@
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Obiject space versus image space
A comparison of image synthesis algorithms

T. van Rij

Computer Science/Department of Inferactive Systems

Report CS-R9426 April 1994




CWI is the National Research Institute for Mat
the Stichting Mathematisch Centrum (SMC), the
and computer science and their applications.

SMC is sponsored by the Netherlands Organi
member of ERCIM, the European Research Con

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

ce. CWl is par
ion of mathemc

(NWO). CWI

ithematics.




Object Space versus Image Space
“omparison of Image Synthesis Algorithms

T. van Rij
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
tanjalcwi.nl

Abstract

generated for graphic displays are generally stored in a frame buffer. This is a two dimensional
sents the image in screen coordinates.

nal object needs a lot of calculations before it is transformed to such a frame buffer representa-
of such a calculation is hidden surface removal. These calculations can either be done in ‘object
space’. Some people will argue that the image space hidden surface algorithms are the best and
scause of the efficiency of the algorithms, while others will rather use object space algorithms
ality. It can be argued that the best way is to combine the efficiency of the image space algo-

inctionality of object space algorithms.
two approaches will be compared and their advantages and disadvantages will be laid out.

ification (1991): 1.3.7: Three-dimensional graphics and realism - visible line/surface algorithms,
-e removal; 1.3.6: Methodology and techniques - graphics data structures and data types.
1ses: Object space algorithms, Image space algorithins, rendering, hidden surface removal.

CTION

1 between image space and object space was first made in [Sutherland et al., 74]
face removal algorithms. In that paper, calculations in object space are defined
utations which compute ‘exactly’ what the image should be in the highest possi-
Image space calculations calculate a value for each of the dots on the display
ect space algorithms work in continuous space, while image space algorithms
te space.

gorithms are in between object space and image space algorithms. These gener-
it of two phases. The first phase is performed in object space, however the sec-
one in image space.

., 90] the difference between the two approaches is clearly explained by means
e.

'6

3X

9, 1090 GB Amsterdam, The Netherlands




image space approach:

for each pixel in the image do

begin
determine the object closest to the
viewer that is pierced by the pro-
jector through the pixel;
draw the pixel in the appropriate
colour;

end

object space approach:

for each object in the world do

begin
determine those parts of the object
whose view is unobstructed by other
parts of it or any other object;
draw those parts in the appropriate
colour;

end

The object space approach was originally developed for vector graphics systems. The image
space approach was first possible for raster devices, taking advantage of the presence of the
frame buffer.

Like stated earlier there are several advantages and disadvantages to the two approaches. In
the next sections we will first take a closer look at image space algorithms. Secondly we will
say some more about the object space algorithms. Then the combined image space and object
space algorithms will be presented. Finally, we will draw some conclusions about these
approaches.

2. IMAGE SPACE

Raster displays refresh their screens by reading out the values stored in the framebuffer. Raster
displays have become the most common kind of displays in recent years. Mainly because they
are the most flexible output devices available. The biggest advantage of the image space
approach is that this approach lies very close to the data structure of the frame buffer. Because
of this, image space algorithms are often simple and efficient to implement in soft or hardware
for raster displays [Fournier et al., 88].

2.1. The Z-buffer algorithm

The most well known of the image space algorithms is the Z-buffer algorithm [Catmull, 74].
For this algorithm another buffer (the Z-buffer) besides the framebuffer is needed with the
same number of entries as the frame buffer. The Z-buffer contains the values of the z-coordi-
nates of the nearest objects in the scene.

Suppose a three dimensional (or 3D) image consists of 3D polygons. Then the algorithm pro-



8:

; initialised to zero, representing the background plane. The frame buffer is ini-
e colour of the background plane. Now every polygon is scan converted. When
> z coordinate of a point in the polygon is nearer to the viewer than the z_value
in the Z-buffer, then the Z-buffer is updated at this point with the value of the z-
he point and the frame buffer is updated with the colour of that point.

antage of this algorithm are the aliasing effects occurring. Another problem is
ing of transparent objects is done incorrectly.

ffer algorithm

84] an algorithm is described in which these problems are addressed. This algo-
the A-buffer algorithm.

nsider pixels to be square non overlapping tiles covering the screen. The algo-
th clipping each polygon against such a square pixel. These pixel polygons are
its. A 4x8 bit mask represents the fragments. When all polygons intersecting a
n processed, the bitmasks of the fragments are used to calculate, with boolean
.covering of a pixel. With the coverage of a pixel its intensity is calculated.

