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Two Heads are Better than Two Tapes

Tao JiaNg, JOEL I. SEIFERAS, AND PAUL M. B. VITANYI

McMaster University
University of Rochester
CWI and Universiteit van Amsterdam

BSTRACT. We show that a Turing machine with two single-head one-dimensional
wpes cannot recognize the set {z2z' | z € {0,1}* and ' is a prefix of 2 } in real
me, although it can do so with three tapes, two two-dimensional tapes, or one
wo-head tape, or in linear time with just one tape. In particular, this settles the
mgstanding conjecture that a two-head Turing machine can recognize more lan-
uages in real time if its heads are on the same one-dimensional tape than if they are
n separate one-dimensional tapes.

*t Classification (1991): F.1.1,F.1.3,G.2.m.

1. INTRODUCTION

obvious structural parameters for the storage tapes of a Turing machine
s the number of tapes, the dimension of the tapes, and the number of heads
h tape. It is natural to conjecture that a deficiency in any such parameter is
.ant and cannot be fully compensated for by advantages in the others. For
»st part, this has indeed turned out to be the case, although the proofs have
isproportionately difficult [Ra63, He66, Gr77, Aa74, PSS81, Pa82, DGPR84,
LV88, LLV92, MSST90, PSSN90].
. case of deficiency in the number of heads allowed on each tape has turned
be the most delicate, because it involves a surprise: A larger number of single-
apes can compensate for the absence of multihead tapes [FMR72, LS81]. For
le, four single-head tapes suffice for general simulation of a two-head tape
yithout any time loss at all [LS81]. The remaining question is just what, if
ng, is the advantage of multihead tapes.
» simplest version of the question is whether a two-head tape is more powerful
wo single-head tapes. In the case of multidimensional tapes, Paul has shown
is [Pa84]. His proof involves using the two-head tape to write, and occasion-
, retrieve parts of, algorithmically incompressible bit patterns. Because the
;er of the pattern (and hence the retrieval times) can be kept much smaller
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volume, no fast simulator would ever have time to perform any significant
or copying of its representation of the bit pattern. On one-dimensional
swever, retrievals take time that is not small compared to the volume of
I we cannot so easily focus on a nearly static representation of the data. We
le mere subtle way to rule out all (possibly very obscure) copying methods
ro-tape machine might employ to keep up with its mission of fast simula-
r argument below does finally get a handle on this elusive “copying” issue,
tse of a lemma formulated more than ten years ago with this goal already
Vi84, Far-Out Lemma below].

pecific result is that no Turing machine with just two single-head ome-
nal storage tapes can recognize the following language L in real time:!

L={z2z'|z € {0,1}* and z' is a prefix of z }.

wo-head tape, a Turing machine can easily recognize L in real time.

isult incidentally gives us a tight bound on the number of single-head tapes
» recognize L in real time, since three do suffice [FMR72]. Thus L is another
of a language with “number-of-iapes complexity” 3, rather different from
irst given by Aanderaa [Aa74, PSS81]. (For the latter, even a two-head
n if enhanced by instantaneous head-to-head jumps and allowed to operate
stically, was not enough [PSSN90].)

2. OVERLAP

f our strategy will be to find within any computation a sufficiently long
itation that is sufficiently well behaved for the rest of our analysis. The
we seek involves limitations on repeated access to storage locations, or
[AaT74, PSSNOO). '
rerlap lemma is purely combinatorial, and does not depend at all on the
our computations or the “storage locations” corresponding to their steps.
f computational terminology would only obscure the lemma’s formulation
f, so we avoid it.
erlap event in a sequence § = {y,... Ly (of “storage locations”, in our
m)is a pair (1,7) with1 <4< 3 < T,and &; = & ¢ {Liy1,... ,4j—1} (“visit
est revisit”). If wy(S) is the number of such overlap events “straddling” ¢
14 < t < j), then the sequence’s internal overlap, w(S), is max{w:(S) |
'}. The relative internal overlap is w(S)/T.
¢ setting, we apply these definitions to the sequence of storage locations
on the respective steps of a computation or subcomputation. Without
nerality, we assume that a multihead or multitape machine shifts exactly
on each step.)

