: Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Tarskian variations
Dynamic parameters in classical semantics

J. van Benthem, G. Cepparello

Computer Science/Department of Software Technology

Report CS-R9419 March 1994

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part of
the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathematics
and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scientific Research (NWQ). CWI is a
member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 S) Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Tarskian Variations
Dynamic parameters in classical semantics

Johan van Benthem! and Giovanna Cepparello®®

1 JLLC, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

3 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy

Abstract

In this paper we propose a general perspective of “Tarskian Variations’ providing standard logics
uniformly with ‘a dynamic semantics. Many systems from the current literature can be viewed as
different implementations of this same basic idea. Given that, we investigate two main technical issues.
First, we develop our general dynamic semantics against the background of ‘static’ logic. In particular,
we briefly sketch an axiomatization of our system and a correspondence theory for its models, while
also providing an explicit translation of the system into a static one. Next, we study some questions of
‘design’ of dynamic languages: in particular, how to combine updates with non-eliminative programs,
and how to choose a suitable procedural repertoire. Our answer to this second point consists in giving
a number of criteria, suggested by other research areas, including logicelity, bisimulation safety, as
well as further denotational constraints from the theory of Generalized Quantifiers. As a case study
we take dynamic negation, as it shows in various systems, providing some technical results on how
to characterize its behaviour (using, for instance, inverse logic reasoning in Relational Algebra and
Update Logic).

AMS Subject Classification (1991): 03B60, 03B65, 03B70, 68Q55.
CR Subject Classification (1991): F.3.0, F.3.1, 1.2.4.
Keywords and Phrases: formal semantics, dynamic logic, generalized quantifier theory, relational

algebra.

1 Dynamization

1.1 Motivation

The interest in ‘dynamic semantics’ is rapidly growing, both in philosophical and linguistic circles, but also
in AT and cognitive science. Its underlying shift from knowledge representation to information processing
fits very well with the ‘cognitivist’ flavour of many current trends in the analysis of natural language and
of human reasoning. Examples from linguistics include Heim [25] and Kamp [27] in the field of Semantics
and Stalnaker [33] in the field of Pragmatics. More recently, the dynamic tendency has influenced the
more philosophically oriented study of natural language as well, witness the works by Groenendijk and
Stokhof ([21]) and by Veltman ([34]). Finally, as for dynamic views on knowledge representation, we
mention the theory of ‘knowledge in flux’ by Gardenfors ([19]) (for a more detailed survey cf. [13]).

The dynamic approach displays the usual features of a young, & la mode research area: there are
many different systems, alternative notations, and divergent points of view. This is stimulating in a way
(witness the diversity of competing theories in computer science, say, of concurrent computation), but
still the need seems clear for more general perspectives.

Report CSR9419

ISSN 0169-118X 1

CWi

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

The present report on ‘Tarskian Variations’ proposes a uniform strategy of ‘dynamization’ of existing
logical semantics. Qur aim here is not to develop a whole new theory, but rather discussing and system-
atizing what is already on the market. Thus, we suggest a taxonomic criterion for the current literature
in the area, which actually provides new formal possibilities, throwing light on existing philosophical and
linguistic discussions. Moreover, starting from this general strategy, we suggest some possible technical
research lines, demonstrating their viability by a number of ‘pilot’ results.

1.2 Tarskian Variations

Qur uniform strategy of dynamization can be illustrated most easily for the case of standard first-order
logic (cf. [8]). There, the well-known Tarskian notion of truth governs semantic interpretation:

D,I,AE

A formula ¢ is evaluated in a model M = (D, I, A) on the basis of a set of what may be called semantic
parameters: the Domain D , the Interpretation I of the signature, and the Assignment A to the variables®.
Now, the essence of our dynamic story consists in the systematic variation of these parameters. The
motivation for doing this lies in actual semantics, where we often want to move from one picture of the
world (= first order model) to another. What we are after now is a means of bringing out such moves
explicitly, as part of the logic.

Changing the parameter of assignment is a well-known device in computer science (cf. [24]) and also
more recently, in linguistic semantics. Thus, the ‘dynamic predicate logic’ of Groenendijk and Stokhof
([21]) transforms the parameter A by means of ‘random assignment’ 7. A program 7z then denotes the
following instruction:

nx = replace the value assigned to = by an arbitrary new value

A nice consequence of this ‘shifting the register’ for z is that it permits a compositional treatment of
anaphoric binding in natural language.

But variation of the other parameters is also possible and, in fact, it makes sense. For instance,
consider the interpretation of the signature. A description of the world can be changed by expanding or
modifying the interpretation of one or more predicates (with given objects). Such a change occurs, for
instance, with the acceptance of an answer to a question of the form “who {or what) has the property
P7", where we want to learn more about the extension of the predicate being queried. Another possible
application of the variation of the parameter I would be the semantic modelling of the imperative mode
in natural language: ‘put the block on the table’ leads to a new state of the world where (at least)
the interpretation of the predicate ‘being on the table’ has changed. Finally, ‘dynamic variation’ of [
allows us to formalize (compositionally) natural language texts containing so-called ‘VP-ellipsis’ (like
‘Lucas studies Latin. Marco does it too’), which involve reference to changing predicates, analogous to
individual anaphora.

Variation of domains occurs naturally too in linguistic interpretation. For instance, different quan-
tifiers in an expression may range over contextually changing domains (witness the ‘context sets’ for
quantifiers of Westerstdhl [37]), and the precise mechanism of change here should be brought out explic-
itly in our calculus.

Summing up, Tarskian Variations involve a dynamic view of the semantics for expressions w, as
effecting changes from one Tarskian triple to another

D,I,A = D.I'A

Accordingly, expressions in our language become programs giving instructions for such transitions.
What these instructions are may still depend on which particular dynamic task one has in mind (model
checking, model construction, etc.). In general, these instructions will be parametrized, affecting only
one parameter at a time. Of course, there are differences between these parameters, which may lead

INote that the }= relation itself can be viewed as a further parameter.

raints on their variation. For instance, assignments will only change (in general) by
es in their register values, while domain changes consist in adding or removing individual
er, changes of special interest may obey further constraints. In many areas of semantics,
nly interested in so-called ‘persistence’ under extension of a domain (cf. [2]).

an Variations

nking illustrated above for the case of first-order logic applies to virtually all logical
5. For instance, possible worlds semantics for intensional logics affords many further
1antic parameters that can be naturally varied. Examples of the assignment-type are
ral reference points in temporal logic (cf. [16]), examples of the interpretation type
ing accessibility or preference relations (cf. [12], [34], [14]), while domain changes also
in moving from one possible worlds perspective to another (for instance, in the ‘update
- discussed below). We shall refer to this extended view as ‘Kripkean Variations’.

ectural Issues

tes of our approach have been as follows. We take an existing classical semantics, and
ymic potential, both in its models and in its language. In this process, the old ‘static’
iot disappear: in fact, there are reasons for letting it co-exist with its dynamic version.
ith Tarskian Variations, the ‘old’ first order language can be retained for describing
tes of information processing driven by the new dynamic component. Moreover, we may
- and postconditions in the standard computational style, by designing a two-level Pratt-
7stem with suitable ‘switching’ mechanisms between static and dynamic components (cf.

luality static/dynamic language, many further architectural points come up in the actual
an or Kripkean variations. In this report we will be mainly concerned with three:

of models
of operators and of their semantic interpretation
nation of different dynamic operators within one calculus.

i do not exhaust all issues in ‘general dynamic logic’. For instance, there is still the matter
ons of dynamic inference. Several options and results to this effect are discussed in [9],
Te shall not pursue this line here, even though it is certainly congenial to the present

an Variations in Dynamic Logic

nal System

em TV for Tarskian Variations will use a two-level language, producing a multimodal
sual style (cf. [24] and [20]). Here we have a set of programs (3,73 ...) and a set of
nulas (¢, % . . .), given some standard first-order similarity type. The procedural repertoire
Jlean connectives for formulas and regular operations for programs, plus two ‘switching
‘test mode’ from atomic formulas to programs and one ‘modal projection’ from programs

we have:
wlas:: = Pty...t, | o | oAY | (m)p
rams = = (p)? | nz | p | 6 | miyme | mUme | o

this particular choice of operators will become clear in section 4.
:mantics, we have:

modes
Pz e S > T
-V --ETPJ;‘ZE;EQH_S____ -U;

Figure 1: Modes and Projections

Definition 1 (TV model) A TV model W consists of a family of models or ‘states’ (D, I, A), where
A 15 an assignment from variables into the domain D and I is an interpretation function from predicate
letters into denotations over the domain. Notation for states: w,v,u,.... These models carry the following
‘shift relations’:

1. w=zv: wdiffers from v at most in its A-value for
2. w=rv: w differs from v at most in its vziues for I
3. w=pwv: w differs from v at most in its domain D

In this definition, we are only using standard tarskian models. We could also allow more general
domain shifts, however, which would give us the effects of quantification over ‘non-existent objects’.

