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Abstract

Clock synchronization algorithms which can tolarate any number of processors that can fail by ceasing operation
for an unbounded number of steps and then resuming operation (with or) without knowing that they were
faulty are called Wait-Free. Furthermore, if they are also able to work correctly even when the starting state
of the system is arbitrary, they are called Wait-Free, Self-Stabilizing. This work deals with the problem of
Wait-Free, Self-Stabilizing Clock Synchronization of 1 processes in an “in-phase” multiprocessor system and
presents a solution with synchronization time O(’rL2) The best previous solution has O(ns) synchronization
time. The idea of the algorithm is based on a simple analysis of the difficulties of the problem which helped
us to see how to “reparametrize” the O(ns) previously mentioned algorithm in order to get the O(TL2)

synchronization time solution. Both the protocol presented here and its analysis are very simple.
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1. INTRODUCTION

Synchronization among the processes of a multi-processor system is commonly obtained using
clocks. In general a clock is implemented in a multi-processor system in one of the following
ways: i) using a single clock that is connected to all the processors in the system, ii) using
individual clocks for every processor that are connected to a pulse generator which generates
clock pulses stimulating the individual clock, iii) using individual clocks and pulse generators
for each processors. It is easy to see that the less centralized the clock implementation is the
more resilient to faults it is.
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In the past clock synchronization solutions that can tolerate faults have been proposed for
the case of arbitrary, or Byzantine, faults [19, 18, 20, 8, 21, 23]. In those model characteristics
they proved that no algorithm can work unless more than one third of the processors are
nonfaulty [8]. In the case of authenticated Byzantine faults the things are not so bad; there
exist algorithms that can tolerate any number of faulty processors [12]. The negative results in
that model are that: i) the faulty processors can influence the clocks of the non-faulty ones by
speeding them up, ii) reaccession of repaired processors is not possible unless more than half
of the processors are non-faulty [12]. Self-stabilizing algorithms for the clock synchronization
problem have also been proposed [11, 6, 1]. An algorithm is called self-stabilizing if it can
tolerate transient faults in the sense that, after a transient fault leaves the system in an
arbitrary state, if no further fault occurs for a sufficiently long period of time then the system
converges into a consistent global state and can solve the task. A transient fault is a fault
that causes the state of a process (its local state, programm counter and its shared variables)
to change arbitrarily. More about self-stabilization can be found in e.g. [7, 2, 9, 5, 4, 22].

So, if we want to sum it all up, the “ideal” clock synchronization algorithm that is highly
resilient to failures must have the following characteristics: (i) it must tolerate any number
of processors’ napping faults like the authenticated Byzantine model but guarantees that the
nonfaulty processors’ clocks remain unaffected by the failures, (ii) faulty processors are able
to rejoin the system and become synchronized in a number of & steps that is indepentent of
the number of the working processors, and (iii) it works correctly regardless of the system
state in which it is started.

Recently Dolev and Welch in [10] presented this highly resilient view of clock synchroniza-
tion as Wait-Free, Self-Stabilizing Clock Synchronization. The assignement of this name to
the problem is due to the facts that the first two conditions mentioned in the previous para-
graph capture the spirit of the wait-freedom (cf., e.g., [16, 3, 13]) in the presence of napping
faults and the third condition captures the spirit of self-stabilization. In that paper they
present two Wait-Free, Clock Synchronization algorithms for n processors which assume a
global clock pulse (“in-phase” systems) and nonglobal read/modify/write atomicity. Those
solutions guarantee synchronization within O(n?) and O(n?) steps; the first solution is also
a Self-Stabilizing one, while the second depends on the initialization.

In this paper we examine the same problem. By pointing out a simple approach in analyzing
the difficulties of the problem, we show how to “reparametrize” the O(n?) algorithm of [10],
thus getting a solution to the Clock Synchronization problem which is both Wait-Free and
Self-Stabilizing, and has synchronization time O(n?). Moreover, its analysis and proof of
correctness are simple and intuitive.