Lemma. Consider any § < 1 and any ¢ > 0. Every sequence S (of
say) with “distinguished-position” density at least § has a long contiguous
ice, of length at least €'T for some constant € > 0 that depends only on
with distinguished-position density still at least §/2, and with relative
wverlap less than e.

e recognition requires a verdict for each input prefix before the next input symbol is read,
ne recognition is on-line recognition with some constant delay bound on the number
tween the reading of successive input symbols. Note that even a single-tape Turing
n recognize L on-line in cumulative linear time; but this involves an unbounded (linear-
" to “rewind” after reading the symbol 2. In cumulative linear time, in fact, general
alation of a two-head one-dimensional tape is possible using just two single-head tapes
:al time is a stronger notion of “without time loss”. (There is an analogous linear-time
for two-dimensional tapes [ST89], but the question is open for higher dimensions.)
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Proof. Without loss of generality, assume T is a power of 2 that is large in terms of
5 and e. We consider only the sequence’s two halves, four quarters, eight eighths,
etc. Of these, we seek many with sufficient distingnished-position density (at least
6/2) and with internal overlap accounted for by distinct overlap events, planning
then to use the fact that each item in § can serve as the second component of at
most one overlap event.

Within each candidate subsequence §', we can select a particular straddle point ¢
for which w(8') = w;(8’), and then we can designate the w(S') overlap events
within S’ that straddle position ¢t as the ones we consider counting. The designated
overlap events in S’ can be shared by another interval only if that interval includes
the corresponding selected straddle point £.

We consider the candidate sequences in order of decreasing length (i.e., halves,
then quarters, then eighths, etc.). At each partitioning level, at least fraction & /2 of
the subsequences must have distinguished-position density at least §/2. (Otherwise,
we cannot possibly have the guaranteed total §T distinguished positions in the
subsequences on that level, since (6/2) -1+ (1 —6/2)-6/2 < 6.) Among these, we
can get distinct countable overlap from

[(6/2)2] = [#] halves,

[(6/2)4] ~ [(8/2)2] = [26] — [8] quarters,

[(8/2)8] — [(8/2)4] = [46] — [26] eighths,

[(6/2)16] — [(6/2)8] = [86] — [46] sixteenths,

etc.
Until we find one of these sequences that has relative internal overlap less than ¢, this
accounts for at least about €(6/4)7T distinct overlap events at each level, and hence
for more than T distinct overlap events after about 4/(e6) levels. This is impossible,
so we must find the desired low-overlap sequence at one of these levels. [

3. KOLMOGOROV COMPLEXITY

A key to the tractability of our arguments (and most of the recent ones we have
cited [Pa82, Pa84, PSS81, DGPR84, Ma85, LV88, LLV92, PSSN9O0, Vi84]) is the
use of “incompressible data”. Input strings that involve such data tend to be the
hardest and least subject to special handling.

We define incompressibility in terms of Kolmogorov’s robust notion of descrip-
tional complexity [Ko65]. Informally, the Kolmogorov complexity K(z) of a binary
string « is the length of the shortest binary program (for a fixed reference universal
machine) that prints z as its only output and then halts. A string z is incompress-
ible if K (z) is at least |z|, the approximate length of a program that simply includes
all of z literally. Similarly, a string z is “nearly” incompressible if K(z) is “almost
as large as” |z|.

The appropriate standard for “almost as large” above can depend on the appli-
cation, but it is usually “K(z) > |z| — clog|z|”, for some fixed constant c. For
our proofs below the constant ¢ might actually have to depend on some of the
other constants, a possible source of confusion; a more absolute standard such as
“K(z) > |z| — +/]z|" should always be good enough, however.

Similarly, the conditional Kolmogorov complexity of & with respect to y, denoted
by K(z|y), is the length of the shortest program that, with extra information y,
prints z. And a string = is incompressible or nearly incompressible relative to y
if K(z|y) is large in the appropriate sense. If, at the opposite extreme, K(zly) is
so small that |z| — K(z]y) is “almost as large as” |z|, then we say that y codes =
[CTPR85].