Next, the truth clauses must be given by a simultaneous induction on programs and formulas. Pro-
grams are to be interpreted as sets of state transitions over the set W, while formulas are evaluated at
single states.

Definition 2 (Interpretation of TV programs) A TV program = is interpreted on a TV model W
as a binary relation on W, whose graph is as follows:

1 [o?w = {{w,v) |w=v and v € [Pt;...t,}w}

2. [nzlw = {{w,v) | w =, v}

3. plw = {(w,v) | w=; v}

4 [6]w = {(w,v) | w=p v}

5. [-7lw ={(w,v) |lw=2v and-Fue W : (w,u) € [r]w}

6. [my; malw = {{w,v) | Ju: (w,u) € [m]w and (u,v) € [m]w}

7. [mUm]w = |[7r1]]W U [we]w

These clauses are recursively intertwined with the following ones for TV formulas:

Definition 3 (Interpretation of TV formulas) A TV formula ¢ is interpreted on a TV model W as
o subset of W according to the following clauses:

(Pz1...zn)w ={w=(D,I,A) € W |(A(z1)...A(z.)) € I(P)}
2. [~plw ={we W| notw =y}
3. [evilw ={weW| wkyporwkqy}
4- [m)plw = {w € W | there is a v € W such that (w,v) € [7]w and v € [plw}

1.

o N T N

atic Fine-Structure

obal Variations This simple system demonstrates some interesting general phenomena.

the striking difference between nz and p: nz modifies the assignment parameter only
variable z, while p affects the whole interpretation function. Thus, the variational view
- conceptual distinction, between ‘local change’ and ‘global change’. But then, we can
rarameter A globally, shifting all registers at once, as well as change the parameter I in
ate only. Technically, of course, global variation of a parameter can be decomposed into
For the case of assignment, e.g., we have, using a Kleene star for iteration:

vAR NT)*

1 2.3 for a more delicate discussion). The same can be done for global shifts in interpre-
tice, it is easy to find motivations supporting these finer distinctions. Global assignment
in logic with so-called ‘universal’ or ‘existential closures’ of complete formulas, affecting
es in them. And similar phenomena occur in natural language, witness the ‘unselective
ris [29). Likewise, local change of interpretations occurred naturally in the above example
: usually do not query all predicates at once). Moreover, even in the case of possible worlds
expressions, where one traditionally shifts from one global interpretation for the language
rre might be a case for more ‘controlled’ local versions. Thus a modal expression "Mary
d only refer to changing the actual world in the single respect of varying the interpretation
te ”win” , while leaving all other things equal.

traints on Variations Various interesting subsystems of TV arise from focusing on
jarities of specific components. For instance, consider the § operator: it makes sense to
sarts, and constrain its variation along the two relations of ‘being a submodel’ and ‘being

ion’:

(w, v) | w2 v}
(w,v) | w S v}

tion of domain change gives us more expressive possibilities in talking about individuals.
ve can now distinguish between quantifying over available objects and over new objects:
d be encoded by the formula:

search for an object to instantiate the register within a possibly bigger domain. Such
will make the set of TV validities grow, witness section 2.5.

1e opposite direction, one can also move to more abstract versions of our concrete shift
instance, instead of =, there might be just any abstract relation R, whose properties
explicitly constrained by special requirements on the behaviour of atomic programs nz

).

lodels as Generalized Tarski Models

n be seen as broader model structures, whose virtue is that they allow us to see more
sses going on than would be visible in isolated Tarski models. In this process, we may
e-think the standard static semantics that we took for granted until now. Let us see how,
ynamic re-analysis of [10].

use of Tarski semantics reads:

: 3z iff there exists an z-variant A[z] of A such that D,I, Alz] = ¢
'n as a special case of the following general notion, which brings us directly to TV models:

: Az iff for some A', R A, A" and D, I, A Ey

In our TV models so far, the ‘accessibility relation’ R, is simply =;. Given this basic idea, we can say
that TV models make the set of relevant parameters grow, in that they provide a context of ‘accessible
triples’. Thus, ordinary predicate logic can be read against the background of TV models:

TV (accessible tarskian triples), w (actual tarskian triple) |= ¢

This TV context may play a role, for instance, in the interpretation of existential quantifiers: 3z would
only look at z-variants within the ambit of available tarskian triples. Note that prescribring a set
of ‘available’ assignments is precisely what has been done by I. Németi in order to isolate decidable
fragments of first-order logic. In fact, the set of formulas valid in these ‘generalized first-order models’,
with an arbitrary set of available assignments, is decidable (cf. [30]).

So far, no particular assumption has been made on the available tarskian triples in our TV models.
Thus, TV models need not ‘have enough states’ in the sense of Goldblatt (cf. [20]). This requirement
says that for all variables z, for all TV models W, for all tarskian triples w € W and all objects d € D™,
there exists a w' € W such that w =, w', and A¥ (z) = d. This situation has interesting consequences
for our earlier distinction between local and global variations. Notably, the random assignment 7 in TV
(which was interpreted by a global shift) is not equivalent to a standard existential quantifier, or sequence
thereof:

(nz)p ¢ Fzi...dz,p

Rather, 7 is a sort of ‘inner’ quantifier, looking at available tarskian triples, while 3 is a ‘outer’ quantifier,
ranging over the whole logical space. Of course, if we interpret classical formulas directly on TV models, as
we have suggested above, then the ‘inner’ quantifier s just the standard one, no matter which assignments
are available.

Finally, we would like to point out that TV models are a more general version of Németi’s models, in
that they do not just model generalized assignments but do the same with interpretations and domains.

2.4 Translation Lore

In this section we look at the question of translating our TV system into a static standard formalism.
In principle, a dynamic semantics can always be embedded in a classical one ([8]). The point of such
translations, beside their intrinsic interest, is that they allow us, at least in principle, to apply the available
theory of standard systems to the dynamic set-up.

What we want to demonstrate here are the following facts: first, the choice of a translation is not
unique (we will show two different translations for TV), and special semantic assumptions are eventually
necessary in order to guarantee that the translation ‘works’. Moreover, looking at a dynamic system
‘from its translation’ can suggest new questions.

The first translation we propose takes its cue from standard Dynamic Logic. Our starting point was a
set of ‘tarskian triples’ (D, I, A) and a set of binary relations among them, built from an atomic base by
a family of operators. In order to ‘flatten’ this semantics to a classical one, we simply take a first-order
language with variables w, w', . .. ranging over states (= tarskian triples) and with a set of atomic binary
relations R, one for each atomic program. The semantics will be as usual, with Domains of tarskian
triples and the usual Interpretation and Assignment functions.

More concretely, we have, employing some harmless confusion of notation:

Definition 4 (Standard counterpart of a TV model) The standard counterpart W of o TV
model W is a triple (D,1, A) such that:

e D={w|w is a tarskian triple in W}

s Alw)=w

e I(R,) = [rlw

Given that, the translation scheme will be as follows:
Definition 5 (Translation scheme I)

e T = Rp(Win,Wou:) for atomic programs w

Win = Wout N '131.0(.7?(’11)01,1, ’LU))
; (Ew(w_l(wina ’LU) A —7_‘:2_("”7 wout))

= (—"—r_l_(wiu) wo‘u.t) \Y ﬁ(winy wout))

of this translation rests on a very simple induction:
rlw ff W = a(w,w')

translation, where programs are viewed as ‘state changers’, is not a translation into the
edicate logic which gets ‘dynamized’ in TV. Moreover, it is not completely clear that the
RE: it focuses in fact on a special subclass of the class of models for the abstract language.
1d make sure that our TV models form an RE-definable special class (which is in fact the

o means trivial to prove).

opose a direct translation into the static language underlying TV programs. The basic idea
a TV program = can change (the interpretation of) tuples of predicates, (the assignment
ariables, and domains. We shall then describe programs via second-order formulas which
de the change induced by them. In order to express the effect of a program , its translation
te all predicates (including a predicate for ‘being in the domain’) and all variables affected

1, tracing the input and the output of =. .
Jlemented in the following translation 7 taking dynamic formulas (%, P, D) to second-order

;;1 Tout Pi'n,» Pml.h Di-n,, Dout):

(Translation scheme IT)
) 15 a conjunction of the formulas:

= Zout for all variables

P, T < PpuX) for all predicates

D;nz — Dyyx) for the domain predicate D
Clyin - - -33-,,.,1'",)

. conjunction of the formulas:

=Your foral y#z
P;, T — P,uT) for all predicates

Dipx < Dyyiz) for the domain predicate D

wmilarly

aﬂa av D: Ty (mi'n.v —dy Pl""-y Qy Di'll,) D) A Twz(ﬂy Zout, ay Pout7 Dr Dml.t)

1 Tryun, stmilarly.

lear how this translation is intended to work. Nevertheless, there are some subtleties. On
>ntaining all possible variations of a given tarskian model, an equivalence is easily proved
" transition for ¢ and its 7 description. On our general models, however, there may be a
:ause the existential quantifiers in the above definition refer to intermediate state transitions
t be represented in our model (see for instance the clause for a sequential composition).
hand, this technical complication may have its benefits, in that we are essentially using a
semantics in Henkin’s sense for the second-order predicate quantifiers, which will allow for
ty (and even decidability in the earlier mentioned generalized perspective).

