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Abstract

We show here that verification of Prolog programs can be systematically carried out
within a simple framework which comprises syntactic analysis, declarative semantics, modes
and types. We apply these techniques to study termination, partial correctness, occur-check
freedom, absence of errors and absence of floundering. Finally, we discuss which aspects of
these techniques can be automated.

AMS Subject Classification (1991): 68Q40, 68T15.

CR Subject Classification (1991): ¥.3.2., F.4.1, H.3.3,1.2.3.

Keywords and Phrases: Prolog programs, verification, termination, partial correctness, occur-
check freedom, absence of errors.

Notes. This research was partly supported by the ESPRIT Basic Research Action 6810
(Compulog 2). A preliminary, shorter, version of this paper appeared as Apt [Apt93]. This
article will appear in: ”Specification and Validation methods for Programming languages
and systems”, Oxford University Press, E. Borger (editor).

1 Introduction

1.1 Motivation

Prolog is 20 years old and so is logic programming. However, they were developed separately and
these two developments never really merged. The first track is best exemplified by Sterling and
Shapiro [SS86], which puts emphasis on programming style and techniques, and the second by
Lloyd [L10o87], which concentrates on the theoretical foundations. As a result of these separate
developments, until recently little work was done on verification and development of Prolog
programs.

Tt is natural and almost self-evident to base verification of Prolog programs on the theory
of logic programming. However, the choices made in logic programming theory do not neces-
sarily coincide with those made in Prolog (like the choice of a selection rule) and its extensions
and modifications. Some new issues (like the occur-check problem) need to be addressed and
additional results (like those dealing with termination) need to be established.

The aim of this paper is to provide an overview of our recent work on verification of Prolog
programs. We show that many relevant properties of Prolog programs can be established by
means of simple arguments. In particular, we explain how termination and partial correctness
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rith by studing declarative interpretation of logic programs. Termination is handled
- developed in Apt and Pedreschi [AP93] and Apt and Pedreschi [AP94].
tudy here run-time properties. These are properties which refer to the program
tamples of such properties include the absence of the occur-check problem, which
e omission of the occur-check in the unification algorithm does not result in incor-
ification, and the absence of run-time errors in presence of arithmetic operations.
run-time properties of Prolog programs we introduce increasingly more powerful
dealing with the occur-check problem and with the absence of floundering in
egation we use syntactic analysis and modes. We follow here the approach of
sgrini [AP92]. Then, when dealing with the absence of run-time errors for Prolog
h arithmetic, we use directional types, proposed recently by Bronsard, Lakshman
'LR93].

nology and Notation

» with queries, that is sequences of atoms, instead of goals, that is constructs of
2, where @ is a query. We denote by O the empty query. Throughout the paper
tention to one selection rule, namely Prolog’s leftmost selection rule. We refer to
m with the leftmost selection rule as LD-resolution. All proof-theoretic notions,
ymputed answer substitution refer to LD-resolution.

» syntactic expressions £ and F', we say that E is more general than F, and write
9 = F for some substitution §. We denote the set of variables occurring in an
by Var(E). Given a list t we write a € t when a is a member of t and a ¢ t
a member of t. Also, we identify here constants with 0-ary function symbols.

n this we use the standard notation of Lloyd [L10o87] and Apt [Apt90]. In particular,
1 P, Bp stands for its Herband base, Mp stands for its least Herbrand model,
r the set of all ground instances of clauses of P, and [A] for the set of all ground
he atom A.

1g the Stage

X

here with three subsets of Prolog.

f programs written in this subset coincides with the customary syntax of logic
yagh the ambivalent syntazr and enonymous variables are allowed.
lain both concepts. In first-order logic, and consequently in logic programming, it
at function symbols and relation symbols of different arity form mutually disjoint
1bols. While this assumption is rarely stated explicitly, it is a folklore postulate
cal logic which can be easily tested by exposing a logician to Prolog syntax and
rotests. Namely, in contrast to first-order logic, Prolog allows ambivalent syntax.
use a binary relation symbol member, unary function symbol member and a bi-
symbolmember, and build syntactically legal facts like member (member(a,b), [c,
Such expressions can be uniquely parsed once the context is given in which they




The ambivalent syntax at this level is not an issue and it is safe to assume it when studying
formally pure Prolog programs. The ambivalent syntax becomes an interesting subject at the
moment of considering meta-interpreters which use the clause relation — see Kalsbeek [Kal93]
and De Schreye and Martens [MS93] for recent work on-this topic. All in all, it is a minor point
in this article but still worth mentioning.

‘Prolog also allows so-called anonymous variables, written as “” (underscore). These vari-
ables have a special interpretation, because each occurrence of “” in a query or in a clause is
interpreted as a different variable. Thus by definition each anonymous variable occurs in a query
or a clause only once. Anonymous variables form a simple and elegant device which sometimes
increases the readability of programs in a remarkable way.

Pure Prolog with Arithmetic

This subset extends the previous one by allowing in the bodies of the program clauses the
arithmetic comparison operators <, <,=:=, #, 2,> and the binary “is” relation of Prolog.

Pure Prolog with Negation

This subset extends the first one by allowing negative literals in the bodies of the program
clauses. Thus it coincides with the syntax of general logic programs.

The methods discussed in this paper can be readily used to deal with the “union” of the last
two subsets, that is pure Prolog with arithmetic and negation.

When considering a specific logic program one has to fix a first-order language w.r.t. which
it is analyzed. Usually, one associates with the program the language determined by it — its
function and relation symbols are the ones occurring in the program (see e.g. Lloyd [L1o87] and
Apt [Apt90]). Another choice was made by Kunen [Kun89] who assumed a universal first-order
language with infinitely many function and relation symbols in each arity, in which all programs
and queries are written. One can think of this language as the language defined by a Prolog
manual.

In this paper we follow Kunen’s choice. In contrast to the other alternative it imposes no
syntactic restriction on the queries which may be used for a given program. This better reflects
the reality of programming. In Section 2.3 we shall indicate another advantage of this choice.
Of course, the sets ground(P) and [A] refer to the ground instances in this universal language.
All considered interpretations are interpretations of this universal language.

2.2 Proof Theory

Let us explain now the proof theory for the three subsets introduced above.

Pure Prolog

We use, as expected, the LD-resolution. However, in most implementations of Prolog, unification
without the occur-check is used. So we have to deal with this issue.

Moreover, we assume that, as in Prolog, the clauses of the program are ordered. This ordering
will be reflected in the considered LD-trees. It should be added, however, that in our approach
to correctness the ordering of the clauses will never play any role. In other words, our approach
will not be able to distinguish between programs which differ only by the clause ordering. We
shall return to this point in Section 3.1, when studying termination.




z with Arithmetic
program QUICKSORT:

s) + Ys is an ordered permutation of the list Xs.
Xs], Ys) «

X, Xs, Littles, Bigs),

ttles, Ls),

gs, Bs),

s, [X | Bs], Ys).

D.

Ks, Ls, Bs) « Ls is a list of elements of Xs which are < X,

Bs is a list of elements of Xs which are > X.
[YiXs], [YiLs], Bs) « X > Y, part(X, Xs, Ls, Bs).
[Y|Xs], Ls, [YIBs]) « X <Y, part(X, Xs, Ls, Bs).
, 0O, .

d by the APPEND program defined by:

Ys, Zs) « Zs is the concatenation of the lists Xs and Ys.
Xsl, Ys, [X | Zs]) « app(Xs, Ys, Zs).
¥s, Ys).

1ying it formally as a Prolog program we have to decide the status of the built-in’s
2 they some further unspecified relation symbols whose definitions we can ignore?
is choice we face the following problem. In Prolog the relations > and < are
ise evaluation results in an error when its arguments are not ground arithmetic
n short, gae’s). Consequently, the query qs([3,4,X,7], [3,4,7,8]) results in
e moment the variable X becomes an argument of >.

: programming does not have any facilities to deal with run time errors, but at least
sider trading them for failure. Unfortunately, this is not possible. Otherwise for
and t the query s>t would succeed and then by the Lifting Lemma the query X>Y
L, as well. So what is the conclusion? The standard theory of logic programming
d to capture properly the behaviour of the built-in’s > and < and it is not possible
fact that the query qs([3,4,X,7], [3,4,7,8]) results in an error.