There are a few well-known facts about these notions that we will use freely,
sometimes only implicitly. Proofs and elaboration, when they are not sufficiently
obvious, can be found in the literature [especially LV93]. The simplest is that, both
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absolutely and relative to any fixed string y, there are incompressible strings of
every length, and that most strings are nearly incompressible, by any standard.
Another easy one is that significantly long subwords of an incompressible string
are themselves nearly incompressible, even relative to the rest of the string. More
striking is Kolmogorov and Levin's “symmetry of information” [ZL70}: K(z) —
K(z|y) is very nearly equal to K(y) — K(ylz) (up to an additive term that is
logarithmic in the Kolmogorov complexity of the binary encoding of the pair (z,y));
i.e., ¥ is always approximately as helpful in describing z as vice versal All these
facts can be relativized or further relativized; for example, symmetry of information
also holds in the presence of help from any fixed string z:

K(z l z) — K(z|y ' z) =~ Ky I 2) - K(y|z l z).
4. STRATEGY

For the sake of argument, suppose some two-tape Turing machine M does recog-
nize {2z’ | z € {0,1}* and z' is a prefix of z } in real time. Once a binary string
z € {0,1}* has been read by M, the contents of M’s tapes tend to serve as a very
redundant representation of prefizes of z, because M has to be prepared to retrieve
them at any time. (Our problem and ihis observation were motivation for Chung,
Tarjan, Paul, and Reischuk’s investigation of “robust codings of strings by pairs of
strings” [CTPR85].) One way around this is for M to keep one or the other of its
tapes’ heads stationed at some stored record of a long prefix of z, as “insurance”.
The early real-time multihead simulations of buffers [FMR72] do follow this strat-
egy, but we show that a machine with only two tapes will not be able to afford
always to use one for insurance: There will always be a significant subcomputation
in which the heads on both tapes “keep moving”, even “essentially monotonically”.
Under these circumstances, in fact, we will be able to use part of the computation
itself, rather than the combination of the two tapes’ contents, as the very redundant
representation, to contradict the following lemama, which we prove later.

Anti-Holography Lemma. Consider any C, and consider any z that is long
in terms of C, and that is nearly incompressible.? Suppose y = y1y2...Yr is a
“representation” with the following properties:
(1) |yl £ Clz|;
(2) For each £, =’s prefix of length f|z|/k is coded by yiyi...yirs for each
i<k—¢
Then k is bounded by some constant that depends only on C.

For a T'-step subcomputation by M to serve as a representation y that contradicts
this lemma, we need the following:
(1) A nearly incompressible prefix = of length at least |y|/C = ©(T/C) was
read before the subcomputation.
(2) There is a parse of the subcomputation into a large number k of pieces so
that each prefix of z of length £|z|/k is coded in every contiguous sequence
of £ pieces.
(3) k is (too) large in terms of C.
We accomplish these things by finding a subcomputation that has a spatially mono-
tonic “matching” that is both long and so well separated spatially that needed infor-
mation on tape contents cannot be spread over many pieces of the subcomputation.

The first step is to define and find “a large matching”. In a two-tape or two-
head computation or subcomputation, a monotonic sequence of time instants is a
matching if neither head scans the same tape square at more than one of the time
instants. We prove the following lemma later on.

2We need K(z) > 6|z| for some fraction § that is determined by C, so certainly the usual
K(z) > |z] — O(log|z|) will be enough if = is long.



JIANG, SEIFERAS, AND VITANYI, HEADS VS. TAPES 5

rge-Matching Lemma. If a two-tape Turing machine recognizes
{z2z' | z € {0,1}* and z' is a prefix of z }

real time, then its computation on an incompressible binary input of length n
Judes a matching of length £2(n). (The implicit constant does depend on the
iwchine.)

In a two-tape or two-head computation or subcomputation, a matching is (spa-
liy) monotonic if, for each of the two heads, the spatial order of the corresponding
juence of tape squares being scanned at the specified time instants is strictly left-
right or strictly right-to-left. The minimum separation of a monotonic matching
the least distance between successive tape squares in either corresponding se-
ence of tape squares.

onotonization Lemma. Suppose € > 0 is small in terms of § > 0. If a two-
oe (sub)computation of length T has a matching of length at least 6T and internal
erlap less than €T, then the computation has a monotonic submatching of length
§/¢) and minimum separation (2(eT). (The implicit constants here really are
nstant, not depending even on the machine; for use below, let ¢ denote the smaller
them.)