2.5 Axiomatization

Despite the existence of the above translations, the TV system (which we will consider from now on in its
broad version with ‘local’ and ‘global’ and p) also retains its intrinsic interest, and we certainly want to
understand the explicit principles of dynamic reasoning supported by it. We shall not provide a detailed
completeness proof here (cf. [15] for one possible strategy), but merely discuss some salient components
of the complete logic.

First of all, we need a standard part, including a classical kit plus the minimal modal logic of our
semantics:

o The usual axioms and rules of Predicate Logic
e K schemata fo-r (m), (nz), (i), (uP}, (6), with = a variable and P a predicate
o S5 schemata for (n), (nz), {u), (P}, (§), with = a variable and P a predicate
Next, we need principles reducing complex programs:
o (m;ma)p o (m1){me)p
o (m)p o p Am(m)T
o (m Um)p < (m)pV (ma)p
The interaction between ‘local’ and ‘global’ operators will be expressed by the following schemata:
o (nz)p — (n)y
o (uP)p — (ne
Rigidity of interpretation is expressed by the following schema:
e for = 7,1z, 6:
Pa — [7]Pa
where a is a constant and [] denotes the universal modality.
In the presence of Identity, we need some rigidness postulates:
Rigid Variables schema for 7 = pu, uP, §:
(z=y) = [rl(z=v)
e Rigid Terms schema for 6:
(1 =t2) — [8](t1 = t2)
In the presence of fixed domains, Barcan Formulas will be needed:
e for # = n,nz, u, uP, with z a variable and P a predicate:
(m)3zp — 3z(mhp

This concludes our survey of universal principles. Obviously, further specific constraints on variations
will have their effects here. For instance, if we opt for splitting the § operator, S5 principles become too
strong, since Symmetry is lost. On the other hand the specific submodel relation also induces new laws,
such as the partial order properties of inclusion. On full models, one would even get the existence of
‘end-points’ (being singleton submdels). An axiomatic characterization in the latter case would therefore
include at least:

e 54.1 schemata for (] 6)
e S4 schemata for (] 6)

SR sl

spondence

1dditional principles on TV models can actually be studied more systematically. In general,
ence Theory’ for TV (and for dynamic) models could be developed, along the lines of
se Theory for Modal Logic (cf. [3]). Here we just want to give some relevant examples:

Chis principle, calling into play only one modality, is already encoded in modal logic corre-
se; it expresses in fact the usual $4 principles of Density (from right to left) and Transitivity
t to right).

¢ This is a multimodal principle, expressing the following form of ‘confluence’: VA, A', A"
I'YA R, (A", A™)) — JA"(R,(A,A")A R (A", A")). Note that this condition is satisfied
10dels with ‘enough states’,

nz Analogous to the principle above; notably, it demonstrates the ‘independence’ of vari-
predicate shifts.

¢)* This principle, which we have already encountered in our discussion, expresses the fact
sal shifts must be decomposable into finite sequences of local shifts.

ong these ‘correspondences’, some are universally valid in TV models (like, for instance,
1 Transitivity of the R, relation), while those involving existential quantifiers call for specific
general theory of ‘multimodal correspondence’ is available from the recent literature {cf.

mational Updates

ms for Update Semantics

amic strategy advocated so far consists in shifts in semantic perspective, no matter what
nount to in terms of transmission of information. In other words, TV models are not
erned with knowledge representation and information processing, but rather with a formal
of dynamization. Nevertheless, it should be noticed that some fragments of the system
lly have epistemic potentialities. In particular, the operator u (both in its local and global
ments some process of ‘knowledge updating’, at least if we consider tarskian triples as stages
processing, or as ‘databases’ (sets of formulas). From this point of view, learning new facts
1d would just amount to changing the interpretation of one or more predicates. In this
jels resemble knowledge representation devices which can be called ‘constructive’, in that
rmation states as ‘pictures of the world’. Examples are Discourse Representation Theory
ch updates discourse representation structures by adding data, the recent ‘Dynamics of
sion’ (cf. [18]), which updates deductively closed theories, and more generally, systems of
ating (cf. [19]).

»proach would be to represent information flow using our earlier kripkean variations, via
aween information states in Kripke models for intuitionistic or similar constructive logics.
this spirit is the Dynamic Modal Logic of de Rijke ([31]) and van Benthem ([9]), which has
arched using analogies from Dynamic Logic. We shall not follow this approach here, but
rate on yet another - less mathematically explored - viewpoint, which views the process
in information state as eliminating successive possibilities from an epistemic horizon. This
w on information processing finds a clear expression in the Update Logic of Frank Veltman
‘h we will take as our running example henceforth.

native Update Semantics

ssible worlds model for propositional S5. The relevant parameters in the truth definition
p include a set of possible worlds W, an accessibility relation R and a valuation V for the
‘ters:

Fe

For present purposes, we keep R and V fixed and we modify W, reading ‘classical’ propositional formulas
as instructions for updating the universe of possibilities. Consider the above-mentioned system of ‘Update
Logic’. Its language consists of the following programs, starting from a set of propositional variables p € P:

UL Programs :: =p | m;me | mUmy |- | On
This language is evaluated in the following models:

Definition 7 (UL model) A standard UL model U, given a set of propositional variables P, is the set
of possible worlds p(P) (ordered by the total accessibility relation), or alternatively the set of all bivalued
valuations of the proposition letters.

In analogy with TV models, one can also define ‘generalized’ UL models as subsets of the set p(P). In
this way, we could encode the validity of ‘universal constraints’ ruling out certain possibilities beforehand.
(On this issue of encoding, as well as on the general connection between eliminative models and kripkean
variations, see [26]). We will not pursue this issue here.

Over the above models, formulas will be interpreted as ‘updating functions™

Definition 8 (Interpretation of UL programs) A UL program =« is interpreted on a model U as a
function from p(U) — p(U) satisfying:

1. [plo(V) = {w € U | p € w}
2. [~rlu(U) = U = ([n]u(V))
3. [On]u(U)

_ { U i [rlo(U) #0

] otherwise.
4. [mime]u(U) = [72] o ([m]u(0))
5. [m Ume]u(U) = [m]u(U) U [re]u(V)

From now on, we will mostly omit the index U. The idea of this definition is clear: ‘classical infor-
mation’ discards possibilities, whereas the modality < is an epistemic test of the current horizon. (This
close connection with modal S5 may already be seen from the ‘monadic translation’ first given in [5]).
Thus, the general picture of information processing arising here is that of factual updates interleaved
with transient tests on successive states of this process. We shall return to various technical aspects of
this distinction later.

3.3 Combining Tarskian Variations With Updates I

In the literature, there has been a good deal of attention to the problem of combining variations of
tarskian parameters with eliminative updates. Technically, this is highlighted by the question of combin-
ing Veltman’s UL with DPL (i.e., the dynamic predicate logic of Groenendijk and Stokhof [21], considered
here as a fragment of our TV system). Proposed solutions include [17], [16], [23]. We shall briefly discuss
some salient points.

The syntax of the combined system simply amounts to DPL syntax (where the only atomic programs
are classic atoms and 7nz) plus the UL modality ©. The difficulty in giving an appropriate semantics is
due to a different ‘granularity’: DPL programs modify single first-order models, whereas UL programs
modify modal models, i.e. sets of (propesitional or first order) possible worlds. Here, ‘lowering’ the
granularity of UL semantics does not make sense, because its behaviour on sets of tarskian triples cannot
be reduced in general to behaviour on individual triples. The obvious policy then consists in ‘lifting’
the interpretation of DPL programs to the set level. The problems that arise here may be demonstrated
vividly by examining the behaviour of negation.