Prolog’s interpretation of arithmetic relations within logic programming we follow
8). First, we extend the LD-resolution by stipulating that an LD-derivation ends
aen at the moment of evaluation the arguments of the comparison relations are not
sase of the assignment s is t an error results when at the moment of evaluation

add to each program infinitely many clauses which define the ground instances
iithmetic relations. Given a gae n we denote by val(n) its value. For example,
als 7. So for < we add the following set of unit clauses:

Mc={m<n |m, nare gae’s and val(m)<val(n) },

id the set
M;ig = {val(n) is n |n is a gae},

xample 7 is 3+4 € M;s. We also assume that, conforming to the status of
;he original program arithmetical relations are not used in clauses heads.
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These added clauses allow us to compute resolvents when the selected atom involves an arith-
metic relation. For example, the query X is 3+4, X < 2+3 resolves to only one query, namely
7 < 2+3 (using the clause 7 is 3+4) and the query 7 < 2+3 fails. Thus all LD-derivations of
the query X is 3+4, X < 2+3 fail, which agrees with Prolog’s interpretation.

Note that thanks to the “ending in an error” provision every query with a selected atom
involving an arithmetic relation has at most one descendant in every LD-tree. Consequently, in
spite of the fact that the considered programs contain now infinitely many clauses, the resulting
LD-trees remain finitely branching.

Pure Prolog with Negation

As expected, to interpret these programs we use the SLDNF-resolution with the leftmost se-
lection rule, further referred to as LDNF-resolution. Less expected is the fact that the usual
definition of the SLDNF-resolution given in Lloyd [L1087] needs to be modified.

We leave to the reader the task of checking that according to the definition of SLDNF-
resolution given in Clark [Cla79] and reproduced in Lloyd [L1o84] it is not clear what is the
SLDNF-derivation for the program P = {p « p}, and the query —p, whereas according to the
definition given in Lloyd [L1087] no SI,DNF-derivations exist for the program P = {p < —p}
and query p. The problem with the first definition is that it is circular and not all cases for
forming a resolvent are defined, whereas the latter definition is mathematically correct, but more
restrictive than the first one.

It should be pointed out here that the latter definition is sufficient for proving soundness and
various forms of completeness of SLDNF-resolution. However, when reasoning about termination
of Prolog programs we need to have at our disposal a definition of SLDNF-resolution (with the
leftmost selection rule) which properly formalizes the computation process and not only correctly
predicts the computed results.

Such a definition was proposed by Martelli and Tricomi [MT92]. In their revision the sub-
sidiary trees used to resolve negative literals are built “inside” the main tree. Another solution
was suggested later in Apt and Doets [AD92], where, as in the original definition the subsidiary
trees are kept “aside” of the “main” tree but their construction is no longer viewed as an atomic
step in the resolution process.

Additionally, when studying the LDNF-resolution we need to modify the definition of floun-
dering. It occurs when a negative non-ground literal is selected. We say that PU{Q} does not
flounder if no LDNF-derivation of P U {@} flounders.

It is perhaps useful to recall here that Prolog ignores floundering. This leads to a number of
well-known complications and explains why it is natural to seek conditions which ensure absence
of floundering. In fact, our methods for proving termination and partial correctness of general
programs do rely on the absence of floundering.

2.3 Semantics }

There is no universal agreement what is the declarative semantics of a logic program. In this
paper we advocate for a program without negation the use of its least Herband model as its
declarative semantics. However, we have to be careful when making this seemingly unique choice.

Consider the proverbial APPEND program. With the first choice of Subsection 2.1 the un-
derlying first-order language has only one constant, viz. [1, and one, binary, function symbol
[.].1. Thus the Herbrand universe consists of all ground lists whose flattened form is a list




with all elements equal to [1. Call such lists trivial. It is easy to see that then
Mpppenp = {app(s, t,u) | s,t,u are trivial lists and s *t = u},

where “* “ denotes the operation of concatenating two lists. This is the semantics of the APPEND
program given in Sterling and Shapiro [SS86]. Clearly, it cannot be used to render the meaning
of queries in which other function symbols than [1 and [.].] are used.

As soon as the underlying first-order language has another constant than [J, so in particular
in our case, the Herbrand universe contains elements which are not lists. Consequently, on the
account of the second clause of APPEND, Mjppeyp contains elements of the form app(s,t,un)
where neither t nor u is a list. (On the other hand, it is still the case that whenever app(s,t,u)
€ MppEnD, then s is a list.) So the choice of the first-order language affects the structure of the
least Herbrand models of the considered programs.

The fact that APPEND and various other well-known programs do admit “ill-typed” atoms
in their least Herbrand models complicates matters somewhat. To simplify our presentation we
therefore continue our discussion with the “correctly typed” version of APPEND, which we denote
by APPEND-T:

app([X | Xsl, ¥s, [X | Zs]) «— app(Xs, Ys, Zs).
app([l, ¥s, ¥s) « 1list(¥s).

augmented by the LIST program defined by:

list(Xs) « Xs isa list.
list([_ | Tsl) « 1ist(Ts).

list([1).
Note that
MyppEND—T = {app(s,t,u) | s,t,u are ground lists and s * t = u}
U Myrsr,
where

My1st = {list(s) | s is a ground list}.

We shall return to the original program APPEND in Section 6.1. Discussion of the semantics
of the other two fragments of Prolog is postponed till Sections 4.2 and 5.3.

3 Pure Prolog

We now discuss correctness of programs written in the three defined subsets of Prolog. We start
with pure Prolog.

3.1 Termination

First we consider termination. We present here the approach of Apt and Pedreschi [AP93]. It
is a modification of a method of Bezem [Bez93] which deals with termination w.r.t. all selection
rules. For simplicity we restrict out attention here to one atom queries. We recall the relevant
concepts.

Definition 3.1 A program is called left terminating if all its LD-derivations starting with a
ground query are finite. O



RN

at a program is left terminating, and to characterize the queries that terminate
rogram, the following notions are introduced.

X

.apping for a program P is a function | |: Bp — N from ground atoms to natural
For A € Bp, |A| is the level of A.

A is called bounded with respect to a level mapping | |, if | | is bounded on the
* ground instances of A. For A bounded w.r.t. | |, we define |A|, the level of A
as the maximum | | takes on [A].

is called acceptable with respect to || and an interpretation I, if I is its model
very ground instance A — A, B, B of it such that IEA

|A] > | Bl

m P is called acceptable with respect to || and I, if all its clauses are. P is called
¢ if it is acceptable with respect to some level mapping and an interpretation. O

ing results link the introduced notions.

" Let P be acceptable w.r.t. || and I. Then for every atom A bounded w.r.t. | ]
ions of P U {A} are finite. In particular, P is left terminating. o

. Let P be a left terminating program. Then for some level mapping | | and a
rpretation I

eptable w.r.t. || and I,
; atom A, all LD-derivations of P U{A} are finite iff A is bounded w.r.t. ||. O

I represents the limited declarative knowledge needed to prove termination. Note
sorem 3.3 we deal can only establish termination of a query w.r.t. a left terminating
we use here the notion of so-called “universal” termination, according to which
ninates irrespectively of the clause ordering. We found that this strong form of
satisfied by most pure Prolog programs and queries considered in standard books

v this method of proving termination can be applied to specific programs we now
iple of examples. When dealing with them we use the following function | | from
to natural numbers:

|lzlzs]| = |zs| +1,
|f (@1, za)l = O3 f# [.].].

t zs, |zs| equals its length.




onsider a program whose proof of termination does not involve the choice of the
1e following program PALINDROME-T:

e(Xs) « the list Xs equals to its reverse.
e(Xs) « reverse(Xs, Xs).

s, Ys) «— Ysis the reverse of the list Xs.
1s, X2s) « reverse(Xis, [], X2s).

s, Ys, Zs) <« Zs is the result of concatenating

the reverse of the list Xs and the list ¥s.
X | X1s], X2s, Ys) «— reverse(Xis, [X | X2s], Ys).
], ¥s, Xs) « 1list(Xs).

. by the LIST program,
ch clause has at most one atom. In this case the reduction of the level mapping

2 definition of acceptability has to be achieved irrespectively of the choice of the
rogram. The following level mapping | | does the job:

|palindrome(xs)| = 2-|xs|+ 3,
|reverse(xs,ys)| = 2-|xs|+2,
|reverse(xs,ys,zs)| = 2-|xs|+ |ys|+1,
[List(xs)] = |[xs].

» the reader checking that PALINDROME-T is indeed acceptable w.r.t. the level
ad the Herbrand model BparinproMe-1 (or any other model) of PALINDROME-T.
a list xs, the query palindrome(xs) is bounded w.r.t. | | and consequently, by
Ul LD-derivations of PALINDROME-T U {palindrome(xs)} are finite.

ne level mapping and of the model can affect the class of queries whose termination
thed. To see this consider the following problem from Coelho and Cotta [CC8S,
its formalization in Prolog: arrange three 1’s, three 2’s, ..., three 9’s in sequence
i € [1,9] there are exactly 7 numbers between successive occurrences of i.

3, Ys) <« Xs is a sublist of the list Ys.
3, Ys) « app(., Zs, Ys), app(Xs, _, Zs).

