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Self-Dual Morphological Operators and Filters

Henk J.A.M. Heijmans

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract
The median operator is a nonlinear image transformation celebrated for its noise cleaning
capacities. It treats the foreground and background of an image identically, i.e., it is self-dual.
Unfortunately, the median operator has one major drawback: it is not idempotent. Even worse,
subsequent iterations of a given image may lead to oscillations. This paper describes a general
method for the construction of morphological operators which are self-dual. This construction
is based upon the concept of a switch operator. Subsequently, the paper treats a class of
operators, the so-called activity-extensive operators, which have the intriguing property that
every sequence of iterates of a given image is pointwise monotone and therefore convergent.
The underlying concept is that of the activity ordering. Every increasing, self-dual operator
can be modified in such a way that it becomes activity-extensive. The sequence of iterates of

this modification converges to a self-dual morphological filter.
AMS Subject Classification (1991): 68U10, 58F08

Keywords & Phrases: mathematical morphology, median operator, self-dual operator, idempo-
tent operator, morphological filter, centre operator, activity ordering, activity-extensive opera-

tor, switch operator, persistent structure, iteration, cellular automata.

1. Introduction

The median operator is likely to be one of the most frequently used transformations in image
processing which is nonlinear. In fact, this operator (see Section 3 for a formal definition)
fits quite well in the framework of mathematical morphology [10, 13, 14, 3]; it is increasing,
translation invariant, and can be decomposed as a finite union of erosions. The median operator
is eminently suited for the elimination of noise [7]. Furthermore, it affects foreground and
background noise in an identical manner. This is usually expressed by saying that the median
operator is self-dual; see Section 2 for a formal definition. The major disadvantage of this
operator is its non-idempotence: repeated application of the operator may change the outcome
further or make previous changes undone. Even worse, iterating this operator may lead to
oscillations. With regard to noise cleaning purposes, this is an undesirable property [14, 12].
Most of the operators discussed in this paper will be illustrated through their action on one
particular noisy binary image X with a resolution of 128 x 128 pixels; see the left-most image
in Figure 1. The second image in this figure shows p(X), where p is the median operator.
The sequence of images obtained by iteration converges pixel-wise to a limit image p(X); see
the third image in Figure 1. The right-most image shows all pixels which have been flipped at
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Fig. 1. From left to right: the original image X, the transform u(X), where p is the median operator,
the limit image 1°(X), and the set of pixels which have been flipped at at least one iteration step.

at least one iteration step; note that this set may be substantially larger than the symmetric
difference of X and p*°(X).

Two other important operators known from mathematical morphology, are the opening
and the closing. These operators have interesting noise cleaning capabilities, too, and they
are idempotent. Unfortunately, however, they lack self-duality. As a matter of fact, opening
and closing are complementary in the sense that the opening affects noise particles with high
intensities, whereas the closing affects noise particles with low intensities. The major question
addressed in this paper is the following: “Can we find a general method to design morphological
operators which are self-dual and idempotent?” A partial answer to this question was given in
our previous work [3, Chapter 13], [4]. In this paper we will review this work and supplement it
with a substantial number of new results and examples.

The basic idea underlying our approach is to construct self-dual operators 9 which are not
necessarily idempotent, but which do satisfy the (weaker) constraint that they are activity-
eztensive. The latter means that the sequence of iterates 1, 12,43, - - - is increasing with respect
to the so-called activity ordering on the set of all operators; this ordering was introduced by
Serra [14] and will be reviewed in Section 2. If ¢ is an activity-extensive operator, then repeated
application of 7 to an image yields a convergent sequence. This leaves us with the problem of
finding self-dual operators which are activity-extensive. This part of the problem will constitute
the main body of the present paper.

In Section 2 we recall the basic concepts which we need in this paper. As much as possible we
adopt the terminology and notation of [3]. We point out that we use the terminology “operator”
for an arbitrary transformation; the word “filter” is preserved for operators which are increasing
and idempotent. In Section 3 we will make some general statements about self-dual operators; in
particular, we will recall the notions of a (weighted) rank and median operator. We also establish
a lattice isomorphism between the self-dual operators provided with the activity ordering at
the one hand, and the anti-extensive operators with the pointwise ordering at the other. In
Section 4 we define switch operators and indicate their importance in relation to our problem
of finding increasing, self-dual operators. We study an important instance of a switch operator
corresponding with the situation that we want to eliminate isolated noise points. Here the word
“isolated” has to be interpreted in terms of some prescribed adjacency relation on the underlying
point set. From Section 5 onwards, we will restrict attention to operators which are translation
invariant. Under this restriction we can give a complete characterization of switch operators, and
hence, of increasing, self-dual operators. Subsequently, in Section 6 we show how an arbitrary
increasing, self-dual operator can be modified such that it becomes activity-extensive; then this
modification can be used to construct a self-dual filter by iteration. A large number of examples
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will be presented in Section 7. We end with some conclusions in Section 8; there we will also
point out some open problems.

2. Terminology and basic facts

We presume that the reader is familiar with the basic notions of mathematical morphology.
Throughout this paper we are mainly concerned with the space of discrete binary images P(Z2).
If ¢, are two operators on this space, then ¢ < ¢ means &(X) C Y(X), for every X C Z2. If
;, i € I is a collection of operators then Nier ¥: and Vier ¥: denote the infimum and supremum
of this collection, respectively; see e.g. [3].

X CZ*and h € Z? then X, denotes the translation of the set X along the vector h.
Sometimes we interpret X as an indicator function. Then X (h) =1ifh € X and 0 otherwise.
Given a translation invariant operator ¢ on ’P(Zz), we say that 9 is a finite-window operator if
there exists a finite set M C Z2? such that h € ¥(X) <= h € (X N Ay) for every h € 72,
X C Z? and A D M. If ¢ is increasing then it suffices to consider A = M.

In [14] Serra introduces a partial ordering on the complete lattice of all operators on £, where
L is a complete Boolean lattice. Here we specialize to the case £ = P(Z?). Given two operators
¢, on P(Zz), we say that v is more active than ¢, written ¢ =g, if

idA®p <idA¢ and idVe >idV 4.

Here id is the identity operator which maps every set onto itself. The infimum of a collection of
operators ;, i € I, with respect to the activity ordering is denoted by A;ecr ;. It is given by
the expression

Awi=0da\g)v Av

il i€l
This operator is sometimes called the centre of the operators ;. Dually, their supremum,
denoted by Y;er;, is given by

L= A\ )V /\ ¥,
i€l i€l
and is called the anti-centre. Here v is the complement operator given by

y(X) = X°.

