �
�A� S� � ��

We may de�ne a function �P � B
�
E �� B�E which� given the abstraction of a frontier� returns

the abstraction of a subsequent one�

De�nition
��
 ���� Let P be the program c� �� � � � �� cn	 �P � B
�
E �� B�E is de�ned clause�wise

as the concatenation �P �S� � �c��S� �� � � � �� �cn�S�� for any sequence S	 Let c be a clause

standardized apart from S	 We distinguish two cases� for unit and non�unit clauses	

��

� If c is the unit clause A�� then �A��S� � A	

� Otherwise� let c � A��B� �D and S � d� �� � � � �� dk	 Then

�c�S� � 	� �� � � � �� 	k

where 	i �

�������
�A�i if di ��B

� and �i � mgu�B�B���

��A�� �D�	i
�S� if di � B� and �i � mgu�B�B���

� otherwise�

Note that �P is an abstract version of the unfolding operator applied to sequences�

Interpretations are elements of the complete lattice �P�B�E������!������ i�e� sets of se�

quences representing abstractions of frontiers� The immediate consequences operator !P ex�

tends �P to interpretations�

De�nition
��� ���� The immediate consequences operator !P � P�B
�
E� �� P�B�E� is de�ned

in terms of �P as follows	 Let I 	 P�B�E��

!P �I� � f�P �S� j S 	 Ig � fP �g�

!P is continuous on the lattice of interpretations and the �xpoint semantics SDFL�P �

de�ned in
	�
 is its least �xpoint� It contains a possibly in�nite set of abstractions of increasing

frontiers�

SDFL�P � has been de�ned by considering most general goals� According to the s�semantics

style� it encodes the information on any goal� To extract this information we use the reachability

function �
� Any Prolog answer substitution �p�a�s�� for a goal G in the program P can be

characterized in terms of the reachability of G in one of the sequences in SDFL�P ��

Theorem
��� ���� Let G be a goal and P be a program	 � is a p	a	s for G in P if and only

if there exists S 	 SDFL�P � such that � 	 �
�G� S�	

Therefore SDFL�P � is correct with respect to�p�a�s�� Actually� the idea behind the de�nition

of reachability is to capture also other issues involved in the computation of a Prolog answer

substitution such as sequences of answers and termination� In fact� the analogous of theorem

��	� holds for the Prolog search strategy� i�e� when p�a�s� instead of c�a�s� are considered�

Theorem
��� ���� Let G be a goal and P be a program	 Then

G universally terminates with p�a�s� ��� � � � � �n i� there exists S 	 SDFL�P � such

that �
�G�S� � �� �� � � � �� �n�

G has an in�nite computation i� for every S 	 SDFL�P � ��G�S� � s ��� for some

sequence s of p�a�s for G	

There are analogies between SDFL�P � and other functional semantics for PROLOG devel�

oped in the denotational style� For instance� in
	�
 the semantics is a function which associates

to any goal an extended or in�nite sequence of p�a�s� which clearly recalls the sequence com�

puted by �
� The di�erence is in the style of the semantics construction� The semantics

according to the functional style is a function de�ned as the �least� solution of a given recursive

set of equations� The semantics de�ned according to the the s�semantics approach is instead a

syntactic object� which encodes information on the observable� collected in a goal independent

way�

��

Another semantics which can be viewed as an abstraction of OR��P � is presented in
		
�

The sequence of clauses is abstracted by its length� while the solution to the control problem

of Prolog is solved by resorting to a notion of oracle� which de�nes� at each computation step�

the set of clauses applicable to rewrite the current resolvent� The use of the oracle induces

an elegant semantics characterization in which the logical and control components of Prolog

are dealt with independently� The logical reading of a program results thus una�ected� The

program�s semantics is de�ned parametrically on the oracle� This gives to the approach a quite

general "avour� The semantics in
		
 has only a top�down de�nition� However� a more recent

version of
		
 contains two equivalent �top�down and bottom�up� semantics much in the style

of ORR �P � and more similar to the semantics in
	�
�

Other extensions of the s�semantics approach which are not related to the frontiers semantics

de�ned in section ��� are presented in
�� 	�
�

In
	�
 a compilative approach to model Prolog control is de�ned� Instead of collecting infor�

mation concerning the control of the program in the semantics� the program itself is enhanced

so that its standard meaning re"ects the required control� A logic program P is transformed

into a program P
 de�ned on a constraint language which contains ask�tell constrained clauses�

Ask constraints are interpreted by an associated termination theory which captures the control

of a Prolog program�

In
�
 various Prolog built�in�s that include arithmetic operations and metalogical relations

like var and ground are considered� Only the Prolog leftmost selection rule is taken into

account� Interpretations are sets of pairs hA� �i� where A is an atom and � is a substitution

whose domain is contained in the set of variables occurring in A� � is meant to represent a

computed answer substitution for the goal A� Suitable notions of truth and model are de�ned

on these interpretations and the existence of a least model is shown� The primitive predicates

considered in
�
 are called �rst�order built�in�s to distinguish them from those built�in�s which

refer to clauses and goals like call� In
��
 this second class of built�in�s is considered�

��� Modular logic programs with inheritance

As already mentioned� by modifying O��P � we can obtain semantics which are compositional

w�r�t� other composition operators� In this section we will show an extension of such a semantics

introduced in
	�
 to model several inheritance mechanisms in a compositional way�

In
	�
 inheritance is viewed as a mechanism for di�erential programming� i�e� a mechanism

for constructing new program components by specifying how they di�er from the existing ones�

Di�erential programming is achieved by using ��lters� to modify the external behavior of

existing components� Accordingly� a modi�ed version of a component is obtained by de�ning a

new component that performs some special operations and possibly calls the original one� An

intuitive justi�cation for such an interpretation can be found in
��
� See also
��
 for a survey

on inheritance mechanisms in logic programming�

Di�erential programs
	�
 are program components� i�e� logic programs annotated by three

sets of exported predicate symbols �the external interface��

�� statically inherited predicates �#a la Simula����$

%� dynamically inherited predicates �#a la Smalltalk�$

&� extensible predicates�

The three sets are mutually disjoint and their union is contained in the set
�P � of the predicate

symbols occurring in P � The remaining predicates�
�P �n���%�&� will be henceforth referred

to as internal predicates and denoted by ��P ��

�	

Similarly to classes in the O�O paradigm� di�erential programs can be organized in isa

hierarchies and can use inherited de�nitions according to their external interfaces� Intuitively�

in a hierarchy P isa Q the unit P can inherit some of the classes and some of the methods

de�ned by the unit Q� Statically and dynamically inherited predicates are evaluated according

to an overriding semantics� The distinction between the two sets � and % re"ects the distinction

between two di�erent forms of inheritance �static and dynamic respectively�� The idea is that

a di�erential program P is to be understood as part of a structured context of the form C isa P

isa D and that the evaluation of a goal depends on the annotation of its predicate symbols� A ��

predicate is evaluated in P using P �s local de�nition or any de�nition inherited from the context

D� The local de�nition� if there is any� overrides the inherited one� Hence� any occurrence in