{s) +« Xsis a list of 27 elements.

[—:—:—s—a—s—:—’—s-—s-—s—:—:—a-:-:—:—s—a-:—’-:—,—n—:—:—:—]) .

3s) « Ssis a list of 27 elements forming the desired sequence.
3s)

ze(8Ss),

:([1,_,1,.,11, Ss),

:([2,-,-,2,.,.,21, Ss),

(08,-,-,-,3,.,-,-,31, 8Ss),

(e, .,y ,4,_,.,_,_,4], Ss),

(05, 5 5-2-3-3Ds-5-2-5-5_,B1, 8s8),

s



sublist (L6, »—»_s—s-3-36s_s-s-2-2-2-3613 Ss),

SubList (L7, sy ss-s-s-sTs-s-s—2—s-3-3-371> Ss),
sublist([8,_,_,_,_,_,_,_,_,8,_,_,_,_,_,_,_,_,8], Ss),
sublist([9,_,_,_,_,_,_,_,_,_,9,_,_,_,_,_,_,_,_,_,9], Ss).

augmented by the APPEND-T program.

Call the above. program SEQUENCE-T. For those curious to know: there are 6 solutions to this
problem, generated by the program above:

| ?- question(Ss).

Ss = [7,5,3,8,6,9,3,5,7,4,3,6,8,5,4,9,7,2,6,4,2,8,1,2,1,9,1] H
Ss = [3,4,7,9,3,6,4,8,3,5,7,4,6,9,2,5,8,2,7,6,2,5,1,9,1,8,1] H
Ss = [3,4,7,8,3,9,4,5,3,6,7,4,8,5,2,9,6,2,7,5,2,8,1,6,1,9,1] H
Ss = [1,9,1,6,1,8,2,5,7,2,6,9,2,5,8,4,7,6,3,5,4,9,3,8,7,4,3] H
Ss = [1,8,1,9,1,5,2,6,7,2,8,5,2,9,6,4,7,5,3,8,4,6,3,9,7,4,3] ;
Ss = [1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7] ;
no

It is straightforward to verify that SEQUENCE-T is acceptable w.r.t. the level mapping | |
defined by:

|question(xs)| = [xs|+ 30,
|sequence(xs)| = 0,
|sublist(xs,ys)| = |xs|+lys|+2,
lapp(xs,ys,zs)] = min(|xs|,|zs]) +1,
[List(xs)| = |xsl,

and the model Bsgquence—1. However, with this choice of the level mapping we face the problem
that the atom question(Ss) is not bounded. Consequently, we cannot use Theorem 3.3 to
prove termination of this query. In fact, using this level mapping we can only prove that for s
ground, all LD-derivations of SEQUENCE-T U {question(s)} are finite.

To prove the stronger termination property we change the above level mapping by putting

|question(xs)] = 57,
and choose any model I of SEQUENCE-T such that for a ground s
I |= sequence(s) iff s is a list of 27 elements.

Then SEQUENCE-T is acceptable w.r.t. | | and I. Moreover, the query question(Ss) is now
bounded w.r.t. | | and consequently, by Theorem 3.3, all LD-derivations of SEQUENCE-T U
{question(Ss)} are finite.



rment

1 of acceptability requires a strict decrease of the level mapping from the clause
soms of the clause body. Apt and Pedreschi [AP94] observed that this requirement
«d in the case of non-recursive calls. This leads to an alternative definition of
that we qualify with the prefix semi. This notion is actually equivalent to the
but it gives rise to a more flexible proof method.

e this modification we need to define first when two relation symbols occurring in
» mutually recursive.

.5 Let P be a program and p, ¢ relation symbols occurring in it.

that p refers to g in P if there is a clause in P that uses p in its head and g in its

that p depends on q in P, and write p J g, if (p,q) is in the reflexive, transitive
)f the relation refers to.

that p and ¢ are mutually recursive, and write p ~ ¢, if p 3 q and ¢ 3 p. In
ar, p and p are mutually recursive. O

rite p J ¢ when p 3 q and ¢ 2 p. The following definition of semi-acceptability
atroduced orderings over the relation symbols. We denote here by rel(4) the
ol occurring in atom A.

6 Let P be a program, | | a level mapping for P and I an interpretation.

+of P is called semi-acceptable with respect to | | and I, if I is its model and for
ound instance A « A, B, B of it such that I = A

> |B| if rel(A) ~ rel(B),
> |B| if rel(A) 1 rel(B).

un P is called semi-acceptable with respect to || and I, if all its clauses are. P is

mi-acceptable if it is semi-acceptable with respect to some level mapping and an
ation. O

evel mapping is required to decrease from an atom A in the head of a clause to
the body of that clause only if the relations of A and B are mutually recursive.

he level mapping is required not to increase from A4 to B if the relations of 4 and
ually recursive.

ing observations are immediate.

» program 1is acceptable w.r.t. | | and I, then it is semi-acceptable w.r.t. | | and I.

O
. program 1s semi-acceptable w.r.t. | | and I, then it is acceptable w.r.t. a level
nd the same interpretation I. Moreover, for each atom A, if A is bounded w.r.t.
ounded w.r.t. || ||. i

3 us to the following conclusion.
) A program is acceptable iff it is semi-acceptable. a
the notion of semi-acceptability leads to more natural level mappings reconsider

studied before.

10
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g that PALINDROME-T is acceptable, we had to repeatedly use ”+1” to ensure the
1¢ level mapping. Now a simpler level mapping | | suffices:

|palindrome(xs)] = 2- |xsl,
|reverse(xs,ys)| = 2-|xs|,
|reverse(xs,ys,zs)] = 2- |xs| + |ysl,
llist(xs)] = |xs|.

forward to check that PALINDROME-T is semi-acceptable w.r.t. the level mapping |
\OME—T-

see that SEQUENCE-T is semi-acceptable w.r.t. the level mapping | | defined by:

|question(xs)] = 54,
|sequence(xs)] = O,
|sublist(xs,ys)| = [xs|+ lysl,
|app(xs, ys,zs)] = min (|xs],|zs]),
llist(xs)| = |xs|

re) any model I of SEQUENCE-T such that for a ground s
I |= sequence(s) iff s is a list of 27 elements.

e above level mapping it was possible to disregard the accumulated use of ”+1” ’s.
sroach was further generalized in Apt and Pedreschi [AP94] to a yield a modular
yroving termination. It was applied there to a number of non-trivial examples in-
MAP_COLOR program from Sterling and Shapiro (1986, page 212) which generates a
v map in such a way that no two neighbors have the same color.

ial Correctness

ch to partial correctness is based on the use of the least Herbrand model Mp. We
attention to left terminating programs. This explains why we treated termination
llowing observation of Apt and Pedreschi [AP93] explains why for a left terminating
is easier to verify that a Herbrand interpretation is its least Herbrand model.

3.10 We say that a model I of a program P is supported if for every ground atom
, I |= A there exists B such that A— B € ground(P) and I E B. O

sly, B is an explanation (or support) for the truth of A in I.

11 For a left terminating program P, Mp is the unique supported Herbrand model
O

11




For all programs considered here, and for plenty of other “correctly typed” programs, check-
ing that a given Herbrand interpretation is a supported model is straightforward. Consequently,
we omit the proofs that a given Herbrand interpretation is the least Herbrand model of a given
left terminating program. Of course, it is legimitate to ask how one finds a candidate for the
least Herbrand model. According to our experience it is usually the “specification” of the pro-
gram limited to ground queries. We do not consider here the problem in what language it is
most convenient to write this specification.

In the sequel it will be more convenient to work with the instances of the queries instead of
with the substitutions. More precisely, we introduce the following definition.

Definition 3.12 Consider a program P.

e We say that Q' is a correct instance of the query Q, if for some correct answer substitution
6 for @, Q' = Q6, that is if Q' is an instance of @ and P |= Q'.

o We say that Q' is a computed instance of the query Q if for some computed answer
substitution 8 for @, Q' = QF. a

Clearly, a unique correct (resp. computed) answer substitution can be computed from a
query and its correct (resp. computed) instance in a straightforward way. So considering
instances instead of substitutions is just a matter of convenience. Using this terminology the
usual soundness and strong completeness properties of logic programs, now restricted to the
leftmost selection rule, can be formulated as follows.