2. THE MODEL

The system consists of n identical processors. A processor p; is a (possibly infinite) machine.
The processors communicate via a set of single-writer, multi-reader atomic registers. Each
processor owns a subset of these registers. The owner of a register can write the register
while all the other processors can read it. A step by a process p; consists of the following
actions: (i) read by p; of the shared registers owned by some particular processor p; (i # j),
(ii) transition of p;’s local state (program counter, local variables), and (iii) update of its own
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shared registers.

We consider “in-phase” systems, in which all processors share a common clock pulse. Each
pulse is a (possibly empty) set of processor names; the set of processors that make a step in
the pulse. Each processor can make at most one step in one pulse. If a processor does not
make a step in some pulse it will be said to take a pause.

A configuration is a tuple of processors’ states and of values of the shared variables. A
system ezecution is a sequence comic1 T . . . of alternating pulses (denoted by ) and configu-
rations (denoted by ¢, ). Pulses indexed with consecutive numbers will be called consecutive.
Fach configuration ¢; in a system execution is derived from its directly preceding configu-
ration ¢;—1 by the state transitions and the shared variables’ updates of the processors that
make a step in the pulse 7; in between these configurations; the shared registers’ reads by all
the processors that make a step in m; return the respective values of ¢;_1, while the shared
registers’” updates take place in unison to derive ¢;. An execution is initialized if its first
configuration is explicitly specified by the protocol. We will refer to a sub-sequence (starting
and ending with a configuration) of the sequence which describes a system execution by the
term sub-execution of that execution. The length of a sub-execution is the number of pulses
in it. In a sub-execution s’ (with length greater or equal to [) of a system execution s, a
processor p; will be said to have made | continuous steps if it makes steps for [ consecutive
pulses of s'.

This system can be viewed as modeling either a PRAM (cf. [17, 15]) with faults or a
multiprocessor synchronous system (cf. [14]) in which scheduling of the processes in different
processors is done independently. Pause intervals can be interpreted as periods during which
some process is not scheduled in a processor, or as faults in the connections of the pausing
proccessor or as transient faults, or even as processor crashes.

In a solution to the clock synchronization problem, each processor owns a shared variable
which holds the value of its clock. The requirement from a wait-free clock synchronization
algorithm is that there should be a positive integer k£ such that for any execution s of the
protocol:

e ADJUSTMENT: For any [ > k and for any processor p; that makes [ continuous steps
during a sequence of consecutive pulses 7;11,..., T4, p;’s clock in ¢;4; equals its clock
in ¢j4;—1 incremented by one.

e AGREEMENT: For any [ > k and for any two processors p; and p; that have both made
[ continuous steps during any sequence of pulses m;y1,..., 74, p;’s and p;’s clocks in
cj41 are equal.

o If self-stabilization should also be guaranteed by the solution, then the above two re-
quirements should be met even in non-initialized executions.

3. THE ProTOCOL
3.1 Informal Description

First we will try to give an insight into the characteristics of the problem by applying an
easy strategy: each processor which has possibly taken a pause tries to catch up with the
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var (CLOCK,,CNTy),...,(CLOCK,,CNT,): (int, int) ;
/* Shared variables declaration®/

Synch(i) /* version for process i */
var j, clock_j, cnt_j, dif f, my_clock, my_cnt, susp: int ;
prev: array [1..n] of int ;

begin
repeat
for j=1ton (j#1i)do
read (CLOCK;,CNTj) into (clock_j,cnt_j) ;
my_cnt := CNT; + 1 ;
dif f:=cent_j —prev[j| ; prev[j] :=cnt_j ;
if susp # 0 then susp := susp — 1 ;
ifdiff >n—1 then susp:=2n(n—1) ;
if susp = 0 then my_clock := max(clock_j, CLOCK;) + 1 ;
else my_clock := CLOCKj ;
write (my_clock,my cnt) to (CLOCK;,CNT;) ;
end _for
forever
end