of using the bitmasks is that simple boolean operations can be performed upon
o do the necessary calculations. A disadvantage of this algorithm is that it saves
mount of information for the fragments, which causes inaccuracies. Another
1e algorithm is the size of the bitmasks.

antialiasing problems there are more general problems for image space algo-
ggest problem is that all information of the objects is lost. An example of this
>ming. When you zoom in on an image, the values in the framebuffer change,
ng changes for the object in the image itself. Since the values in the framebuffer
calculations have to be repeated in the image space approach.

ed out an image space hidden surface algorithm, the Z-buffer algorithm, and its
e A-buffer algorithm. We have also shown a few advantages and disadvantages
pace approach. In the next section examples of object space algorithms will be

PACE

srtant advantage of object space algorithms is that relevant information is main-
e of this, it is better possible to interact with the objects and it makes it possible
nental algorithms. Also the colours of the visible polygons have to be calculated
an image space algorithm it is possible that colours are calculated which later
ritten.

ese advantages a lot of research is being done in object space. There are even
Igorithms being implemented in hardware.

algorithms can also be used for shadow generation. Shadow generation is very
:ause it improves the depth perception of the image.

ssections examples of object space algorithms will be pointed out and an exam-
v generation will be discussed



3.1. Object space algorithms

Object space algorithms iterate over the objects and/or part of objects. In an object space algo-
rithm the output will consist of the visible objects or the visible parts of objects.

3.1.1. Parallel processing

There are several examples in the literature of object space algorithms. One example is
described in [Kuijk et al., 88]. In this article a hidden surface removal algorithm is introduced
which is specially developed for a new architecture for raster graphics. This architecture is
described in [Akian et al., 88]. In this algorithm surface elements are described in a data
structure called domain. The hidden surface removal is done by incrementally adding domains
to the so called Low Level Display File (LDF). When a new domain is added, the first thing
which is checked is, whether the bounding box of the added domain overlaps any of the
bounding boxes of the domains already present. If that is so, then it is checked whether the
domains themselves overlap. If they overlap, then the part which is overlapped is removed
from the domains and is itself added as a new domain. The appearance of such an overlapping
section is determined by the domain which was on top. When all the domains are added to the
LDF, the domains which are present will all be disjunct. The data structures and the algorithm
used, are designed for parallel processing. )

Another example of an object space algorithm which works in parallel is described in [Frank-
lin et al., 90]. Here the uniform grid technique is used to obtain parallelism. This technique is
described in [Franklin, 80]. Roughly the uniform grid technique works as follows:

First a grid is overlaid on the scene. The fineness of this grid depends on the number and size
of the faces present in the scene. Secondly the edges and faces are sorted into the grid cells,
were they are intersected to obtain the visible segments in each cell. The visible regions in a
cell are calculated by combining the visible segments. Lastly a point inside a visible region is
used to find the shading value for that region.

3.1.1. Output sensitive object space algorithms

When you imagine a scene with one large polygon covering a bunch of smaller overlapping
polygons, you don’t want the hidden surface removal algorithm to calculate the visibility of all
the small polygons, but instead you would like the visibility of the large polygon calculated at
once. This is what an output sensitive algorithm should take care of. Output sensitive means
that the time needed to do the hidden surface removal does not depend only on the number of
polygons in the input, but also on the number of polygons in the output. Most of the object
space hidden surface algorithms are not output sensitive. However, output sensitive hidden
surface removal algorithms have been developed. One such algorithm is introduced in [Over-
mars et al., 89]. In this paper a basic output sensitive algorithm and two optimizations of that
basic algorithm are discussed.

The basic algorithm calculates a visibility map for a set of 3D objects. This is done as follows:
The algorithm assumes that the objects can be ordered by their closeness to the viewing point.
Suppose we have a set of triangles in 3D space. Each triangle lies in a plane z = i. With i being
different for each triangle. The visibility map M is constructed by dividing the xy-plane into
maximal regions which have the following properties:



gion there exists one unique triangle from the set of triangles, or no triangle at

nts (X, y) in a region R the following holds: The lowest triangle lying above (X,
iangle of the region, or no triangle at all is lying above (x, y).

p resulting from the division described above is then the visibility map.

out sensitive algorithm for the construction of visibility maps described in the
ikes a partial visibility map for a group of triangles from the set of triangles.
partial visibility map is constructed with another group of triangles from the set
he size of each next group of triangles depends on the size of the partial visibil-
ucted so far. When there are two partial visibility maps constructed, the two get
er to form a bigger partial visibility map. This continues until there are no more
1 the set of triangles.