oof. Without loss of generality, assume T is large in terms of § and e. Parse
e computation into about §/(2€) subcomputations, each including a matching of
\gth at least 2¢T. Each subcomputation involves a contiguous set of at least
T' distinct tape squares on each tape. The sets from successive subcomputations
ich or intersect, but the overlap bound limits their intersection to less than €T’
pe squares. If we omit every second subcomputation’s set, therefore, we get a
atially monotonic sequence of about §/(4¢) nonintersecting sets on each tape. If
. further omit every second remaining set, then we get a monotonic sequence of
out §/(8e€) sets on each tape, with successive sets separated by at least 2¢T" tape
uares. To get the desired submatching, simply include one matching-time instant
m each of the §/(8¢) remaining subcomputations. 0O

5. CAREFUL ARGUMENT

Now let us put together the whole argument, taking care to introduce the “con-
wnts” M (and d), 8, €, and €' in an appropriate order, all before the input length n
d the particular input string 2o on which we focus. Each of these values is allowed
depend on earlier ones, but not on later ones.

For the sake of argument, suppose some two-tape Turing machine M does recog-
se the language {22z | z € {0,1}* and z' is a prefix of z } in real time, say with
lay bound d. Citing the Large-Matching Lemma, take § > 0 small enough so
at M’s computation on any incompressible input string z € {0,1}* includes a
itching of length at least §|z|. Let € > 0 be small in terms of d, §, and M; and let
be small in terms of d, §, and €. Let n be large in terms of all these constants,
d let 2 be any incompressible string of n bits.

Split the computation by M on input zg into an initial subcomputation and a
al subcomputation, each including a matching of length [6n/2]. The number of
:ps in each of these subcomputations will lie between [6n/2] and dn. Therefore,
e initial one will involve a prefix of zg of length at least (1/d)(6n/2) = né/(2d),
d the final one will have “match density” at least (6n/2)/(dn) = 6/(2d).
Applying the Overlap Lemma to the final subcomputation above, we obtain a
bcomputation of some length T > €'n, with match density at least §/(4d) and
ative internal overlap less than ¢, provided ¢ was chosen small enough in terms
d, 8, and e, Then applying the Monotonization Lemma, we obtain within this
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iputation a monotonic submatching of minimum separation at least ceT, and
:h 2k + 1, where 2k + 1 is either [c(6/(4d))/€] or [c(6/(4d))/€] — 1. If € was
small, then %, will be large. Note that ke is approximately equal to a constant
' that depends only on M.

vbtain the desired contradiction to the Anti-Holography Lemma, take y to
mplete record of the T-step subcomputation obtained above, including the
s scanned and written by each head on each step. To obtain yy, ¥2, ...,
t this record at every second one of the time instants corresponding to the
ng of length 2k + 1, starting with the third and ending with the third-to-
‘ake z to be zp’s prefix of length kceT/(2d). Since n/(2d) exceeds this
(assuming we chose our constants appropriately), all of z was already read
the initial subcomputation above, and hence before the beginning of the
iputation described by y. Note that, for some constant D that depends only

24D 164*D

< pooerd ~
lvl < DT kce 2| c2§ l=1,

it k is large (in fact, too large for the Anti-Holography Lemma) in terms of
stant C = 16d%2D/(c?6), assuming we chose ¢ small enough.

ze that z’s prefix of length £|z}/k is coded by yit1 ... yire {for each appropri-
1d %), suppose we interrupt M with “the command to begin retrieval” (i.e.,
e symbol 2) at the (24 + £+ 1)st of the time instants corresponding to the
1g of length 2k+ 1. Since M must be able to check the prefix of length £|z|/k
ing only the information within distance df|z|/k = £ceT'/2 of its heads, that
nust be coded by that information. Since this distance in each direction is
! times the minimum separation of the matching, and since the matching is
nic, the same information is available within the subcomputation record v,
1 the matching’s time instants 26+£+41—[£/2] and 2¢-+£+ 1+ [£/2]. Since
Yit¢ runs from the matching’s time instant 20 +1 < 2i+ £+ 1 — [£/2] to the
1g’s time instant 20 + 2441 > 21 4+ £+ 1 + [£/2], it too codes the desired

6. PROOF OF ANTI-HOLOGRAPHY LEMMA

wout loss of generality, assume k is equal to 2° for some integer exponent e.?
1e target constant can be 22C~!. Again without loss of generality, assume
most this target constant times two.* Finally, without loss of generality,
that |z| = n is divisible by k, with 2 = z; ...z and |z;| = n/k for every 1.
btain short descriptions of y, we abbreviate many of its subwords in terms
3 few prefixes of z, using the symmetry of information. For each j < e, and
e — 1 in particular, this will yield