P of a goal for a static predicate which is also de�ned in P is bound to the local de�nition

independently of the context in which P occurs� Conversely� the evaluation of a %�predicate

in P uses the local de�nition or the inherited one� only if no de�nition for the same predicate

name is provided by the context C� If C contains a de�nition� then this de�nition overrides in

P the local or inherited one�

The annotation & models an orthogonal composition mechanism de�ned according to an

extension semantics whereby local de�nitions are extended by inherited ones� Therefore� the

de�nition of a &�predicate in P can be extended �not overridden� by the de�nitions in C and

in D�

The isa specialization operator should be thought of as right�associative� i�e� the hierarchy

Pn isa Pn�� isa � � � isa P� is to be understood as Pn isa �Pn�� isa �� � � isa �P� isa P��� � ���� The

following example shows the use of these composition mechanisms�

Example
��� ���� Consider two classes Student and CS Student �computer science stu�

dent�	 CS Student is a subclass of Student and rede�nes one of its superclass� methods	 The

two classes can be de�ned as di�erential logic programs as follows	

CS Student isa Student

whoAmI�aCS Student�� whoAmI�aStudent��

whoAreYou�X���whoAmI�X��

address�theCS Dept�� address�univ hall��

adm addr�X���address�X��

course�X���required�X��

required�logicProg�� required�	thLevel��

����� ����

where� in both Student and CS Student� whoAmI and whoAreYou are annotated as %�

predicates� address and adm addr as ��predicates� course and required as &�predicates	 The use

of di�erent annotations for the exportable predicates of the two programs is motivated by the be�

havior we expect in response to the di�erent queries for the hierarchy CS Student isa Student	

Consider �rst the query whoAreYou�X�	 Here� the expected answer is X�aCS Student and can

be obtained by taking whoAmI to be a %�predicate	 Note that CS Student inherits the def�

inition of whoAreYou from Student and� since whoAmI is a %�predicate� the evaluation of

the call whoAmI�X� uses the de�nition contained in CS Student	 Consider now the query

adm addr�X�	 Here� the expected answer is X�univ hall because we assume that the adminis�

trative address of a student is independent of the department where that student belongs	 This

behavior can be modeled by de�ning address to be a ��predicate	 This guarantees that the

evaluation of the call address�X� uses the de�nition local to Student	

��

Finally� we can model the fact that a CS Student is expected to take all of the courses

required for a Student by de�ning course and required to be & predicates	

The operational semantics for hierarchies is formally given by de�ning a suitable inference

rule " obtained by modifying SLD�resolution to take into account the inheritance mechanisms

expressed by the isa construct� HP "	 G denotes the derivation of the goal G in the hierarchy

HP with computed answer �� Two isa�hierarchies HP and HP � are observationally equivalent

��isa� with respect to answer substitutions if for every goal G and every substitution �� HP "�
G i� HP � "�� G� and �jvar�G� � ��jvar�G��

The corresponding observational equivalence �diff for di�erential programs is de�ned as

De�nition
��� Let P�� P� be di�erential programs	 P� �diff P� if for every di�erential

program Q and for every hierarchy HP

Q isa �P� isa HP � �isa Q isa �P� isa HP ��

In order to obtain a compositional semantics for isa hierarchies� a syntactic composition

operator � on programs has been introduced in
	�
� Such an operator makes it possible to

translate an isa hierarchy HP � Pn isa � � � isa P� into an equivalent �"at� program HP� �

Pn � � � � � P� to be evaluated by standard SLD�derivation� The next theorem shows the

equivalence between the " derivations in HP and SLD�derivations �denoted by �� in HP��

Theorem
��	 ���� Let HP � Pn isa � � � isa P� be an isa�hierarchy and HP� � Pn� � � � � P�
be the corresponding h��%�&i�di�erential program	 Then for any goal G such that Pred�G� �

�� �% �&�

HP "	 G #$ G
�
�HP� �

and �jvar�G� � �jvar�G�	

For the sake of simplicity we do not give here the formal de�nition of � �which essentially uses

renamings to simulate the overriding mechanisms of dynamic and static predicates�� However

it is worth noting that� according to the correspondence with isa hierarchies stated by the

previous theorem� such an operator allows us to capture several specialized mechanisms such

as static and dynamic inheritance and composition by union of clauses� The following is just

an example of program composition obtained by using ��

Example
��
 Consider the two programs CS Student and Student as de�ned in example

	�� with � � faddress� adm addrg� % � fwhoAmI�

whoAreY oug and & � fcourse� requiredg	 Then the � composition of the programs is given

by�
CS Student � Student

whoAmI�aCS Student��

whoAreYou�X���whoAmI�X��

address�theCS Dept�� s address�univ hall��

s adm addr�X���s address�X��

course�X���required�X��

required�logicProg�� required�	thLevel��

��

Note that the evaluation of the goal whoAreY ou�X� in the program

CS Student � Student by using SLD�derivation produces the answer

X�aCS Student while the query adm addr�X� gives the answer X�univ hall� which corre�

sponds to the answers obtained by using " in CS Student isa Student	

A �xpoint semantics� compositional with respect to the � operator and correct with respect

to �diff � has been obtained by a generalization of the semantics O��P � of section �� The

next example shows that O��P � does not contain enough information to model the program

composition we are considering� Hence the generalization is truly necessary�

Example
��� ���� Let h���%��&�i�P� and h���%��&�i�P� be the programs

P� � fr�a��g P� � f p�X� � �r�X��

r�b�� g�

where %� � frg� %� � fr� pg and �i � &i � � for i � 	� �	 The composition P��P� corresponds

to the program fr�a��� p�X���r�X��g where the clause r�b� 	 P� has been overriden by the clause

r�a� 	 P�	 According to the de�nition of the O� semantics we have

O��P� � P�� � fr�b�� p�b�� r�a�� p�a�� p�X���r�X�g

In order to obtain the semantics of P� � P�� we should then delete from O��P� � P�� not only

r�b�� which is an obvious consequence of the overriding semantics of � � but also everything

derived from r�b� �p�b� in this case�	 Thus� when de�ning the semantics of P�� we need a

mechanism for recording that p�b� has been obtained by using the de�nition of the %�predicate

r� local to P�� which could be overridden by the context	

The problem shown by the previous example is solved by introducing context sensitive

clauses as elements of the semantic domain�

De�nition
��� ���� A context sensitive clause �cs�clause� is an object of the form

A��fq�� � � � � qng�B�� � � � � Bk �	�

where q�� � � � � qn are predicate symbols	

The intuitive meaning of �	� is that the logical implication A � B�� � � � � Bk is true in any

context which does not override the de�nitions of q�� � � � � qn� A standard clause can be viewed

as a cs�clause with an empty set of names� The equivalence �	 on clauses �de�nition ����

naturally extends to cs�clauses� Let C� be the set of all the equivalence classes of cs�clauses

A��s � �B such that s � %� A cs�interpretation I for a h��%�&i�program P is any I � C��

The �xpoint semantics of di�erential programs is given in terms of an immediate conse�

quences operator for cs�interpretations� T csP � and this� in turn� can be simply de�ned in terms

of a modi�ed unfolding rule unf P����� Let P be a h��%�&i�program and ��P � be the set of

predicates de�ned in P � The set of predicates whose de�nitions can be modi�ed by composing