Figure 1: The Protocol

maximal clock in the system, by scanning in cyclic order the other processors’ clocks and by
simply updating its own clock to the maximum clock value it sees in each step. In schedules
in which for a period of time only one process (not necessarily the same during the period)
holds the maximal clock value in the system, we can think of the maximal value as a “ball”
which is “passed” from one process to the other, under a proper interleaving of their working
steps and their pauses. Now, suppose that there exists a process p; which tries to find the
maximal clock value and which does not take any pauses, which implies that within a certain
number of steps it should achieve its goal. However, there might be a set .S of other processes
(more than two) which are scheduled (take pauses or make steps) so that each one p, of them
does not hold the maximal clock value at the pulses when its clock is read by p; but reads
that value from another process in S immediately after its own value has been read by p;;
then it keeps and increments that value for a number of pulses that are not enough for p;
to complete a cycle and read p,’s clock again; in the meantime another process p, can do
the same as p, did. This “game” can be played by all the processes in S scheduled in a way
that they cyclically take turns in misleading p; and preventing it from catching up with the
maximal clock in the system. The duration of such a game can be infinite, but the game
is also “stop-able” at any time, which implies that at any time it will be possible for p; to
violate the adjustment requirement.



3. The Protocol 5

The protocol presented here —which is a reparametrized modification of the protocol pre-
sented in [10]— protects the correctly working processors in the following way: each process
repetetively scans the clock values of the other processes in cyclic order, trying to keep up
with the most advanced of them. When a processor p; has taken some pause and its clock
needs adjustment, it is guaranteed that after it has made a certain number of continuous
steps its own clock will be as far as n — 1 or less from the maximal clock value of the system
at that time. After that, what p; needs from the schedule in order to find the maximal clock
value, is either (i) some process which holds t he maximal clock value to continuously keep
making steps for as long as a scan takes (n — 1 steps) or (ii) a slow-down of the incrementing
of the maximal clock value by n — 1 steps. The former will happen if that process correctly
makes steps. Towards the latter, each processor which misleads p; (necessarily by taking a
pause) is suspended (does not increment its clock) for a period of time until p; has safely (by
the pigeon-hole principle) found the maximal clock value. Suspension is implemented with
the use of a local variable susp for each process. Moreover, each process can detect whether
it paused or not by checking its relative speed with respect to the other processors. This
mechanism is implemented with the use of the shared variable C'NT; and the local array
prev by each process p;.

At this point it should be mentioned that, as proven in [10], there can be no wait-free,
self-stabilizing clock synchronization algorithm with only blind write operations (i.e. updates
of its shared variables by p; without prior reading them). In the protocol described here, it
can be easily seen that p; never performs a blind write.

The formal description of the protocol is given in Figure 3.1.

3.2 Proof of Correctness

We will first show that the protocol described meets the requirement of a solution to the wait-
free clock synchronization problem: for any processor p; (1 < ¢ < n) which is working correctly
(performs continuously steps without taking pauses in between) for at least k = (4n+1)(n—1)
pulses, as long as it continues working correctly, its clock will not need adjustment and will
agree with the clock of any other processor which has been working correctly for at least
k pulses. Towards that we will first prove that p; after at most k£ continuous steps will be
guaranteed to hold the maximal clock value in the respective system’s configuration. Some
auxiliary definitions will help the presentation of our arguments:

NOTATION 1 If ¢ denotes a system configuration then CLOCK;(c) denotes the value of the
respective shared register in c. Besides, MAX CLOCK (¢) denotes maxr{CLOCK;(c) : 1 <
i <n}.

DEFINITIONS 1 :

e A process p; (1 <i < n)is suspended in some configuration in a system execution if its
local variable susp # 0 in that configuration.

e An adjustment phase for a process p; in a system execution s is a subexecution s’ =
CjTj41Ci+1 « - - T HICi+1, such that:

1. p; makes a step in all the pulses in s’ and in pulse 74,41 of s it takes a pause.
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2. the local variable susp of p; equals 0 in all the configurations in s'.