nt algorithm is obtained by introducing ray shooting along the edges of the visi-
:onstruct a connected component. Another optimization is obtained by using tri-
s or base triangles instead of the maximal regions discussed before.

generation

ation in an image can be done by using hidden surface removal algorithms. In
ght source is considered as a viewpoint. It is a big advantage for shadow gener-
'den surface removal algorithm has the same output form as the input form. This
shadow polygons which are generated by means of the hidden surface removal
then be used as input for the actual hidden surface removal. In [Atherton et al.,
generation algorithm is described which uses an object space hidden surface
ithm, described in [Weiler et al., 77] of which the form of the input is the same
the output.
1 starts with a rough depth sort, such that the nearest polygons to the viewpoint
nning of the list. The first polygon of this list is used to clip the rest of the list
Of polygons. One list consists of polygons which lay inside the clip polygon and
ns the polygons which are outside the clip polygon. The polygons which are
.the clip polygon are removed since they are hidden from the observer. From the
*h remain visible after clipping a new current clip polygon is chosen and the
is repeated. If a polygon is found which lays in front of the current clip poly-
polygon becomes the new clip polygon and the clipping process is repeated.

ace algorithms in hardware

and more interest in applying VLSI techniques to graphics systems. All the
ied object space algorithms are implemented in software. Although object space
zeneral are difficult to implement in hardware, there are object space algorithms
n hardware. [Abram et al., 86] is an excellent paper in which several approaches
re laid out. The paper covers image space algorithms as well as object space
1 the examples of object space approaches mentioned, consider the subdivision
:se subdivisions are done in order to make parallel processing possible.




4. COMBINATIONS OF OBJECT SPACE AND IMAGE SPACE

We have shown a few examples of object space algorithms.However a lot of research has been
dedicated to combinations of object space and image space algorithms. In this section we will
look at examples of such combined algorithms.

Priority list algorithms can be classified as being a combination of the object space and image
space approach. First the polygons of an object are ordered on their depth. Then these poly-
gons are rendered in that order. The ordering of the polygons is done in object space, the ren-
dering is done in image space. Two well known examples of priority list algorithms are the
Depth Sort Algorithm and the Binary Space Partition Tree algorithm. In the next two sub-sec-
tions we will look at them in more detail.

4.1. The Depth Sort Algorithm (or Painters Algorithm)

The depth sort algorithm was introduced in [Newell et al., 72]. The basic idea behind this algo-
rithm is that when you sort the polygons in order of decreasing depth, then you can draw the
polygons on the screen in such a way that the polygons which are closest to the viewer are
drawn last. The first step is therefore the sorting of the polygons. Of course we may find poly-
gons which overlap each other cyclically. In this case at least one polygon has to be split to
obtain a correct sorted list. The sorting and the splitting of the polygons are done in object
space. The second phase in which the polygons are scan converted in back-to-front manner is
done in image space.

In the first phase, which is in object space, all the information about the polygons is still avail-
able. The second phase, which just draws the sorted polygons on the screen, is in image space
and therefore very fast. Thus this algorithm takes advantages of both worlds. A major draw-
back is that also disadvantages from both approaches are present. The ordering is slow com-
pared to full image space algorithms and in the second phase the information of the visible
parts of the polygons is still lost.

The painters algorithm is sometimes used in flight simulators. An example of such a flight
simulator system using this algorithm is described in [Schachter, 81].

4.2. Binary Space Partition Trees

A field in which a lot of research is going on involves the binary space partitioning trees (or
BSP-trees). This approach was first introduced in [Fuchs et al., 80]. It consists of two phases.
In the first phase a binary space partition tree is created, in the second phase the tree is tra-
versed from a specific viewpoint. The tree is created as follows:

Suppose we have a bunch of planar polygons which represent an object. The creation of the
tree starts by choosing one of these polygons as the root of the tree. The plane through the
root-polygon splits the space into two sub-spaces. One space before the polygon, relative to its
surface normal, and one space behind the polygon. All the remaining polygons are divided
over these two sub-spaces. If the plane cuts through a polygon, the polygon is split and each of
the two parts is assigned to its proper sub-space. This procedure is repeated for the two sub-
spaces until every leaf of the tree contains one polygon.

A major drawback of the algorithm is the fact that the number of polygons in the tree can grow
very fast. This is due to the splitting of polygons if the plane of the root polygon cuts through



e ways to decrease the number of splitted polygons. One way is to choose the
arefully. The best polygon to choose as root is the one of which the plane cuts
iallest number of polygons. Finding such a polygon will take a lot of time. A
ation is to test with just a few polygons and pick the best of them.

yhase of the algorithm the tree is traversed to generate a visible surface image.
point is known the tree is traversed in such a way that the polygons in the half-
 the viewpoint lies are displayed last. In this way the polygons closest to the
lisplayed last and overwrite polygons which are farther away.

