Supervisory control for nondeterministic systems

A. Overkamp

Department of Operations Reasearch, Statistics, and System Theory

BS-R9411 1994






Supervisory Control for Nondeterministic Systems

Ard Overkamp

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

In this paper we present the first results of our attempt to set up a supervisory theory for nondeterministic
discrete event systems. The supervisory control problem for nondeterministic systems is specified and motivated.
A necessary and sufficient condition for the existence of a supervisor is derived. Also an algorithm is presented
that will automatically generate a supervisor. The results are extended to deal with uncontrollable events.
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1. INTRODUCTION

Up till now discrete event systems have been mostly modelled as deterministic systems. The current
state and the next event uniquely determine the next state. Deterministic systems are effectively
described by the language they can generate. Conditions under which a supervisor exists and the be-
havior of the controlled system are also stated in a language context. But in case of partial observation
(and partial specification) systems are more appropriately modelled as nondeterministic systems.

It is not sufficient to describe nondeterministic systems only by the language they generate. The
blocking properties of the systems are also important [5]. Consider the following example. Given
two systems, A and B (Fig.1a,b). A is nondeterministic and B is its deterministic equivalent. The
languages that the systems can generate are the same, but when connected to system C, (Fig.1c¢)
A||C can deadlock but B||C can not (Fig.1d,e)
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Figure 1: Hlustration of the difference between a nondeterministic and a deterministic system.

The problem that we are trying to solve in this paper is the following. Given a nondeterministic
system and a nondeterministic specification, find a supervisor such that the controlled system behaves
according to the specification. Here ’behaves like’ means that the controlled system may only do what
the specification allows, and that it may only block an event if the specification can also block that
event. A new aspect in this setup is that the specification may also be nondeterministic. This gives
the possibility to specify that some nondeterminism is still allowed in the controlled system.

In Section 3 an alternative for language semantics will be introduced: failure semantics [1, 4]. Tt
is a commonly used semantics in computer science. We will use it to state necessary and sufficient
conditions for the existence of a supervisor such that the controlled system behaves according to the



specification. An algorithm to automatically generate a supervisor will be presented. In Section 5
these results will be extended to deal with uncontrollable events.

2. NOTATION AND DEFINITIONS

DEFINITION 2.1 (FINITE STATE MACHINE) A (nondeterministic) finite state machine (FSM) is a four
tuple (@, X, 6, Qo) where,

( is the state space,

Y is the set of event labels,

§:Q x ¥ — 29 is the transition function, and

Qo C @ is the nonempty set of initial states.

The domain of the transition function can be extended in a natural way to strings and sets of states.
Let A =(Qa,X,8.,A0) be a FSM, A C Q., ¢a € Qa, 0 € X, and s € X*. We define

- 6a(Qa;5) = Qa,

- 6a(Qaa SU) = 6a(6a(qa7 s)) 0)5

- 63('/43 3) = qu_A 6a(q) S).
For notational convenience we will use the state machine itself as an argument instead of the initial
states. 6(A4,s) = 6.(4o,s)-

For a deterministic finite state machine (DFSM) é(q, s) is always a singleton set. In this case we
will write ¢’ = é(q, s) instead of {¢'} = 6(g, s). Also, we will simply write the initial state instead of
a singleton set containing the initial state.

A useful function is the out-function, which describes the outgoing arcs of a state. out(q) = {o €
$|6(g,0) # 0}.

The set of traces, or language, generated by a FSM is defined as L(A4) = {s € X*| §(4,s) # 0}. A
language is prefix closed if sv € L = s € L. All languages generated by a FSM are prefix closed.

Control will not be enforced by a control map as in the Ramadge-Wonham approach, but by
synchronization on common events. The controlled system (i.e. the synchronous composition of the
plant and the supervisor) can only execute those events that both the supervisor and the plant can
execute.

DEFINITION 2.2 (SYNCHRONOUS COMPOSITION) Let A = (Qa.,X, 64, 40) and B = (Qb, X%, b, Bo)-
The synchronous composition of A and B is A||B = (Qa X Qb, X, bab, Ao X By) where 8,5((¢a, gb),0) =
6a(ga,0) X b61(gn,0). Note that for Q. C Qa, O C Qb : D x Qp = Q. x 0 = 0.

The next lemma is a direct result from the definition.