P is the set �open predicates� Open�P � � �� n ��P �� �% �&�

De�nition
��
 ���� Let P be a h��%�&i�program and let I be a cs�interpretation for P 	

Then

T csP �I� � unf P�Open�P ����I � IdOpen�P ���

��

where� given two sets of predicate names ' and %�

unf P�����I� � f A���s � C � C� � � � � Ck � ��L�� � � � � �Lk�� j

� A��s � B�� � � � � Bk 	 P�

� cli � B�i��Ci�
�Li� i � 	� � � � � k� variants

of cs�clauses in I � Id� and renamed apart�

� � mgu��B�� � � � � Bk�� �B
�
�� � � � � B

�
k���

C � fPred�Bi� j Pred�Bi� 	 % and cli �	 Id�g g

It is worth noting that when all the clauses in the cs�interpretations have empty sets of predicate

names� the previous operator is exactly the operator de�ned in de�nition ���� Moreover� when

cs�interpretations contain unit clauses only and Open�P � � �� the previous de�nition boils

down to the operator of de�nition ��	��

T csP is continuous on �C����� Hence the �xpoint semantics is the following�

De�nition
��� ���� Let P be a h��%�&i�program	 The �xpoint semantics

P

 of P is de�ned

as

P

 � T csP � � n �A � B�

where
A � fH � �s� �B j Pred�H� 	 ��P �g and

B � fH � �s� �B j �H � � �s�� �B� 	 T csP � � such that

s� � s�H � � � �B� �	 H � � �B g

We refer to
	�
 for the details on the previous construction and in the following we will

only show the main results which hold for the

P

 semantics� Compositionality of

P

 wrt �

has been proven by introducing a �right associative� semantic operator % on cs�interpretations

which corresponds to the syntactic composition � of di�erential programs�

Theorem
��� �compositionality� ���� Let h�P �%P �&P i�P and

h�Q�%Q�&Qi�Q be di�erential programs	 Then

P � Q

 �

P

 %

Q

�

Note that� according to the previous remarks� the

P

 semantics has as an instance �for the

case Open�P � � �� the s�semantics� Therefore� by using the correctness of the s�semantics� it

is easy to show that

P

 correctly models computed answers� By exploiting the correspondence

between � composition and isa hierarchies �theorem ����� and the compositionality �theorem

���	� we can then obtain the following result which shows that the computed answers of an isa

hierarchy can be obtained� in a compositional way� from the semantics of the components of

the hierarchy�

Theorem
��� ���� Let HP � Pn isa � � � isa P� be an isa�hierarchy� HP� � Pn � � � � � P� be

the corresponding h��%�&i�program and G � A�� � � � � Ak be a goal with Pred�G� � ���%�&�	

Then
HP "� G #$ � Hi � �si � 	

Pn

 % � � � %

P�

�

i � 	� � � � � k�

�� � mgu��A�� � � � � Ak��H�� � � � � Hk���

�jvar�G� � �jvar�G��

In terms of observational equivalences� we have the following result which shows the correctness

of

P

 wrt �diff �

��

Corollary
��� �correctness����� Let P� and P� be two di�erential programs	 Then

P�

 �

P�

 $ P� �diff P��

It is worth noticing that this semantics is the �rst compositional semantics of units and inher�

itance which correctly models computed answer substitutions�

� Applications

As already mentioned� the main motivation of the s�semantics approach is to provide a semantics

useful for program analysis and transformation� There exist already several applications which

show that this is really the case�

	�� Program transformation

A main concern when transforming a program is the preservation of its semantics	 When this

is the case� the transformation is called safe� However a transformation can be safe with respect

to one semantics but not with respect to another one� For instance� in the program

f p�X� � �q�X�� q�X�� q�
a� Y
�� q�
Z� b
�� g

the duplicated atom q�X� in the �rst clause is super"uous when considering the least Herbrand

model semantics and then it can be safely deleted from the body of the clause� The same

operation is not safe when the computed answers semantics is considered� In fact the answer

substitution X�
a� b
 would be missed in the transformed program�

As a matter of fact� all the program transformation techniques� such as unfold(fold
	��
 and

partial evaluation
��
� are de�ned so as to preserve some observational equivalences� In most of

these techniques� the relevant observables are computed answers �and sometimes �nite failures��

There exists at least one technique� the partial evaluation of �open� programs
			� 	��� ��
�

whose aim is to preserve a ��compositional program equivalence��

Most of the transformation techniques are proved to be safe w�r�t� the declarative semantics

only� thus failing to capture the safeness w�r�t� the more complex observable behavior� In some

cases the observational equivalences related to computed answers
��� ��
 and to �nite fail�

ures
	��
 are considered� Usually proving that the transformation preserves the observational

equivalence is rather complex �see� for example� the proofs of the partial evaluation theorems in

��
�� The same goal could more easily be achieved by proving that the transformation preserves

a semantics which correctly models the relevant observable� The proof can in fact be based

on general theorems �such as AND�compositionality� and on powerful technical tools such as

the specialized immediate consequences operators� This is the approach taken in
	�
 and
�
�

where the reference semantics are the answer substitution semantics and the semantic kernel

respectively�

In
	�
 some transformation operations which are basic for all the transformation techniques

for logic programs� such as partial evaluation� program specialization� program synthesis and

optimization� are considered� For each operation� applicability conditions which guarantee the

safeness of the trasformation with respect to the s�semantics of section � are de�ned� Not sur�

prisingly� unfolding does not need any applicability condition� All the other operations� if not

correctly applied� may lead to undesiderable observable behaviors� With only one exception� the

�The ��compositional semantics of section � is essentially the result of the partial evaluation� where derivations

terminate at open predicates �i�e� predicates in ���

��

s�semantics of a given program contains enough information to characterize correct transforma�

tions� In fact all the applicability conditions are given in terms of properties of the s�semantics

of the program to be transformed� The only exception is the folding operation� Safeness of

folding cannot be ensured by just inspecting the s�semantics as the following example shows�

Example ��� Consider the following program	

P � f p � �r�� r � �q�� q� g

O�P � � fp� q� rg �

The de�nition p � q is consistent ��
� with P � since both p and q belong to O�P �� but� if we

use it to fold the body of the second clause we obtain

P � � f p � �r�� r � �p�� q� g

which is by no means equivalent to the previous program	 In fact O�P �� � fqg	

This problem has been partially overcome in
��
 where a notion of semantic delay between

atoms is introduced to give applicability conditions for folding� Semantic delay is not properly

a property of the s�semantics� rather it depends on its �xpoint construction�

Turning to normal logic programs�
�
 gives a very elegant proof of the correctness of un�

fold(fold w�r�t� several non�monotonic semantics �as� for example� the stable model and the

well�founded model semantics�� by showing that it preserves the semantic kernel considered in

section ����

	�� Program analysis

In the area of program analysis� the s�semantics has been used as a foundation of several frame�

works for abstract interpretation
	�� ��� ��� �	
� Abstract interpretation is inherently semantics

sensitive and di�erent semantic de�nition styles lead to di�erent approaches to program anal�

ysis� In the case of logic programs �see
��
 for a broad overview�� two main approaches exist�

namely the top�down and the bottom�up ones
��
� The most popular approach is the top�down

one� which propagates the information as SLD�resolution does� In this class there are ad�hoc