It is obvious that id and v are the least and greatest operator, respectively, with respect to
the activity ordering. The negative ¥ of an operator 1 is given by ¢* = vy, ie., ¥*(X) =
(X))

The operator 1 is called activity-extensive if
d}n_#,l/)n—i-l, n=0a1327"-

This means that, for a fixed set X C Z?, the sequence %™ (X) is pointwise monotone: the
sequence %™ (X)(h), where h € 72 is given, is monotone, either increasing or decreasing. As
such sequences consist exclusively of 0’s and 1’s, they must be of the form 0,0,...,0,1,1,... or
1,1,...,1,0,0,.... We call {#*(X) |n=0, 1,2,---} the orbit starting at ¥°(X) = X.
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3. Self-dual operators

Before entering a general discussion on the construction of self-dual operators we present some

examples based on Boolean functions; see also [3, §4.5]. Let A = {@1,as2,...,6,} be a finite
structuring element, and let b be the threshold function with realization vector (w1,...,w, | 5),
ie.,

b(u1,. .., un) = [szuz > sl;
i=1

here wy,...,Wn,s € Z. Here we use the following convention. The expression [P] equals 1 if P
is true and 0 if P is false. Now

Po(X) = {z € Z* | zn:wiX(:v—Fai) > s},

=1

is an increasing, translation invariant, morphological operator. We call this operator weighted
rank operator. If the weights w; as well as the threshold s are positive integers, then this operator
has the following interpretation: the point x lies in 95(X) if the sth value of the sequence which
is obtained by putting the values X(z + a;) (counted w; times) in decreasing order equals one.
If w; > 0 for every ¢, then v is an increasing operator. Its negative 1} is given by

B = (2 €2 |3 wX(@+a)> Y wi—s+1}.

i=1 i=1

It follows immediately that 1, is self-dual if and only if 2s = ", w; + 1. In this case ¥ is
called a weighted median operator. A weighted rank operator can be represented by a matrix
containing the weights w; in which the position of the origin is marked; see Example 3.1 below

for an illustration.

If all weights w; have the value 1, and if s € {1,2,...,n}, then ¢, is called rank operator;
this operator is denoted by pa . It is easy to show that h € pa (X) if and only if X N 4 has
at least cardinality s. In particular,

par(X)=X®A and pan(X)=Xo0A

Furthermore,
PAn S PAn-1S < pa1.

If n is odd and s = (n + 1)/2 then p4 , is self-dual; we use the notation
KA = PA,(n+1)/29

if n is odd, and we call g4 the median operator.

Let 1 be an operator on P(Z*) with negative 1*. The centre of ¥ and ¥* is given by
v=({dA @ V) V(P AP).

The anti-centre is

k=AY V([ AYDY),

where v is the complement operator. It is easy to see that both v and « are self-dual. Further-
more, v is increasing if 1 is increasing.
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3.1. Example. Let A be the 3 x 3 square centred at the origin, and let pa s, 1 < s <9, be the
associated rank operators. The negative of pa s is pa,10-s, and pas < pa,io—s if 8 > 5. Define
g, as the centre of pa s and pa,io—s; hence

9, =(id/\pA,1o_s)VpA,s, §=25,6,7,8,9.

Note that 5 = 4, the median operator. Obviously, every 0, is self-dual. Furthermore, it is

easy to show that
id =09 < 03 < 07 < 06 < 05.

In Figure 2 the action of these operators is illustrated by means of an example. It is easy to
show that @ corresponds with the weighted median operator represented by the matrix

1 1 1
w=|1 2k~-9 1];
1 1 1

the centre of the matrix corresponds with the origin, and the threshold s equals k.

Fig. 2. From left to right and top to bottom: original image X and its
transforms 0g(X),07(X),06(X),05(X). This picture illustrates nicely that
s < 07 < 06 X 0.

Let us have a closer look at the median operator p4 defined in the previous example. When
a point h lies in the complement of X, then h € p A(X) if it is surrounded by at least five
neighbours which lie in X like in one of the following 56 configurations:

>
[
Pl
>
PR~ T
Pl
Pl
b=
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Note that there correspond eight rotations with every structuring element depicted. Dually,
when h lies in X, then & lies outside p 4(X) if it has at least five neighbours in the complement
of X.

Consider an arbitrary self-dual operator 7). We denote the points which are contained in X
but not in ¥(X) by o(X). Hence

o(X) = X\ $(X) = X N ($(X))* = X Np(X°). (3.1)
Here we have used that 1 is self-dual, hence
P(X°) = ($(X))".
It is easy to check that ¢ can be recovered from ¢ by means of the formula:
$(X) = (X \ (X)) Uo(X°). (3.2)

Motivated by the above observations we define two mappings on O, the lattice of operators on
P(Z2).
3.2. Definition. Let the mappings 3, ¥ : O — O be defined by

() = id A ¢y, Y eO, (3.3)
U(c) = (id Avo) V ov, oeO. (3.4)

Observe that (3.1) and (3.2) can be reformulated as o = £(¢) and 9 = ¥(0), respectively.

Furthermore
0<id <= ov<v < v <vo, (3.5)

for every operator o. This means in particular that ¥(o) is the centre of vo and ov if ¢ is

anti-extensive.
We denote by Oy and O, the self-dual and anti-extensive operators on P(Z?), respectively.
It is obvious that (O,,, <) is a complete sublattice of (O, <). From the fact that both the centre

and the anti-centre of a family of self-dual operators is self-dual (cf. [3, Prop. 3.42]), we conclude
that (Osq4, X) is a complete sublattice of (O, %).