LeEMMA 2.3 For FSMs A, B, and s € ¥*;
1. (ga,qb) € 6(A||B,s) & ¢a €6(A,8) A gp € 6(B,s) .
2. For (qa, qv) € 6(A|[B, s) out((ga,qs)) = out(ga) Nout(g) -
3. L(A||B) = L(A) N L(B) .

3. FAILURE SEMANTICS
In the introduction we already argued that the language alone does not provide enough information
for nondeterministic systems. The blocking properties of the systems are also important. In computer
science failure semantics is introduced to deal with such problems. In failure semantics a system is
not only described by the traces it can generate but also by the set of events that it can block after
a trace (fail to execute). We will not elaborate on it here. The reader is referred to [1, 4] for more
information. We will only define what we need and show that it fits our interests.

First, let us define what we mean by blocking. In the specification it may be stated that after
certain traces the system is allowed to block, but after other traces it may not. So we have to define
nonblockingness with respect to an already executed trace.



DEFINITION 3.1 (BLOCKING) Let A be a FSM and s € L(A); A is nonblocking after s if Vg, €
6(A,s) out(ga) # 0. A FSM A is nonblocking if it is nonblocking after all s € L(A).

As stated in the introduction, the controlled system may only do what the specification allows and
it may only block an event if the specification can also block that event. Because the specification is
nondeterministic it is possible that sometimes an event is blocked in one branch of a nondetermin-
istic choice and allowed in another branch. So, the controlled system has the choice to either block
or execute that event. Because of this freedom the system does not have to be equivalent to the
specification. It only has to reduce (implement) it [2, 3].

DEFINITION 3.2 (REDUCTION) Let A, B be FSMs; A reduces B (A T B) if
i) L(A) € L(B), and
ii) Vs € L(A), Vg, € §(4,s), dqp € 8(B, s) s.t. out(gy) C out(g,)-

Here, point i states that system A may only do what system B allows, and point ii states that A may
only block what B can also block.

The reduction relation guarantees that the controlled system does not block in an environment if
the specification does not block in the same environment. This is formally stated in Theorem 3.3.

THEOREM 3.3 Let A,B be FSMs such that L(A) C L(B). For all FSM C and s € ¥*, B||C
nonblocking after s implies A||C nonblocking after s, if and only if A £ B.

Proof (if part) if A T B then Vg, € §(A,s) Jqp € 6(B,s) s.t. out(gy) C out(ga). If B||C is nonblock-
ing after s then, by Lemma 2.3, Vg, € 6(C, s) out(gy) Nout(g.) # @. Then also A||C is nonblocking
after s because out(g,) Nout(g.) 2 out(gy) Nout(g.) # 0.

(only if part). We will prove that if A does not reduce B then there exists a FSM C and a string s
such that B||C is nonblocking after s, but A||C can block after s. If not A T B then 3s € L(A), 3¢, €
6(A,s) s.t. Vgp € 6(B,s) out(gp) € out(ga). Let C be a DFSM such that ¢. = §(C, s) with out(g.) =
Y — out(q,). Then Vg, € §(B,s) out(gy) Nout(g.) = out(gs) N (X — out(ga)) = out(gp) — out(g,) # 0.
But out(g,) Nout(g.) = out(g,) N (X — out(g,)) = 0. m|

4. CONTROLLER SYNTHESIS

In this section we will first state under what condition there exists a supervisor such that the controlled
system reduces the specification. We will call this condition reducibility. Then, an algorithm will be
presented that generates such a supervisor. In the following G will denote an uncontrolled system and
FE a specification.

DEFINITION 4.1 (REDUCIBILITY) Let G, E be FSMs. A language K is reducible (w.r.t. G, E) if
Vs € K,Vq, € 6(G,s),3q. € 6(E,s) s.t. out(ge) C out(gg) N {o € E|so € K}.

LEMMA 4.2 Let G, E be FSMs. Let S be a DFSM such that L(S) is reducible. Then G||S T E.

Proof (Point i of the definition of reduction) If s € L(S) N L(G) then 6(G, s) is not empty. So, by the
definition of reducibility, there exists a g € 6(E, s). Hence s € L(E), and L(G||S) C L(E).