Theorem 3.13 (Soundness of LD-resolution) Consider a program P and a query Q. Ev-
ery computed instance of () is a correct instance of Q. O

Theorem 3.14 (Strong Completeness of LD-resolution) Consider a program P and a
query Q. For every correct instance Q' of Q there exists a computed instance Q" of Q such that

Q"<Q". O

Let us introduce now the following notation. For a program P, a query @ and a set of queries
Q, we write

{Q} P Q

to denote the fact that Q is the set of computed instances of Q. {Q} P Q should be read as:
“the program P transforms @ into the set of its computed instances Q”. In particular, when
Q is a singleton, say Q = {Q'}, we have {Q} P {Q'} which not accidentally coincides with the
syntax of correctness formulas in Hoare style approach to verification of imperative programs
(see e.g. Apt and Olderog [AO91]). We now present an easy method of establishing constructs
of the form {Q} P Q.

Theorem 3.15 Consider a program P and a query Q. Suppose that the set Q of ground correct
instances of Q is finite. Then '

{Q} P Q.
Proof. First note that
every correct instance @' of @ is ground. (1)

Indeed, otherwise, by the fact that the Herbrand universe is infinite, the set © would be infinite.
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Consider now Q; € Q. By the Strong Completeness Theorem 3.14 there exists a computed
instance Qg of @ such that @2 < @1. By the Soundness Theorem 3.13 @2 is a correct instance
of Q, so by (1) Q2 is ground. Consequently Q2 = Q1, that is @1 is a computed instance of Q.

Conversely, take a computed instance Q1 of Q. By the Soundness Theorem 3.13 Q) is a
correct instance of Q. By (1) @ is ground, so @1 € Q. !

For a query consisting of just one atom A the set of its ground correct instances equals
[A] 0 Mp, so the assumption of the above theorem can be rephrased as “the set [A] N Mp is
finite”. This simplifies checking its validity and explains the relevenace of Mp in our approach.
As the examples below indicate, the above theorem is quite useful.

Append

First consider the APPEND-T program and three of its uses.

(i) Given ground lists s,t,u we have app(s, t,u) € Mapperp-t iff s * t = u. Consequently
e when sxt = u, {app(s,t,u)} APPEND — T {app(s,t,u)},
e when s*t # u, {app(s,t,u)} APPEND —T 0.

(ii) Given ground lists s,t, the set [app(s, t,Zs)] N Mappenp-1 consists of just one element:
app(s,t,s*t). Thus

{app(s, t,Zs)} APPEND — T {app(s,t,s * t)}.
(i) Finally, given a ground list u, we have
[app(Xs, Ys,u)] N MpppEND-T = {app(s, t,u) | s,t are ground lists, s * t = u}.

But each list can be split only in finitely many ways, so the set [app(Xs, Ys,u)] NMappENp-T I8
finite. Thus

{app(Xs,Ys,u)} APPEND — T {app(s,t,u) | s,t are ground lists, s ¥t = u}.

Palindrome

A slightly less trivial example is the PALINDROME-T program. Given a list s, let rev(s) denote
its reverse. It is easy to check that

MpaLTiDROME-T = {palindrome(s) | s is a ground list, rev(s) = s}
U {reverse(s,t) | s,t are ground lists, rev(s) = t}
U {reverse(s,t,u) | s,t,u are ground lists, rev(s)*t = u}
U Myist,
by noting that for lists x1s, x2s
rev([x|x1s]) * x2s = rev(xls) * [x|x2s].
Thus for a ground list s
e when rev(s) = s, {palindrome(s)} PALINDROME —T {palindrome(s)},
o when rev(s) # s, {palindrome(s)} PALINDROME —T 0.
Moreover, for a ground list s, [reverse(s,Ys)] N MpALINDROME-T = {reverse(s,rev(s))}, so

{reverse(s,¥s)} PALINDROME — T {reverse(s, rev(s))}.

13



1sider the SEQUENCE-T program. Call a list of 27 numbers satisfying the description
ence a desired list. We leave to the reader checking that

Isequence-1 = MappeNp-T

U {sublist(s,t) | s,t are ground lists, s is a sublist of t}
U {sequence(s) | s is a ground list of length 27}
U

{question(s) | s is a desired list}.

tion(Ss)] N Msequence-1 = {question(s) | s is a desired list}. But the number of
3 is obviously finite (in fact, as we noted, there are 6 of them). Consequently,

{question(Ss)} SEQUENCE — T {question(s) | s is a desired list}.

the above approach to partial correctness cannot be used to reason about queries with
d inputs” (or more precisely about queries with non-ground computed instances),
t,Zs) where s,t are non-ground lists, since [app(s, t,Zs)] N Myppgyp-1 is infinite.
pt and Gabbrielli [AG94] proposed a modification of the above method which allows
roperly with such queries.

ar-check Freedom

ion we study the occur-check problem.

ck Free Programs

iis problem we need to recall the unification algorithm due to Martelli and Montanari
wo atoms can unify only if they have the same relation symbol. With two atoms
and p(ti,...,t,) to be unified we associate the set of equations

{81 = t1, . tn}.

el we often refer to this set as p(si,...,8n) = p(t1,...,tn). The algorithm operates
te sets of equations. We use below the notions of sets and of systems of equations
1gly. A substitution @ such that s10 = t16,...,8,0 = t,0 is called a unifier of
8n = tn}. Thus the set of equations {s; = t1, ..., 8, = t,} has the same unifiers as
(81, .-y S) and p(te, ..., t).

s of equations are called equivalent if they have the same set of unifiers, and a set
3 is called solved if it is of the form {z1 = t1,...,z, = t,} where the z;’s are distinct
«d none of them occurs in a term ¢;. If £ = {z; = t1,...,Z, = t,} is solved, then we
vy nftn} the unifier determined by E.

a most general unifier (in short mgu) of two atoms it suffices to transform the
et of equations into an equivalent one which is solved. The following algorithm does
>ossible and otherwise halts with failure.

MONTANARI ALGORITHM

nistically choose from the set of equations an equation of a form below and perform
ed action.

14



i

3n) = f(t1, s tn) replace it by the equations
§1 = t1y..,8n = In,

3,) = g(t1,...,tm) where f £ g halt with failure,

delete it,
ere t is not a variable replace it by the equation z =1,
iere z # t, ¢ does not occur in ¢ perform the substitution {x/t}
:curs elsewhere in every other equation,
ere ¢ % t and z occurs in © halt with failure.

rithm terminates when no action can be performed or when failure arises. The
orem holds (see Martelli and Montanari [MM82]).

.16 (Unification) The Martelli-Montanari algorithm always terminates. If the
f equations E has a unifier, then the algorithm successfully terminates and produces
of equations determining an mgu of E, and otherwise it terminates with failure. O

“z does not occur in ¢? in action (5) is called the occur-check and in most Prolog
ions it is omitted for the efficiency reasons. By omitting the occur-check in (5)
action (6) from the Martelli-Montanari algorithm we are still left with two options
o whether the substitution {z/t} is performed in ¢ itself. If it is, then divergence can
1se  occurs in ¢ implies that z occurs in t{z/t}. If it is not, then an incorrect result
uced, as in the case of the single equation z = f(z) which yields the substitution
i0 in both cases the omission of the occur-check leads to complications. They are
red as the occur-check problem.

with the occur-check problem we propose simple syntactic conditions which allow
that for a given pure Prolog program and a query the occur-check can be safely
 formally define this property we introduce the following notions.

3.17

of equations E is called not subject to occur-check (NSTO in short) if in no execution
Martelli-Montanari algorithm started with E action (6) can be performed.

be an LD-derivation. Let A be an atom selected in £ and H the head of the input
. selected to resolve A in £. Suppose that A and H have the same relation symbol.

we say that the system A= H is considered in §.

)se that all systems of equations considered in the LD-derivations of P U {Q} are
). Then we say that P U {Q} is occur-check free. o

icept of an NSTO set of equations is due to Deransart, Ferrand and Téguia [DFT91]
d the conditions under which the occur-check can be safely omitted independently
-tion rule and of the chosen resolution strategy . Note that for an NSTO set of
t is irrelevant for the purposes of unification whether the occur-check is omitted from
i-Montanari algorithm.

sve definition assumes a specific unification algorithm but allows us to derive precise
oreover, the nondeterminism built into the Martelli-Montanari algorithm allows us

15




to model executions of various other unification algorithms. In contrast, no specific unification
algorithm in the definition of the LD-derivation is assumed.

Since in the definition of the occur-check freedom all LD-derivations of PU{Q} are considered,
all systems of equations that can be considered in a possibly backtracking Prolog execution of
a query @ w.r.t. the program P are taken into account.

We now present the approach of Apt and Pellegrini [AP92] for proving occur-check freedom.
To this end we need some preparatory definitions. One of them is the notion of a mode.

Well-moded Queries and Programs

Intuitively, modes indicate how the arguments of a relation should be used. They were first
considered in Mellish [Mel81], and more extensively studied in Reddy [Red84] and Dembinski
and Maluszynski [DM85].