3.3. Proposition.
(a) X :(O0s4,=%) = (Oge, <) 1s increasing.
(b) U : (Ope,<) = (Os4, %) is increasing.

PROOF. (a): It is evident that X(¢) is anti-extensive. Let 91,12 be self-dual operators and
Y1 <X 2. Then id V4 <idV 4, hence vV ih1v = (id V91 )v < (id V ¢2)v = v V 1hov. Taking
the infimum with id we get id A (v V ¢1v) <id A (v V 4h,v), that is, id A v < id A v,
(b): First we must show that ¥(o) is self-dual if ¢ < id. This is done as follows:
U(o)* =v¥(o)v

=v((id Avo)Vov)y

=v((v Avov) Vo)

=v(v Avov) Avo

=(idVov)Ave

= (id Avo) Vov

= ¥(o);
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here we have used that ov < vo by the anti-extensivity of 0. To show that ¥ is increasing, let
o1 < oy < id, and let ¥(o1) = Y1, ¥(o2) = 2. We show that ¥; < 9. First,
idAay; =idA ((id Avoy) V 011/)

= (idA(id A vay)) V (id A orv)

= (id Avoy) V (id A oyv)

=id Avoy,
since vo; > a1v by (3.5). Now o1 < o9 implies that id Aty 2> id A 9. We also find

idvy, =idVoyv.

Clearly, o1 < o7 implies that id V ¢y <id V 9. Thus we find that ¥ < ¥2. [ |

3.4. Proposition. The mappings ¥ : (Osa, <) — (Oge, <) and ¥ : (Oge, <) — (04, %) are
bijective (onto and one-one). Furthermore, these mappings are each other’s inverses, i.e.,

%(¥(0)) = g, for o € Og; (3.6)

‘I’(E(¢)) = ¢7 f07‘ 7/1 € Osd- (37)
PROOF. We prove (3.6) and leave (3.7) as an exercise for the reader. Note that the validity of
these two relations implies the bijectivity of the mappings ¥ and V.

Let o be anti-extensive; then
(¥(0)) =id A ¥(o)y =id A ((id Avo) Vv ov)v
=id A ((v Avov) Vo)=(dAvAvev)V(idA o)

=idAo =o0.

Here we have used that id A v = o, the operator which maps every set onto the empty set. 1

The following relations are easily derived from the previous result.

2(y, ¥i) = ie\/IE(dfi); (3.8)
S(A, %) = /E\I S(s); (3.9)
‘I’(\/I 0i) = Y W(ow); (3.10)
\p(i/\I 0:) = 4, U(@). (3.11)

Here we prove (3.8). Let v; be self-dual operators for i € I, and let oy = Y(e;). Since
Vi % Yier p; for j € I, we obtain g5 < Y Yier ;). This implies that ViEI o; < E(Yiej’lﬁi),
hence that 0; < V;c;0: < Y(Y;er¥i). Applying ¥ we arrive at

¥ < U\ o) 5 z_gfiﬁi-
i€l

Taking the activity supremum over all j at the left-hand side, we get

)&wi < \Il(l/lai) < igfwi'
1




hree terms must be equal, meaning that

ny vi= \Il(v o3)-

i€l
o both sides and using that XU = id, gives

5y, ) =\ 3(#)-

i€l

ind greatest operator with respect to the activity ordering are id and v, respectively.
reck that %(id) = o and X(v) = id, the least resp. greatest anti-extensive operator.

;. Let 9 be an operator, not necessarily self-dual. The centre 1 A ¢* and the
Y ¢* are self-dual. A straightforward calculation shows that

LW A¢*) =EWAY*) =id A (Y Avy);
Yy ) =L VyYT) =idA (v V).

ven so far provide a general method to construct self-dual operators. We give
wttention to the class of translation invariant operators. It is a well-known fact
4.2] that every translation invariant operator ¢ can be decomposed as a union of
erators Recall that the hit-or-miss operator with structuring elements A, B is the
) (A, B), where

X®(A,B)={heZ*| An C X, B, C X°}.

X® (A,B) C X for every X we must demand that 0 € A. Thus we may
every anti-extensive operator o can be written as a union of hit-or-miss operators
B) with 0 € A.

3. Consider the following eight structuring elements (A contains the central black
ins the white pixels) respectively called (A;, B1),...,(As, Bs). The underlined
is located at the origin.

|®
le
|@
- |l o
e
|@
]

: 4.6] these same patterns are used to obtain the pseudo-convex hull of a discrete
1s of the corresponding thickenings X ® (4, B) = X U X® (A, B). Here we define

8
o(X) = |J X® (4, Bx).
k=1

id. Let 9 = ¥(o) be the corresponding self-dual operator. In Figure 3 we depict
d its transform ¢(X). If we compute the sequence of iterates ™ (X) we find that
sonverges to a period-2 orbit consisting of two images Y and (Y. In Figure 3
1d the symmetric difference Y A ¢(Y).
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first image is X, the second ¥(X), with ¢ as defined in Example 3.6. The sequence
es to a period-2 orbit containing two images. The third image represents one of these

The right-most image shows the symmetric difference Y A %(Y').

&5 &0 £

g. 4. From left to right: the original image X, the transformed image
X), and the limit ¢*°(X). Here ¥ = a Y j, where « is the structural
ening by the 3 x 3 square and £ is the negative closing.

s. Let o be an opening and o(X) = X \ a(X); in other words, ¢ = id Ava. The
self-dual operator ¢ = ¥(o) equals ¥ = (VA B) Vo = (vV @) A B, where [ is the
Note that ¢ is the anti-centre of & and B, i.e., ¥ = a Y . In Figure 4 we have
'8, where o is the translation invariant, structural opening by the 3 x 3 square.
e is the original image X, the second image is 4(X). In this particular case, the
() tends to a limit 1°°(X) as n — oo; this is the right-most image in Figure 4.
lso exist images Y such that ¢™(Y) converges to a period-2 orbit. For example,
at oY) = a(Y°) = @, then 0(Y) =Y and ¢(Y°) = Y*. Thus ¢(Y) = Y* and
his means that the pair {¥,Y°} forms a period-2 orbit.

h operators

yperators 9 in Examples 3.6-3.7 are not increasing. In this section we will answer
[uestion: which conditions must o satisfy in order that the corresponding self-dual
U(o) is increasing. Assume that X CY. From the interpretation of o(X) as the
hich are deleted by 1 we make the following observations. If a point A € X is not
(X) then it must not be contained in o(Y'), for otherwise h € 9(X) but h ¢ ¥(Y).
to the following condition:

do(X) = h¢ga(Y).

lition must hold for background points:
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(i) heY®, hgo(Y°) = hdo(XC).

Suppose, finally, that a point 4 lies in ¥ but not in X. To avoid that A is mapped out of ¥ and
at the same time into X we must assume:

(iii) h € 0(X¢) = hga(Y).

It is easy to see that (i) and (ii) amount to the following condition:

(S1) X CY implies that X No(Y) C o(X).

(S2) o(XU{R})No(X°U{R) =2, hecZ? XCZ%.

We show that (iii) follows from (S1)-(S2); note, however, that (iii) is not equivalent to (S2).
Assume that h € 0(X°) and h € o(Y); we must show that this leads to a contradiction. From
(52) we conclude that h ¢ o(X U{h}). As X U{h} CY we conclude from (S1) that

(X U{r}) no(Y) Co(X U{h}).

But then & € o(X U {h}), a contradiction.
4.1. Definition. An anti-extensive operator o is called a switch operator if (S1) and (S2) hold.

The adjective ‘switch’ indicates that the operator o yields all points which switch value from 1
to 0 (points in o(X)) or from 0 to 1 (points in o(X¢)) by application of the self-dual operator

P = ¥(o).

In the previous paragraphs we have established the following result.

4.2. Theorem. Let o be anti-eztensive and ¢ = V(o); then 1 is increasing if and only if o is
a switch operator.

If 1 is a self-dual increasing operator, and 7 is increasing and extensive, then
P = (id Aym) V Yy

is the centre of 17 and its negation ¥n*; note that n* < 5. Therefore, 1’ is self-dual and
increasing too. The following result expresses the corresponding switch operator X(%') in terms
of X(¢) and 7.

4.3. Proposition. Let o be a switch operator, 1 = ¥(c), and let n be increasing and extensive;
then o' = id A o7 is a switch operator too, and ¥(o') = (id A ¥m) V ¥n*. Furthermore, o' < o
and ¥’ < 1.
PROOF. We show that ¥(¢') = (id A ¢n) V ¢n*, and therefore increasing. This yields automati-
cally that o’ is a switch operator.
V(o')=(idAva')Vo'v
= (id Av(on Aid)) V (o9 Aid)y
= (id A (von V) V (o Av)
= (id Avon) V (onqv Av).
Now we substitute that ¢ = ¥(¢p) = id A ¢v, and use that vy < v < qu:
U(o') = (id A v(id A 9pv)n) V ((id A ypw)nv Av)
= (idA (v V)n) Vv ((qv Abn*) A v)
= ((id Avp) v (id Aym)) V (¥7* Av)
= (idAym) V (v A¢n").
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Since n* < n we have id A yn* < id A ¢n; thus

(") = (idAyn) V (n Ayn™) V (id Ayn”)
= (id A ) V ¥n™.

This concludes the first part of the assertion.

Using (S1) and the extensivity of 7 we get that X N a(n(X)) C o(X) for every X, hence
o' < . Now Proposition 3.3 gives that ¢ < 1. This concludes the proof. 1
From the following section onwards we will restrict ourselves to operators which are translation
invariant. Before we do so we will present a class of self-dual operators (and their corresponding
switch operators) based on the notion of adjacency.

Let E be an arbitrary non-empty set and let ~ be a symmetric relation on E x E. Thus
z ~yiffy ~x, for z,y € E. In this case we say that = and y are adjacent. The set of points

adjacent to x is denoted by adj(x):
adj(z) ={y € E |z ~y}.

N.B. It is not assumed that ~ is reflexive; hence z ~ z may not be satisfied.
When the set E is finite we can supply it with a graph structure by considering the unordered
pairs {z,y} with z ~ y as edges. We define the operator

o(X) = {h € X | adj(k) # @ and adj(h) N X = &}. (4.1)

4.4. Proposition. o is a switch operator.
PROOF. First we prove (S1). Let X C Y; we show that X Na(Y) C o(X). Ifz € X No(Y),
then z € Y and adj(z) N Y = @. This implies that adj(z) N X = &, too, hence = € a(X).

To prove (S2), assume that h € o(X U {h}) N o(X°U {h}). Then adj(h) # @ and adj(h) N
(X U {h}) = @ and adj(h) N (X°U {h}) = . But this yields that adj(h) = @, a contradiction.
This concludes the proof. |

From this point onwards we assume that
adj(h) # &, forevery h € E.

Let 1 be the increasing, self-dual operator on P(E) associated with o. The action of 9 can be
described as follows: v switches the state of a point if and only if all its adjacent points have a
different state. Or, to put it differently, 1 switches the state of the isolated points. Therefore,
if z,y are adjacent and have the same state, then both points are left unaltered by ¢ (and its

subsequent iterates).
Define the dilation ¢ by

§(X) ={h € F|adj(h) N X # @}. (4.2)
The negative erosion & = §* is then given by
e(X)={h € E|adj(h) C X}. (4.3)

Note that these two operators are known from the context of graph morphology [6]-
Evidently, the pair (¢, 6) constitutes an adjunction. It is easy to check that vo = vV 6 and
that ov = v A . Substitution in ¥ = (id Avo) V ov gives us

= ({d A )V (v Ae).
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Using that € < 6 we get id Ae <id A §, and therefore
b=(dA8)V v Ae)V(dAe),

that is
p=({dAd)Ve=(idVe)AS. (4.4)

We present a condition on the adjacency relation which guarantees that the operator 7 is
idempotent. In general, however, ¥ will not be idempotent. In Figure 5 for example, we depict
a binary image on a graph whose edges represent the adjacency relation, which shows period 2
oscillations under iteration of .

Fig. 5. A period-2 orbit.

4.5. Definition. Let z,y,2 € F; we call {z,y, 2} an adjacency tripleif z ~y ~ z ~ z.

The points z,y, z need not be distinct. In fact, if z ~ «, then {z,z,z} is an adjacency triple.

The following intuitive argument shows that v is idempotent if every point in F is a member
of at least one adjacency triple. Suppose namely that point € X has no adjacent points inside
X. Since it is a member of an adjacency triple {z,y, 2} with y,2z € X°, the point z will be
mapped outside X by 1. However, the points y, z stay inside X because they constitute an
adjacent pair. In subsequent iterations the points x,y, z will stay in X°.

4.6. Proposition. Assume that every point in E is a member of at least one adjacency triple,
then ¥ s idempotent.

PROOF. We show that 9 < 1%. Then, taking the negative at both sides and using that ¢* =
we get 1 > 1% as well.

Let h € ¥(X). There are two alternatives: h € X and h ¢ X. Assume first that h € X;
then h ¢ o(X), which means that adj(h) N1 X # @. Let z € adj(h) N X, then h € adj(z) N X,
and therefore z ¢ o(X). We conclude that z € ¥(X). But then h € o(¥/(X)), meaning that
h € Y3 X).

Assume next that h ¢ X. Then h € ¢(X°) and thus adj(h) N X° = @. By assumption,
h is a member of some adjacency triple: h ~ z ~ y ~ h. Necessarily, z,y € X. But then
h,z,y € ¥(X) and it follows that h € 9?(X) (as well as z,y € %*(X)). This concludes the
proof. ]

Apparently, the adjacency triple condition is not satisfied in the example of Figure 5.

Let us apply this result to the case that F = 22 (or Zd), where ~ is translation invariant,
ie.,  ~ y implies that x + h ~ y + h for all z,y,h € Z%. Putting A = adj(0), we have
adj(h) = An. The fact that the adjacency relation is symmetric implies that A is symmetric;
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ie., A= A, where A = {—a | a € A}. The adjacency triple condition can be formulated as

follows:
Ve ADAD A

Purthermore
(X)=X®A, e(X)=X0 A

We arrive at the following result.

4.7. Theorem. Let A C Z? be a symmetric structuring element (A = A) which satisfies
leAd A A (4.5)
Then the increasing, translation invariant operator 9 given by
PX)=(XN(X@A4)U(XOA) (4.6)

15 self-dual and idempotent.

Note that the conditions on A are satisfied by

A=

The operator 1 in Theorem 4.7 switches all pixels whose state is different from that of all their
8-neighbours (i.e., the isolated pixels); see also example 10 in Section 7.

5. Switch operators which are translation invariant

Arriving at this point, the most obvious question is: how to design switch operators? Below
we shall give a complete characterization of translation invariant switch operators. But first we
give a characterization of the kernel of a translation invariant self-dual operator. Recall that the
kernel of a translation invariant operator i on P(Z?) is defined as [13, 3]:

V() ={A CZ?|0 € ¢p(A)}

Every increasing, translation invariant operator ¥ can be written as a union of erosions:

p(X)= |J xoA4 (5.1)
AeV(¥)
Recall also that [3]
V(Aw)=V@:) and V() =V (5.2)
el i€l el i€l

5.1. Proposition. Let ¢ be a translation invariant operator; then % is self-dual if and only if
AEV(Y) < A EV(Y).

If, moreover, ¥ is increasing, then
A,BeV(y) == ANB#a.

PROOF. A € V(¢) iff 0 € ¥(A) = ¢¥*(A4) = (¥(A°))°. This implies the first assertion.
Assume that 9 is also increasing. If A,B € V(¢) and AN B = &, then A C B°. This
implies that 0 € ¢¥(A4) C ¥(B°), a contradiction. |
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Assume that 1 is an increasing, translation invariant, self-dual operator, and let o = %(¢).
Using (5.1) we get
oX)= |J xn(Xx°0A4).

AeV(¥)
If 0 € A then X N (X° © A) = @, and thus we find
aX)= |J Xn(Ex°eA).
AEV(4),0¢A

Using 0 = id A ¢v and (5.2) we obtain V(o) = V(id) N V(¢pv). This is equivalent to
AeV(W), 0€g A & 0€0(A°) < A° € V(o).

Define
a(o) ={AC Z? | A° € V(o)}. (5.3)

Proposition 5.1 gives that AN B # @ for A, B € a(o). We have thus shown the following result.
5.2. Proposition. Let o be a switch operator and let a(o) be given by (5.3); then

0gA and ANB# @, for A,B € a(o). (5.4)
Furthermore, o is given by
sX)=Xn |J X°oA (5.5)
Ael(o)

The following question arises. If % is an increasing, translation invariant, self-dual operator,
then ¢ can be represented as a supremum of erosions, ¢ = \/ AeV(wp) EAs where €4 is the erosion
€4(X) = X 6 A. The corresponding switch operator o = X(v) is characterized completely
by a subset of V(¢), namely those structuring elements which do not contain the origin. It is
easy to see that ¥ > \/ A€d(o) €4; In general, equality does not hold. Yet the collection a(o) is
sufficiently large to recover 1. How can we express ¥ in terms of this collection?

More generally, let A be a collection of structuring elements which obey

0€A and ANB# @, for A,B c A. (5.6)
Let
o(X)=oa(X)=Xn ] X°04, (5.7)
. A€EA
that 1is,
oa=1id A v EAV. (5.8)
A€A

To show that o is a switch operator, we compute ¥4 = ¥U(0 4) and show that it is an increasing,
self-dual operator.
va=(dAvos)Vouv
=@dA A 1) vrA \ ca)
AcA AecA
Since AN B # @ for A,B € A we get that §; > ep for A,B € A. This implies that id A
ANseabi = 1d AV 4¢ 4 €4, which leads us to

pa=GdA N\ 82 VrA \ e v(ida \/ ea)

AcA A€A A€A
=@{dA A\ 6V V ea
AcA A€A

In other words, 14 is the centre of the increasing operator \/ AcAEa and its negation A scaba
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n. Ewvery translation invariant switch operator o is of the form o = o4, where
on of structuring elements satisfying (5.6). The corresponding self-dual operator

s given by
¢A(X)=(XnﬂX@!1)uUXeA. (5.9)
AcA AcA

h operator and A a collection of structuring elements satisfying (5.6) such that
we say that o generated by A. Note that, in general, A is a subcollection of a(o).

1e set a(o 4) observe that
BeVa) < BeVida N 65) or BeV(\/ ea).
AcA A€A
V(idA A gc4 64) contain the origin, and as such they are not contained in a(o 4).
B € V(V 4ea€4) yields that A C B for some A € A. Thus we conclude that
a(o4) ={B|0¢ B and A C B for some A € A}.

ring element B € A is redundant if there exists another structuring element A € A
ct subset of B.
. 0 4 can also be written as a union of hit-or-miss operators, namely
oa(X) = {J X& ({0}, 4).
AcA
his section with the following result.

tion.
be translation invariant switch operators; then

o <o = a(g) Cal(s).

be subsets of P(Z*). If AC B then o4 < 0g.

wing two assertions are equivalent:

SoB;

wery A € A there ezists a B € B such that B C A.

«d (b) are obvious (in fact, (b) is a consequence of (c)). We prove (c). First assume
: A. Then 0 € A° and 0 € 0 4(A4°). As 04 < o, we conclude that 0 € o5(A°); so
B € B such that B C A. This proves (ii)

f that (ii) = (i) is straightforward. 1

. If A, B are subsets of P(Z*) such that

A € A there exists a B € B such that B C A;

e. Consider the operators 05, 0g, . ..,0; defined in Example 3.1, and define oy =
..,9. Then oy is generated by the collection Ay of subsets A of the 3 x 3 square

» origin with 0 ¢ A and card(A) = k. This collection A, contains (2) subsets

0 if k = 9). For example, Ag consists of 28 structuring elements:

4 rotations

on 7, Examples 7 and 8, for some additional results concerning this example.
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6. Construction of self-dual filters

In [12, 5, 3] it has been shown how to construct morphological filters by iteration. We recall the
following result.

6.1. Proposition. Let 1 be an increasing, finite-window operator, let 1™ be an increasing
operator, and assume that Y™ — Y (pointwise) as n — oo. Then ™ is a morphological filter.

It is obvious that the sequence ¥™ converges to a limit if ¥ is extensive or anti-extensive. In
Section 2 we have seen that an activity-extensive operator % has the property that every sequence
¥™(X) is pointwise monotone, and hence convergent. Therefore, Proposition 6.1 applies to
operators which are activity-extensive.

Suppose that 1 is an increasing, translation invariant, self-dual operator. Is there a simple
way to verify whether or not 4 is activity-extensive? A simple, but very useful, criterion is given
by the following result.

6.2. Proposition. Let 9 be an arbitrary operator, and assume that there exists a set X such
that ¥(X) # X and yP(X) = X for some integer p > 1. Then 1 is not activity-extensive.

In this case we call X periodic with respect to 1. If p > 1 is the smallest integer for which
¥P(X) = X then we say that X is p-periodic, or alternatively, that X has period p. For
example, the chess board is 2-periodic with respect to the median operator which uses the
rhombus (origin and its four 4-neighbours) as structuring element.

Let 1 be an increasing, translation invariant, self-dual operator with X(¢)) = 0.4. If A € A,
then 0 € A and 0 € 9(A). If there exists an integer p > 1 such that 0 ¢ ¢?(A), then the sequence
1™ (A) is not pointwise monotone, and therefore 9 is not activity-extensive. On the other hand,
suppose that 0 € 9¥"™(A) for every n > 1 and A € A. We show that v is activity-extensive.
Suppose, namely, that 1 is not activity-extensive. Then there exists a set X such that ¥"(X) is
not pointwise monotone. Without loss of generality we can assume that 0 ¢ X, 0 € ¥(X), and
0 & 9P(X) for some integer p > 1. Thus 0 € ¢(X°¢), which means that A C X for some A € A.
But then, by assumption, 0 € ¢ (A) C ¥™(X) for every n > 1, a contradiction. We have proved
the following result.

6.3. Proposition. Let 1 be an increasing, translation invariant, self-dual operator with switch
operator o 4. Then 9 is activity-extensive if and only if 0 € Y™ (A4), n > 1, for every A € A.

In practice, the structuring elements in A are finite and the sequence ¢¥™(A) becomes stationary
(i.e., constant) after finitely many iterations. In such cases, verification of the condition in
Proposition 6.3 requires only finitely many computations.

6.4. Example. (a) The operator ¢ defined in Example 3.1 is not activity-extensive since

L ] L ] - . .
96 06
z — - & - — ;
(b) The operator 8 is activity-extensive, since
L] [ ]
o 97 .

- ~% e —  idem

L]

and
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[ [} .
I je e 5 idem

The other structuring elements in A7 are 90°-rotations of these two elements.

In [4] and [3] we have explained how one can modify an increasing, self-dual operator which
is not activity-extensive in such a way that it becomes activity-extensive. In fact this approach
is based on the following two results.

6.5. Proposition. (See[14] and [3, Chapter 13].) Assume that ¢,v are finite-window operators,
é < v, and that ¢ is an inf-overfilter and ¥ a sup-underfilter. Then the centre v = (id A V)V
is activity-eztensive and the sequence ¥™ converges to the strong middle filter of ¢ and .

6.6. Proposition. (See [3, Prop. 6.28].) Let 1 be an increasing operator.
(a) If a is an opening with a < 1 then Pa is an inf-overfilter.
(b) If B is a closing with B > 9 then ¥ is a sup-underfilter.

If we combine the previous two results with Proposition 4.3 we arrive at the following construc-
tion method for self-dual morphological filters.

6.7. Proposition (Construction of self-dual filters).
Let 1 be an increasing, self-dual operator with switch operator ¢ = X(v). Let o be an opening
< 1, and let B = o* be the negative closing. Then

7= (dAyB) Vv va

is an increasing self-dual operator with =(w) = id Aof8. The operator w is activity-extensive and
satisfies ™ < .

If the operators 1, a, 3 are finite-window operators, then w is a finite-window operator too,
and ©™ converges towards a strong self-dual morphological filter n°. (In fact, ©* is the middle

filter of Yo and ¥B.)

This result makes clear that we must look for openings o which are < 3. Recall that the
structural opening ap is given by ap(X) = X o B. It is a well-known fact [3] that

ap <9 iff ¥(B)2=B.

The following result characterizes all structuring elements B with this property.

6.8. Proposition. Assume that ¢ is increasing and self-dual, and that the switch operator
o = X(v¥) can be represented as o = o4, for some collection A C P(Z*). The following
assertions are equivalent:

(i) ¥(B) = B;

(i) o(B) = 2;
(i) Vbe BYAe€ A : AyNB#2;

(i) VAEA : 0€ AeB.

PRrROOF.
(i) <= (ii): using (3.1) we get
o(B)=0 < BNyY(B®)=0
< 9%(B°) C B°
<= B C (¥(B))* =4"(B) = ¢(B).
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(ii) <=> (iii): using the expression for g4 in (5.7) we get

ou(B)=0 < Bn || BFod=g
AcA :
<> VbeB :b¢ | B°oA
AcA
<> VbeBVAEA: b¢B°OA

& VbeBYAcA : A, € B°
< VbeBYAcA: AyNB#a.

(iii) <= (iv): above we have seen that (iii) is equivalent with
VbeBVAEA : bgB°OA.

This implies .
YVbeBVYAcA : be(B°0A)°*=BoA=A0B

~>VAecA: BCA®B
«—VAcA:0c(AoB)cB=AeB.

This concludes the proof. | |
A structuring element B which satisfies the equivalent properties in Proposition 6.8 is called
persistent with respect to 1. Note that, unless 1 = id, singletons are not persistent. It is obvious
that the collection of persistent sets is closed under unions: if B; is persistent for every ¢ in some
index set I, then | J;o; B; is persistent, too.

Assume that 1,4’ are increasing, self-dual operators, and that ¢’ < ¢. If B is persistent
with respect to 1 then it is also persistent with respect to /.

7. Examples

In this section we present several increasing, translation invariant, self-dual operators ¢ on
P(Z?). All examples contain the following ingredients:
e characterization of a (minimal) collection of structuring elements A such that o4 is the
switch operator associated with
e an examination of the activity-extensivity of ;
e (in case that 1 is not activity-extensive) characterization of a collection of structuring
elements which are persistent with respect to 1.
In the latter case one can use the opening a(X) = Vie ;X o B;, where B;, i € I, are persistent
structuring elements, to obtain a self-dual operator

= (ldA¢pa*)V a (7.1)

which is activity-extensive (see Proposition 6.7). It should be evident that our interest goes
to “small” persistent structuring elements, as these cause the smallest “loss of activity” if one
replaces 1 with m. The operators ¢, 7 in Example i are denoted by ;,m;, respectively (i =
1,2,...,13)

1. Let A be the rhombus comprising the origin and its four horizontal and vertical neighbours.
Let pa,s be the rank operators defined in Section 3, and let 9, be the centre of the operator
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pas and its dual pa 4, ie., ¥ = (id A pa2) Vpau (cf. Example 3.1); then 7 is self-dual. It is
easy to verify that 91 = 14, where A contains one structuring element:

A—_—. - ®

The operator 1, is not activity-extensive for the chess board is a periodic structure. The elements

* °| and B

are persistent. The operator v; switches the state of all pixels which are isolated in the 4-
connected sense. Let A be the structuring element depicted above, then 1 is given by (4.6).
However, the adjacency triple condition governed by (4.5) is not satisfied.

2.  Again, let A be the rhombus, and let 12 be the corresponding median operator. Then
g = P4 with

A=|e - e]| + 90°rotations

Like in the previous example, % is not activity-extensive since the chess board is 2-periodic
with respect to 1. The operator 1> has an infinite number of persistent elements which cannot
be decomposed into smaller parts which are persistent, for example:

In fact, every structuring element in which every pixel has at least two 4-neighbours is persistent.

3. Consider the median operator 13 associated with the 3 x 3 square. In Section 3 we have
depicted the structuring elements in A such that ¥3 = 1 .4; we recall them here for the sake of
convenience.

[ ] -] @ . ® o . ® ® [ ] . [ ] . . ® L] . [ ] [ ] ®
: e - eol|l:- - e|le - ejle - o|l- - e|l- - e/ rotations.
e - ® R ) e - o e - e ®

w3 is not activity-extensive, because the following structure is 2-periodic:

etc.

The set
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is a persistent structuring element. Let a be the corresponding structural opening, and let w3
be the modification of 13 resulting from (7.1). The median operator 13, its modification 73,
and the filter 75° obtained by infinite iteration are illustrated in the second row of Figure 6.

4. Consider the subcollection B of A in Example 3 which lacks the first structuring element
along with its three 90°-rotations. The corresponding self-dual operator 1), is less active than
3. However, it is not activity-extensive for the structure depicted in 3 is 2-periodic. Of course,
the persistent element in 3 is also persistent with respect to 14, but there also exists a smaller
element which does the job, namely

Denote by 74 the modification of 14 resulting from (7.1), where « is the opening by this struc-
turing element. Refer to the third row in Figure 6 for an illustration.

5. Consider the subcollection C of A in 3 which lacks the 45°, 135°, 225° and 315°-rotations
of the first structuring element, i.e., the elements

Then 5 := )¢ is less active than 13 but it is not activity-extensive for, again, the structure
depicted in 3 is 2-periodic with respect to 5. In this case the rhombus

is persistent with respect to ¢s.
Denote by w5 the modification of 5 resulting from (7.1), where « is the opening by this
structuring element. The operators in this example are illustrated in the fourth row of Figure 6.

6. We can combine 4 and 5 and consider the subcollection D of A which lacks the eight
rotations of the first structuring element in A, i.e., D = BNC. It is relatively easy to show that
op = og A o¢ (here one must use that B € B and C € C implies that D € B U C for some
D € D). Now we conclude from (3.11) that 9 := 9¥p is the centre of ¥4 = 95 and 95 = VY¢:

Ye = g A s.

In this case

and e e o

are persistent with respect to 5. Let mg be the modification of g resulting from (7.1) if we take
for « the union of the structural openings by these two elements. The action of the operators
in this example are depicted in the bottom row of Figure 6.

7. Consider again the operator 6 introduced in Example 3.1; see also Example 5.6. Here we
shall denote this operator by 7. The collection of structuring elements associated with ()
is given by

e - - <L + rotations




Fig. 6. The top-right image is the original image X. The four subsequent
rows show (from left to right) the images v;(X), m;(X), 7{°(X) defined in
examples i = 3, 4, 5, 6, respectively. For a better understanding of the

usefulness of the modifications 7; and their iterates one should compare these

images with the ones in Figure 1.
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The operator 17 is not activity-extensive since the pattern

“etc

is 2-periodic. The elements

and |e e e

are persistent. Let 77 be the modification of 97 obtained from (7.1) if one takes for a the opening
by these two structuring elements. The second row in Figure 7 depicts the action of 47, 77, and

{o o]
71-7.

Fig. 7. The top-right image is the original image X. The second row
illustrates the operators 7, w7, and w7° discussed in Example 7. The bottom
row depicts ¥3(X) and ¥g°(X) examined in Example 8.

8. Consider the subcollection B of Ag which is obtained by deleting the elements

+ 45°-rotations, |® - - | 4 90°-rotations, + 90°-rotations.




We use Proposition 6.3 to show that ¢3 = ¥z is activity-extensive. Thereto we must cons
the sequences Y% (B) for B € B. First we note that the elements

are invariant under ¥g. Now

[ ]
[ ]
[ ]
. 184 idem
[ ]
L]
. s, idem
®
L) LR idem
)

This implies that 1)g is activity-extensive. The bottom row in Figure 7 depicts the transfor
sets 1g(X) (left) and ¢g°(X) (right). These figures show clearly the invariance of the trian

depicted above.

