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Modelling Dependence between Interarrival and Service Times
with Markovian Arrival Processes

M.B. Combé
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

This paper discusses dependence between the interarrival and service time of a customer.
Such a dependence structure naturally arises in queueing systems, for example it can be the
result of collection or reservation mechanisms for messages in communication networks. The
present paper shows how this type of dependence can be constructed using Markov Modulated
Arrival Processes; in particular the framework of the Matrix geometric method is applied by
using the Batch Markovian Arrival Process. Earlier work on dependence between interarrival
and service times of customers is extended in several directions.
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1 INTRODUCTION

In early queueing models the characteristics of the arrival and service time distributions are
constant over time. Hence those queueing models have limited ability to adequately model
the typical traffic characteristics of modern communication networks, such as bursty arrival
processes and time varying arrival rates.

In the last few decades, analysis concentrating on the typical properties of queueing sys-
tems in communication networks has led to the development of the theory of the Markov
Modulated Queueing System (MMQS). In an MMQS a Markov process describes the time
varying behaviour of some of the arrival and service processes. The state of this Markov
process contains information about the parameters of the current arrival process and the
service time distributions of customers in the system, or it may contain information about
current system characteristics, like the speed of the server. For example, the arrival rate of
customers generated by an On/Off source may well be described by a Markov process, some
states representing On phases of the source, the other states representing the Off phases.

In general, the time varying behaviour of the arrival process and service characteristics
in a queueing system is reflected by a number of dependence structures in the sequences of
interarrival and service times of customers. In Fendick et al.[4] three types of dependence are
mentioned: between consecutive interarrival times, between consecutive service times, and
between the interarrival and service time of a customer.
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In the past most attention has been paid to describing dependence between consecutive
interarrival times and between consecutive service times of customers; dependence between
interarrival and service times has been less extensively treated. The purpose of this paper is
to show how an MMQS can be used to model queueing systems with the latter dependence
structure. In particular we explore the power of the BMAP (Batch Markovian Arrival Pro-
cess) for modelling and analysing queueing systems with dependence between the interarrival
process and the service times. The main reason for using the BMAP is that the well anal-
ysed BM AP/G/1 queue, the single server queue with the BMAP as arrival process, allows
convenient numerical procedures for most performance measures of interest.

Correlation between the interarrival and service time of a customer naturally arises in
queueing systems. Kleinrock[5] discusses the traffic characteristics of message flows in a mes-
sage switching communication network. In the corresponding queueing network the service
times of messages at each queue are proportional to the message length. For example, in
a tandem configuration successive service times of the same message are correlated, hereby
creating a positive correlation between interarrival and service times at the second queue. A
second example arises in bridge queues between communication networks. Every now and
then, the messages in a network that are destined for other networks are collected and deliv-
ered at a bridge queue. In this situation the time between two consecutive arrivals of batches
of collected messages at a bridge queue and the number of messages collected is (positively)
correlated. This type of correlation structure has been studied by Borst et al.[2, 3] and Bis-
dikian et al.[1]. For a survey of literature on correlated interarrival and service times we refer

to [3].

Querview of the paper.

In section 2 we describe how an MMQS can be used to model queueing systems with cor-
relation between the interarrival and service time of a customer. Section 3 illustrates the
modelling technique with a number of examples. Section 4 numerically shows the potential
of the modelling technique to obtain performance measures and insights for queueing systems
with dependence between interarrival and service times. In section 5 we consider queueing
models in which various dependence structures occur simultaneously.

2 MODELLING DEPENDENCE BETWEEN INTERARRIVAL AND SERVICE TIMES WITH MMQS

In this section we concentrate on modelling correlation between interarrival and service times
of customers with the use of the Batch Markovian Arrival Process (BMAP). First we describe
the characteristics of the BMAP.

2.1 The Batch Markovian Arrival Process.

In the BMAP, the interarrival and service times of customers are directed by a continuous
time Markov process {J(¢),¢ > 0} on a finite state space E. A transition from a state 7 to a
state 5 may induce the arrival of a batch customer, the size of the batch depending on % and
J. Let the sojourn time in state ¢ € F be exponentially distributed with parameter A; > 0,
and given that a transition takes place, let p;; be the probability of a transition from ¢ to a

state j € E\{i}, > pij = 1. Defining p;; = —1, then the generator of the Markov process
FEE\{i}
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s given by the matrix D = (p;;A;). Next, conditional on a transition from a
e 7, the probability of a batch arrival of size k is denoted by qf’j, k=0,1,...,
be interpreted as the probability of having no arrival or of the arrival of an
With this notation, p,-jqf’j ); is the transition rate from state ¢ to state j inducing
| of size k. The BMAP is completely characterized by the sequence of matrices
‘,-), kE=0,1,..., 5D = D. The BMAP is a special variant of the general
lated arrival process; in the latter case the service time distribution depends
ons in {J(¢),t > 0} .
2/G/1 queue is defined as the single server queue with the BMAP describing
ocess of batch customers, where batches are served in FCFS order, and the
of single customers are independent and identically distributed with a general
inction H(-). The BM AP/G/1 has been studied in Lucantoni[6], in which one
ts for most of the performance measures of interest, such as the number of

iting times, and the busy period.