One obvious ‘lifted’ negation for DPL would be:

[-7]W = {w e W | [x][{w} = 0}

10

fo e

only looks at the ‘pointwise’ behaviour of programs which would not work in an updating
consequence, the program —Op would become equivalent to —p. Thus, the following would

pW #0

hand, the UL interpretation of negation as ‘complement’,
=W — [«]W

ith DPL programs, because of its purely eliminative character. This would produce unde-
when applied to ‘dynamic quantifiers’, as in:

’z); (nz; Px)]W # 0

mic Modal Predicate Logic of van Eijck and Cepparello (cf. [17]) solves this problem by
vel semantics, assigning to each program 7 a ‘parametrized’ updating function [x]%, where
ments, which maps index sets I to new index sets. The following definition illustrates how
nt semantic dimensions can be kept separate.

(Semantics of DMPL)
toJi(I)={i€l|s=uand M,il=, Rt;---t,}.
‘(I) = standard
16(I) = stendard
)= {i € I'| s =u and there is no v with i € [x]}(I)}.
) = {iel|u=s(z|d) for some d € M}

if u = s(z|d) for some d € M,
otherwise.

Y = {i€l|s=u and there is an r with [x];(I) # 0}

if s = u and there is an v with [x]5(I) # 0,
otherwise.

>uzzle of negation is solved by reading negation as ‘complement’ along the index set dimen-
the same time, as a ‘test’ on single assignments.

pproach to this problem has been proposed by Groenendijk, Stokhof and Veltman (cf. [23]).
m, which we shall call GSV, the modality © ranges over interpretations and assignments
ime. The syntax is the same as in DMPL, except for two facts. First, in GSV the random
is not a program by itself, but a ‘dynamic quantifier’, which then needs to be restricted
(concretely, nz is not a well formed program, while 7z : 7 is). Second, the operation U of
e is not allowed. The reasons why it is so will be clear in a while. As for the semantics,
e ‘partial’: given a fixed domain D, a GSV (atomic) state will include an interpretation over
\al assignment A to the variables. Again, the semantics is ‘lifted’, with sets of partial states
. As a consequence, the problems above (e.g. in defining negation) arise in this context too.
s we said - the GSV-modality is supposed to have a wide spectrum (including alternative
the trick of setting apart two levels in the semantics will not do. Alternatively, the idea is
grams effects on single states by introducing an ordering on them (following an idea from
see how.

0 (Referent system) A referent system is a pair (n,r) where n is a natural number
rtial injective function from Variables into n.

11

Definition 11 (atomic state, state, model) Given a Domain D, an atomic state s is a quadruple
(n,r, A, I), where (n,r) is a referent system, A is a funclion from n to D and I is an interpretation over
D. A state S is a set of atomic states. A model M is a set of states.

Definition 12 (Extension ordering) Given two atomic states s = (n,7,A,I) and s' = (n',7', A", I'),
s' is an extension of s (in symbols s < s') if the following conditions hold:

I.a<gq

2. Dom(r) C Dom(r")

3. Yz € Dom(r)(#(z) < r'(x))
4. ¥n € Dom(A)(A(n) = A(n'))
5. 1=1T

Notation: if s = (n,r, A,I), s[z/d] is the atomic state (n +1,7', A',I) where v'(y) = r(y) for all y # z,
r'(z) = n, A' = AU {{n,d)}. Similarly, S[z/d] = {s[z/d] | s € S}. Given that, here are the relevant
semantic clauses:

Definition 13 (GSV semantics) A GSV program = is interpreted on a GSV model M as a function
from M to M, satisfying the following clauses:

1. [P(t1...t)]S = {s € S| (A(r(tr))... A(r(t1))) € I(P)}
2. [nz : 7]S = Usep[Pty ... P,]S[z/d]

_ [S if[nlS#0
3. [or]s = { O otherwise.

4. [7]S={s€ S| -3s': s <s' and s’ € [x]S5}

We only make two short comments. First, the reason why nz : Pt; ...t, cannot be read as a sequential
composition is that the interpretation of 7 is ‘piecemeal’ in the sense of processing the ‘shift’ to = object
by object. Take then the program:

nz: O

Its output is supposed to give all possible values of x which are possibly 7, and not all the possible values
of z if can be instantiated with an object which is 7. In other words, in GSV the following continuity
property is lost:

Ugep([z/d]; 7) = Uaep([z/d]);
(where by [z/d] we mean the program: AS. S[z/d]) and, consequently:
[nz : 7] = Usep([z/d]; 7) # [ne; 7] = (Vaeplz/d]); =

Note that this continuity holds in DMPL, because its modality ranges over alternative interpretations
only, leaving the system distributive as far as the assignment-dimension is concerned.

Our second comment on GSV concerns boolean choice. It is not possible to define it here because it
would produce atomic states with different carrying referent systems within the same state, which would
make the clause for negation fail, for instance, for atomic first-order formulas.

12

o A

bining Tarskian Variations With Updates I1

. we make a third attempt, designing a uniform variational system TKV (Tarskian Kripkean
7ith global and local modifiers for each tarskian parameter and ‘parametrized’ modalities.
ms as follows:

‘rograms :: = Pty...t, | -7 | mymy |mUm | n |z | p | pP |L6]T6 |
>1Eg | Ok | OFP x| OV | OTégr

are just like TV models, but we shall exploit both the individual states and sets of these. On
programs will be interpreted as updating functions. In order to keep a double granularity in
, we introduce a program-dependent ordering on single states, encoding the core behaviour
s programs:

4 (Pointwise ordering)

P(zy...x,), wrrw ifw=w andw' | P(z1...2,)

nr, wr,w iffw =, w

y for n,p, uP, 1 8,] § with their corresponding shift relations

w1y, W w iff there is a w" such that w >, w" end w" =, w'
T Umy, W iff wrrnw or wig, w'.

sther programs m, in particular modal tests, >, is the identity relation.

s basically mimicks our earlier TV evaluation. In the general case, our lifted update condi-
st in evaluating non-distributive constructions. A notational convention: [wW ={veW|
| similarly for all other tarskian parameters.

5 (Interpretation of TKV Programs) A TKV program w is interpreted on a TKV
a function from p(W) to p(W), satisfying the following clauses:

to)W ={w|3w eW:w>py. 4, w'}={weW|wl Pz e Tp)}

={w|Iw eW: v =, w}

hat this amounts to the image of W under the earlier relation >,;)

ly for n, p etcetera

7={w|3ve|w¥ @uvru A ue[r]W))}

ly for the other modalities

={w |- (w>v A ve[r]W)}

W = [me]w([mlw)

AW = [m]w U [me]w

n does not present obvious problems for the negation clause. In particular,
p]W =0 for every TKV modality

Pz); (nz; Pz)]W =0

is interpretation of TKV respects some peculiarities of the UL modality. For instance,
:) is valid, whereas [Om; =7][W = 0 is not.

t think that this particular system has solved all outstanding problems in the area - not
ion, which remains a tricky notion. What we propose to do next is attack these issues from
by surveying general logical features which should be obeyed by any dynamic system of this

13

4 Logical Issues

4.1 The logical space of dynamic operators

In this part, we turn to general perspectives on dynamic logical operators. We will be inspired, to some
extent, by the theory of Generalized Quantifiers (cf. [4], [37]). Thus, on the one hand we will try to
impose conditions on possible operators ‘from the outside’, guided by basic mathematical intuitions -
while on the other, we will start from intuitive desiderata on the behaviour of some specific operator,
say negation, and search for their impact. The two perspectives occur interlinked in several definability
results to be proved below.

To investigate the logical space of dynamic operators, we need to determine a suitable type for them.
Several options are available for their arguments, of which the following two were encountered above.
Given a set W of ‘atomic states’ (possible worlds, tarskian triples), we have:

- Relational algebra type : Relations CW x W
- Update Semantics type : Functions € p(W)P(W)

Of these two, the ‘relational algebra’ type has been investigated at greater length already (cf. [9]).
Therefore, our analysis will mainly concentrate on programs of the second type, which are also somewhat
more flexible - using results concerning the relational type occasionally to guide us. In general, programs
of the update type will be defined as follows:

[#] = MW {w | p(w,W,...)}

where ¢ is a condition in some suitable formal language.

4.2 Choice of Operators: Logicality

What are legitimate ‘logical’ dynamic operators? Intuitively, ‘logical’ expressions in any language are
not involved with any content, but only with ‘formal structure’ (see e.g. [9]). A well-known technical
implementation of this intuition is preservation under permutations of individuals in the underlying
models.