algorithms� frameworks based on an operational semantics� and frameworks based on a denota�

tional semantics� The bottom�up approach propagates the information as in the computation of

the least �xpoint of the immediate consequences operator TP � The idea of bottom�up analysis

was �rst introduced in
��
� The main di�erence between the top�down and the bottom�up

approach is usually related to goal dependency� In particular� a top�down analysis starts with

a speci�c goal� while the bottom�up approach determines an approximation of the success set

which is goal independent� As we will argue later� the application of the s�semantics approach

to abstract interpretation shows that the real issue is goal dependency vs� goal independency

rather than top�down vs� bottom�up� Another relevant feature of the analysis method is its

ability to determine call pattern information
��� ��� ��
� i�e� information about the procedure

calls �atoms selected in an SLD�derivation�� The ability to determine call patterns is also usu�

ally associated to goal dependent top�down methods� Again� the s�semantics approach shows

that the choice of an adequate �concrete� semantics allows us to determine goal independent

information on the call patterns and that this information can be computed both top�down and

bottom�up�

The s�semantics approach to abstract interpretation was started by de�ning a framework

for bottom�up abstract interpretation
	�
 based on the concrete semantics of section �� which

��

correctly models computed answer substitutions� An instance of the framework consists in the

specialization of a set of basic abstract operators� i�e� abstract uni�cation� abstract substitution

application and abstract union� Instances have been de�ned for ground dependency analysis

	�
� type inference
	�
 and for analysis of properties related to AND�parallelism
��� ��
� The

emphasis in
	�
 is on the bottom�up de�nition of an abstract model� i�e� a goal independent

approximation of the concrete denotation� Early attempts
��� ��
 of de�ning bottom�up ab�

stract interpretations based on the immediate consequences operators corresponding to the least

Herbrand model semantics or to the semantics in
��
 failed on non�trivial analyses �like mode

analysis�� In fact� the corresponding concrete semantics do not contain enough information on

the program behavior� i�e� they are too abstract to be useful to capture program properties like

variable sharing or ground dependencies�

The overall abstract interpretation methodology can be described as follows�

� Select an observable o� such that the property to be considered by the analysis is an

abstraction 	�o� of o�

� According to the s�semantics approach� select a concrete semantics Oo correct w�r�t� o�

Oo can equivalently be determined by

� A top�down construction� obtained by collecting the observables for the atomic goals

of the form p� �X��

� A bottom�up construction� obtained by computing the least �xpoint of an immediate

consequences operator�

� De�ne a suitable abstraction O��o� of Oo� by providing the abstract versions of the oper�

ators involved in the top�down and bottom�up de�nitions and by proving the correctness

theorems� If the abstraction satis�es suitable properties
��� ��
� we have two equivalent

methods for computing the goal independent abstract denotation O��o��P � of the program

P �

� The result of the analysis for a speci�c goal G can be determined by exploiting the

AND�compositionality property of all the semantics de�ned by the s�semantics approach�

including their abstract versions� Namely� the result can be obtained by executing G in

O��o��P ��

Let us discuss some speci�c analysis problems in the framework of the above methodology�

� If we are interested in properties of the answer substitutions �such as aliasing and sharing�

we have to choose a concrete semantics correct w�r�t� answer substitutions� Therefore the

least Herbrand model semantics is not adequate and a semantics at least as detailed as

the one in section � has to be chosen�

� If we want to perform analysis of program components in a modular way� we need a se�

mantics compositional w�r�t� program union� As a matter of fact the framework in
	�
 has

been extended to handle modularity
��
� by replacing the s�semantics with its composi�

tional version �the ��semantics of section ��� which has clauses as semantic objects� This

extension requires a notion of abstract program and a uniform treatment of concrete and

abstract objects �i�e� programs and
�interpretations�� The abstract meaning of a module

is the result of the module analysis� The result of the analysis for the composition of the

modules is obtained by composing the module abstract meanings� The extension intro�

duces several technical complications in the abstract semantics construction dealing with

��

termination and space complexity� Namely an additional layer of abstraction �obtained

by applying �xpoint acceleration techniques� is needed to provide �nitary descriptions for

arbitrary large clauses �and therefore to ensure termination�� thus introducing a further

approximation which makes the analysis less precise�

While this is needed to handle generic �possibly in�nite� abstract domains� there exists

��
 a wide class of compositionally tractable abstract domains �e�g Sharing
��
 and Prop

��
� for which a �nite description of the compositional abstract semantics can be ob�

tained without a further level of abstraction� In fact� when considering compositionally

tractable domains we are essentially considering the ��semantics over a �nite function free

signature� As shown in
��
� by imposing such a restriction we can always obtain a �nite

characterization of the compositional semantics� This result can be applied also to the

abstraction of other semantics consisting of sets of clauses� as for example the resultants

semantics in
�	� ��
�

� If we want to determine abstract properties of the call patterns� we should use a concrete

semantics which gives more information on the computation than just the computed

answers� Namely� we have to model an observable consisting of all the procedure calls�

The problem of analyzing properties of the call patterns has been considered in
��
�

where the concrete semantics is the call patterns semantics derived according to a local

selection rule� as de�ned in
�	� ��
� The resulting abstract semantics are goal independent�

parametric w�r�t� the �local� selection rule and allow us to characterize properties of the

correct call patterns
�	� ��
� which are those call patterns which belong to successful

derivations�

A similar �yet goal dependent� result can be obtained by using a transformational ap�

proach
�	� ��
� A program P and a goal G are transformed �by using a transformation

similar to the magic set transformation� into a program P �� such that every call pattern

of G in P is a success pattern of P �� An abstraction of the operator T�
P � of de�nition ��	�

can now be used to compute in a bottom�up way information on the call patterns of G

in P � Recently� the approach was made goal independent
��
� by using the ��semantics�

The result is a denotation consisting of clauses very similar to the one in
��
�

� It is worth noting that the top�down operational or denotational frameworks
��� ��� 	���

��
 do indeed contain a lot of information on the �internal� computation details� By

choosing a semantics like the one of section ���� we can model the same observables and

still get a goal independent top�down and bottom�up construction of the abstract model�

When applied to CLP � the above approach leads to a framework where abstraction sim�

ply means abstraction of the constraint system� The construction is based on a generalized

algebraic semantics�
��
� de�ned in terms of a constraint system and a general �constraint

system independent� notion of denotation� which is as usual characterized both top�down and

bottom�up� Di�erent abstract semantics can be de�ned by choosing suitable abstract constraint

systems� The main new result is that abstract interpretation� i�e� the construction of an abstract

denotation� can be viewed as computation in a suitable instance of the same CLP framework�

where the program is transformed into an abstract program� obtained by abstracting the con�

crete constraints� A similar result� in a framework based on the generalization of the top�down

	This semantics generalizes the approach in 	��� which gives an algebraic description of a class of
xpoint

semantics �including ground and non�ground concrete semantics� and various abstract semantics� in terms of

abstract notions of �instance� and �normalization��

��

operational semantics� is described in
��
� The ability to use the CLP interpreter to analyze