Definition 3.18 Consider an n-ary relation symbol p. By a mode for p we mean a function
myp from {1,...,n} to the set {+,—}. If mp(i) = ‘+’, we call i an input position of p, and

if mp(i) = ‘~’, we call i an output position of p (both w.r.t. m,). By a moding we mean a
collection of modes, each for a different relation symbol. |
We write m, in a more suggestive form p(my(1),...,mp(n)). For example, member(~,+)

denotes a binary relation symbol member with the first position moded as output and the second
position moded as input.

The definition of moding assumes one mode per relation symbol in a program. Multiple
modes may be obtained by simply renaming the relations. In the remainder of this section
we assume that every considered relation symbol has a fixed mode associated with it. This
assumption will allow us to talk about input positions and output positions of an atom.

We now introduce a restriction which constrains the “flow of data” through the query and
through the clauses of the programs. To simplify the notation, when writing an atom as p(u,v),
we now assume that u is a sequence of terms filling in the input positions of p and v is a sequence
of terms filling in the output positions of p.

Definition 3.19
e A query pi(s1,t1),...,Pn(Sn, tn) is called well-moded if for i € [1,n]

-1
Var(s;) C U Var(t;).

j=1
e A clause
PO(tO, SI‘H-I) — pl(sla tl)a e '7pn(sn) tn)
is called well-moded if for i € [1,n + 1]

i-1
Var(s;) € U Var(t;).
=0

o A program is called well-moded if every clause of it is. O

In particular, an atomic query p(s,t) is well-moded if Var(s) = 0, and a unit clause p(s,t) —
is well-moded if Var(t) C Var(s).
Thus, a query is well-moded if

16



s i e i

riable occurring in an input position of an atom (i € [1, n]) occurs in an output
of an earlier (j € [1,¢ — 1]) atom.

ise is well-moded if

1)) every variable occurring in an input position of a body atom occurs either in
_position of the head (j = 0), or in an output position of an earlier (jelL,i—1])
m,

-1) every variable occurring in an output position of the head occurs in an input
of-the head (j = 0), or in an output position of a body atom (j € [, n}).

» introduce the notion of linearity.

.20

7 of terms is called linear if every variable occurs at most once in it.

1 is called input (resp. output) linear if the family of terms occurring in its input
utput) positions is linear. O

nily of terms is linear iff no variable has two distinct occurrences in any term and

have a variable in common.
.ate a result allowing us to conclude that P U {Q} is occur-check free. As we shall
easily applied to various pure Prolog programs.

21 Let P and Q be well-moded. Suppose that
1 of every clause of P is output linear.
} is occur-check free. O

. now how this theorem can be applied to the programs considered in the previous

>r the program APPEND with the mode app(+,+,-). It is easy to check that in this
) is well-moded and the head of every clause is output linear. By Theorem 3.21 we
t for s and t ground, APPEND U {app(s, t, uw)} is occur-check free.

rain
iode app(-,-,+) APPEND is well-moded and the head of every clause is output linear.
1 applies and yields that for u ground, APPEND U {app(s, t, u) } is occur-check

Y
>

ider the program PALINDROME-T. We mode it as follows: palindrome(+), reverse(+,-),
k,-), list(+). Then PALINDROME-T is well-moded and the heads of all clauses are
r. By Theorem 3.21 we conclude that for s ground, PALINDROME-T U {palindrome(s)}
’k free.

17



Nicely Moded Programs

The above conclusions are still of a restrictive kind, because in each case we had to assume that
the input positions of the one atom queries are ground. Moreover, Theorem 3.21 cannot be used
to establish that SEQUENCE-T U {question(Ss)} is occur-check free. Indeed, there is no way to
mode this program and query so that both of them are well-moded.

To see this, first note that to get the query question(Ss) well-moded we have to use the
mode question(-). This implies that to get the clause defining the question relation well-
moded, we have to use the mode sequence(~). But then we cannot satisfy the requirement of
well-modedness for the unit clause defining the sequence relation.

To deal with these difficulties we introduce the following notion due to Chadha and Plaisted
[CP91] (and independently, though later, rediscovered in Apt and Pellegrini [AP92]).

Definition 3.22

e A query pi(s1,t1),...,Pn(Sn,tn) is called nicely moded if tq,...,ty is a linear family of
terms and for ¢ € [1,n]

Var(s;) N (CJ Var(t;)) = 0.

j=i
e A clause
pO(SO; tO) At Pl(sl’ tl), o -)pn(sl’h tn)
is called nicely moded if pi(s1,t1),...,Pn(Sn, tn) is nicely moded and

n
Var(sg) N (|J Var(t;)) = 0.
=1
In particular, every unit clause is nicely-moded.

e A program is called nicely moded if every clause of it is. |

Thus, assuming that in every atom the input positions occur first, a query is nicely moded if

e every variable occurring in an output position of an atom does not occur earlier in the
query.

And a clause is nicely moded if

e every variable occurring in an output position of a body atom occurs neither earlier in the
body nor in an input position of the head.

So, intuitively, the concept of being nicely moded prevents a “speculative binding” of the
variables which occur in output positions — these variables are required to be “fresh”. The
following result of Apt and Pellegrini [AP92] clarifies the importance of this notion.

Theorem 3.23 Let P and Q be nicely moded. Suppose that
o the head of every clause of P is input linear.

Then P U{Q} is occur-check free. o

This result is also stated in Chadha and Plaisted [CP91] but, in our opinion, with an in-
complete proof. Let us see now how this theorem can be applied to the previously studied
programs.

18



Append

Consider again the program APPEND with the moding app(+,+,-). Clearly, APPEND is nicely
moded and the head of every clause is input linear. By Theorem 3.23 we conclude that when u
is linear and Var(s,t) N Var(u) = @, APPEND U { app(s, t, u)} is occur-check free.

Append, again

With the moding app(~,-,+) APPEND is nicely moded, as well, and the head of every clause is
input linear. Again, by Theorem 3.23 we conclude that when s, t is a linear family of terms and
Var(s,t) N Var(u) = 0, APPEND U { app(s, t, u)} is occur-check free.

Sequence

Reconsider now the program SEQUENCE-T. To be able to apply Theorem 3.23 we mode it as
follows: sublist(-,+), sequence(+), question(+), app(-,-,+), list(+). Thanks to the
use of anonymous variables it is easy to check that then SEQUENCE-T is indeed nicely moded and
that the heads of all clauses are input linear. By Theorem 3.23 we now get that when t is linear
(so for example a variable), SEQUENCE-T U {question(t)} is occur-check free.

Palindrome

So far it seems that Theorem 3.23 allows us to draw more useful conclusions than Theorem 3.21.
However, reconsider the program PALINDROME-T. In Chadha and Plaisted [CP91] it is shown
that no moding exists such that PALINDROME-T is nicely moded and the heads of all clauses are
input linear. Thus Theorem 3.23 cannot be applied to this program whereas Theorem 3.21 was
applicable.

The last two examples thus show that each of these theorems is applicable to different classes
of programs.

4 Pure Prolog with Arithmetic

We now move on to the study of the second subset of Prolog, pure Prolog with arithmetic. The
previous approach to termination can be readily applied to this subset — it suffices to use level
mappings which assign to ground atoms with arithmetic relations the value 0.

However, some caution has to be exercised. While the base for our approach to termination,
Theorem 3.3, remains valid for pure Prolog programs with arithmetic (in fact the same proof
~ carries through), Theorem 3.4 does not hold anymore. Indeed, consider the program with only
one clause: p— z < y,p. Because the LD-derivations which end in an error are finite, the above
program is left terminating. However, it is easy to see that it is not acceptable — just consider
the ground instance p « 1 < 2,p and recall from Section 2.2 that the clause 1 < 2 is added to
the program, so it is true in every model of it. (In contrast, the program consisting of the clause
p— x < z,p is acceptable.) This shows that the proposed method of proving termination is
somewhat less general in the case of programs with arithmetic.

We refer to Apt and Pedreschi [AP93] for a proof that QUICKSORT is left terminating and
that for a list s all LD-derivations of QUICKSORT U {qs(s,Ys)} are finite.

The subject of partial correctness is considered after studying the issue of errors.
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4.1 Absence of Run-Time Errors

To prove absence of errors we use types. We found it convenient to use here an approach
recently proposed by Bronsard, Lakshman and Reddy [BLR93] which from the semantic point
of view coincides with the method of Bossi and Cocco [BC89] for proving partial correctness.
In our presentation we abstract from the concrete syntax introduced in these papers. Bossi and
Cocco [BC89) use first-order language and concentrate on proofs of partial correctness, whereas
Bronsard, Lakshman and Reddy [BLR93] introduce a language which allows us to express in
a concise way recursive and polymorphic types which involve incomplete data structures. The
idea is to associate with each relation symbol two types: a pre-type and a post-type.