(Point ii of the definition of reduction). For s € L(G||S) let (gg,qs) € 6(G||S, s), then, by Lemma
2.3, g; € 6(G,s) and gs = 6(S,s). Because S is deterministic {c € X|soc € L(S)} = out(gs). Then,
by reducibility of L(S), we know 3¢, € 6(E, s) such that out(g.) C out(gg) N out(gs). Hence also, by
Lemma 2.3, out(ge) C out((gg, gs))- O

THEOREM 4.3 Let G,E be FSMs. There exists a supervisor S such that G||S T E if and only if
there exists a nonempty, prefix closed, and reducible language K.



Proof (if part) Let Sk be a deterministic state machine generating K. The proof follows directly from
Lemma 4.2.

(only if part). Let K = L(S||G). Then K is nonempty and prefix closed. We will prove that
K is reducible. Vs € K, s € L(S||G), so 6(S||G,s) # 0. Then, by lemma 2.3, §(G,s) # (0 and
6(S,s) # 0. Thus Vs € K, Vg, € 6(G,s) Jgs s.t. (gg,qs) € 6(G||S,s). By the definition of reduction
dg. € 6(FE, s) s.t. out(ge) C out((gg,gs)). By lemma 2.3 out((gg, gs)) C out(gg). And by construction
of K out((gg,gs)) C {0 € X|so € K}. So, out(ge) C out(gg) N {o € X|so € K}. O

ALGORITHM 4.4 The following algorithm will construct a supervisor (if it exists) such that the con-
trolled system reduces the specification.

1. Generate a deterministic state machine R® = (Q%, %, 6%, R)), where

Q0 =29 x 29
Rg = (Go, E),
(6g(g50-)766(g70-))7 lf 6g(g70) 750/\68(870-) 7é @7

0 —
8:((6,£),0) = { empty, otherwise .
2. Construct R**! from R' by removing all reachable states ¢! = (G,€)* (including its in- and
out-going transitions) from the state space of R? that do not satisfy the following condition,

Vgg € G 3ge € £ s.t. out(ge) C out(gg) Nout(ql) -

3. Repeat the previous step until all reachable states satisfy the condition or until there are no
more reachable states left. Let R be the last R’

THEOREM 4.5 Let G and E be FSMs. Then Algorithm 4.4 produces a DFSM R in a finite number
of steps. If the state space of R is nonempty then G||R T E. If the initial state is removed from R
then no supervisor exists such that the controlled system reduces the specification.

Proof (The algorithm stops in a finite number of steps) If in one step of the algorithm no state is
removed, then the algorithm stops because all states satisfy the condition. If in every step at least
one state is removed from the state space then the algorithm will eventually halt because the state
space is finite.

(The algorithm returns a correct solution). We will proof that when the algorithm finds a solution
then L(R) is reducible. And thus, by Lemma 4.2, G||R C E. Let s € L(R) and ¢, = (G,£) = §(R, s).
Then G = §(G, s), € = 6(F,s), and because R is deterministic out(g,) = {o € X|so € L(R)}. Then,
by step 3 of the algorithm, Vg, € 6(G,s) g € 6(E, s) s.t. out(ge) C out(gy)Nout(g,) = out(gy)N{o €
Y|so € L(R)}.

(The algorithm finds a solution if one exists). Assume there exists a nonempty, prefix closed, and
reducible language K. First, we will prove that K’ = K N L(G) is also nonempty, prefix closed and
reducible. Then we will prove that K/ C L(R). Thus the algorithm will return a nonempty solution.

Because ¢ € K and ¢ € L(G), K N L(G) # 0. Because K and L(G) are prefix closed, sv €
KnNnLG) = se€ KAs € L(G) = s € KNL(G). So K' is prefix closed. By reducibility of K,
Vs € KNL(G), Vg € 6(G,s), Jge € 6(E, s) s.t. out(ge) C out(ge) N{o € L|so € K} = out(gg) N {0 €
Y|so € KN L(G)}. So K' is also reducible.

Now, we will prove by induction on the number of steps of the algorithm that K’ C L(R?) for all
i. So, also K' C L(R).

Initial step: Vs € K',s € L(G). Then, by reducibility, §(E,s) # 0. So s € L(E), and K' C
L(G) N L(E) = L(RY).