CLP programs has been exploited in some interesting applications
�
�

	�� Declarative debugging

The application of the s�semantics approach to semantics�based �declarative� debugging
	�

has the following features when compared to the existing methods
	��� ��� ��
�

� The s�semantics� when taken as speci�cation of the intended semantics� allows us to obtain

a more accurate diagnosis than the one that can be obtained using the least Herbrand

model or the c�semantics �which is used in
��
��

� The properties of the s�semantics �equivalent top�down goal independent denotations

and bottom�up denotations� make possible to devise new elegant and powerful diagnosis

methods� In particular� the top�down diagnosis can be based on the execution of atomic

goals of the form p� �X��

� The relation between concrete and abstract semantics� allows us to consider abstract

declarative debugging� where the intended semantics is an abstraction of the concrete

semantics� The intended semantics is usually represented by an oracle
	��
� which tells

us whether a given object belongs to the semantics� Since abstract denotations are �nite�

they can explicitely be used as oracles� Then we can test a program in a uniform way

w�r�t� di�erent speci�cations of the program properties�

	�� Metaprogramming

We consider here a formalization of metaprogramming
��
 with the non�ground metalevel

representation of object level variables� In the case of the vanilla metainterpreter� let P be

a program and PM be its non�ground metalevel representation� The problem is that there

exists no one�to�one correspondence between the semantics of P and the semantics of VP �

vanilla�PM � The problem is related to di�erences in the languages used at the metalevel and

at the object level and was solved either by considering typed programs
��
� or by considering

language independent programs only
��
� If we consider the s�semantics of P and VP � due to

the property stated by theorem ��		� the language problem disappears and we can easily prove

the following theorem�

Theorem ��� ����

� Let P be a positive program and VP be its vanilla metainterpreted ver�

sion� where the proof procedure is de�ned by the relation demo	 Then� for every n�adic predicate

symbol p in P �

demo�p�t�� � � � � tn�� 	 O�VP � i� p�t�� � � � � tn� 	 O�P �	

A similar result was also proved
��
 for a metainterpreter de�ning the inheritance mecha�

nism described in
	�
�

	 Conclusions

We have shown several semantics� which exhibit similar properties and which are all de�ned

according to the same methodology� We have also shown that at least some of the above

semantics have successfully been used to solve real problems�

��

As shown in
��� ��
� the various semantics are mutually related by means of abstractions�

The same relation holds between concrete and abstract semantics� In particular� the general�

ized semantics of CLP in
��� ��
 shows that one can derive from a single semantics several

specializations obtained by abstracting the constraints in the program�

One interesting open research problem� which is currently under investigation� is whether

the approach can be extended to cope with the various concrete observables� One could start

with a program which has as regular semantics the most concrete one �for example� a semantics

similar to the one considered in section ����� Such a semantics should have the usual top�down

and bottom�up de�nitions� Moreover� the usual s�semantics theorems �AND�compositionality�

correctness w�r�t� the observable� equivalence of the two de�nitions� should hold� All the other

�concrete and abstract� semantics should then be derivable simply by abstracting the constraints

in the program� thus obtaining for free the validity of all the theorems� once the correctness

of the abstraction on the constraint system has been proved� The theory should also allow us

to discuss in general terms of properties such as the independence from the selection rule� the

��compositionality and the full abstraction�

References

	
 M� Alpuente and M� Falaschi� Narrowing as an Incremental Constraint Satisfaction Al�

gorithm� In J� Maluszy)nski and M� Wirsing� editors� Proc	 of PLILP�
�� volume ��� of

Lecture Notes in Computer Science� pages 			*	��� Springer�Verlag� Berlin� 	��	� Ex�

tended version to appear in Theoretical Computer Science�

�
 M� Alpuente� M� Falaschi� M� Gabbrielli� and G� Levi� The semantics of equational logic

programming as an instance of CLP� In K� R� Apt� J� W� de Bakker� and J� J� M� M� Rut�

ten� editors� Logic Programming Languages� Constraints� Functions and Objects� pages

��*�	� The MIT Press� Cambridge� Mass�� 	����

�
 K� R� Apt� Introduction to Logic Programming� In J� van Leeuwen� editor� Handbook of

Theoretical Computer Science� volume B� Formal Models and Semantics� pages ���*����

Elsevier� Amsterdam and The MIT Press� Cambridge� 	����

�
 K� R� Apt� H� Blair� and A� Walker� Towards a Theory of Declarative Knowledge� In

J� Minker� editor� Foundations of Deductive Databases and Logic Programming� pages

��*	��� Morgan Kaufmann� Los Altos� Ca�� 	����

�
 K� R� Apt and M� Gabbrielli� Declarative Interpretations Reconsidered� CWI� Amster�

dam� Submitted for publication� 	����

�
 K� R� Apt� E� Marchiori� and C� Palamidessi� A theory of �rst�order built�in�s of PRO�

LOG� In H� Kirchner and G� Levi� editors� Algebraic and Logic Programming� Proceedings

of the Third International Conference� volume ��� of Lecture Notes in Computer Science�

pages ��*��� Springer�Verlag� Berlin� 	����

�
 C� Aravindan and Phan Minh Dung� On the correctness of unfold(fold transformation

of normal and extended logic programs� Technical report� Asian Institute of Technology�

Bangkok� Thailand� 	����

�
 R� Bagnara� R� Giacobazzi� and G� Levi� An Application of Constraint Propagation to

Data�"ow Analysis� In Proc of Ninth IEEE Conference on AI Applications� pages ���*����

IEEE Computer Society Press� 	����

�	

�
 I� Balbin and K� Ramamohanarao� A Generalization of the Di�erential Approach to

Recursive Query Evaluation� Journal of Logic Programming� �����*���� 	����

	�
 R� Barbuti� M� Codish� R� Giacobazzi� and G� Levi� Modelling Prolog Control� Journal

of Logic and Computation� �� 	����

		
 R� Barbuti� M� Codish� R� Giacobazzi� and M� Maher� Oracle Semantics for PROLOG�

In H� Kirchner and G� Levi� editors� Algebraic and Logic Programming� Proceedings of

the Third International Conference� volume ��� of Lecture Notes in Computer Science�

pages 	��*		�� Springer�Verlag� Berlin� 	����

	�
 R� Barbuti and R� Giacobazzi� A Bottom�up Polymorphic Type Inference in Logic Pro�

gramming� Science of Computer Programming� 	�������	*�	�� 	����

	�
 R� Barbuti� R� Giacobazzi� and G� Levi� A General Framework for Semantics�based

Bottom�up Abstract Interpretation of Logic Programs� ACM Transactions on Program�

ming Languages and Systems� 	��	��	��*	�	� 	����

	�
 M� Baudinet� Proving Termination Properties of Prolog Programs� A Semantic Approach�

Journal of Logic Programming� 	��	*��� 	����

	�
 E� Bertino� M� Martelli� and D� Montesi� CLP�AD� as a Deductive Database Language

with Updates� In E� Lamma and P� Mello� editors� Extensions of Logic Programming	 Proc	

Third International Workshop on Extensions of Logic Programming� ELP�
�� volume ���

of Lecture Notes in Arti�cial Intelligence� pages ��*��� Springer�Verlag� Berlin� 	����

	�
 E� Bolzan� Propriet#a osservabili e diagnosi di programmi logici� Master�s thesis� Diparti�

mento di Informatica� Universit#a di Pisa� 	���� in italian�

	�
 A� Bossi� M� Bugliesi� and M� Fabris� Fixpoint semantics for PROLOG� In D� S� Warren�

editor� Proc	 Tenth Int�l Conf	 on Logic Programming� pages ���*���� The MIT Press�

Cambridge� Mass�� 	����

	�
 A� Bossi� M� Bugliesi� M� Gabbrielli� G� Levi� and M� C� Meo� Di�erential logic program�

ming� In Proc	 Twentieth Annual ACM Symp	 on Principles of Programming Languages�

pages ���*���� ACM Press� 	����

	�
 A� Bossi and N� Cocco� Basic transformation operations for logic programs which preserve

computed answer substitutions of logic programs� Journal of Logic Programming� 	����*

��� 	����

��
 A� Bossi� N� Cocco� and S� Etalle� On Safe Folding� In M� Bruynooghe and M� Wirsing�

editors� Programming Language Implementation and Logic Programming � Proceedings

PLILP�
�� volume ��	 of Lecture Notes in Computer Science� pages 	��*	��� Springer�

Verlag� Berlin� 	����

�	
 A� Bossi� M� Gabbrielli� G� Levi� and M� C� Meo� Contributions to the Semantics of Open

Logic Programs� In Proceedings of the International Conference on Fifth Generation

Computer Systems �

�� pages ���*���� 	���� Extended version to appear in Theoretical

Computer Science�

��
 A� Bossi and M� Menegus� Una Semantica Composizionale per Programmi Logici Aperti�

In P� Asirelli� editor� Proc	 Sixth Italian Conference on Logic Programming� pages ��*	���

	��	�

��

��
 P� Bruscoli� F� Levi� G� Levi� and M� C� Meo� Compilative Constructive negation in Con�

straint Logic Programs� In S� Tison� editor� Proc	 CAAP�
�� Lecture Notes in Computer

Science� Springer�Verlag� Berlin� 	����

��
 M� Bruynooghe� A Practical Framework for the Abstract Interpretation of Logic Pro�

grams� Journal of Logic Programming� 	���	*	��� 	��	�

��
 F� Bry� Logic Programming as Constructivism� A Formalization and its Application to

Databases� In Proc	 Eighth ACM Symp	 on Principles of Database Systems� 	����

��
 M� Bugliesi� E� Lamma� and P� Mello� Modularity in Logic Programming� Journal of

Logic Programming� 	���� To appear�

��
 D� Chan� Constructive Negation Based on the Completed Database� In R� A� Kowalski

and K� A� Bowen� editors� Proc	 Fifth Int�l Conf	 on Logic Programming� pages 			*	���

The MIT Press� Cambridge� Mass�� 	����

��
 D� Chan� An Extension of Constructive Negation and its Application in Coroutining� In

E� Lusk and R� Overbeek� editors� Proc	 North American Conf	 on Logic Programming��
�

pages ���*���� The MIT Press� Cambridge� Mass�� 	����

��
 K� H� Chan� Equivalent logic programs� Journal of Logic Programming� �����	��*	���

	����

��
 K� L� Clark� Predicate logic as a computational formalism� Res� Report DOC ��(���

Imperial College� Dept� of Computing� London� 	����

�	
 M� Codish� D� Dams� and E� Yardeni� Bottom�up Abstract Interpretation of Logic Pro�

grams� Technical report� Dept� of Computer Science� The Weizmann Institute� Rehovot�

	���� To appear in Theoretical Computer Science�

��
 M� Codish� S� K� Debray� and R� Giacobazzi� Compositional Analysis of Modular Logic

Programs� In Proc	 Twentieth Annual ACM Symp	 on Principles of Programming Lan�

guages� pages ��	*���� ACM Press� 	����

��
 M� Codish and B� Demoen� Analysing Logic Programs using �prop��ositional Logic

Programs and a Magic Wand� In D� Miller� editor� Proc	 �

� Int�l Symposium on Logic

Programming� The MIT Press� Cambridge� Mass�� 	����

��
 P� Codognet and G� Fil#e� Computations� Abstractions and Constraints� In Proc	 Fourth

IEEE Int�l Conference on Computer Languages� IEEE Press� 	����

��
 W� Cook and J� Palsberg� A Denotational Semantics of Inheritance and its Correctness�

In Proceedings of OOPSLA��
� pages ���*���� ACM� 	����

��
 A� Cortesi� G� Fil#e� and W� Winsborough� Prop revisited� Propositional Formula as

Abstract Domain for Groundness Analysis� In Proc	 Sixth IEEE Symp	 on Logic In

Computer Science� pages ���*���� IEEE Computer Society Press� 	��	�

��
 D� De Schreye and B� Martens� A Sensible Least Herbrand Semantics for Untyped Vanilla

Meta�Programming and its Extension to a Limited Form of Amalgamation� In A� Pet�

torossi� editor� Meta�Programming in Logic	 Third International Workshop� META�
��

volume ��� of Lecture Notes in Computer Science� pages 	��*���� Springer�Verlag� Berlin�

	����

��

��
 S� K� Debray� Formal bases for data"ow analysis of logic programs� In G� Levi� editor�

Advances in logic programming theory� Oxford University Press� 	���� To appear�

��
 S� K� Debray and R� Ramakrishnan� Generalized Horn Clause Programs� Technical

report� Dept� of Computer Science� The University of Arizona� 	��	�

��
 G� Delzanno and M� Martelli� A bottom�up characterization of �nite success� Technical

report� Universit#a di Genova� DISI� 	����

�	
 F� Denis and J��P� Delahaye� Unfolding� Procedural and Fixpoint Semantics of Logic

Programs� In C� Cho�rut and M� Jantzen� editors� STACS
�� volume ��� of Lecture

Notes in Computer Science� pages �		*���� Springer�Verlag� Berlin� 	��	�

��
 P� Deransart and G� Ferrand� Programmation en logique avec negation� presen�

tation formelle� Technical Report No� ��(�� Lab� d�Informatique� D)epartement de

Math)ematiques et d�Informatique� Universit)e d�Orl)eans� 	����

��
 Phan Minh Dung and K� Kanchanasut� A Fixpoint Approach to Declarative Semantics

of Logic Programs� In E� Lusk and R� Overbeek� editors� Proc	 North American Conf	 on

Logic Programming��
� pages ���*���� The MIT Press� Cambridge� Mass�� 	����

��
 K� Eshghi and R� A� Kowalski� Abduction compared with Negation by Failure� In G� Levi

and M� Martelli� editors� Proc	 Sixth Int�l Conf	 on Logic Programming� pages ���*����

The MIT Press� Cambridge� Mass�� 	����

��
 M� Falaschi� M� Gabbrielli� G� Levi� and M� Murakami� Nested Guarded Horn Clauses�

International Journal of Foundations of Computer Science� 	�������*���� 	����

��
 M� Falaschi and G� Levi� Finite failures and partial computations in concurrent logic

languages� Theoretical Computer Science� �����*��� 	����

��
 M� Falaschi� G� Levi� M� Martelli� and C� Palamidessi� Declarative Modeling of the

Operational Behavior of Logic Languages� Theoretical Computer Science� ���������*�	��

	����

��
 M� Falaschi� G� Levi� M� Martelli� and C� Palamidessi� A Model�Theoretic Reconstruc�

tion of the Operational Semantics of Logic Programs� Information and Computation�

	���	����*		�� 	����

��
 G� Ferrand� Error Diagnosis in Logic Programming� an Adaptation of E�Y� Shapiro�s

Method� Journal of Logic Programming� ��	��*	��� 	����

��
 M� Fitting� A Kripke�Kleene semantics for logic programs� Journal of Logic Programming�

�����*�	�� 	����

�	
 M� Fitting and M� Ben�Jacob� Strati�ed and Three�valued Logic Programming Semantics�

In R� A� Kowalski and K� A� Bowen� editors� Proc	 Fifth Int�l Conf	 on Logic Programming�

pages 	���*	���� The MIT Press� Cambridge� Mass�� 	����

��
 M� Gabbrielli� The Semantics of Logic Programming as a Programming Language� PhD

thesis� Dipartimento di Informatica� Universit#a di Pisa� 	����

��
 M� Gabbrielli and R� Giacobazzi� Goal independency and call patterns in the analysis of

logic programs� In Proc� ACM Symposium on Applied Computing� ACM press� 	����

��

��
 M� Gabbrielli� R� Giacobazzi� and D� Montesi� Modular logic programs over �nite domains�

In D� Sacc#a� editor� Proc	 Eight Italian Conference on Logic Programming� pages ���*����

	����

��
 M� Gabbrielli and G� Levi� Modeling Answer Constraints in Constraint Logic Programs�

In K� Furukawa� editor� Proc	 Eighth Int�l Conf	 on Logic Programming� pages ���* ����

The MIT Press� Cambridge� Mass�� 	��	�

��
 M� Gabbrielli and G� Levi� On the Semantics of Logic Programs� In J� Leach Albert�

B� Monien� and M� Rodriguez�Artalejo� editors� Automata� Languages and Programming�

��th International Colloquium� volume �	� of Lecture Notes in Computer Science� pages

	*	�� Springer�Verlag� Berlin� 	��	�

��
 M� Gabbrielli and G� Levi� Unfolding and �xpoint semantics of concurrent constraint

programs� Theoretical Computer Science� 	�����*	��� 	����

��
 M� Gabbrielli� G� Levi� and M� Martelli� New Semantics Tools for Logic Programs� In

J� W� de Bakker� W��P� de Roever� and G� Rozenberg� editors� Semantics� Foundations

and Applications� Proceedings REX Workshop� volume ��� of Lecture Notes in Computer

Science� pages ���*���� Springer�Verlag� Berlin� 	����

��
 M� Gabbrielli� G� Levi� and M� C� Meo� Observational Equivalences for Logic Programs�

In K� Apt� editor� Proc	 Joint Int�l Conf	 and Symposium on Logic Programming� pages

	�	*	��� The MIT Press� Cambridge� Mass�� 	����

��
 M� Gabbrielli� G� Levi� and D� Turi� A Two Steps Semantics for Logic Programs with

Negation� In A� Voronkov� editor� Proceedings of the Int�l Conf	 on Logic Programming

and Automated Reasoning� volume ��� of Lecture Notes in Arti�cial Intelligence� pages

���*���� Springer�Verlag� Berlin� 	����

�	
 M� Gabbrielli and M� C� Meo� Fixpoint Semantics for Partial Computed Answer Sub�

stitutions and Call Patterns� In H� Kirchner and G� Levi� editors� Algebraic and Logic

Programming� Proceedings of the Third International Conference� volume ��� of Lecture

Notes in Computer Science� pages ��*��� Springer�Verlag� Berlin� 	����

��
 H� Gaifman and E� Shapiro� Fully abstract compositional semantics for logic programs�

In Proc	 Sixteenth Annual ACM Symp	 on Principles of Programming Languages� pages

	��*	��� ACM� 	����

��
 H� Gaifman and E� Shapiro� Proof theory and semantics of logic programs� In Proc	 Fourth

IEEE Symp	 on Logic In Computer Science� pages ��*��� IEEE Computer Society Press�

	����

��
 M� Gelfond and V� Lifschitz� The Stable Model Semantics for Logic Programs� In R� A�

Kowalski and K� A� Bowen� editors� Proc	 Fifth Int�l Conf	 on Logic Programming� pages

	���*	���� The MIT Press� Cambridge� Mass�� 	����

��
 R� Giacobazzi� Semantic Aspects of Logic Program Analysis� PhD thesis� Dipartimento

di Informatica� Universit#a di Pisa� 	����

��
 R� Giacobazzi� S� K� Debray� and G� Levi� A Generalized Semantics for Constraint Logic

Programs� In Proceedings of the International Conference on Fifth Generation Computer

Systems �

�� pages ��	*��	� 	����

��

��
 R� Giacobazzi and L� Ricci� Pipeline Optimizations in AND�Parallelism by Abstract

Interpretation� In D� H� D� Warren and P� Szeredi� editors� Proc	 Seventh Int�l Conf	 on

Logic Programming� pages ��	*���� The MIT Press� Cambridge� Mass�� 	����

��
 R� Giacobazzi and L� Ricci� Detecting Determinate Computations by a Bottom�up Ab�

stract Interpretation� In B� Krieg�Br+uckner� editor� Proceeedings ESOP �
�� volume ���

of Lecture Notes in Computer Science� pages 	��*	�	� Springer�Verlag� Berlin� 	����

��
 P� M� Hill and J� W� Lloyd� Analysis of meta�programs� In H� Abramson and M�H�

Rogers� editors� Meta�programming in Logic Programming� pages ��*�	� The MIT Press�

Cambridge� Mass�� 	����

��
 D� Jacobs and A� Langen� Static Analysis of Logic Programs for Independent AND

Parallelism� Journal of Logic Programming� 	��� , �����	*�	�� 	����

�	
 J� Ja�ar and J��L� Lassez� Constraint Logic Programming� In Proc	 Fourteenth Annual

ACM Symp	 on Principles of Programming Languages� pages 			*		�� ACM� 	����

��
 J� Ja�ar and J��L� Lassez� Constraint Logic Programming� Technical report� Department

of Computer Science� Monash University� June 	����

��
 G� Janssens and M� Bruynooghe� Deriving descriptions of possible values of program

variables by means of abstract interpretation� Journal of Logic Programming� 	��� ,

������*���� 	����

��
 N� D� Jones and H� S-ndergaard� A Semantics�based Framework for the Abstract Inter�

pretation of Prolog� In S� Abramsky and C� Hankin� editors� Abstract Interpretation of

Declarative Languages� pages 	��*	��� Ellis Horwood Ltd� 	����

��
 K� Kanchanasut and P� Stuckey� Transforming Normal Logic Programs to Constraint

Logic Programs� Theoretical Computer Science� 	�����*��� 	����

��
 T� Kawamura and T� Kanamori� Preservation of Stronger Equivalence in Unfold(Fold

Logic Programming Transformation� In Proc	 Int�l Conf	 on Fifth Generation Computer

Systems� pages �	�*���� Institute for New Generation Computer Technology� Tokyo� 	����

��
 R� Kemp and G� Ringwood� An Algebraic Framework for the Abstract Interpretation of

Logic Programs� In S� K� Debray and M� Hermenegildo� editors� Proc	 North American