We call an atom a p-atom if its relation symbol is p. Recall from Section 3.1 that we denoted
by rel(A) the relation symbol occurring in atom A. So an atom A is a rel(A4)-atom.

The following very general definition of a type is sufficient for our purposes.

Definition 4.1 Consider a relation symbol p.
o A type for p is a set of p-atoms closed under substitution.
e A type is a type for a relation symbol p.

e A directional type for p is a pair pre,, post, of types for p. We call pre, (resp. postp) a
pre-type (resp. a post-type) associated with p. O

Below we shall often use certain sets of terms in the consider universal language:

T — the set of all terms,

List — the set of lists,

Gae — the set of of gae’s,

ListGae — the set of lists of gae’s.

In what follows we write a directional type for a relation symbol p in a more suggestive form
used in Pedreschi [Ped93], another recent work on directional types:

p:8—-T,
where pre, = {p(s) | s € S} and post, = {p(t) | t € T'}. For example
app : (List x List x T)U (T x T x List) — List x List x List

is a directional type for a ternary relation symbol app.

In the remainder of this section we assume that every considered relation symbol has a
fixed directional type associated with it. This assumption will allow us to talk about pre- and
post-types of a relation symbol.

Definition 4.2 Given atoms As,...,An, Ap+1 and types Th,...,Tn, Tny1 , where n > 0, we
write
l=A1 €T1,--.,An ETn, = An+1 eTn+1

to denote the fact that for all substitutions 8, if A;0 € T1,...,Anf € Ty, then A, 10 € Ty, O

We now abbreviate A € pre,e4) to pre(A) and analogously for post.

Definition 4.3
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A1, ..., Ay is called well-typed if for j € [1,n]
k= post(A;),...,post(Aj—1) = pre(4;).

H «— By,..., B, is called well-typed if
iel,n+1]

k= pre(H), post(Bi),. .., post(Bj-1) = pre(B;),
re pre(Bp+1) 1= post(H).
m is called well-typed if every clause of it is. O
1 atomic query A is well-typed if = pre(A4), and a unit clause A « is well-typed
post(A).
ng property of the notion of being well-typed holds (essentially see Bossi and
>r an account of it in Apt and Marchiori [AM93]).

Persistence) An LD-resolvent of a well-typed query and a well-typed clause that
oint with it, is well-typed. |

. us to the following important conclusion.

, Let P and Q be well-typed, and let € be an LD-derivation of P U{Q}. Then
wery atom A selected in §.

ant of a well-typed clause is well-typed and for a well-typed query Ai,..., A, we
)- 0

el, we say that an atom A satisfies its precondition if = pre(A).

ulness of this corollary let us return to the QUICKSORT program. To prove absence
ors we start by typing the relation gs in a way reflecting the following statement:
argument is a list of gae’s, upon succesful termination the second argument is a

gs : ListGae x T — T x ListGae,

n’s > and < in such a way that the above corollary can be applied, so:

>:Gaex Gae—T x 7T,

<:Gaex Gae—T x T.
mplete the typing in such a way that QUICKSORT is well-typed:

part : Gae X ListGae x T x T — T x T x ListGae x ListGae,

app: T x ListGae x T — T x ListGae x T.
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awhile to note that a trivial directional type, namely
app: T X T xT->TxTxT

ere. The reason for using the above directional type will become clear in Section

ow that s is a list of gae’s. By Corollary 4.5 we conclude that all atoms selected in

ations of QUICKSORT U {qs(s,t)} satisfy their preconditions. In particular, when

wre of the form u > voru < v, both u and u are gae’s. Thus the LD-derivations
U {qs(s,t)} do not end in an error.

; program LENGTH uses another arithmetic relation, is:

s, N) « X isthe length of the list Xs.
_ | Ts]l, N) « length(Ts, M), N is M+1.
1, 0.

absence of run-time errors we use the following types:
length : 7 x T — 7T x Gae,

is: 7 x Gae— Gae x T.

;0 check that LENGTH is then well-typed. Corollary 4.5 now yields that for arbitrary
ill atoms selected in the LD-derivations of LENGTH U {length(s,t)} satisfy their

In particular, when these atoms are of the form u is v, v is a gae. So the
18 of LENGTH U {length(s,t)} do not end in an error.

1l Correctness

z with partial correctness of programs that use arithmetic relations we need to
e Section 2.2) that to each program we added infinitely many clauses which define
nmetic relations. Both the Soundess Theorem 3.13 and the Strong Completeness
. remain valid for programs with infinitely many clauses, however completeness does
nore in presence of arithmetic relations. Indeed, we have P =X < Y{X/1,Y/2} for:
P that uses <, whereas the LD-derivations of P U {X < Y} end in an error. Also
» does not hold then, as the query X < 2 shows. Still, the following version of this
be used for proofs of partial correctness.

6 Consider a program P and a query Q. Assume that the LD-derivations of PU{Q}
v error. Suppose that the set Q of ground correct instances of Q is finite. Then

{Q} P Q.

r the assumptions of the theorem both the Soundess Theorem 3.13 and the Strong
; Theorem 3.14 remain valid. For the completeness theorem this is not obvious,
ly relies on the Lifting Lemma which does not hold now. Indeed, the query 1 < 2
:essful LD-derivation whereas all the LD-derivations of its more general version X
1 error. However, the admirably short and elegant proof of Stirk [St490] does not
1g Lemma and carries through. Consequently, the proof of Theorem 3.15 carries
rell. O

22



S e

b

this theorem reconsider the QUICKSORT program. We deal here with its “correctly
'sion QUICKSORT-T obtained by using APPEND-T instead of APPEND and in which the
defining the part relation is replaced by

o0, 0, ) « X< X

; the first argument of part to be a gae. (Without this change the query qs([s],Ys)
seed for any s.)

we use the following terminology. An element a partitions a list of gae’s s into 1s
1 is a gae, 1s is a list of elements of s which are < a and bs is a list of elements of s
> a.

ending the previously considered typing with

list : ListGae — ListGae

ie that for a list of gae's s the LD-derivations of QUICKSORT-T U {qs(s,Ys)} do not
rrror. Moreover, the above mentioned proof of termination of QUICKSORT U {qs(s, Ys)}
dified in a straigthforward way to the program QUICKSORT-T.

ve to the reader checking that

Muyuicksorr-T1 = Myppenp—T U M> U M<
U {part(a,s,1s,bs) | s,1s,bs are lists of gae’s and
a partitions s into 1s and bs}

U {as(s,t) | s,t are lists of gae’s and
t is a sorted permutation of s}.

1 list of gae’s s the set [qs(s, Ys)]N MguzcksorT—T consists of just one element: gs(s,t),
a sorted permutation of s. Consequently, by Theorem 4.6

{qs(s,¥s)} QUICKSORT — T {qs(s,t)}.

t, the LENGTH program can be directly handled without any modification. It is easy
1at
Mignetn = M;
U {length(s,|s|) | s is a ground list}.

at for a list s, |s] is its length.) Such a check involves the use of Lemma 3.11 which is
here, since the program LENGTH is easily seen to be acceptable, so left terminating. So
id list s the set [Length(s, N)]N MigneTr consists of just one element: length(s,|sl).
ym 4.6

{length(s,N)} LENGTH {length(s,|s|)}.

hat the proof of the above claim for a non-ground list s breaks down because the set
N)] N Myeyery is then infinite.
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4.3 Occur-check Freedom

Finally, we deal with the issue of the occur-check. The approach of Section 3.3 is applicable to
pure Prolog programs with arithmetic without any modification. The reason is that the unit
clauses which define the arithmetic relations are all ground, so they automatically satisfy the
conditions of Theorems 3.21 and 3.23. To see how these results apply here reconsider the two
running examples of this section.

Quicksort

Consider QUICKSORT with the moding gqs(+,-), partition(+,+,~,~), app(+,+,-), >(+, +),
<(+, +). QUICKSORT is then well-moded and the heads of all clauses are output linear. Theorem
3.21 applies and yields that for s ground, QUICKSORT U {gs(s, t)} is occur-check free.

Moreover, in this moding QUICKSORT is also nicely moded and the head of every clause
is input linear. Thus Theorem 3.23 applies, as well, and yields that when t is linear and
Var(s) N Var(t) = 0, QUICKSORT U { gs(s, t)} is occur-check free.

Length

Next, consider the LENGTH program with the moding length(+,-), is(-,+). Then LENGTH
is well-moded and the heads of all clauses are output linear. By Theorem 3.21 for s ground,
LENGTH U {length(s, t)} is occur-check free.