To understand the idea, here is an example from set theory. An n-ary operation O on sets is called
‘permutation-invariant’ if, given any n-tuple S ... S, of sets, and any permutation a of the universe:

O(OéS] .. .ClS,,,) = OL(O(Sl s e Sn))

Such operations must behave in a ‘uniform’ manner, as can be shown by some simple mathematical
analysis (cf. the general range of examples in [6]). For instance, it can be proved that an n-ary operation
O is permutation invariant iff it can be defined, for each n-tuple, by some combination of the ‘Boolean
zones’ in the Venn diagram formed by all sets in the n-tuple. For dynamic operations, the obvious
definition of ‘permutation invariance’ will employ permutations of programs induced by permutations of
the underlying states, as follows:

Definition 16 (Induced permutation) Given a permutation a of the basic state set, the permuta-
tion of a program 7 induced by «, in symbols a(x), is o program defined as follows:

[o(m)] = {(aW, aW') | (W, W'} € [~}

(87

il - -

P

o
I
i
i

-

a{m)

Figure 2: permutation of a program

14

ve suggests another obvious way of describing the permutation of a program =:

W =
\’4
ine a consonant notion of permutation invariance for a dynamic program operation @:

(Permutation invariance for a program operation) An n-ary program operation @
1 invariant iff, for all programs my ... m, and permutations c, the following holds:

o)) = [(e(@(ry . .. 7)))]
ds, iff [a~Y;@(my ... m);e] = [@(a7 w5 0) . (07 T)], for all my .. m, and all

generate many dynamic ‘logical’ operations, by staying inside some safe linguistic format

the n-ary program operator @ is defined as follows:
W) = AW fw | o(ry, ..., T, W w)}
~theoretic defining condition, then @ is permutation invariant.

n-tuple of programs #; ... 7T, and a program permutation a. We have that:

L)) =

LT H (W) =

o(my,.. . Tm, @ Y {W)w)} =

e of set-theoretic statements for permutations of individual domains

p(a(m), ..., o(mn), aa” (W), a(w))} =

roperties of permutations

i), ..., alm,), W,w)} =

yLase,. e e, Ww)} =

a),. .., (e m;a))]. =

so partial converses of this result: under favourable circumstances, all invariant operators
iverse of states are definable in some suitable logical formalism (cf. [9], [6]). We shall
sue for a special case later on.

r Notions of Logicality

rrocedural equipment’ that we have been using for our system TV (’counterdomain nega-
1 choice’ U, sequential composition ; and test ?) is of course much more constrained than
1 logical space mapped out in the preceding subsection. The reason is that it satisfies
r criterion for ‘logicality’ of dynamic operators. We can think roughly of permutation
ying that, whenever arguments of an operator are connected by some isomorphisms, then
, via some canonical modification of those isomorphisms. But this idea can be generalized
other notions of ‘simulation’ between argument values. Notably, one crucial notion of
mce from the computational literature is the following:

(Bisimulation) A relation f between states in two TV models W and W' is o bisimu-
rogram 7 if, whenever wfw', the following conditions hold:

verify the same ‘static’ atomic formulas
[#lw, then there exists a v' € W' such that (w',v") € [7] and vfv', and vice versa.
(Bisimulation Safety) An operation @(my ...m,) on programs is safe for bisimula-

simulation f for my ... m, is also a bisimulation for @(wy...m,).

15

Now, instead of full set theory, consider just the obvious first-order formalism for defining operations
over binary relations. Here, we can see what makes our earlier repertoire uniquely distinguished, at least
over all multi-modal models of the TV kind (cf. [11]):

Theorem 2 A first-order program operation @ny ... 7, is safe for bisimulation iff it can be defined from
... 7, using atomic tests 7 as well as only the three operations U, ;, .

Proof: cf. [11]]

The earlier notion of permutation invariance can be connected up with bisimulation invariance. Note
that f is a bisimulation with respect to =, essentially, if f;m = m; f. Now, this also makes sense for the
earlier permutations . Then we have the following connection.

Theorem 3 FEach permutation-invariant program operator @(my ...mw,) is safe for permutations that
bisimulate all its arguments.

Proof: Suppose that o;m; = m;;0, for 1 < 4 < n; ie, m = o~ };m;a = a(n;). By the permutation
invariance of @, we have:
a(Q(ny ... 7)) = @(a(m)...a(r,)) = Qlafm ... 7,)
Moreover:
a(Q(my ...) =a 1;Q(m ... m,); 0
Combining these two facts, we get:
Qmm)0 =0;Q(my...m,) "

4.4 Denotational Constraints in Update Semantics

We will now continue the analogy with Generalized Quantifier Theory, focusing on Update Semantics.
Let us recall some basic notions from GQT. Quantifiers are functions ¢ which, to any universe E, assign
a binary relation Qg on p(E). Notation:

QrAB.

Given this very general type of semantic object, one now searches for constraints, going from generally
plausible intuitions to special-purpose mathematical conditions. Well-known examples from this tradition
are:

e Extension EXT (context independence): if A,BC E C E', then QpAB iff Qg AB.
e Conservativity CONS: QgAB iff QgA(BnNA).
Variety VAR: if A C F is non-empty, then there exist B, B’ such that QgAB and not QzpAB'.

Quantity QUANT (permutation invariance): if o is a bijection between E and E' and A, B C E,
then QpAB iff Qg a(A)a(B).

Moreover, here are some other important special properties, which are not generally valid for all quanti-
fiers:

o Upward-Monotonicity MONT: if QgAB and BC B' then QgpAB'.
¢ Downward-Monotonicity MON|: if QgAB and B' C B then QgrAB'.
o Upward-Persistence PERST: if QgAB and A C A’ then QgA'B.
* Downward-Persistence PERS]: if QgAB and A'C A then QzpA'B.
As an example of how these properties can characterize subclasses of quantifiers, here is a typical result:

Theorem 4 A generalized quantifier satisfies EXT, CONS, VAR, QUANT and PERS iff it is in the
Square of Opposition (namely iff it is one of the following: all, some, no and not all).

16

n, this style of analysis also applies to dynamic operators. Here, we are not after de-
s GQT-style theory of dynamic semantics. Rather, we give a sample, demonstrating its
ating a subclass of dynamic operators which can be treated as generalized quantifiers.
‘he possibility of ‘exporting’ results from GQT to Dynamics.

d to further analyse the type of dynamic operators. As we have already seen, a dynamic
usually be defined by a set-theoretic condition of the following form:

? w’ W)
h formulas ¢ are:

1 g W

rw € mW

V)

weW

€ n(1)

evision modality (‘unless 7’) proposed in [5], which updates the current state with the
ing 7 from the initial information state (‘1’). Note that the type of these conditions ¢
mplex: they take into account a set of functions (the programs), an input set W and a
w. Tt turns out that this type gets lowered if we restrict our attention to a special, but
lass of program operators, which we will call ‘extensional’:

lity: if m(W)=7i(W) for 1<i<n, then @(m...m)(W)=@Q(n...m, (W).

ary program operator is extensional if its defining condition only uses the sets m;(W),
ut state and 1 < 7 < n. Non-examples are the above sequential composition (it refers
and A (it refers to 7(1)). This property allows us to re-type defining conditions for
-ators. They will have the form:

W, W)

are not functions but sets (my(W)...m,(W)). Another important special feature of
ors, which often occurs in practice, is their possible continuity. This can happen both
:guments and with input state arguments (cf. section 4.7):

Jontinuity in w; : the defining condition ¢ satisfies o(my ... U; iy, Wow) iff
T T, Wow)

tinuity: the defining condition ¢ satisfies (... 7, UiWi,w) iff V(...

UL, the parallel composition ‘A’ is continuous in both its program arguments, whereas
smposition ; is only continuous in its right-hand program argument:

my # (m;7s) U (m2;73)

3) = (m;7m2) U (my;7s)

.ent of the non-homogeneity encountered in Process Algebra, which is due to different
iice’, although there, judgments of validity go the other way round (cf. [1).

nention a property of program (operators) which will return at greater length in section
operator @ is a test if, for all programs 7 and input states W, the output of @x (W) can
* or the empty set @ (for example, think of the UL modality):

erty: mno reference point occurs in the defining condition (whence it has the following
[1...Tp, W))

17

Obviously, tests allow one more type-lowering: from ¢(m ... 7., W,w) to ¢(m; ... 7w, W). Combining
this with extensionality, we get the reduced type: ¢(A;...An, W) of a condition on sets, or, in other
words, of a relation among sets. But this is just the standard type for generalized quantifiers, with the
parameter F for the total universe now read as our ‘initial information state’, or ‘total model’ (which
played a role, e.g., in our previous A).