3. c; is either the first configuration of s or there exists 7; in which p; either takes
pause or makes a step in which it changes the value of its local variable susp from
1 t0 0.

o A process p; performs a forwarding step in a particular pulse 7; in some system execution
if C’LOC’Ki(Cj_l) < C’LOCKZ(C]) and C’LOCKZ(C]) = MAX_CLOOK(CJ'), where Cj—1
and c; are the system configurations directly preceding and immediatelly following that
pulse. A pulse in an execution is forwarding if there exists a process p; which makes a
forwarding step at that pulse; otherwise we will call the pulse non-forwarding.

e A round of a process p; is a sequence of n — 1 successive steps by p;.(In a round a
processor reads the shared information of all the other processors in the system.)

It can be easily seen that if ¢;_; and c; are the system configurations directly preceding and
immediatelly following a pulse 7, then either M AX_CLOCK (¢;) = MAX _CLOCK (¢j—1)+
lor MAX_CLOCK (¢j) = MAX _CLOCK (cj—1) depending on whether the pulse is forward-
ing or non-forwarding, respectively.

Assume that a process p; makes at least £k = (4n+1)(n— 1) continuous steps in continuous
pulses in a system execution. In the following lemmas we prove that at most by the last of
these steps it will hold the maximal clock value in the system.

LEMMA 1 In the configuration c after the last pulse of a sequence of (2n+1)(n—1) continuous
steps by a process p; in a system execution its local variable susp will equal 0.

PROOF. In the first round of p; in the sequence defined, p; will load its array prev with
the value of the CNT, shared variable of each other process p,. Even if in that round p;
becomes suspended (its local variable susp is assigned the valued 2n(n — 1)) —due to the
fact that prior to these steps that array could contain arbitrary values—, in the next rounds
the computation of its local variable diff (< n — 1) will result in decrementing the value of
susp, which implies that by the last step of the sequence, susp will equal 0. O

The above lemma implies that at most after its first (2n + 1)(n — 1) continuous steps p;
will enter an adjustment phase, which, due to our assumption for p;, is going to last at least
2n(n — 1) pulses. During the adjustment phase and if there are no transient faults in the
system, its local variable susp will never become non-zero and the value of CLOCK; will be
incremented by at least 1 at each pulse.

LEMMA 2 In the configuration c after the first round of p; in an adjustment phase in a system
execution it will hold that MAX _CLOCK (¢) — CLOCK;(¢) < n — 1. Moreover, for any
sequence of | (1 < 2n(n—1)) continuous steps of p; in its adjustment phase, if c; and cj; are
the configurations directly preceding the first and tmmediately following the last pulse of the
sequence and if dj = MAX _CLOCK(c;)—CLOCK;(c;) and dj1y = MAX _CLOCK (cjt1)—
CLOCK;(cj41) it will hold that d;j > djyi + lnys, where Ly is the number of non-forwarding
pulses during the specified sequence of | steps.

PrOOF. For the first part of the lemma let ¢~ denote the configuration directly preced-
ing the first step of p; in the round specified. Then it holds that MAX CLOCK (c) —
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MAX CLOCK(c™) < n—1 because at each step the maximal clock of the system can be
increased by at most one. But MAX _CLOCK (¢™) is the value of CLOCK, in ¢~ for some
process p; in the system, which p; is going to read in one of the steps of the round. Since
the values of the CLOCK variables are never decremented it follows that: CLOCK;(c) >
MAX _CLOCK (¢™). This inequality implies that: MAX _ CLOCK(c) — CLOCK,(¢c) <
MAX CLOCK (¢c)— MAX _CLOCK (c™), which, combined with our first inequality, implies
that MAX _CLOCK (¢) — CLOCK;(c) <n—1.

The inequality of the second part of the lemma can be derived by direct combination of the
following two statements: (i) CLOCK;(cj11) > CLOCK;(c;) + [ because p; is not suspended
and, thus, it increments its clock by at least one in each step. (ii) MAX _ CLOCK (¢cj1) =
MAX_CLOCK (cj) + 1 — Ly, because the system’s maximal clock is incremented by one in
each pulse, unless the pulse is non-forwarding. O

The previous lemma states that once p; enters the adjustment phase, after the first round
it is guaranteed to have a clock value which differs by at most n — 1 from the maximal clock
value of that configuration and that this difference can only decrease in the following steps
of p;. Hence, we have the following:

LEMMA 3 Assume that an adjustment phase of a processor p; with length at least 2n(n — 1)
pulses in a system execution and consider the subexecution which starts with the system
configuration after the first round of p; in the phase and ends with the configuration after
the 2n(n — 1)-th step of p; in the phase. If in this subexecution there are n — 1 or more
non-forwarding pulses, then it will hold that CLOCK;(c) = MAX_CLOCK/(c), where c is
the last configuration of the subexecution.