Moreover, in this moding LENGTH is also nicely moded and the head of every clause is input
linear. Thus Theorem 3.23 applies here, as well, and yields that when t is linear and Var(s) N
Var(t) = @, LENGTH U { length(s, t)} is occur-check free. In particular, this conclusion holds
for any list s and a variable N not appearing in s.

5 Pure Prolog with Negation

Finally, we deal with the third subset of Prolog, pure Prolog with negation. We call programs
written in this subset general programs. Our approach to proving termination and partial
correctness of general programs is applicable only under the assumption that floundering does
not arise. So we have to deal with this issue first.

5.1 Absence of Floundering

To prove absence of floundering we generalize the notion of a well-moded program (Definition
3.19) to general programs. To this end we simply allow the negation symbol — to occur in front
of atoms in queries and clause bodies. More precisely we introduce the following definition,
where © stands for — or for the empty string.

Definition 5.1

e A general query Opi1(s1,t1),...,Opn(Sn,tn) is called well-moded if for i € [1,n]
i-1

Var(s;) C U Var(t;).

j=1
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1 clause
pO(tO, Sn+1) — © pl(sla tl)y sy Qpn(sl'h tn)

well-moded if for i € [1,n + 1]
i-1

Var(s;) € | Var(t;).
=0

1 program is called well-moded if every general clause of it is. O
;ioﬁ will be useful later.

2 A general program is called non-floundering if no LDNF-derivation starting in
al query flounders. 0

ing result is due to Apt and Pellegrini [AP92] and, independently, Stroetman

Consider a well-moded general program P and a well-moded general query Q.
Il relations used in negative literals of P and Q are moded completely input. Then
not flounder. In particular, P is non-floundering. 0O

1se of this theorem we now consider two general programs which deal with directed
scted graph is represented here as a (ground) list of its edges. In turn, an edge
» node b is represented by the list [a, b].

losure

al program, called TRANS-T, computes the transitive closure of a directed graph:

Y, E, Avoids) « list(Avoids), member([X, Y], E).
Z, E, Avoids) «

([x, Yi, B),

exr(Y, Avoids),

Y, Z, E, [¥Y | Avoids]).

ement, List) «— Element is an element of the list List.
[Y | Xs]) « member(X, Xs).
[X | Xs]) « 1list(Xs).

by the LIST program.

e of this program in order to check that [x,y] is in the transitive closure of the
_e, one evaluates the query trans(x, y, e, [x]).

noding trans(-,-,+,+), list(+), member(+,+) for the occurrence of member
e literal — member(Y, Avoids), and member(-,+) for the other occurrences of
-T is well-moded. By Theorem 5.3, for e,s ground, TRANS-T U {trans(a, b, e,
lounder. Moreover, TRANS-T is non-floundering.
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Dag

Consider now the problem of testing whether a graph is a dag. Recall that dag is the abbreviation
for “directed acyclic graph” and that a directed graph is acyclic if no path in it exists which
forms a cycle. The solution is exceptionally simple, though not very efficient — we add to the
general program TRANS-T the general clauses

acyclic(E) « = cyclic(E).
cyclic(E) « trans(X, X, E, [1).

Call the resulting general program DAG-T.

We now extend the above moding by cyclic(+), acyclic(+). It is straightforward to check
that DAG-T is then well-moded. Thus, by Theorem 5.3, for e ground, DAG-T U {acyclic(e)}
does not flounder. Moreover, DAG-T is non-floundering,.

5.2 Termination

To deal with termination we use the approach Apt and Pedreschi [AP93] which generalizes the
method of Section 3.1 to general programs.

Definition 5.4 A general program is called left terminating if all its LDNF-derivations starting
with a ground query are finite. O

Given a general program P, we now define its “negative part” P~.
Definition 5.5 Let P be a general program and p, g relations.
e p refers to q iff a general clause in P uses p in its head and ¢ in its body.
e p depends on q is the reflexive, transitive closure of refers to.
e Negp is the set of relations which are used in a negative literal in P,
e Negp is the set of relations on which the relations in Negp depend.
e P~ is the set of general clauses in P in whose head a relation from Negp is used. a

Recall now from Lloyd '[L1087] and Apt [Apt90] that comp(P) stands for Clark’s completion
of a general program P.

Definition 5.6

e Given a level mapping | |, we extend it to ground negative literals by putting |-A| = |A|.
—A is bounded with respect to | | if A is.

e A general clause is called acceptable with respect to || and an interpretation I, if I is its
model and for every ground instance A — K, L, M of it such that I K

14| > |L].
e A general program P is called acceptable with respect to || and I, if every general clause of

it is and if the restriction of I to the relation symbols from Neg} is a model of comp(P~).
0
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ring result relates these notions.

7 Let P be a general program acceptable w.r.t. || and I. Then for every literal L
| | all LDNF-derivations of PU{L} are finite. In particular, P is left terminating.
O

y the notion of acceptability we need a method for proving that an interpretation
sf comp(P~). For Herbrand interpretations the following observation due to Apt,
ker [ABW88] comes to our rescue. The notion of a supported model is now
eneral programs in an obvious way.

Herbrand interpretation I is a model of comp(P) iff it is a supported model of P.
0

ving result shows that the restriction to Herbrand models does not result in a
;he method.

) Let P be a left terminating, non-floundering general program. Then for some
| | and a Herbrand interpretation I

ceptable w.r.t. || and I,
y literal L all LDNF-derivations of PU{L} are finite iff L is bounded w.r.t. ||. O

Pedreschi [AP93] showed that TRANS-T is acceptable w.r.t. a level mapping | |
ans(a, b, e, s)| is a function of e and s, and a Herbrand interpretation I. Thus for
1 LDNF-derivations of TRANS-T U {trans(a, b, e, s)} are finite. In particular,
t terminating. '

ing this level mapping to DAG-T with

lacyclic(e)] = |cyclic(e)| +1,
|cyclic(e)] = |trans(a,a,e,[])]+1,

constant, and modifying appropriately I, we also conclude that for e ground all
tions of DAG-T U {acyclic(e)} are finite and that DAG-T is left terminating.

U Correctness

| to partial correctness of general programs is applicable only to general programs
t terminating and non-floundering. The following result of Apt and Pedreschi
cial.

10 Consider a left terminating, non-floundering general program P. Then
» unique supported Herbrand model, Mp,
1 model of comp(P),

ound general query Q such that P U {Q} does not flounder,
2 iff there exists a successful LDNF-derivation of P U {Q}. O

eed to revise Definition 3.12.
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Definition 5.11 Consider a general program P and a general query Q. We say that Q' isa
correct instance of Q, if Q' is an instance of @ and comp(P) = Q'. O

The definition of a computed instance refers now to the LDNF-resolution. The following sound-
ness and completeness results are of help.

Theorem 5.12 (Soundness of LDNF-resolution) Consider a general program P and a
general query Q. Every computed instance of Q is a correct instance of Q. O

Theorem 5.13 (Limited Completeness of LDNF-resolution) Consider a left terminat-
ing, non-floundering general program P and a general query @ such that P U {Q} does not
flounder. For every ground correct instance Q' of Q there exists a computed instance Q" of Q
such that Q" < Q".

Proof. P U {Q'} does not flounder since P U{Q} does not flounder. By Theorem 5.10(ii), (ii)
there exists a successful LDNF-derivation of PU{Q'}. PU{Q} does not flounder, so we can lift
this derivation to a successful LDNF-derivation of P U {Q} which yields a computed instance
Q" of @ such that Q" < Q'. a

These theorems are needed to establish the following result.

Theorem 5.14 Consider a left terminating, non-floundering general program P and a general
query Q such that PU{Q} does not flounder. Suppose that the set Q of ground correct instances
of Q is finite. Then

{Q} P Q.

Proof. The proof is analogous to the proof of Theorem 3.15. So first we note that
every correct instance @' of @ is ground. (2)

Consider now Q1 € Q. By the Limited Completeness Theorem 5.13 there exists a computed
instance Qy of Q such that Q2 < Q1. By the Soundness Theorem 5.12 @) is a correct instance
of @, so by (2) Q2 is ground. Consequently @2 = Q1, that is @ is a computed instance of Q.

Conversely, take a computed instance Q1 of @. By the Soundness Theorem 5.12 Q:11is a
correct instance of Q. By (2) @; is ground, so Q1 € Q. |

To apply this theorem we need a method to establish the premise “the set Q of ground
correct instances of Q is finite”. As in the case of pure Prolog programs, we solve this problem
by restricting our attention to the model Mp. Indeed, for an atomic query A the above premise
can be rephrased (thanks to Theorems 5.10 and 5.12) as “the set [A] N Mp is finite”.

As in the case of pure Prolog programs, it is usually straightforward to check that a Herbrand
interpretation is a supported model of a general program. So in the examples below we omit
the proofs of these facts.