As a consequence, GQT results now apply without further ado to extensional program operators
which are tests. Thus, the earlier ‘square of oppositions’ for quantifiers fits with dynamic existential and
universal modalities (O, -0, &, =O):

Theorem 5 An extensional logical dynamic test has a defining condition in the Square of Opposition iff
its assoctated quantifier satisfies EXT, CONS, VAR and PERS

Note that these GQT conditions on quantifiers assume a rather different meaning in the dynamic set-up:
e.g., CONS will express a form of ‘Eliminativity’ for update operators.

4.5 Analyzing Negation

Now we shall start from the other end, looking for intuitive semantic constraints by examining a specific
basic operator. Intuitively, the negation of a program should lead us, from any given stage of information
processing to a new stage where the negated program would fail if run. Our first more concrete move is
to impose further constraints on this behaviour, so that we can classify suitable candidates. For instance,
a plausible requirement is a form of ‘dynamic excluded middle’ for all information states W

o (1) [m;- W =20
¢ (2) [ma]W=20
What these conditions tell us is that, once something has been accepted, a processor cannot change

its mind any longer. This requirement would of course be dropped in a revisionistic perspective. But in
fact, it is even too strong in UL and DPL, as it is shown by the following examples:

- [(Om; ~m); ~(Om; ~m)[W £ 0
- [(Pz; nz; = Pz); ~(Pz; nz; = Pz)] # 0

Using double negations, the first counter-example to (1) also becomes one to principle (2). We will discuss
this situation in more detail in sections 4.6 and 4.7

UL | DPL

my -1 -
@ -1 +

Further reasonable assumptions abound. Given a total set of such desiderata, the art is to design a
dynamic system fulfilling them - or even, to find a complete mathematical characterization of the options
for achieving this. This is analogous to the ‘inverse logic’ of Generalized Quantifier Theory. For a start,
we record the special conditions on UL and DPL negation expressed by (1) and (2).

1. UL negation validates condition (1) for just those programs 7 that are ‘idempotent’, i.e. such that,
for all information states W:

[«l([=]W) = [=]W.

2. UL negation makes condition (2) true for all programs 7 that are ‘progressive’, namely such that,
for all information states W:

[« l(W - [«]W) =0
The proof of these fact is by some straightforward calculations, using eliminativity at some stage.

Here are some corresponding facts about DPL negation:

1. DPL negation validates condition (1) only for programs 7 with the ‘weak update property”

18

Y, w'({w, w') € [r] — Fw'({v',w") € []))
2. DPL negation satisfies condition (2) for all programs.
Concerning condition (1), there is a stronger update principle that might be reasonable, namely that
Vw, w'((w,w') € [x] — (v',w') €[n])

. This would correspond to the condition that [m; (7 A Id)] = 0.

4.6 Inverse Logic I: DPL Negation

In this section, we characterize DPL negation in Relational Algebra. Again, this is merely meant as a
sample of a feasible general style of analysis. More precisely, we prove:

Theorem 6 DPL negation is the only permutation-invariant operator in Relational Algebra satisfying
the following conditions:

1.-0=Id

2. —(U;m;) = Ny

8 7 <ml

4. ~mym=20

Proof: We start with an auxiliary observation.
Lemma 7 2 implies that —n < Id.

Proof: We know (from Relational Algebra) that # = 7w U0. From this (again by RA) it follows that
- =-(rU0) =-nwN=0 (by2), whence -7 < -0 =1Id. n

Now, here is the main argument. Given any relation m, the relation -7 can be retrieved from the
values ~({(z,y)}), for (z,y) € 7. This is because = Unz,{(z,y)}. Using 2 then, =7 = Nrpy~({{z, ¥} })-

Now, we have seen that -7 < Id. Hence, by the permutation invariance of =, =({{z,¥)}) = {{z, 2) |
@z, v, z)} can only refer to the ‘Venn zones’ consisting of {x}, {y} and their Boolean combinations. The
argument is then case by case.

Case 1: = = y. Here are the options for 2:
e z =1—{z}. This is what we want.

e 2 = 0. Here we need to distinguish two further cases. If the domain contains one object only,
then this is our previous case, and we are done. If the domain contains more than one object,
then we obtain a contradiction as follows. Suppose that —~({(z,z)}) = 0 and that the domain
contains some y # z. From ~({{z,z)}) = 0 it follows, by 1, that —-—({{x,z)}) = Id. But by 3,
==({{z,z)}) < ({{z,z)});1, , and hence Id < ({{z,z)});1. But this cannot be true, because the
domain of Id is larger than {z}).

e z = {z}. This is in conflict with 4: as we would have —{({z, z)}; {(z,z)} # 0.
e z = 1. This is again in conflict with 4: for the same reason.
Case 2: = # y. Here are the options for z:
e z ={z}. This is in conflict with 4.
e z=0. This can be disposed of by the same argument as above.

e 2 =1- {z} is our intended choice.

19

£ ~ E=

e z = {y}. I z,y are the only objects, then this outcome falls under the previous case. Otherwise, we
know, by (4), that = cannot occur in the outcome set. Now, suppose that —({(z,¥)}) = ({{v,9)})-
Then, =~({{z,1)}) = ~({{,9)}) = 1—{y} (cf. case 1). By 3, then, 1—{y} < ({{z,9)}); 1, which

is not possible, since the domain contains at least one z # z,y.

e 2 =1—{z,y}. If z,y are the only objects, then this outcome falls under the case z = 0. Otherwise,
our case amounts to assuming that —({(z,y)}) = Id —({{z,z), (¥,9)})- Then, -({{z,y)}) =
Urog({(22)}). As a consequence, by (2), —({{,5)}) = ~Usmry ({(%2)}) = Mg ({(22)})
which equals {(z, z), (y,y)} . But this is again in conflict with 3.

This result appears to be the best possible, in that all conditions stated are necessary. For instance,
without imposing (4), we could satisfy all other conditions simultaneously via a ‘non-standard negation’,
namely ‘Id - #°.

Unique definability results do not necessarily supply complete axiomatizations. nevertheless, it makes
sense to try and derive other important properties of = from the above set.

Fact 8 2 and 3 imply that - AT =0.

Proof: By lemma 4.6 -7 £ Id. From this we have, using valid principles from Relational Algebra:
AT =-mATAId= (-t AT)A(xAId)= (~wAld);(xAId)< -mn=0. n

In fact, one may observe that all non-validities for negation that we found in relational algebra seem to
be refutable even within the special domain of DPL. This, and similar experiences, motivate the following
more general conjecture:

Conjecture 9 Universal validity in DPL is complete with respect to all validities in Relational Set Al-
gebra.

4.7 Inverse Logic II: UL Negation

We continue with inverse logic for UL. In particular, we shall isolate what may be called a ‘progressive’
fragment of update logic. But first we introduce some basic notions of independent interest.

Recall that ‘dynamic updates’ and ‘static tests’ were the basic ingredients of update semantics as
explained in section 3.2. Here is a precise definition:

Definition 20 (tests) A UL program = is a test iff for all information states W (sets of states):
[x]W =W or [x]W =0.
By contrast, ‘pure updates’ are the following state-continuous programs:
Definition 21 (pure updates) A UL program 7 is a pure update if for all states W :
[IW = Uuew [7]{w}

Alternatively, this is the ‘state continuity’ of section 4.4. Together with Eliminativity for UL programs,
this even says that, for all information states W, [7]W is just W N P, for some fixed set P (cf. [5]).

Interestingly, these two key properties can be characterized by the way the affect the sequential
composition of dynamic operators:

Proposition 10 A UL program w is a test iff for all UL programs w':
[m;x] =[]0 [~

Proof It is easy to check that tests satisfy this equation. As for the opposite direction, suppose 7 is not
a test, i.e., for some W, [7]W # 0 and [x]W # W. Then, take the program ‘W — 7’, and consider:
7" = O(W —m); m. Obviously, [m; 7*]W = 0 # [«]W = [z]W N [=*]W. "

On the other hand, we have:

Proposition 11 A UL program w is a pure update iff for all UL programs ':

20

[« =] =[="1n[x] -

Proof It is easy to check that pure updates satisfy this equation. Next, suppose that the equation holds.
Then, for all 7' and all information states W: [«';a]W = [#']W N [x]W. Consider then the total
initial information state 1, and some program 7y such that [y]1 = W. Then, [#]W = []([rw]1) =
[rw; w1 = [r]10 [aw]W = [z] N 1.]

Let us now turn to progressive forms in UL. First, observe that:
Proposition 12 Tests are progressive.

Proof: If 7 is a test, there are two cases, given a state W. First, suppose [r]W = 0. Then [#}(W —
[x]W) = [x]W = 0. Next, if [x]W =W, then [x](W — [x]W) = [x]0 = 0. (We use the eliminativity
of update programs here.) =

Proposition 13 Pure updates are progressive.

Proof: If 7 is state-continuous, then, for any information state W, [-m;a]W =(W —(WNP))NP =0
(where P is the fixed characteristic set for 7). "

Now, note the following facts:

Fact 14 Tests are closed under the operations -, U, ;
Fact 15 Pure updates are closed under the operations =, U, ;

Thus, the basic ‘blocks’ for test programs may be thought of as modalities closed under the above
operations, and something similar holds for pure updates, starting from atomic propositions. Now we
can characterize a large class of progressive UL programs, using the following observation:

Proposition 16 For all progressive UL programs m; and all tests 7y, the program my; wy is progressive.

Proof: Given an information state W, [—(my;m2); (m1;m2)]W = [m]([m](W — [m]([71]W))). Now,
since 7o is a test, there are only two possible cases:

Case 1: [m]([m]W) = 0. Then: [m]([m](W — [m]([71]W))) = [x2]([m:1]W) = 0.

Case 2: [m]([m]W) = [m]W. Then: [m]([m}(W - [m]([m:]W))) = [r](Im](W — [m,]W)) =

[ws]® =0, since m; is progressive. "
Corollary 17 The ;-free fragment of UL is progressive.

Proof: Obvious, from proposition 4.7 and facts 14 and 15. n
Corollary 18 If m has the form: my;...; Ty Tui1) .- Tm, where m; is a pure update for 1 <i<n and
7; 15 a test for n < 1 < m, then it is progressive.

Proof: Immediate from proposition 4.7 and facts 14 and 15. n

We must leave the issue of the dynamic behaviour of more elaborate S5-style normal forms in update
logic open here.

4.8 A New Dynamic Operator: Local Truth

Our dynamic systems so far suggest a uniform strategy for interpreting dynamic negation: their semantic
clauses for - basically curtail the input state. Let us call the eliminated part, for an input state W and
a program 7, the ‘local truth’ for 7 in W. We can select this ‘local truth’ part via an operation T on
programs, which supports the following scheme of definition:

[-#]W =W — [Tx]W.
The new operator turns out to have interesting peculiarities. Here are the semantic clauses for T in TV,

UL, GSV and TKV, extracted from the respective clauses for negation:

21

TV [Ta]W = {w e W | [x]{w} # 0}

UL [Ta]W = [=]W

GSV [Tx]W={weW |Jw':w<w and v € [x]W}
TKV [Ta]W={weW |3 :w>, w' and w' € [x]W}

But note that there are other points in the above where the same operator is implicitely at work. For
instance, all dynamic modalities so far boil down to the following 2:

_ W if there is a w' € W such that w' € [T#]W,
[onW = { 0 otherwise.

Moreover, the notion also comes up in certain kinds of dynamic inference (cf. [21], [34]), in particular:
‘Process all premises successively, then see if the conclusion can run from the resulting state’,
which amounts in practice to the following:
7 k=7 iff, for all states W, [Two]([m:i]W) = [m]W.

Thus, it becomes of interest to pursue some characteristic semantic properties of the local truth
operator T by itself.

Definition 22 (Weak Normality) The operator T is weakly normal iff for all programs =, for all
information states W, the following conditions hold:

o [«[([T=]W)=[=]W
o [x[(W—[Tr]W)=0.

Definition 23 (Normality) The operator T is normal if for all programs =, for all information states
W, the following conditions hold:

e T is weakly normal
o [Ta]W =n{W' C W |[«]W' = [x]S and [x]}(W — W') = 0}.
Here is a stronger version of the property above:

Definition 24 (Strong Normality) The operator T is strongly normal iff for all programs = and
all information states W, the following conditions hold:

e T is normal
o [Ta]W C W' onlyif [x]W' =[7]W and [z}(W - W')=0.

Intuitively, these degrees of ‘normality’ tell us to which extent a system of dynamic semantics approx-
imates, modulo ‘local truth’, a boolean structure. More concretely, if T is normal or strongly normal and
‘P-preserving’ (see definition below), then it defines a complement-like negation on the class of ‘localized’
programs, at least for a large class of programs, which we will call ‘f-continuous’ (see definition below).

Definition 25 (f-preservation) T is @-preserving if for all states W and programs :
if [#]W =0 then[Tx]W =0.

Definition 26 (f-continuity) = is §~continuous if for all W, W':
if [x]W=0 A [x]W'=0 then [zJ(WUW')=0.

Proposition 19 If T is O-preserving and strongly normal (normal), then the following holds about the
matching negation (defined by the clause [-n|W = W — [T#x]W), for all O-continuous programs m and
all information states W:

2which gets parametrized in TVK

22

[T-n]W =W — [Ta]W = [~=]W.

Proof: Suppose T is normal and (-preserving. We show that, for all 7 and all information states w:
[T-n]W =W —[Ta]W. Let [Ta]W = W' Obviously:

[-x]W' = W' — [Ta]W'. But T is Idempotent (this follows from normality plus §-continuity). Hence
we have:

[Tr]W'=W' and [-n]W'=0.

Moreover, [~a]W — W' = (W —W")—[Tx](W—W'). But [Tx](W—W') = 0, because [x](W - W') = 0
and T is O-preserving. Then: [~#](W —W') = (W —W') namely [-~n](W —[T#]W)=W —[Tr]W =
[-=]W

From which it follows that W — [T#]W = [T-]W.]

The following facts confirm, in a sense, how ;-free fragments of the systems above stay close to classical
negation:

Proposition 20 The ;-free fragment of TV is strongly normal.

Proof: Easy induction on ;-free formulas. [
Proposition 21 The ;-free fragment of UL is normal.
Proof: FEasy induction on ;-free formulas.]

Investigating properties of T may also produce new points of view on negation. For example, it is
easy to prove that:

Proposition 22 If T is normal and I-preserving, then its matching — satisfies:
[r; ~a]W = [-m;a]W =0 iff [Ta)([«]W) = [«]W.

Finally we shortly discuss a uniform strategy for ‘safely’ constructing dynamic systems. Here is the
simple idea. A normal ‘local truth’ operator is logical (i.e. permutation invariant). This is so because a
normal T gives, for an input set I, the intersection of all the subsets of W which behave in the required
way; in other words, a normal T has a set-theoretic definition, which is enough in order to guarantee its
logicality (cf. 1). Then, from a logical ‘local truth’ operator we can obtain a logical negation and logical
modalities:

Proposition 23 If T is permutation invariant then the matching — is permutation inveriant.

Proof: Suppose T is permutation invariant. Then, for any program = and state W

[T(e; ;0" Y)W = [o; Tm; @~]W. The argument runs as follows:

[~(a; w5 07 HW =

[Y([~r)(e]W)) =

o~ J([e]W — [Tr)([oIW)) =

W —o; Tm;a W =

W —[T(am o™ HIW =

[=(c; m; W -

Proposition 24 If T is permutation invariant then the matching modality is permutation invariant.

Proof: Analogous. =

The general reason here and above is in fact as follows: operations which are set-theoretically definable
from logical ones are themselves logical.

23

4.9 Back to Classical Logic

In this section we investigate one more type of dynamic operator, being projections taking dynamic
propositions to classical ones. One such operator DPL local truth T, assigning to each program = its
‘domain’:

7 — {w|7r({w}) # 0}

‘We now move to eliminative update programs 7, where a corresponding operation T* would be:
m — {w]|7({w}) = {w}}

First note the following:

Fact 25 T~ is permutation invarient.

(This follows from its set-theoretic definition; cf. 1). Consider now the Boolean algebra of all eliminative
dynamic propositions, given a set of states S. Note that this is not the full function space p(S)"(S), but
a relativized space obtained by taking only all functions m < Id (e.g., = in UL is “Id — #”). Then, the
following key behaviour may be seen by some simple calculation:

Fact 26 T* is a boolean homomorphism from eliminative updates to classical propositions:
o TH(=m) = =T*(r)
e T*(Uﬂri) = U.L'T*(ﬂ'i)

Thus, T* is a logical projection respecting Boolean structure. Our main result is that, conversely, only
two functions have this behaviour:

Theorem 27 There are only two logical Boolean homomorphisms from eliminative dynamic propositions
to classical ones.