Conf	 on Logic Programming�
�� pages ���*���� The MIT Press� Cambridge� Mass�� 	����

��
 H� J� Komorowski� Partial evaluation as a means for inferencing data structures in an

applicative language� A theory and implementation in the case of PROLOG� In Ninth

ACM Symp	 on Principles of Programming Languages� pages ���*���� ACM Press� 	����

��
 G� Kreisel and J� L� Krivine� Elements of Mathematical Logic �Model Theory�� North�

Holland� Amsterdam� 	����

��
 K� Kunen� Negation in logic programming� Journal of Logic Programming� �����*����

	����

�	
 J��L� Lassez and M� J� Maher� Closures and Fairness in the Semantics of Programming

Logic� Theoretical Computer Science� ���	��*	��� 	����

��

��
 G� Levi� Models� Unfolding Rules and Fixpoint Semantics� In R� A� Kowalski and K� A�

Bowen� editors� Proc	 Fifth Int�l Conf	 on Logic Programming� pages 	���*	���� The MIT

Press� Cambridge� Mass�� 	����

��
 G� Levi and P� Mancarella� The Unfolding Semantics of Logic Programs� Technical Report

TR�	�(��� Dipartimento di Informatica� Universit#a di Pisa� 	����

��
 G� Levi� M� Martelli� and C� Palamidessi� Failure and success made symmetric� In S� K�

Debray and M� Hermenegildo� editors� Proc	 North American Conf	 on Logic Program�

ming�
�� pages �*��� The MIT Press� Cambridge� Mass�� 	����

��
 G� Levi and D� Ramundo� A formalization of metaprogramming for real� In D� S� Warren�

editor� Proc	 Tenth Int�l Conf	 on Logic Programming� pages ���*���� The MIT Press�

Cambridge� Mass�� 	����

��
 G� Levi and G� Sardu� Partial Evaluation of metaprograms in a multiple worlds logic

language� New Generation Computing� �����*���� 	����

��
 J� W� Lloyd� Declarative error diagnosis� New Generation Computing� �����	��*	��� 	����

��
 J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� Berlin� 	���� Second

edition�

��
 J� W� Lloyd and J� C� Shepherdson� Partial Evaluation in Logic Programming� Journal

of Logic Programming� 		��	�*���� 	��	�

��
 J� Lobo� J� Minker� and A� Rajasekar� Foundations of Disjunctive Logic Programming�

The MIT Press� Cambridge� Mass�� 	����

�	
 M� J� Maher� Equivalences of Logic Programs� In J� Minker� editor� Foundations of

Deductive Databases and Logic Programming� pages ���*���� Morgan Kaufmann� Los

Altos� Ca�� 	����

��
 M� J� Maher and R� Ramakrishnan� D)ej#a Vu in Fixpoints of Logic Programs� In E� Lusk

and R� Overbeek� editors� Proc	 North American Conf	 on Logic Programming��
� pages

���*���� The MIT Press� Cambridge� Mass�� 	����

��
 K� Marriott and H� S-ndergaard� Bottom�up Abstract Interpretation of Logic Programs�

In R� A� Kowalski and K� A� Bowen� editors� Proc	 Fifth Int�l Conf	 on Logic Programming�

pages ���*���� The MIT Press� Cambridge� Mass�� 	����

��
 K� Marriott and H� S-ndergaard� Semantics�based Data"ow Analysis of Logic Programs�

In G� Ritter� editor� Information Processing �
� North�Holland� 	����

��
 M� Martelli and C� Tricomi� A new SLDNF�tree� Information Processing Letters�

��������*��� 	����

��
 B� Martens and D� De Schreye� Why Untyped Meta�Programming is not �much of�

a problem� Technical Report CW	��� Katholieke Universiteit Leuven� Department of

Computer Science� December 	����

��
 A� Messora and M� Martelli� Declarative semantics of meta�logic predicates in logic

programming� Technical report� Universit#a di Genova� DISI� 	����

��

��
 J� Minker and A� Rajasekar� A Fixpoint Semantics for Disjunctive Logic Programs�

Journal of Logic Programming� ����*��� 	����

��
 U� Nilsson� Abstract Interpretation� A Kind of Magic� In J� Maluszy)nski and M� Wirsing�

editors� Programming Language Implementation and Logic Programming� Proceedings �rd

Int�l Symposium PLILP�
�� volume ��� of Lecture Notes in Computer Science� pages ���*

���� Springer�Verlag� Berlin� 	��	�

	��
 H� Rasiowa and R� Sikorski� The Mathematics of Metamathematics� North�Holland�

Amsterdam� 	����

	�	
 V� A� Saraswat� Concurrent Constraint Programming Languages� PhD thesis� Carnegie�

Mellon University� January 	����

	��
 H� Seki� Unfold(fold transformation of strati�ed programs� In G� Levi and M� Martelli�

editors� Proc	 Sixth Int�l Conf	 on Logic Programming� pages ���*���� The MIT Press�

Cambridge� Mass�� 	����

	��
 E� Y� Shapiro� Algorithmic Program Debugging� The MIT Press� Cambridge� Mass�� 	����

	��
 H� S-ndergaard� Semantics�Based Analysis and Transformation of Logic Programs� PhD

thesis� The University of Melbourne� June 	���� Revised version of PhD thesis� University

of Copenhagen� December 	����

	��
 P� J� Stuckey� Constructive Negation for Constraint Logic Programming� In Proc	 Sixth

IEEE Symp	 on Logic In Computer Science� pages ���*���� IEEE Computer Society

Press� 	��	�

	��
 A� Takeuchi and K� Furukawa� Partial evaluation of Prolog programs and its application

to meta programming� In H��J� Kugler� editor� Information Processing �
� pages �	�*����

North�Holland� Amsterdam� 	����

	��
 H� Tamaki and T� Sato� Unfold(Fold Transformations of Logic Programs� In Sten�
.Ake T+arnlund� editor� Proc	 Second Int�l Conf	 on Logic Programming� pages 	��*	���

	����

	��
 D� Turi� Extending S�Models to Logic Programs with Negation� In K� Furukawa� ed�

itor� Proc	 Eighth Int�l Conf	 on Logic Programming� pages ���*�		� The MIT Press�

Cambridge� Mass�� 	��	�

	��
 M� H� van Emden and R� A� Kowalski� The semantics of predicate logic as a programming

language� Journal of the ACM� ���������*���� 	����

		�
 T� Vasak and J� Potter� Characterization of Terminating Logic Programs� In Proc	 Third

IEEE Int�l Symp	 on Logic Programming� pages 	��*	��� IEEE Comp� Soc� Press� 	����

			
 R� Venken� A PROLOG meta�interpreter for partial evaluation and its application to

source�to�source transformation and query optimization� In T� O�Shea� editor� ECAI����

Advances in Arti�cial Intelligence� pages �	*	��� North�Holland� Amsterdam� 	����

		�
 L� Vieille� Recursive query processing� the power of logic� Theoretical Computer Science�

���	*��� 	����

		�
 S� Yamasaki� M� Yoshida� and S� Doshita� A �xpoint semantics of Horn Sentences based

on Substitution Sets� Theoretical Computer Science� �	����*���� 	����

��

