(o

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Declarative interpretations reconsidered

K.R. Apt, M. Gabbrielli

Computer Science/Department of Software Technology

Report CS-R9417 March 1994

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part of
the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathematics
and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scientific Research (NWO). CWI is a
member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Declarative Interpretations Reconsidered

Krzysztof R. Apt
CWI
P.O. Boz 94079, 1090 GB Amsterdam, The Netherlands
and
Faculty of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Maurizio Gabbrielli
CcCwWI
P.O. Boz 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Three semantics have been proposed as the most promising candidates for a declarative
interpretation for logic programs and pure Prolog programs: the least Herbrand model, the
least term model, i.e. the C-semantics, and the S-semantics. Previous results show that a
strictly increasing information ordering between these semantics exists for the class of all
programs. In particular, the S-semantics allows us to model computed answer substitutions,
which is not the case for the other two.

We study here the relationship between these three semantics for specific classes of pro-
grams. We show that for a large class of programs (which is Turing complete) these three
semantics are isomorphic. As a consequence, given a query, we can extract from the least
Herbrand model of the program all computed answer substitutions. This result is applied to
propose a method for proving partial correctness of programs based on the least Herbrand
model.

AMS Subject Classification (1991): 68Q40, 68T15.
CR Subject Classification (1991): ¥.3.2., F.4.1, H.3.3,1.2.3.

Keywords and Phrases: logic programs, declarative semantics, isomorphism, partial correct-
ness.

Notes. The research of the first author was partly supported by the ESPRIT Basic Research
Action 6810 (Compulog 2). The research of the second author was supported by the Ital-
ian National Research Council (CNR). This article will appear in: Proc. of International
Conference on Logic Programming (ICLP ’94), The MIT Press, P. Van Hentenryck (editor).

1 Introduction

1.1 Motivation

The basic question we are trying to answer in this paper is: can one reason about partial
correctness (that is about the computed answer substitutions) of “natural” pure Prolog programs
using the least Herbrand semantics? We claim that the answer to this question is affirmative

Report CS-R9417

ISSN 0169-118X

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

by showing that many logic and pure Prolog programs satisfy a property which implies that
various declarative semantics of them are isomorphic.

Usually the declarative semantics is identified with the least Herbrand model. When consid-
ering the class of all logic programs there are a number of problems associated with this choice.
First, this model depends on the underlying first-order language. For certain choices of this
language this model is equivalent with the least term model, and for others not. Secondly, in
general it matches the procedural interpretation of logic programs only for ground queries. So
the procedural behaviour of the program cannot be completely “retrieved” from this model.

The least term model of Clark [6] (or C-semantics of Falaschi et al. [8]) is another natural
candidate for the declarative semantics, and in fact it has been successfuly used in the probably
most elegant and compact proof of the strong completeness of the SLD-resolution due to Stirk
[12]. However, it shares with the least Herbrand model the same deficiencies.

The last choice is the S-semantics proposed by Falaschi et al. in [7]. This semantics provides
a precise match with the procedural interpretation of logic programs. So it captures completely
the procedural behaviour of the program. However, for specific programs it is rather laborious
to construct and difficult to reason about.

We show here that for a large class of programs, called subsumption free programs, these
three semantics are in fact isomorphic. This allows us to reason about partial correctness
of subsumption free programs using the least Herbrand model. To prove that a program is
subsumption free we apply a result of Maher and Ramakrishnan [10]. Using it we checked that
several standard pure Prolog programs are subsumption free.

1.2 A Word on Terminology

In principle, we use the standard notation of logic programming. We consider here finite pro-
grams and queries w.r.t. a first-order language defined by a signature ¥. Given two expressions
E., Ey, we say that E;j is more general than Es, and write E; < Ej, if there exist a substitution
6 such that E10 = E5. < is called the subsumption ordering. If E; < E3 but not Ey < E;, we
write By < Ej, and when both E; < Ej and E; < Ei, we say that E; and Fy are variants.
Finally we denote by Var(E) the set of all variables occurring in the expression E.

A substitution if called grounding if all terms in its range are ground. A substitution is
called a renaming if it is a permutation of the variables in its domain. We say that substitutions
61 and 6, are variants if for some renaming n we have 6; = 637. Below we shall freely use the
well-known result that all mgu’s of two expressions are variants and that E; and Fy are variants
iff for some renaming n we have E; = Epn. Further, we denote by B the set of all atoms (the
base of the language) and by By the set of all ground atoms.

For a number of reasons, we found it more convenient to work here with the concept of a
query, correct and computed instance, and most general instance, instead of, respectively, the
concepts of a goal, correct and computed answer substitution, and most general unifier.

In short, a query is a finite sequence of atoms, denoted by letters Q,A,B,C,.... Given a
program P, Q' is a correct instance of Q, if P = Q' and Q' = Q@ for a substitution §; Q' is a
computed instance of Q, if there exists a successful SLD-derivation of Q with a computed answer
substitution 6 such that Q' = Q4.

Our interest here is in finding for a given program P the set of computed instances of a
query. In analogy to the case of imperative programs, we write {@} P Q to denote the fact that
Q is the set of computed instances of the query @, and denote the set of computed instances of
the query @ by sp(Q, P) (for strongest postcondition of @ w.r.t. P). Given two queries Q and

Q' we write
mgi(Q,Q") = {Q0 | 6 is an mgu of Q and Q'}.

So mgi(Q, Q') is the set of most general instances of @ and @Q'.

A query is called separated if the atoms forming it are pairwise variable disjoint. Given a
set of atoms I we denote by I* the set of separated queries formed from the atoms of I. Given
a query @) and a set of atoms I we write

mgi(Q,I) ={Q6 | 3Q" € I*(Var(Q) N Var(Q') =0 and 6 is an mgu of Q and Q')}.

So mgi(Q,I) is the set of most general instances of @ and any query from I* variable disjoint
with Q. Finally, an atom is called pure if it is of the form p(zi,...,z,) where z1,...,z, are
different variables.

2 Background - Three Declarative Semantics

Three semantics of logic programs, each yielding a single model, were introduced in the literature
and presented as “declarative”. We review them now briefly and discuss their positive and
problematic aspects.

2.1 The Least Herbrand Model, or M-semantics

This semantics was introduced by van Emden and Kowalski [15]. It associates with each program
its least Herbrand model. Identifying each Herbrand model with the set of ground atoms true
in it, we can equivalently define this semantics as

M(P) = {AeBy| Pk A}

As is well-known this semantics completely characterizes the operational behaviour of a
program on ground queries because (see Apt and van Emden [4]), for a ground @ a successful
SLD-derivation of @ exists iff @ € M(P)*. However, for non-ground queries the situation
changes as the following example of Falaschi et al. in [7] shows.

Example 2.1 Consider the two programs P; = {p(X).} and P, = {p(a)., p(X).}.
Then M(P;) = M(P,) but the query p(X) yields different computed answer substitutions w.r.t.
to each program. |

So in general, the M-semantics is not a function of the operational behaviour of a program.

2.2 The Least Term Model, or C-semantics

This semantics was introduced by Clark [6] and more extensively studied in Falaschi et al. [8].
It associates with each program its least term model. Identifying each term model with the set
of atoms true in it, we can equivalently define this semantics as

C(P) = {A€B|PE A}

As we shall see in Section 4, when the signature contains infinitely many constants, this semantics
is equivalent to M-semantics, so it cannot model the operational behaviour of a program either.

2.3 S-semantics

This semantics was introduced in Falaschi et al. [7]. Its aim is to provide a precise match
between the procedural and declarative interpretation of logic programs. Ideally, we would like
to be able to “reconstruct” the procedural interpretation from the declarative one. Now, a
procedural interpretation of a program P can be identified with the set of all pairs (@, 6) where
6 is a computed answer substitution for @, or, equivalently with the set of all statements of the
form {Q} P Q.

The S-semantics assigns to a program P the set of atoms !
S(P)={A € B| A is a computed instance of a pure atom}.

It seems at first sight that the restriction to pure atoms results in a “loss of information” and
as a result the operational interpretation cannot be reconstructed from S(P). But it is not so,
as the following theorem of Falaschi et al. [7] shows.

Theorem 2.2 (Strong Completeness) For a program P and a query Q

{Q} P mgi(Q,5(P)).

0O
Consequently, by the form of S(P) we have
Corollary 2.3 (Full abstraction) For all programs Py, P,
S(P) =S(P) iff sp(Q, P1) = sp(Q, P2) for all queries Q.
O

An important property of the S-semantics is that it can be defined by means of a fixpoint
construction. More precisely, Falaschi et al. [7] introduced the following operator on term
interpretations

TS(I)={H#| IB,C(H—BeP, CelI* Var(H —B)n Var(C) = 0,
6 is an mgu of B and C) }

and proved the following.
Theorem 2.4
(i) Tg 18 continuous on the complete lattice of term interpretations ordered with C .
(i) S(P) is the least fizpoint and the least pre-fizpoint of TS.
(iii) S(P)=T§ T w. ‘ m]

In the original proposal actually the sets of equivalence classes of atoms w.r.t. to the “variant of” relation
are considered. We found it more convenient to work with the above definition.

3 Relating Them

In what follows we wish to clarify the relationship between these three semantics for various
classes of programs. To this end we introduce the following definition, where we view semantics
as a function from the considered class of programs to some further unspecified semantic domain

D.

Definition 3.1 Consider a class of programs C. We say that two semantics S; : C — D; and
Sy : C — D, are isomorphic on C iff there exist two functions, ¢; : Range(S1) — Range(S2)
and @9 : Range(Sy) — Range(S1) such that, for any program P € C

Sl(P) = ¢2(52(P)) and Sz(P) = ¢1(81(P)).

O

Alternatively, two semantics S; : C — D; and Sy : C — Dy are isomorphic on C iff there
exists a bijection ¢ : Range(S;) — Range(Sz2) such that, for any program P € C, S3(P) =
¢(S1(P)).

Every semantics 7 for C induces an equivalence relation ~7 on programs from C defined
by P, =1 P, iff T(P,) = T(P). Note that the notion of isomorphism can be also equivalently
given in terms of equivalences, by defining two semantics isomorphic on C if they induce the
same equivalence relation on C. When constructing isomorphisms between the semantics the
following operators will be useful.

Definition 3.2 Let I be a set of atoms. We define
(i) Variant(I)={A€ B|3B € Ist. B< Aand A < B}, the set of variants,
(ii) Up(I) ={A € B|3B € I s.t. B < A}, the set of instances,
(iii) Ground(I) = {A € By | 3B € I s.t. B < A}, the set of ground instances,
(iv) Min(I)={A € I|-3B €I s.t. B < A}, the set of minimal (i.e. most general) elements,

(v) for I a set of ground atoms
True(I) = {A € B| I = A}, the set of atoms true in the Herbrand interpretation I.

O

Note that Variant, Up, Ground and Min are all idempotent. Moreover, the following clearly
holds.

Note 3.3 For all I, Min(Up(I)) = Min(I). O

4 Relating M-semantics and C-semantics

We begin by clarifying the relationship between M(P) and C(P). The following result is an
immediate consequence of the definitions.

Note 4.1 M(P) = Ground(C(P)). ‘ O

So the M-semantics can be reconstructed from the C-semantics. The converse does not hold
in general as the following argument due to Falaschi et al. [8] shows.

5

Example 4.2 Consider the two programs P, = {p(X).} and P; = {p(a)., p(b).} defined
w.r.t. the language with the signature £ = {a/0,b/0}. Then M(P) = M(P,) = {p(a),p(b)},

while C(P1) = {p(X),p(a), p(b)} and C(P2) = {p(a), p(b)}. -

In case the signature contains infinitely many constants, the situation changes, as the fol-
lowing result due to Maher [9] shows.

Theorem 4.3 Assume that ¥ contains infinitely many constants. Then C(P) = True(M(P)).

Proof. We provide here an alternative, direct proof based on the theory of SLD-resolution.
The implication C(P) C True(M(P)) always holds, since M(P) is a model of P. Take now
A € True(M(P)). Let z1,...,z, be the variables of A and ¢y, ...,c, distinct constants which
do not appear in P or A. Let 6 = {z1/c1,...,2n/c,}. Then A8 € M(P). By the completeness of
SLD-resolution there exists a successful SLD-derivation of A8 with the empty computed answer
substitution. By replacing in it ¢; by z; for ¢ € [1,n] we get a successful SLD-derivation of A with
the empty computed answer substitution. Nov’ by the soundness of SLD-resolution A € C(P).
O
Consequently, when the signature contains infinitely many constants, the semantics M (P)
and C(P) are isomorphic. We shall exploit this fact later.

5 Relating C-semantics and S-semantics

Next, we clarify the relationship between C(P) and S(P). First, we have the following result of
Falaschi et al. [8].

Theorem 5.1 C(P) = Up(S(P)). O

So the C-semantics can be reconstructed from the S-semantics. The converse does not hold in
general as the following argument due to Falaschi et al. [7] shows.

Example 5.2 Consider the programs P; and P, of Example 2.1. Then C(h) =C(PR) =
Up({p(X)}), while S(P) = Variant({p(X)}) and S(P,) = Variant({p(X),p(a)}). Note that the
signature of the language was immaterial here. O

Thus on the class of all programs the C-semantics and the S-semantics. are not isomorphic.
In what follows we show that for a large class of programs they are in fact isomorphic. First,
we have the following result.

Lemma 5.3 Min(C(P)) C S(P).

Intuitively, it states that all most general atoms true in C(P) belong to S(P).

Proof. By Theorem 5.1 Min(C(P)) = Min(Up(S(P))) and the claim follows by Note 3.3, since
for all I we have Min(I)C I.
O
In general, the converse inclusion does not hold.

Example 5.4 Consider the following program P = {p(a)., p(X).} defined w.r.t. the language
with the signature ¥ = {a/0}. Then S(P) = Variant({p(Y)}) U {p(a)}, whereas Min(C(P)) =
Variant({p(Y)}). |

A closer examination of the situation reveals the following. By the soundness of SLD-
resolution we always have S(P) C C(P). The above example shows that the stronger inclusion
S(P) C Min(C(P)) does not need to hold. The reason is that S(P) can contain a pair 4, B such
that A strictly subsumes B (i.e. A < B). This cannot happen when S(P) contains only minimal
elements. So we are brought to the following definition due to Maher and Ramakrishnan [10].

Definition 5.5 A set of atoms I is called subsumption free if Min(I) = I. A program P is
called subsumption free if S(P) is. a

We now show that that the notion of a subsumption free program is a key for establishing
the converse of Lemma 5.3.

Theorem 5.6 S(P) = Min(C(P)) iff P is subsumption free.
Proof. (=) We have

Min(S(P)) = {assumption}
Min(Min(C(P))) = {idempotence of Min}
Min(C(P)) = {assumption}
S(P).
(<) We have
S(P) = {assumption}
Min(S(P)) = {Note 3.3}
Min(Up(S(P))) = {Theorem 5.1}
Min(C(P)).

O

Consequently, the C-semantics and S-semantics are isomorphic on subsumption free pro-

grams. Additionally, when the signature contains infinitely many constants, all three semantics
are isomorphic. Combining Theorems 2.2, 4.3 and 5.6 we thus obtain.

Corollary 5.7 Assume that ¥ contains infinitely many constants. Then for a subsumption free
program P and a query Q

{Q} P mgi(Q, Min(True(M(P)))).
O

It shows that partial correctness of subsumption free programs can be fully reconstructed
from the least Herbrand model, using unification. In the next section we shall identify a smaller
class of programs for which this characterization of partial correctness does not involve unifica-
tion.

Of course, if we do not make any assumption on the class of programs C, subsumption
freedom is only a sufficient condition for the isomorphism of the C-semantics and S-semantics.
Indeed, when the class of programs consists of just the program from Example 5.4, which is not
subsumption free, then the C-semantics and S-semantics are obviously isomorphic. However, for
a “reasonably large” class of programs subsumption freedom turns out to be also a necessary
condition for isomorphism of programs.

Definition 5.8 A class of programs C is S-closed if for every program P in C every finite
subset of S(P) is in C. o

Indeed, we have the following result.

Note 5.9 For an S-closed class C of programs, the C-semantics and S-semantics are isomorphic
on C iff C is a class of subsumption free programs.

Proof. (=) Suppose that some P € C is not subsumption free. Then for some atoms A4, B €
S(P) we have A < B. By the definition of S-closedness both P; = {A, B} and P, = {A} are
in C. Now C(P1) = Up({4, B}) = Up({A}) = C(P,), whereas S(P;) = Variant({A, B}) #
Variant({A}) = S(P,). Contradiction.
(<) This is the contents of Theorems 5.1 and 5.6.
O

This shows that the notion of subsumption freedom is crucial for our considerations. In what

follows we provide some means of establishing that a program is subsumption free.

6 S-Unification Free Programs

We begin by studying a subclass of subsumption free programs.

Definition 6.1 A program P is called S-unification free iff S(P) does not contain a pair of
non-variant unifiable atoms. O

We prefer to use the qualification “S-” in order to avoid confusion with the class of unification
free programs studied in Apt and Etalle [2]. Clearly, S-unification freedom implies subsumption
freedom, since S(P) is closed under renaming and A < B implies that A and a variant B’ of B
are non-variant and unifiable. The converse does not hold.

Example 6.2 Consider the following program P = {p(X,a)., p(a,X).} defined w.r.t. the
language with the signature ¥ = {a/0}. Then S(P) = Variant({p(X,2a),p(a,X)}), so P is not
S-unification free. However, it is clearly subsumption free, because the atoms p(X, a) and p(a, X)
are not comparable in the subsumption ordering. m]

The following theorem summarizes the difference between the subsumption free and S-
unification free programs in a succinct way. Let us extend the Min operator in an obvious
way to sets of queries.

Theorem 6.3
(i) P is subsumption free iff for all pure atoms A, Min(sp(A, P)) = sp(A, P).
(ii) P is S-unification free iff for all queries Q, Min(sp(Q, P)) = sp(Q, P).

Proof.

(i) Note that for some variables z1, s, ..., S(P) is a disjoint union of sets of the form

sp(p(1, . . ., Tarity(p)), P) and that atoms belonging to different such sets are incomparable in the
< ordering. Thus Min(S(P)) is a disjoint union of sets of the form Min(sp(p(z1, . . ., Larity(p)), P))-

(ii) (=) Consider two computed instances @1 and Q2 of @. By Theorem 2.2 there exist C;
and C; in S(P)* such that for 7 € [1,2] @ and C; are variable disjoint and

8

In particular C; < @1 and Cg < Q2.

Suppose now that @; < Q. Then C; < @3, so Q2 is an instance of both C; and C;. Since
we may assume that C; and C; are variable disjoint, we conclude that C; and C, are unifiable.
By assumption about P and the fact that C; and C; are separated queries, C; and Cy are
variants. This implies by (1) that Q; and Q2 are variants, as well. Contradiction.

(<) Suppose that S(P) does contain a pair A, B of non-variant unifiable atoms. Let C €
mgi(A, B). Then A < C and B < C and at least one of these subsumption relations, say the
first one, is strict. So A < C. Take now a variant A’ of A variable disjoint with A and B. By
Theorem 2.2 A,C € sp(A', P). So Min(sp(A', P)) # sp(A’, P). Contradiction.
O
For S-unification free programs we can simplify the formulation of Corollary 5.7.

Corollary 6.4 For a S-unification free program P and a query Q@
{Q} P Min({Q0| P = Q).

Proof. This result follows from Theorem 6.3(ii) and the following two claims.

Claim 1 For an arbitrary program P and a query Q

Min({Q8| P = Q8}) € sp(Q, P) C {Q6| P k= Q6}.

Proof. Take Q; € Min({Q6 | P = Q8}). By the Strong Completeness of SLD-resolution there
exists a computed instance @, of Q1 such that Q2 < Q1. By the choice of @1, P E Q2, so by
the minimality of @1, @1 and Q2 are variants. Thus Q; is also a computed instance of @, i.e.

Ql € SP(Q’ P) O

Claim 2 For sets of queries Q1 and Qo, if Min(Q1) C Q2 C Q) and Min(Qa) = Q2, then
Qz = Mzn(Ql)

Proof. Immediate.
O

So for S-unification free programs the sets of computed instances can be defined without
the use of unification. In Corollary 6.4 we can always replace “P |=” by “C(P) |=”, and also by
“M(P) k" if ¥ contains infinitely many constants.

Maher and Ramakrishnan [10] studied subsumption free programs in the context of the
bottom up computation in deductive databases and showed that for these programs this compu-
tation can be performed more efficiently. They also provided a method allowing us to conclude
that a program is S-unification free, so a fortiori subsumption free. Using this method they
proved that the class of S-unification free programs is Turing complete.

Their method is equally applicable in our situation. To formulate it the following notation
is useful. By hground(P) we denote the set of instances of clauses of P whose head is ground.
Given a Herbrand interpretation I and a query B we write

[E3<1B

if at most one sequence of ground ty,...,t, exists such that I = B{z1/t1,...,zn/ta}, where
z1,...,Tn are the variables occurring in B.

Theorem 6.5 (Maher and Ramakrishnan [10]) Suppose that the following conditions hold for
a program P:

SEM1. If c,d are different clauses in P, then no pair A € Tsc} (S(P)) and B € de}(S(P)) is
unifiable.

SEM2. For every clause H «— B in hground(P)
if M(P) = H then M(P) =3 < 1B.
Then P is S-unification free.

Proof. To keep the paper self-contained we provide here a direct proof. By Theorem 2.4(iii) it
suffices to show that, for n > 0, T}‘g T n does not contain a pair of non-variant unifiable atoms.
The proof is by induction on n.

(n = 0) Obvious.

(n > 0). Denote T§ T n by I and consider A, B € T§(I). Two cases arise.

Case 1 A and B are generated by the different clauses, say ¢ and d. Then A € T¢ (I) and
{c}

Be Tj{s d}(I) and the claim follows by condition SEM1 since by Theorem 2.4 I C S(P) and Tj5
is monotonic.

Case 2 A and B are generated by the same clause, say H — B. Then for some C; € I*,
C;y € I and 91,92

A= HY, Var(H — B)N Var(C;) =0, ¥, is an mgu of B and Cjy, (2)

B = HY, Var(H «— B) N Var(Cz) = 0, 95 is an mgu of B and C, (3)

Suppose A and B are unifiable. Then there exists a grounding n whose domain includes the
variables of (H «— B)¥; and (H « B)9,, such that both 9,7 and 9,7 are grounding and Hd1n
= HvYan. So ¥1n and dan coincide on the variables of H. Denote their common restriction to
Var(H) by 6. Then (H « B)$ is in hground(P).

By the soundness of SLD-resolution M(P) = H§, since A € S(P) and H§ = AY¥1n. Thus
by condition SEM2

M(P) =3 <1Bs. (4)

Now, for some grounding §; and §; we have 91 = § (6; and Yon = 6§ () 8a, so Y19 = 66; and
¥an = 662. This implies by (2) that

B&él - B’l917] - 01’191’)’] - 01(551, (5)
and similarly by (3)
Bé62 = Ca66s. (6)

Again by the soundness of SLD-resolution M(P) = C166; and M(P) = Cs86s, since C; €
S(P)* and Cy € S(P)*. By (4) B66; = Béd2, so by (5) and (6) C166; = Cy68,. Thus C;
and C, are unifiable, since we may assume that they are variable disjoint. By the induction
hypothesis and the fact that C; and C; are separated, C; and Cj are variants. Thus by (2) and
(3) HY, and H¥,, i.e. A and B are variants. This concludes the proof of the induction step.
O
In certain situations the conditions of the above theorem can be ensured by means of syntactic
restrictions. Namely, condition SEM1 is obviously implied by condition

10

SYN1. If H, «— B; and Hy « By are different clauses in P, then H; and Hy do not unify,
and condition SEM2 is automatically satisfied when condition
SYN2. If H — B € P, then Var(B) C Var(H)

holds.

It is worth noting that an immediate proof of Turing completeness for S-unification free
programs can be obtained by using the encoding of two register machines into pure logic pro-
grams given in Shepherdson [11]. In fact, conditions SYN1 and SYN2 readily apply to programs
obtained by such an encoding. In the next section we assess the applicability of Theorem 6.5.

7 Applications

We first provide 4 illustrative uses of Theorem 6.5.

Example 7.1
(i) Consider the APPEND program:

append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) « append(Xs, Ys, Zs).

Here the syntactic conditions SYN1 and SYN2 readily apply.
(ii) Consider the SUFFIX program:

suffix(Xs, Xs).
suffix(Xs,[Y | ¥Ys]) < suffix(Xs,Ys).

Note that the heads of the clauses unify, so we cannot use condition SYN1. To prove condition
SEM1 we reason as follows. Denote by OCC the set of atoms of the form suffix(Z,tz) where Z
is a variable and tz a term containing Z. By definition of T§, T§rrrx (OCC) C OCC, i.e. OCC
is a pre-fixpoint of Tgyprrx- By Theorem 2.4 S(SUFFIX) C OCC. So because of the occur-check
suffix(Xs, Xs) does not unify with any A € OCC of the form suffix(Z,t) with t a proper
term. Thus SEM1 holds.

The clauses of SUFFIX do not contain local variables, so condition SYN2 applies.

(iii) Consider now the naive REVERSE program:

reverse([1,[1).
reverse([X | Xs], Zs) « reverse(Xs,Ys), append t(Ys,[X],Zs)

augmented by the “well-typed” APPEND_T program:

append t([X | Xs], Ys, [X | Zs]) « append.t(Xs, Ys, Zs).
append t([], Ys, ¥s) « 1list(Ys).

list([H | Ts]) <« 1list(Ts).

list([].

The heads of different clauses do not unify, so condition SYN1 applies. However, due to
presence of the local variable Ys in the second clause, condition SYN2 does not apply. To prove

11

condition SEM2 we analyze the least Herbrand model M (REVERSE). Using the techniques of
Apt and Pedreschi [3] it is straightforward to check that

M(REVERSE) = {reverse(s,t) | s,t are ground lists and t=rev(s)}
U M (APPEND_T) where |

M(APPEND_T) = {append_t(s,t,u) | s,t,u are ground lists and s*t=u}
U {list(s) | s is a ground list }

where given a list s, rev(s) denotes its reverse, and * denotes the operation of concatenating
two lists. Take now an instance

reverse([x | xs], zs) « reverse(xs,ys), append t(ys,[x],zs)

of the second clause with reverse([x|xs], zs) ground and in M(REVERSE). Then reverse(xs,
ys) € M(REVERSE) implies ys = rev(xs), so condition SEM2 holds for this clause. For other
clauses condition SYN2 applies. We conclude that REVERSE is S-unification free.

(iv) Finally, consider the following program HANOI from Sterling and Shapiro [13] which, for the
query hanoi(n,a,b,c,Moves), solves the “Towers of Hanoi” problem with n disks and three
pegs a,b and c giving the sequence of moves forming the solution in Moves:

hanoi(s(0),A,B,C,[A to B]).
hanoi(s(N),A,B,C,[A to B]) «
hanoi(N,A,C,B,Ms1)
hanoi(N,C,B,A ,Ms2)
append t(Ms1,[A to B|Ms2],Moves).

augmented by the APPEND T program.

Note that conditions SYN1 and SYN2 do not apply here. First observe that for any I, if
hanoi(t1,t2,t3,t4,t5) € Tiyor(J) then t1 # 0. So by Theorem 2.4, hanoi(t1,t2,t3,t4,t5)
€ S(HANOI) implies t1 # 0 and consequently condition SEM1 holds.

To prove SEM2 we use the methodology of Maher and Ramakrishnan [10] based on functional
dependencies. First we need a definition.

Definition 7.2 Let p be an n-ary relation symbol. A functional dependency is a construct of
the form p[I — J] where I,J C {1,...,n}. Let M be a set of ground atoms. We say that
p[I — J] holds over M if for all p(s1,...,8,),p(t1,.--,tn) € M, the following implication holds:

(Viel. s;=t;) = (VjeJ sj=t;).
A set F' of functional dependencies holds over M iff each of them holds over M. m|
We now show that the set of functional dependencies
F = {hanoi[{1,2,3,4} — {5}], append_t[{1,2} — {3}]}

holds over M(HANOI). By the fixpoint definition of M(P), if A € M(P) then A is a ground
instance of the head of a clause in P. Then a simple syntactic check on the heads of the clauses
in HANOI reveals that hanoi[{1,2,3,4} — {5}] holds over M(HANOI). The other functional
dependency can be directly established by considering the explicit definition of M (APPEND_T)
previously given.

12

Using the information given by F it is now straightforward to prove the implication required
by SEM2. The only clause that we have to consider is the non unit clause for hanoi. Consider
an instance

hanoi(s(n),a,b,c,[a to b]) «— hanoi(n,a,c,b,ms1),hanoi(n,c,b,a,ns2),
append t(ms1,[a to blms2],moves)

of such a clause with hanoi(s(n),a,b,c,[a to b]) ground and in M (HANOI).

Since hanoi[{1,2,3,4} — {5}] holds over M (HANOI), if hanoi(n,a,c,b,ms1) € M(HANOI)
then there exists no hanoi(n,a,c,b,ms1’) € M(HANOI) such that ms1 # ms1’. Analogously for
ms2 and, using the dependency append t[{1,2} — {3}], for moves. Consequently, SEM2 holds
and HANOI is S-unification free.

A general method for establishing functional dependencies on M(P), based on an extended
version of Amstrong axioms (see Ullman [14]), is given in Maher and Ramakrishnan [10]. O

Note that Theorem 6.5 only provides sufficient conditions for S-unification freedom. Indeed,
the program {p(X) < q(X,Y)., q(a,b)., q(a,c).} is easily seen to be S-unification free but
condition SEM2 does not hold. Moreover, for certain natural programs Theorem 6.5 cannot be
used to establish their subsumption freedom, simply because they are not S-unification free. An
example is of course the program considered in Example 6.2. But more natural programs exist.
In such situations we still can use a direct reasoning.

Example 7.3 Consider the MEMBER program:

member(X,[X | Xsl).
member(X,[Y | Xs]) «— member(X,Xs).

We now prove that MEMBER is subsumption free. By Theorem 2.4 it suffices to show that if I is
subsumption free then TI\‘/ISEMBER(I) is subsumption free. Denote the first clause by ¢; and the
second one by co. Consider a pair A, As € TI\‘/ISEMBER(I). The following two cases arise.

Case 1 A4; € T{SCI}(I) and Aj € T{scz}(l).
By definition of T§, A; = member (X, [X|Xs])p for a renaming p and Ay = member (X, [Y|Xs])¥

where 9 is an mgu of member (X,Xs) and B for a B such that Y¢ Var(B). This implies X9 # Y¢
and hence A; £ Ay and As £ A;.

Case 2 A1, Az € T{scz}(l).

By definition, A; = member (X, [Y|Xs])¥; where ¥; is an mgu of member (X,Xs) and B; for
i = 1,2. Assuming B;= member(t;,1;) we have ¥; = {X/t;,Xs/l;} (up to renaming). Then
the assumption By £ By implies member(X,Xs) 9¥; £ member(X,Xs)?¥; and hence A; £ As.
Analogously for the symmetric case.

Note that MEMBER is not S-unification free.]

The results contained in the previous sections can be applied to prove partial correctness
of logic programs by using the least Herbrand model. Given a program P and a query @, we
wish to prove assertions of the form {Q} P Q. This can be done by performing the steps listed
below, which extend a methodology introduced in Apt [1] to the case of “non-ground” inputs (or
more precisely to queries with “non-ground” computed instances). We illustrate our technique
by means of an example. Consider the program REVERSE of Example 7.1 and the query @ =
reverse(s,X), where s is a (possibly non-ground) list and X is a variable. In the following, we
assume an infinite signature.

13

8

. Construct M(P).

Usually, the “specification” of the program limited to its ground queries coincides with
M(P). The techniques of Apt and Pedreschi [3] are useful for verifying validity of such a
guess.

. Prove that P is S-unification (subsumption) free (see Example 7.1).
. Find a correct instance Q' of @, i.e. such that M(P) |= Q'. Note that by definition

M(P) k& Q' iff Ground(Q') C M(P)". (7)

In our case, by definition of M(REVERSE), if @” is a ground instance of reverse(s,rev(s))
then Q" € M(REVERSE) holds. Therefore by (7)

M (REVERSE) |= reverse(s,rev(s)).

. By suitably generalizing from 3. find a minimal correct instance Q' of Q, i.e. such that

M(P) E Qv implies Q' < @Qv. (In general, find the set of minimal correct instances of
Q). Here the following implication which holds for any pair of expressions E;, E5 can be
useful

(Vn s.t. (E1 = Eq)nis ground . E1n = Esn) = E; = Es. (8)

Assume in our case that
M (REVERSE) [= reverse(s,X) 1.

By (7), for any n s.t. reverse(s,X)+yn is ground, Xyn = rev(syn) = (by definition of rev)
rev(s)yn. Then by (8) Xy = rev(s)y and hence

reverse(s, rev(s)) < reverse(s,X)y

holds.

. Apply Corollary 6.4 (or Corollary 5.7 for programs which are not S-unification free). For

REVERSE we obtain

{reverse(s,X)} REVERSE Variant({reverse(s,rev(s))}).

Conclusions

We now present a list of example programs from the book of Sterling and Shapiro [13] for which
we proved that S-semantics and M-semantics are isomorphic. For each program it is indicated
by what method the result was established. For example SEM1-SYN2 means that condition
SEM1 of Theorem 6.5 and condition SYN2 following it were used. DP stands for a “direct
proof”. In all cases condition SEM2 was established by means of the functional dependency
analysis.

To deal with programs which use arithmetic relations we assumed that each such relation is

defined by infinitely many ground unit clauses which form its true ground instances. Note that
such ground unit clauses obviously satisfy the conditions SYN1 and SYN2. It should be noted

14

that the results of this paper hold for programs with infinitely many clauses provided we modify
the assumption ”the signature has infinitely many constants” to ”the signature has infinitely
many constants which do not occur in the program”.

Finally, it should be made clear that none of the considered semantics deals with the problem
of errors which can arise in presence of arithmetic relations. To handle properly this issue, the
results concerning partial correctness (so Corollaries 5.7 and 6.4) have to be restricted to the
queries whose evaluation cannot yield an error. Apt [1] provides a method for proving absence
of errors for pure Prolog programs augmented by arithmetic relations.

program page sub.free S-unif. free method
member 45 yes no DP

prefix 45 yes yes SYN1-SYN2
suffix 45 yes yes SEM1-SYN2
naive reverse 48 yes yes SYN1-SEM2
reverse_accum. 48 yes yes SYN1-SYN2
delete 53 yes yes SEM1-SYN2
select 53 yes no DP
permutation 55 yes no DP
permutation sort 55 yes no DP

insertion sort 55 yes yes SEM1-SEM2
partition 56 yes yes SEM1-SYN2
quicksort 56 yes yes SEM1-SEM2
tree_member 58 yes no DP

iso_tree 58 yes yes SEM1-SYN2
substitute 60 yes yes SEM1-SYN2
pre_order 60 yes yes SYN1-SEM2
in_order 60 yes yes SYN1-SEM2
post_order 60 yes yes SYN1-SEM2
polynomial 62 yes no DP

This provides a strong indication that for most “natural” pure Prolog programs the S-
semantics is isomorphic to the M-semantics. For such programs it is possible to reason about
their partial correctness using the least Herbrand model only. This might suggest that S-
semantics is not needed. This would be, however, a too hastily drawn conclusion. First of all,
S-semantics has other uses than the ones investigated in this paper — for example in the area of
abstract interpretations (see e.g. Bossi et al. [5] for an overview). Secondly, to formulate and
prove the key results, namely Corollary 5.7 and Theorem 6.5, we did use the S-semantics. It
would be interesting to find proofs of these results by means of the M-semantics.

Acknowledgments

We thank the referees of the paper for useful comments.

References

[1] K.R. Apt. Declarative programming in Prolog. In Dale Miller, editor, Proc. Int’l Symposium
on Logic Programming, pages 12-35. The MIT Press, Cambridge, Mass., 1993.

15

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. R. Apt and S. Etalle. On the unification free Prolog programs. In A. Borzyszkowski
and S. Sokolowski, editors, Proc. of the Conference on Mathematical Foundations of Com-

puter Science (MFCS 93), Lecture Notes in Computer Science, pages 1-19. Springer-Verlag,
Berlin, 1993.

K. R. Apt and D. Pedreschi. Reasoning about Termination of Pure Prolog Programs.
Information and Computation, 106(1):109-157, 1993.

K. R. Apt and M.H. van Emden. Contributions to the theory of logic programming. Journal
of the ACM, 29(3):841-862, 1982.

A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: Theory and
applications. Technical Report TR 9/93, Dipartimento di Informatica, Universita di Pisa,
1993. To appear in the Journal of Logic Programming.

K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC 79/59,
Imperial College, Dept. of Computing, London, 1979.

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of the Oper-
ational Behavior of Logic Languages. Theoretical Computer Science, 69(3):289-318, 1989.

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-Theoretic Reconstruction

of the Operational Semantics of Logic Programs. Information and Computation, 102(1):86—
113, 1993.

M. J. Maher. Equivalences of Logic Programs. In J. Minker, editor, Foundations of De-

ductive Databases and Logic Programming, pages 627-658. Morgan Kaufmann, Los Altos,
Ca., 1988.

M. J. Maher and R. Ramakrishnan. Déja Vu in Fixpoints of Logic Programs. In E. Lusk and
R. Overbeek, editors, Proc. North American Conf. on Logic Programming, pages 963-980.
The MIT Press, Cambridge, Mass., 1989.

J.C. Shepherdson. Unsolvable problems for SLDNF resolution. Journal of Logic Program-
ming, 10(1):19-22, 1991.

R. Stark. A direct proof for the completeness of SLD-resolution. In Bérger, H. Kleine
Biining, and M.M. Richter, editors, Computation Theory and Logic 89, volume 440 of
Lecture Notes in Computer Science, pages 382-383. Springer-Verlag, 1990.

L. Sterling and E. Y. Shapiro. The Art of Prolog. The MIT Press, Cambridge, Mass., 1986.

J. D. Ullman. Principles of Database and Knowledge-base Systems, volume I. Computer
Science Press, 1988.

M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733-742, 1976.

16