K(ylzy...295) < |yl — (L 4 7/2)n + Ologn).

k is smaller than 22¢-1 e — 1 will be so large that this will imply that
je—1 codes y. Since y in turn codes all of £ = z;...zy this will mean
: first half of = codes the whole string, contradicting the incompressibility
tion for z.

iduction on j (=0,1, ..., e), we actually prove “more local” bounds that
1e ones above: For each appropriate i (1 =0, 1, ..., k- 27),

Yitl - Yigoi @1 Ta) < [Yipr - Yigai| — 2 (L4 5/2)nfk + O(logn).

is not, then just reduce it until it {s.

rwise, pair up y;i's to reduce k by factors of 2 until it is.

length is not divisible by k, then just discard at most its last 22C€~1 bits, until its length
le by k.
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Both the base case and the induction step are applications of an intuitively clear
corollary, the Further-Abbreviation Lemma below, of the symmetry of information.
For the base case, we apply the lemma with y' equal to y;11, z' equal to the null
string, and z"” equal to z;, to get the desired bound on K(y'|z"):
K(y'le") < K(y) — K(z") + O(logn)
< ly'l = n/k+ O(logn).
For the induction step, we let "' = yiy1 .. .y;+2j and y"' = y;y9i41 ... Yirai+r, and
apply the lemma with 3’ equal to y"y"!, =’ equal to z;...zy;, and z" equal to
Tpiy1--.Tgit1, to get the desired bound on K(y'|z'z"):
K (y'le'z") < K(y'|z") — K(z") + O(log n)

< K(y"|e') + K(y"|z') - K(z") + O(logn)

< |yl + 1y — 227 (1 + j/2)n/k — 2'n/k + O(log n)

=y"| + g™ = 27T (1 + (j + 1)/2)n/k + O(logn). O
Further- Abbreviation Lemma. Assume y’', z', and =" are strings of length

B(n), with
K(z"|y') = O(logn)

and
K(z"|z') = K(2") — O(logn).

(Le., y' codes =", which is nearly incompressible relative to z'.) Then

K(y'|lz'z") < K(y'|z') — K(2") + O(logn).

Proof. Let d{u|v) denote a shortest description of u in terms of v, so that |d(u|v)l =
K(ujv). Then '
K(y'le'e") < K(d(y'|e")|z'z") + O(logn)
< K(d(y'|le")|z" | 2') + O(logn)
< K(d(y'|e') | ') - K(2" | &) + K(2"]d(y'|e") | 2") + O(logn)
< K(y'lz') - K(z"|z") + K(z"|y') + Ologn)
< K(y'|lz") — K(z")+ O(logn). O

7. PROOF OF LARGE-MATCHING LEMMA
Our proof of the Large-Matching Lemma is based on an earlier theorem of
Vitanyi:
Far-Out Lemma [Vi84]. If a two-tape Turing machine recognizes
{z2z' |z € {0,1}* and z’ is a prefix of z }
in real time, then its “worst-case closest head position” on incompressible inputs
z € {0,1}" is £2(n).

In other words, incompressible binary data is guaranteed at some point to drive
both heads of such a machine simultaneously far from their original positions. By

SIf p;(t) denotes the net displacement of head z at time £, then the “worst-case closest head
position” is max; min; p;{t).
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the continuity of sequential access, of course, this means that the heads actually
spend long intervals of time simultaneously far from their original positions; and
this is the fact that we exploit.

We actually show that even any two-head Turing machine (with both heads on
the same one-dimensional tape) that recognizes our langnage and that satisfies the
conclusion of the Far-Out Lemma also satisfies the desired conclusion of the Large-
Matching Lemma. This simplifies the exposition, since we have only one tape to
talk about. Note that the “matching” notion does make sense even when both
heads are on the same tape.

As earlier, let us take explicit care to introduce our “constants” in an appropriate
order. Consider any two-head Turing machine M alleged to recognize

{z22' |z € {0,1}* and z’ is a prefix of 2 }

in real time, say with delay bound d, and that satisfies the conclusion of the Far-Out
Lemma. Let ¢ be small enough to serve as the implicit constant in that conclusion.
Let ¢ be small in terms of M and c; let § be small in terms of M, ¢, and ¢; let
n be large in terms of M, c, ¢, and §; and let z be an incompressible string of n
bits. Exploiting the conclusion of the Far-Out Lemma, parse z into three pieces,
z = uyw, such that uv leaves both heads at least cn tape squares from where they
started and the length of u is [cn/(3d)] = O(n).