. seen that although the first phase of the algorithm is very time consuming, the
just a traversal of the tree. When the BSP-tree has been made, an almost real
e can be achieved, without special graphics hardware. When the viewpoint
sP-tree does not have to be recreated. So this algorithm is particulary suited for
tic objects in which the viewpoint changes. Unfortunately, when you deal with
; the tree has to be rebuilt every time an object moves. This is why the original
it suitable for scenes with moving objects.

objects in BSP-trees

years a lot of progress has been made considering the incorporation of moving
-trees. One example is described in [Torres, 90]. Here a BSP-tree is a new Six-
Each object has its own single tree. This tree is built by making use of halving
snsure that the constructed tree is balanced. This is done because in this case a
s built faster than an unbalanced one. The different single trees are put together
tructure with the use of different types of auxiliary planes. These planes try to
e in such a way, that the objects are not divided by these planes. In some scenes
iible and objects get divided or ‘sacrificed’. The trees of the objects which stay
d saved single trees. After construction, the structure contains four families of
»s. The saved single BSP-trees and the polygons of the sacrificed objects are
leaves. The advantage of such a structure is that modifications on the tree can
s be done locally. The use of halving planes for the building of the single trees
:ment in time too.
sle of the handling of dynamic scenes is described in [Chrysanthou et al., 92]. In
jescribed, the emphasis is on deleting polygons from a BSP-tree. The dynamic
f shadows from a BSP-tree is looked upon too. This last topic is also thoroughly
“hin et al., 89].

:ages of BSP-trees

2 also been used for the representation of objects consisting of polygons and to
erations on them [Thibault et al., 87][Naylor et al., 90].

1s been done on the display of BSP-trees. Originally a BSP-tree is displayed
ront depending on some viewpoint. This way the polygons which are closest are
» ones which are further away. In [Gordon et al., 91] a technique is described for
P-trees front-to-back. Although there is some additional overhead necessary for
s are already lit, for a large number of polygons this technique is faster than the
echnique.




From the BSP-trees other data structures have emerged. In [Vanecek, 91] a multidimensional
space partitioning tree is presented. The purpose of this MSP-tree is the fast classification of
points and lines.

Although the building of the BSP-tree is time consuming, the traversal is very fast. With the
ongoing research on BSP-trees the building of the tree will become faster as well as the traver-
sal. BSP-trees can, as stated above, be used for classification of points or lines.

The question remains if BSP-trees can ever be used for moving objects. Although the algo-
rithms are improving in speed they are still often to slow for dealing with moving objects.
Besides the inefficiency of the building of a BSP-tree, the disadvantages mentioned for the
depth sort algorithm are true here also. In the second phase of the BSP-tree algorithm the
information about the objects is lost.

5. CONCLUSION

In the past the emphasis has been put on image space algorithms. Especially because these
algorithms are very efficient and simple to implement. However the image space approach has
also major drawbacks. These drawbacks are the appearance of aliasing effects and the loss of
information. Although there are antialiasing techniques defined for post processing an image it
can still be argued that even the antialiasing should be done in object space. Or to quote A.R.
Forrest in [Forrest, 85]: “Antialiasing must take into account the items being drawn and work
in geometric object space rather than in an image space devoid of knowledge of the objects
being rendered.”

Since object space algorithms are becoming more and more efficient, plus the fact that the
number of possibilities with these algorithms increases, the expectation is that in the future
more use will be made of object space algorithms. Especially because the information consid-
ering the objects, can be reused.

REFERENCES

[Abram et al., 86] Abram, G.D. and H. Fuchs, “VLSI-Architectures for Computer
Graphics”, Advances in Computer Graphics I (proc. Eurographics ‘86), Pages 189-204.

[Akman et al., 88] Akman, V., PJ.W. ten Hagen and A.A.M. Kuijk, “A vector-like

architecture for raster graphics”, Report CS-R8802, Centrum voor Wiskunde en Infor-
matica, Amsterdam, The Netherlands. ,

[Atherton et al., 78] Atherton, P., K. Weiler and D. Greenberg, “Polygon shadow Gener-
ation”, SIGGRAPH 78, Vol. 12, Pages 275-281.

[Catmull, 74] Catmull, E., “A Subdivision Algorithm for Computer Display of
Curved Surfaces”, Ph.D. Thesis, Report UTEC-CSc-74-133, Computer Science Depart-
ment, University of Utah, Salt LAke City, UT, December 1974.