9. Consider the operator 6; introduced in Example 3.1. We define 99 := 6;. The associ:

collection A7 consists of eight structuring elements:

Az =

<4 rotations.

Using Proposition 6.3 it is easy to show that g is activity-extensive. Use namely that

Yo
-

L
L] Yo, idem.
L J
[ ]
L] Yo, idem.

Fig. 8. From left to right: X, ¥9(X) and ¥g°(X); see Example 9.
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10. Consider the operator ¢ := fg; here Ag contains one structuring element, namely

*
Ag = e -
o @

The structuring element in 45 satisfies condition (4.5) in Theorem 4.7, meaning that the resulting
operator 1o is idempotent. Its action consists hereof that it removes isolated foreground and
background pixels (isolated in the sense of 8-neighbours). An illustration can be found in
Figure 2.

<

11. Consider the weighted median operator 1; with matrix

[T
w Jor w
-

and threshold 11. The collection of structuring elements A yielding the corresponding switch
operator is

e - e e - e e - o e - e e - ® e - e | 4 90°rotations

If B is the collection of structuring elements associated with the rhombus median operator (see
Example 2) then condition (ii) in Proposition 5.4(c) is satisfied, hence the operator 1 is less
active than the rhombus median operator. The chess board is periodic with respect to 1;; and
therefore 17, is not activity-extensive. The pattern

is persistent. Let 7;; be the resulting activity-extensive modification of ;. In Figure 9, second
row, we depict 911 (X), m11(X), and 755(X).

12. Let p be the weighted rank operator obtained by changing the threshold in the previous
example to 9. Let 112 be the centre of p and its negative p*. It is evident that this operator
is less active than the one in 11. The switch operator ¥(1);2) is generated by the structuring
elements:

[ ] . . ® ® ® L J
A= e - o o - o e - e 1 90°rotations
. e . . "y . [} . [ ]

We use Proposition 6.3 to show that 15 is activity-extensive:

[ ] L] ® [ ] .
el By e o ] 3 idem
L ]

o - oo B3 0. e o ¥ jgey
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g. 9. The top-right image is the original image X. The second row
ustrates the operators 111,711, and 755. The third row illustrates ¥12 and

2, and the bottom row depicts the operators 13,713, and 773.

@ ®
P12 ® ® P12 idem

hat 1)q2 is activity-extensive. Observe that the elementary triangles

In the third row in Figure 9 we depict ¥12(X) (left) and ¥{3(X) (right). These
slearly the invariance of the elementary triangles. In this respect this example
one in Example 8.
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13. If we add

+ 90°-rotations
. ,

to the collection A in 11 we obtain an operator ;3 which is more active than the one in 11.
Note that this operator corresponds with the weighted median with matrix

i
[NCH[CIE ]
DN e

and threshold 8. The chess board is periodic and therefore 113 is not activity-extensive. Again

is persistent. Let 713 be the corresponding activity-extensive modification of ¢;3. In the bottom
row of Figure 9 we depict 9;3(X), m13(X), and 7$5(X).

8. Conclusions and open problems

The basic morphological operators like dilations, erosions, openings, closings, and alternating
sequential filters are not self-dual. The best known morphological operator which is self-dual is
the median operator p. Unfortunately, this operator has a property which is undesirable from
the view point of noise filtering: the sequence of iterates p™(X) of an input image X needs not
be convergent. In fact, it is easy to find images X such that {X, u(X)} constitutes a period-2
orbit.

In this paper two goals have been accomplished. First, we have presented a general method,
based on the concept of a switch operator, for the construction of increasing operators which
are self-dual. Under the extra assumption of translation invariance we have derived a general
formula for self-dual operators:

paX)=(xn[)Xed)u ] XeA4, (8.1)
AEA A€A

where A is an arbitrary collection of structuring elements satisfying
0gA and ANB# @, for A,B e A

In this paper we have restricted ourselves to binary images for simplicity. Yet, it is obvious that
formula (8.1) carries over immediately to grey-scale images, and in fact, this remark applies to
most of the results established in this paper.

A second accomplishment is that we have have derived a general method for the modification
of an arbitrary increasing, self-dual operator 9 yielding another increasing, self-dual operator =
which is less active than %, but which has the desirable property that it is activity-extensive.
This means in particular that 7™ converges to a self-dual morphological filter 7*° (presumed
that it is a finite-window operator).

We have illustrated, our theoretical results with a large number of examples. We have
limited ourselves to the square grid, and we have only considered structuring elements which
fit inside a 3 x 3 window. Furthermore, the structuring elements have been chosen in such a
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way that the resulting operator, besides being translation invariant, is invariant under rotations
about 90 degrees. From a theoretical point of view there is no need to make such restrictions.
In fact, in an earlier paper [2] we have investigated modifications of the median operator on the
hexagonal grid, such as the Maisonneuve filter [9]; see also [3, Ex. 13.59].

We have resisted the temptation to make quantitative statements about the noise cleaning
capacities of the operators and filters discussed in our examples, others than those in terms of
the activity ordering. For example the illustration of Example 8 in Figure 7 and Example 12
in Figure 9 show that ¢§°(X) is very similar to 9§3(X), though both images differ at a few
points. The only theoretical support for this resemblance is that both operators keep elementary
triangles unchanged.

The research described here also raises a number of intriguing theoretical questions which
fall outside the scope of this paper, but which, nevertheless deserve to be mentioned in this final
section.

Question 1. Do there exist operators which have orbits with period greater than 27

Period-3 orbits may be of special interest because of the possible analogy with the famous result
obtained by Li and Yorke [8] in the context of dynamical systems theory which says that “period
three implies chaos”.

The following question is related to the previous one.

Question 2. Given an increasing, translation invariant (self-dual) operator 9 (e.g. the me-
dian operator). What kind of behaviour can the orbits {X,¥(X),%*(X),...} exhibit? Do they
necessarily “converge” to a periodic orbit? Can such morphological dynamical systems ezhibit
“chaotic behaviour”?

These appear to be difficult questions which require a lot of fundamental research. Maybe
one can find (partial) answers from the literature on cellular automata [15]. To our knowledge
however, the overlap between these two fields, that is, mathematical morphology on the one
hand and cellular automata on the other, is almost completely unexplored up till today; refer
to [11] for some related discussions. Hopefully, the theory developed in this paper will serve as
a stimulus to fill this gap.
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