Inductive hypothesis: K’ C L(R?).
Let s € K' and ¢¢ = §(R%, s). By the hypothesis, sc € K' = so € L(R') = §(R’, s0) = 6gi(q},0) #
0 = o € out(g). So, {o € E|soc € K'} C out(ql). By reducibility, Vg; € G, Ige € € s.t. out(ge) C
out(gg)N{o € E|so € K'} C out(gg)Nout(gt). So, g¢ will not be removed from R’. Hence, s € L(R**!)
and K' C L(R*Y). ]

From the last part of the proof it can be deduced that the algorithm generates the least restrictive
supervisor. (The supremal element with respect to language inclusion).

5. UNCONTROLLABLE EVENTS

Sometimes a system can generate events that can not be blocked by a supervisor (e.g. machine
breakdown). Ramadge and Wonham showed that in the presence of these uncontrollable events we
need the condition of controllability to guarantee the existence of a supervisor. We will show that for
nondeterministic systems the same condition is needed.

Recall from [6] the definition of controllability. Let G be a FSM, ¥, C . A prefix closed
language K is controllable (w.r.t G, %,) if K¥, N L(G) C K. Note that this is equivalent to: Vs € K,
Vgg € 6(G, s) out(gg) N X, C {o € X|so € K}.

Ramadge and Wonham called a supervisor that always accepts an uncontrollable event complete.
We have to adapt the definition of completeness to deal with nondeterministic systems and control
by synchronization.

DEFINITION 5.1 (COMPLETENESS) A supervisor S is complete (w.r.t a FSM G) if
Vs € L(S|G), Vgs € 8(S, 5), Vgg € 8(G, 5), out(gg) N Xy C out(gs) -

THEOREM 5.2 Let G and E be FSMs. There exists a supervisor S such that G||S T E, and S
complete w.r.t G if and only if there exists a nonempty, prefix closed, reducible and controllable
language K.

Proof (if part) Let Sk be a DFSM generating K. Then, by lemma 4.2, G||Sk § E. Vs € L(Sk||G),
let g = 6(Sk,s). Then, by controllability of L(Sk), Vg € 6(G,s) out(gg) N X C {0 € X|so €
L(Sk)} = out(gs). so Sk is complete.

(only if part). Take K = L(S||G), then by the proof of Theorem 4.3 (only if part) K is reducible.
Vs € L(S||G),Vqgs € 6(S,s),VYgs € 6(G,s) out(gg)NE, C out(gs) = out(gg)NE, C out(gs) Nout(gg) =

out((gg,qs)) C {0 € |so € L(S)}. So, L(S||G) is controllable. O

ALGORITHM 5.3 This algorithm constructs a complete supervisor (if it exists) such that the controlled
system reduces the specification. The algorithm is the same as Algorithm 4.4, except that the following
is added to step 2.

2. ...
Also, remove those states ¢¢ = (G,£)* that do not satisfy the following condition,

Vgg € G out(gg) N T, C out(q?) .

THEOREM 5.4 Let G and E be FSMs. Then Algorithm 5.3 produces a DFSM R in a finite number
of steps. If the state space of R is nonempty then G||R T E and R is complete. If the initial state
is removed from R then no complete supervisor exists such that the controlled system reduces the
specification.

Proof The proof goes along the same lines as the proof of Theorem 4.5. The following has to be
added to the different steps of the proof.



(The algorithm returns a correct solution). Vs € L(R||G), let ¢, = (G,€) = 6(R, s). Then, by step
3 of the algorithm, Vg, € G = 6(G, s), out(gg) N X, C out(gy). Hence R is complete.

(The algorithm finds a solution if one exists). After the sentence that starts with ‘By reducibility’:
Also, by controllability, Vs € K',Vgy € G, out(gg) N £y C {0 € B|so € K'} C out(g!). So, ¢! will not
be removed from Rf ... i

6. CONCLUSIONS
In case of systems that are partially observed or partially specified one has to realize that the behaviour
of a system depends on the nondeterministic properties of that system. This paper has been an attempt
to set up a supervisory theory for nondeterministic systems. A condition (reducibility) is found for the
existence of a supervisor such that the controlled system behaves like the specification. An algorithm
is described which synthesizes a deterministic least restrictive supervisor. These results are extended
to deal with uncontrollable events.

What remains to be done is to analyze the consequences of these results for systems with partial
specification and partial observation.
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