* Proof: Suppose that F' is such a logical Boolean homomorphism. The action of F' is completely de-
termined by its values on the Boolean atoms in the ‘update algebra’, being all functions ‘ayy.,’, with
w € W, such that:

HX=W
otherwise

° aw’,m(X) = { éW}
This is so because F(7) = Ua<-F(c), for all 7 and all atoms a (by the second homomorphism clause).
‘We now need a subclaim:

Proposition 28 The values F{a) for all atoms form a complete partition of S

Proof: Distinct atoms have a3 A oy =0, whence F(a; A ag) = F(oy) A Fag) =0, so they are disjoint.
Moreover, \/; a; = 1, whence F(1) = W = U; F(a;). =

Now, define a map F* from S to such atoms, by setting F*(s) as the unique atom « such that s € F(a).
Note that F(a) = F*~1({a}). Moreover, we can show that:

Fact 29 F* 15 logical.
Now, our classification problem is easier. It is enough to prove the following:

Proposition 30 There are only two logical maps F* sending states to atoms in the update algebra.

Proof: We have s +'— aw,w, with w € U. If F* is logical, then the familiar reasoning about permutations
tells us that w can only be s itself; while U could be in principle one of the four sets {s}, W — {s},0,W.
But the requirement ‘w € U’ rules out two possibilities, and we only have:

FY(s) = ags),s

Fz*(s) = Qg

24

sulate backwards, and see which maps F' are induced by these two functions:
wlda<m:we F(a)} =

ria=aww AweET(W)Aa= a{w}’w} =

= {w}}

w|w e n(S)} =x8

easy to check that both of these are indeed logical Boolean homomorphisms. B

1sion
 briefly point out some possible advantages of the ‘variational’ approach we have been

ory fine-grained. Parametrizing knowledge updating (in Kripkean Variations) and infor-
ng (in general Tarskian Variations) provides us with a very flexible set-up, with great
itial. For instance, we expect that parametrized modalities can efficiently formalize and
zzles about ‘individuals across different possible worlds’, rigid designation, de re vs de
ion, referential vs descriptive naming, and other well-known questions (cf., for instance,
'0 turn to these philosophical repercussions in subsequent publications. Moreover, further
ic levels of analysis can be distinguished inside our dynamic logic. For example, one can
rize the notion of truth in order to distinguish between cognitive and physical change, as

]-

hand, we have seen that comparing and mixing different variations can suggest interesting
iow hidden peculiarities of concrete systems. In our particular case, the different behaviour
| Tarskian variations has brought to the fore many issues concerning dynamic negation,
nvestigated using various alternative points of view from the literature. The same line of
»e applied to other delicate dynamic notions, such as dynamic consequence.

‘ements

o thank Jan van Eijck for his helpful comments.

'S

ten and W. P. Weijland (1990), Process Algebra, Cambridge Tracts in Theoretical Com-
ce 18, Cambridge University Press, Cambridge.

and J. Perry (1983), Situations and Attitudes, Bradford Books, MIT Press, Cambridge,
sets.

shem (1982), Modal Logic and Classical Logic, Bibliopolis, Napoli.
:hem (1986), Essays in Logical Semantics, Reidel, Dordrecth.

hem (1989), Semantic Parallels in Natural Languages and Computation, in: H-D. Ebbing-
(eds.), Logic Colloguium. Granade 1987, North-Holland, Amsterdam.

:hem (1989), Logical Constants across Varying Types, in: Notre Dame Journal of Formal

tthem (1991), Logic and the Flow of Information, in: D. Prawitz, B. Skyrms and D.
1 (eds.), Proceedings of the 9th International Conference of Logic, Methodology and
of Science, Uppsala 1991, Elsevier Science Publishers, Dordrecht.

them (1991), General Dynamics, in: Theoretical Linguistics, 17 (special issue on ‘Com-
{atural Language’).

25

[9] J. van Benthem (1991), Language in Action, Elsevier Science Publishers, Amsterdam.
[10] J. van Benthem (1993), Modal State Semantics, manuscript, ILLC, Amsterdam.

[11] J. van Benthem (1993), Program Constructions that Are Safe for Bisimulation, Report CSLI-93-179
of the Centre for the Study of Language and Information, Stanford.

[12] J. van Benthem, J. van Eijck and A. Frolova (1993), Changing Preferences, Report CS-R9310 of the
Centre for Mathermatics and Computer Science (CWI), Amsterdam.

[13] J. van Benthem, R. Muskens and A. Visser (1993), Dynamics, to appear in: J. van Benthem and A.
Ter Meulen (eds.), Handbook of Logic and Language, Elsevier Science Publishers, Amsterdam.

[14] C. Boutilier and M. Goldszmidt (1993), Revision by Conditional Beliefs, in: Proceedings 11th Na-
tional Conference on Artificial Intelligence, Washington D.C.

[15] G. Cepparello (1993), Tarskian Variations, a complete system, manuscript, Scuola Normale Superi-
ore, Pisa.

[16] P. Dekker (1993), Ezistential Disclosure, in: Linguistics and Philosophy, 16.

[17] J. van Eijck and G. Cepparello (1992), Dynamic Modal Predicate Logic, to appear in: M. Kanazawa
and C.J. Pifion (eds.), Dynamics, Polarity and Quantification, CSLI, Stanford.

[18] J. van Eijck (1993), The Dynamics of Theory FEztension, to appear in: Proceedings of the 9th
Amsterdam Colloquium, Amsterdam.

[19] P. Gardenfors (1988), Knowledge in fluz. Modelling the Dynamics of Epistemic States, Bradford
Books, MIT Press, Cambridge, Massachussets.

[20] R. Goldblatt (1987), Logics of Time and Computation, CSLI Lecture Notes, 7, Stanford.
[21] J. Groenendijk and M. Stokhof (1991), Dynamic Predicate Logic, in: Linguistics and Philosophy, 14.

[22] J. Groenendijk and M. Stokhof (1991), Two theories of Dynamic Semantics, in: J. van Eijck (ed.),
Logics in Al Proceedings of the European Workshop JELIA 90, Springer-Verlag.

[23] J. Groenendijk, M. Stokhof and F. Veltman (1993), Coreference and Modality, handout for the “Work-
shop on Dynamic Semantics’, Fifth European Summer School in Logic, Language and Information,
August 1993, Lisbon.

[24] D. Harel (1994), Dynamic Logic, in: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical
Logic vol 11, Reidel, Dordrecht.

(25] I. Heim (1982), The Semantics of Definite and Indefinite Noun Phrases, Department of Linguistics,
University of Massachussets, Ambherst.

[26] J. Jaspars (1994), Calculi for Constructive Communication (provisional title), Dissertation, Institute
for Language and Knowledge Technology, Katholieke Universiteit Brabant, Tilburg.

[27] H. Kamp (1984), A Theory of Truth and Semantic Representation, in: J. Groenendijk et al. (eds.),
Truth, Interpretation and Information, Foris, Dordrecht.

(28] S. Kripke (1972), Naming and Necessity, in: Harman and Davidson (eds.), Semantics of Natural
Language, Reidel Publishing Co., Dordrecht.

[29] D. Lewis (1975), Adverbs of Quantification, in: E. Keenan (ed.), Formal Semantics, Cambridge
University Press.

[30] 1. Németi (1992), Decidability of weakened versions of first order logic, in: Proceedings of the Applied
Logic Conference ‘Logic at Work’, Amsterdam.

[31] M. de Rijke (1992), A System of Dynamic Modal Logic, Report LP-92-08 of the Institute for Logic,
Language and Information, University of Amsterdam.

26

[32] M. de Rijke (1993), Extended Modal Logic, Dissertation, Institute for Language, Logic and Com
tation, Amsterdam.

[33] Stalnaker (1972), Pragmatics, in: D. Davidson and G. Harman (eds.), Semantics of Natural 1
guage, Reidel, Dordrecht.

[34] F. Veltman (1989), Defaults in Update Semantics, in: H. Kamp (ed.), Conditionals Defaults
Belief Revision, Edinburgh.

[35] Y. Venema (1992), Many-dimensional Modal Logic, Dissertation, Institute for Language, Logic
Information, Amsterdam.

[36] K. Vermeulen (1993), Merging without Mistery, to appear in: Journal of Philosophical Logic.

[37] D. Westerstahl (1989), Quantifiers in Formal and Natural Languages, in: D. Gabbay and F. Gt
thner (eds.), Handbook of Philosophical Logic vol IV, Reidel, Dordrecht.

[38] E. Zalta (1993), A Philosophical Conception of Propositional Modal Logic, to appear in: C. Hill (e
Philosophical Topics.

27