Proor. It follows from Lemma 2 and from a fact that is directly derived from the rules of
the protocol: if p; at some step reads the maximal clock value of that configuration then,as
long as p; continues working correctly it will still hold the maximal clock value in the system
and that it will increment its clock by one at each pulse. O

LEMMA 4 If the length of an adjustment phase of p; is at least 2n(n — 1) pulses in a syetem
execution then at the configuration c after the 2n(n — 1)-th step of the phase it will be the
case that CLOCK;(c) = MAX _CLOCK (c).

PROOF. We make the assumption, towards coming to a contradiction, that CLOCK;(c) <
MAX _CLOCK (c). Let A denote the subexecution specified by the first 2n(n — 1) steps of
p; in this adjustment phase. Also, consider any process p, (z # i) which makes steps during
A. We make two crucial remarks:

(i) Under our assumption, p, cannot perform n — 1 continuous forwarding steps during A.
Otherwise, we already have a contradiction: Since CLOCK, is read by p; every n — 1 steps
and because p;’s steps in the specified interval are continuous by definition, p; would have
adjusted its own clock to CLOCK, and, hence to the maximal clock of the system during
one of these n — 1 steps of p,.

(ii) Once p, performs its first n — 1 steps (not necessarily continuous) in A, it will load its
local variable prev[i] with a correct value of C'NT; written by p; during A; thus, p, will have
a consistent reference time-point for detecting its pauses thereafter. After that point, due to
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our assumption, p, cannot make more than n — 1 forwarding steps in A: if it does, we know
from (i) that these steps will not be continuous. But then, by at most the (n — 1)-th such
step it will detect its pause, and, as a result it will become suspended. Since the length of a
subexecution in which a processor is continuously suspended is at least equal to the duration
of A (2n(n — 1) pulses), p, will not increment its clock again during A.

What (ii) essentially implies is that the number of forwarding steps of each process p,
(x # i) during A is at most 2(n — 1), which means that the total number of forwarding pulses
in A is at most 2(n — 1)2. The latter in turn implies that the number of non-forwarding
pulses during A is at least 2(n — 1) and, in particular after p;’s first round in A it is at least
n — 1. But then, by Lemma 3 p; should hold the maximal clock value at ¢, which contradicts
our agssumption. O

THEOREM 1 The construction correctly implements a self-stabilizing wait-free clock synchro-
nization solution with k = (4n + 1)(n — 1).

PROOF. After a process p; has worked correctly for at least £ = (4n + 1)(n — 1) steps, it is
guaranteed by Lemma 4 that it will hold the maximal clock value in the system. After that,
it can be directly derived from the rules of the protocol, that as long as it continues working
correctly it will still hold the maximal clock value in the system and that it will increment its
clock by one at each pulse. The same will hold with any other process that has been working
continuously and correctly for at least & pulses; this implies that its clock value will agree
with the clock value of p;.

The self-stabilizing property of the protocol is due to the facts that in the analysis (i) no
initialization conditions are needed and (ii) it is shown that after transient faults have ceized,
each process which performs & continuous steps will converge to legal behaviours, as defined
by our requirements of a solution to this problem. O

CONCLUSIONS

In this work we show a wait-free and self-stabilizing protocol that achieves clock synchroniza-
tion among n processors in at most (4n+ 1)(n — 1) steps, and which improves the previously
known solution which had synchronization time O(n®) steps. The best known non-self-
stabilizing solution to the same problem also has synchronization time O(n?). However, the
question whether the problem can be solved with a linear time algorithm it is still open.
Another point that deserves consideration is whether the requirement for self-stabilization
imposes an overhead in the complexity of the problem.
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