[Carpenter, 84] Carpenter, L., “The A-buffer an Antialiased Hidden Surface
Method”, SIGGRAPH 1984, Vol. 18, No. 3, July, Pages 103-108.
[Chin et al., 89] Chin, N. and S. Feiner, “Near Real-Time Shadow Generation Using

BSP Trees”, Computer Graphics (SIGGRAPH ‘89 Proceedings), Vol. 23, No. 3, Pages 99-
106.

[Chrysanthou et al., 92] Chrysanthou, Y., and M. Slater, “Computing Dynamic Changes to
BSP Trees”, Computer Graphics forum, Vol II, No. 3, Conference issue Cambridge, UK
September 1992, Pages C-321 - C-332.



[Foley et al., 90] Foley, .D., A. van Dam, S.K. Feiner and J. F. Hughes. “Computer
Graphics: Principles and Practice”, 2nd edition. Addison-Wesley, 1990.

[Forrest, 85] Forrest, A.R., “Antialiasing in Practice”, NATO ASI, Series F, Vol.
17, Pages 113-134.

[Fournier et al., 88] Fournier, A. and D. Fussell, “On the Power of the Frame Buffer”,
ACM Transactions on Graphics, Vol. 7, No. 2, April 1988, Pages 103-128.

[Franklin, 80} Franklin, W.R., “A Linear Time Exact Hidden Surface Algorithm”,
Computer graphics, Vol. 14, No. 3, 1980, Pages 117-123.

[Franklin et al., 90] Franklin, W.R. and M.S. Kankanhalli, “Parallel Object-Space Hid-

den Surface Removal”, Computer Graphics (SIGGRAPH ‘90 Proceedings), Vol. 24, No. 4,
August 1990, Pages 87-94.

[Fuchs et al., 80] Fuchs, H., Z.M. Kedek and B.F. Naylor, “On Visible Surface Gener-
ation by A Priori Tree Structures”, SIGGRAPH 80, Pages 124-133.

[Gordon et al., 91] Gordon, D. and S. Chen, “Front-to-back display of BSP trees”,
IEEE Computer Graphics and Applications, Vol. 11, No. 5, September 1991, Pages 79-85.

[Kuijk et al., 88] Kuijk, A.AM., PJ.W. ten Hagen, V. Akman, “An exact incremental
hidden surface removal algorithm”, Advances in Graphics hardware II, Springer-Verlag,
EurographicSeminars, 1988, Pages 21-38.

[Naylor et al., 90] Naylor, B., J. Amanatides and W. Thibault, “Merging BSP Trees
Yields Polyhedral Set Operations”, Computer Graphics (SIGGRAPH ‘90 Proceedings),
Vol. 24, No. 4, Augustus 1990, Pages 115-124.

[Newell et al., 72] Newell, M.E., R.G. Newell, T.L. Sancha, “A Solution to the Hidden
Surface Problem”, Proceedings of the ACM Annual Conference, Boston, August 1972,
Pages 443-450.

[Overmars et al., 89] Overmars M. and M Sharir, “Output-Sensitive Hidden Surface
Removal”, 30th Annual Symposium on Foundations of Computer Science, 30 Oct. - 1
Nov. 1989, Pages 598-603.

[Schachter, 81] Schachter, B.J., “Computer Image Generation for Flight Simula-
tion”, IEEE Comput. Graphics and Appl., Vol. 1, October 1981, Pages 26-68.

[Sutherland et al., 74] Sutherland, LE., R.E. Sproull and R.A. Schumacher, “A characteri-
zation of Ten Hidden-Surface Algorithms”, ACM Computing Surveys, Vol. 6, No. 1,
March 1974, Pages 1-55.

[Thibault et al., 87] Thibault, W.C. and B.F. Naylor, “Set Operations on Polyhedra
Using Binary Space Partitioning Trees”, SIGGRAPH 87, Pages 153-162.
[Torres, 90] Torres, E., “Optimization of the binary space partition algorithm

(BSP) for the visualization of dynamic scenes”, Proceedings Eurographics 1990, Elsevier
Science Publishers B.V., Pages 507-518.

[Weiler et al., 77] Weiler, K and P. Atherton, “Hidden surface removal using polygon
area sorting”, SIGGRAPH 77, Vol. 11, No. 2, 20-22 July 1977, Pages 214-222.
[Vanecek, 91] Vanecek, GJr., “Brep-index: a multidimensional space partitioning

tree”, Internat. J. Comput. Geom. Appl., Vol. 1, No. 3, 1991, Pages 243-261.