Consider M’s computation on uv2u. The first u must be read before either head
gets as far as even cn/3 tape squares from where it started, but the second u must
be read while neither head gets closer than 2cn/3 tape squares to where it started.
During its subcomputation on v, therefore, it seems that M must somehow “copy”
its representation of u across the intervening cn/3 tape squares. We show that this
process has to involve a matching larger than én.

For the sake of argument, suppose there is not a matching larger than én. Then
there must be a mazimal matching of size only m < én. We will select some
correspondingly small “interface” through which a description of u must pass. That
interface will involve some rarely crossed boundary at distance between en/3 and
2¢n/3 from the heads’ starting position, and some other rarely crossed boundaries
that tightly isolate the 2m tape squares involved in the matching. Since there are
2¢cn/3 — cn/3 candidates for the former, we can select one that is crossed only a
constant number (bounded in terms of d and ¢) of times. We will refer to the tape
squares on the respective sides of this selected central boundary as close and far.
By the following purely combinatorial lemma, we can tightly isolate the matched
tape squares with at most 4m additional boundaries, each of which is crossed only
a constant number (bounded in terms of d, ¢, and our “tightness criterion” ¢) of
times.

Tight-Isolation Lemma. Consider a finite sequence S of nonnegative numbers,
the first and last of which are 0. Let some of the separating “commas” be specially
designated—call them “semicolons”. For each threshold £ > 0, let Sy be the sub-
sequence consisting of the items” that are reachable from the semicolons via items
that exceed £ (and that themselves exceed £). Then, for each € > 0, there is some £
such that £|S;| < €)_ S, where }_ S denotes the sum of the entire sequence S and
£ is bounded by some constant that depends only on €.

Proof. Let T = 37 S, and let k = 2[2/e]. Since 2T/k < €T'/2 < €T, let us aim for
#Se| < 2T/k. fnoLin {k*|0< ¢ <k} were to work, then we would have

2T/k < K|S < T

"Note that the number of such items can be small even if the number of semicolons is large.
For £ large enough, in fact, [S¢| will be 0.
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ery 1. But this would lead to the contradiction

k
T > > E(|Sks] — Sk ])

i=0

k
> Y (2T/k - T/k)
=0

=(k+1)T/k. O

r application, the numbers are the lengths of the crossing sequences associ-
with the boundaries between tape squares, their sum is at most dn, and the
olons are the matched tape squares. We obtain our desired “isolation neigh-
ods” from the at-most-2m contiguous neighborhoods that comprise S¢® by
g one item at each end of each neighborhood. (This might cause neighbor-
i to combine.) This adds at most 4m items to S; and results in nonempty
ion neighborhoods whose boundary items are at most £.

tually, the picture is clearer if we select our central boundary after we select
olation neighborhoods. Assuming € and & are chosen appropriately small, this
s select a boundary not included in any of the isolation neighborhoods. (There
- most 4m + | S| < 26n + edn < cn/6 boundaries (half the original number of
ates) to avoid.)

tally, we use our suggested interface to give a description of u in terms of v that
short—say shorter than |u|/2 =~ cn/(6d). (We could substitute a description
hort for u in z to contradict the incompressiblity of z.) We claim we can
struct u from M, v, the length of u, and the following information about the
mputation of M while reading the v part of input uv:

) The sequence of all O(m) selected boundary locations.
) The sequence of all O(m) crossings of these selected boundaries, and their
times (implicitly or explicitly including the corresponding input positions).
) The following information for each close-to-far crossing, and for the end of
the subcomputation:
e M'’s control state and head positions.
s The full content of every isolation neighborhood.
) The following information for each crossing out of an isolation neighbor-
hood:
e The full content of that isolation neighborhoed.
e The full content of the isolation neighborhood in which the other head
remains® —provided that there has been a new crossing into that neigh-
borhood since the previous time such information was given for it.

determine u, it suffices to reconstruct enough of M'’s configuration after its
itation on input uv so that we can check which additional input string 2u' of
t 1 + |u| leads to acceptance. The far tape contents suffice for this.