Transitive Closure

We now show how to apply this theorem to the program TRANS-T. In the previous two sub-

sections we proved that TRANS-T is left terminating and non-floundering. Adopt the following

terminology. Given a list e, a path in e from a to b is a sequence ay,...,0n (n > 1) such that
- [a,—,ai+1] ceforie [1,n - 1],
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[ a path a1,...,a, (n > 1) is the set {ag,...,an-1}. A path aj,...,a, (n > 1)
ic if the elements of its interior are pairwise different. A path ai,...,a, (n > 1)
if no element of its interior is a member of s. In particular, a path consisting of
1as an empty interior and consequently is acyclic and avoids every s.

ie to check that

RANS—T = MrLisT

U {trans(a,b,e,s) | e, s are ground lists, an acyclic path
in e from a to b exists which avoids s}

U {member(a,t) |t is a ground list and a € t}.

ow a directed graph e. We denote its transitive closure by e*. Then [a,b] € e*
in e an acyclic path from a to b which avoids [a]. By Theorem 5.14 we conclude

,bl € e*, {trans(a,b,e,[a])} TRANS — T {trans(a,b,e,[a])},
,b] ¢ e*, {trans(a,b,e,[a])} TRANS — T 0.

can be replaced here by [] or by [a,b].
[trans(X,Y,e,[])] N Mrrans—T = {trans(a,b,e,[]) | [a,b] € e*}, s0

{trans(X,Y,e,[])} TRANS — T {trans(a,b,e,[]) | [a,b] € *},

"U {trans(X,Y,e,[])} does not flounder. This in conjunction with the fact
-derivations of TRANS-T U {trans(X,Y,e,[])} are finite implies that the query
3, []) generates all pairs of elements which form the nodes of the transitive clo-

;he general program DAG-T we extend the above terminology. Given a list e, we
for some a a path in e from a to a exists, and we call e acyclic if it is not cyclic.
le reader checking that

Mpag—t1 = MrRans—T

U {acyclic(e) | e is a ground acyclic list}
U {cyclic(e) | e is a ground cyclic list}.

3 directed graph e. By Theorem 5.14 we conclude that
s acyclic, {acyclic(e)} DAG — T {acyclic(e)},

s cyclic, {acyclic(e)} DAG —T 0.
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5.4 Occur-check Freedom

When considering the notion of the occur-check freedom for general programs and general
queries, we simply reuse the original Definition 3.17 but now apply it to the LDNF-derivations.
In this way, we ignore the selection of negative literals but this does not matter as the choice of
a negative literal = A either leads to floundering or to the consideration of the query A whose
selected literal is positive. In both cases no unification is performed. :

Further, we reuse the notion of well-moded general programs and general queries (Definition
5.1) introduced in Section 5.1. Theorem 3.21 easily generalizes to general programs and general
queries. More precisely, we have the following result (see Apt and Pellegrini [AP92]).

Theorem 5.15 Let P be a general well-moded program and @ a general well-moded query.
Suppose that 4

o the head of every general clause of P is output linear.

Then P U{Q} is occur-check free. a

Transitive Closure

Let us see now how this result can be applied to TRANS-T. In Section 5.1 we had to introduce
two modes for the member relation. Here a simpler moding suffices, namely trans(-,-,+,+),
list(+), member(-,+). Then trans is well-moded and the heads of all general clauses are
output linear. So we conclude by Theorem 5.15 that for e,v ground, TRANS-T U {trans(s, t,
e, v)} is occur-check free.

Dag

Extending the above moding by cyclic(+), acyclic(+) we can also draw appropriate conclu-
sions for the general program DAG-T: by Theorem 5.15 for e ground, DAG-T U {acyclic(e)} is
occur-check free.

It is also possible to generalize the result on nicely moded programs (viz. Theorem 3.23) to
the case of general programs. However, the concept of a nicely moded general program does not
prevent the use of non-ground input positions in the queries. As a result general programs to
which the results on nicely moded general programs can be applied usually flounder. So — in
the framework of LDNF-resolution — this generalization is of limited interest and consequently
is omitted.

6 Conclusions

6.1 Dealing with “Ill-typed” Programs

In our analysis we only dealt with the “correctly typed” programs, i.e. programs named XXX-T.
These programs are easier to handle than their corresponding “ill-typed” XXX versions, but they
are much more inefficient due to the added “type checks”.

It is possible to deal directly with the “ill-typed” programs, but the study of their partial cor-
rectness is quite a nuisance, because it is awkward to describe their unique supported Herbrand
models in simple and intuitive terms.

Therefore we propose the following alternative, which we illustrate on the program QUICKSORT.
Consider the typing of QUICKSORT defined in Section 4.1. Let gs(s,t) be a well-typed query
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and let & be an LD-derivation of QUICKSORT U {qs(s,t)}. By Corollary 4.5, if the selected
atom is of the form part(si,s2,s3,s4) then sy € Gae, and if the selected atom is of the form
app(s1, s2,s3) then sy € List.

Thus in both cases in the corresponding LD-derivation of QUICKSORT-T U {qs(s,t)} the
inserted “type checks”, namely X < X and 1ist(Y), succeed with the empty computed answer
substitution. Consequently, the computed instances of the query qs(s,t) are the same w.r.t.
both programs. In particular, for a list of gae’s s we have

{qs(s,Ys)} QUICKSORT {qs(s,t)}.

The same approach can be applied to other pure Prolog programs and programs with arithmetic.

For general programs we need to extend Definition 4.3. This can be done by simply iden-
tifying pre(—~A) with pre(A) and post(—A) with post(A). Then the generalization of Corollary
4.5 to LDNF-derivations holds, so the above technique is also applicable to general programs,
in particular to TRANS-T and DAG-T.

6.2 Final Remarks

The aim of this paper was to show that it is possible to reason about correctness of various Prolog
programs by means of simple arguments based on syntactic analysis, declarative semantics,
modes and types. We hope that this work can form a basis for a similar study of other languages
based on the logic programming paradigm.

In general, all correctness properties studied in this paper are undecidable. However, certain
aspects of the approach discussed here can be automated. We conclude this paper by discussing
this point in some detail and pointing out which issues require further investigation.

Termination

The approach to termination discussed here is based on the use of the notion of acceptability. Apt
and Pedreschi [AP93] noted that some fragments of the proof of accceptability can be automated.
In fact, they indicated that in many cases the task of checking the guesses for both the level
mapping | | and the model I can be reduced to checking the validity of universal formulas in
an extension of Presburger arithmetic by the min and maz operators. The validity problem for
such formulas is decidable. In fact, Shostak [Sho77] presented for this class a decision algorithm
which is exponential. Cinzia Pieramico of the University of Pisa implemented this procedure
for checking left termination w.r.t. a level mapping and a Herbrand interpretation which are
expressible in the above language and verified mechanically that the quicksort program QS is
left terminating.

De Schreye, Verschaetse and Bruynooghe [SVB92] studied the problem of automatic genera-
tion of level mappings and Herbrand interpretations w.r.t. which the program is left terminating.

Partial Correctness

The approach to partial correctness reported in this paper is to our knowledge new and its (par-
tial) automation needs to be further studied. It is worthwhile to point out here that Theorem
5.10 implies that for left terminating (non-floundering general) programs the membership prob-
lem for the model Mp is decidable. So given such a (general) program, it is decidable whether
a ground (general) query successfully terminates.
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1e complexity of this decision problem is in general forbiddingly high because the
m [Bez93] imply that every total recursive function can be encoded in a model

Freedom

yroposed here can be trivially implemented because they are based on syntactic
ver, to use Theorem 3.21 it is needed to generate modings for which this theorem
. To this end efficient algorithms are needed for generating modings for which a
l-moded. A test whether a query or clause is well-moded w.r.t. a given moding
ly performed by noting that

) is well-moded iff every first from the left occurrence of a variable in @ is within
t position,

o(s, t) « B is well-moded iff every first from the left occurrence of a variable in
nce s, B, t is within the input position of p(s,t) or within an output position in

n this description that in every atom the input positions occur first.)
mentioned, the concept of nicely moded program and query and Theorem 3.23
lier Chadha and Plaisted [CP91]. They proposed two efficient algorithms for
lings with the minimal number of input positions, for which the program is nicely
algorithms were implemented and applied to a number of well-known Prolog

Trors

to prove absence of errors is based on Corollary 4.5. To apply it one needs to
18 which include >: Gae x Gae — 7 x T for which a given program is well-typed.
shman [AL93] showed that the problem whether a program or query is well-typed
yping is decidable for a large class of types which includes the ones studied here.
'loundering

proving absence of floundering is based on the use of the notion of well-modedness,
ied in the context of the occur-check freedom.
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