r reconstruction strategy is mostly to simulate M step-by-step, starting with
st close-to-far crossing. Toward this end, we strive to maintain the contents
"currently scanned close isolation neighborhood and of the entire far side. We
rarily suspend step-by-step simulation whenever a head shifts onto a close
iquare notf in any isolation neighborhood, and we aim to resume suspended
y-step simulation whenever a head shifts onto a far tape square not in any

include all the semicolons, some of these “contiguous neighborhoods” might have to be the
neighborhoods of the semicolons.

ie other head must remain in some isolation neighborhood-—otherwise, the matching could
rged.
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isolation neighborhood. Because our matching is maximal, such a far tape square
is not scanned at the time of suspension, and hence also not at any time before
the desired resumption. It follows that the information for the needed updates is
indeed available, so that resumption is indeed possible. Similarly, any necessary
updates are possible if the step-by-step simulation happens to be suspended when
the subcomputation ends. .

It remains only to show that |u|/2 bits suffice for our description of « in terms
of v. For each of the sequences in (1) and (2), the trick is to give only the first
number explicitly, and then to give the sequence of successive differences. The
length of this encoding is O(mlog(n/m)) = O(nlog(1/6)/(1/6)), which can be
limited to a small fraction of {u]/2 = cn/(6d) by choosing § small enough. For (4),
note that that the contents of each isolation neighborhood is given at most once for
each of the £ crossings into and out of the neighborhood. For (3) and (4), therefore,
straightforward encoding requires only O(log n+£(m+]|S¢|)) = O(logn+£én+edn)
bits, where the implicit constant is bounded in terms of d and ¢. This can be limited
to another small fraction of |u|/2 by choosing ¢ small enough, 6 small enough, and
n large enough. For the remaining information, M, |u|, and a description of this
whole discussion, we need only O(log=) bits, which can be limited to a final small
fraction of |u|/2 by choosing n large enough. O

8. FurTHER DISCUSSION AND REMAINING QUESTIONS

In retrospect, our contribution has been a constraint on how a Turing machine
with only two storage heads can recognize L in real time. Even if the two heads are
on the same one-dimensional tape, such a Turing machine cannot recognize L in real
time unless it violates the conclusion of Vitinyi's Far-Out Lemma [Vi84 and above].
Only in the latter, which we only cite, do we ever really exploit an assumption that
the two heads are on separate tapes.

Qur result rules out general real-time simulation of a two-head tape unit using
only a pair of single-head tapes. It remains to be checked whether the result readily
extends to probabilistic simulation [PSSN90]. A more difficult extension might rule
out simulation using three single-head tapes, yielding a tight result; but this would
require a more difficult witness language. Perhaps allowing the “back” head of the
defining two-head machine also to move and store random data, but much more
slowly than the “front” head, would let us combine our arguments with those of
Aanderaa [Aa74, PSS81, Pa82]. A slightly weaker possibility might be to show that
two single-head tapes and a pushdown store do not suffice, and a slightly stronger
one might be to show that even three single-head tapes and a pushdown store do
not suffice.

It might be even more difficult to rule out general real-time simulation of a two-
head one-dimensional tape unit using two or three higher-dimensional single-head
tapes. In fact our language L can be recognized in real time by a Turing machine
with just two such two-dimensional tapes—the idea is to strive to maintain the n
bits of data within an O(y/n) radius on both tapes, along with O(+/n) strategically
placed copies of the first O(,/n) bits, to serve as insurance alternatives at the same
time that the array of their left ends provides a convenient area for temporary
collection of data and for copying data between the tapes.

The implications for real-time simulation of one-dimensional tape units with
more than two heads remain to be investigated. For example, how does a three-
head tape compare with three single-head tapes or with one single-head tape and
one two-head tape? How tight is the known bound of 4k — 4 single-head tapes
for real-time simulation of one h-head (one-dimensional) tape [LS81]7 Perhaps the
many-heads setting is the right one for a first proof that even an extra head is
not enough to compensate for the loss of sharing; e.g., can a 1000-head tape be
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ad in real time by 1001 single-head tapes, or by 1000 single-head tapes and
.own store? ,

lly, does any of this lead to more general insight into the heads or tapes
nents for arbitrary computational tasks? I.e., when asked about some com-
aal task, can we tightly estimate the structure of the sequential storage that
for the task?
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