.g dependence between interarrival and service times.

tion of the paper is that dependence between interarrival and service times can
7 viewing {J(t),t > 0} as a two-dimensional Markov process, {(J 1(8),Ja2(t)),t >
tes the arrivals of batches, and the state of J; contains information about the
erarrival time; if the state of J; is j1, this might for example imply that the
erarrival time consists of j; exponential phases. The component J2 contains
bout the batch size distribution; for example, the state of Jo might stand for
f customers in a batch (here and in the remainder of the paper we use the
tation J; for {J;(¢),t > 0}, i=1,2).

sa is to let the interarrival time, the time in J; between two batch generating
> time parameter in Jo. So, as the time between two arrivals goes by, the batch
ion is described by the evolution of Jo. The state of Ja just before a batch
ns information about the batch size.

xample of this mechanism is given by the Compound Poisson Process (CPP),
. viewed as a special batch arrival process. The interarrival time of a batch
lly distributed, the size of a batch is the number of customers generated by
sson process during that interval. In this example, J; is a one state Markov
ibing the exponentially distributed interarrival times of batch customers, Jg is
in with state space {0,1,...}, describing the current size of the batch, i.e., the
stomers that have arrived in the second Poisson process since the last batch

sction we show the potential of this construction by elaborating on a queueing
he CPP as the arrival process.

1e following model. At a bus stop, customers arrive according to a Poisson pro-
: X. According to a second Poisson process with rate v, a bus visits this bus stop,
aiting customers, and delivers the customers as a batch at a single server service
_this procedure, the number of customers in a batch is positively correlated with
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the interarrival time of batches at the service facility. The queueing model arising from this
collecting or reservation mechanism, an M/G/1 queue with a typical dependence between
interarrival and service times, has been studied in Borst et al.[3]. In [3] results are presented
for various performance measures of interest, such as the waiting time, the sojourn time, and
the number of customers.

3 EXPLORING THE MODEL

In this section we use the BMAP for modelling a number of variants (and generalisations) of
the collector model that we described in the previous section.

® Variant 1: Finite bus capacity.

In Borst et al.[3] the number of customers in the bus can be arbitrarily large. However,
the method used in [3] to analyse this case does not seem to be applicable for the natural
variant where the number of customers in the bus can not exceed M. With the BMAP, there
are two ways of modelling this restriction.

-First approach. If the number of customers at the bus stop has reached M, all future
arrivals are rejected until the bus has collected the M customers at the stop. This is an
example of the most pure form of the construction; the Markov process J; only describes
the phase of the interarrival process, the Markov process Jo only describes the number of
customers in the bus, and the interaction of the two chains is limited to the resetting of Jo
to the state corresponding to an empty bus stop, at the moment at which J; generates a
batch arrival. The Markov chain of J; has a single state because the interarrival time is
exponentially distributed, the Markov chain of Jo has state space F = {0,1,..., M}, each
state representing the number of customers at the bus stop. In this second Markov chain M
is an absorbing state.

Note that the arrival process of the busses is still a Poisson process.

In figure 3.1 the transition rate diagram for (J1,J2) is presented for the case M = 3. Figure
3.2 shows the generator matrix D and the matrices Dy,..., D3 it decomposes into. In figure
3.1, the nodes are numbered 0, ..., 3, representing the states of Jo.

FIGURE 3.1. Transition rate diagram for the collector model with finite bus capacity and
blocking of customers.
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enerator matrices for the collector model with finite bus capacity and blocking

IP/G/1 queue with such generator matrices and a general distribution function
service time of a single customer, analytical results and numerical evaluation
‘e presented in Lucantoni[6] for many performance measures of interest, such
g time, the queue length and the busy period. For M — oo the BMAP/G/1
5 to the model studied in Borst et al.[3]. As a particular result of this, we are
ximate higher moments of the busy period in the latter model as accurately as
3] we were only able to obtain the first moment of the busy period.

sach. Here we let J; generate batch arrivals, but we also have the bus visit the
1 the number of customers at the bus stop reaches M. Hence every time Jp is in.
the next transition, bus or customer, generates a batch arrival. For this model,
4 = 3, figures 3.3 and 3.4 show the transition rate diagram for (J1,J2) and the
D1, ..., Dy respectively.

‘ransition rate diagram for the collector model with finite bus capacity and no
1stomers.

- A 0 - A 0
v —(A+9) A Do=1| 0 —(A+7) A ,
Aty 0 —(A+7) 0 0 —(A+7)
000 000 000
Di=|y 00|,Da=[000|,D3=|0 00
0 00 v 00 A 00

enerator matrices for the collector model with finite bus capacity and no blocking
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REMARK 3.1 In the first example, the batch size of an arrival is equal to the state of Jo
at the moment of an arrival. In the second example, a batch arrival may be caused by the
arrival of a bus or by the arrival of the M —th customer at the bus stop. Hence, when a batch
arrival occurs while Jg is in state M —1, the batch size is with probability —A—}_; equal to M—1,

and with probability ﬁy— equal to M. In general, the state of Jo may describe a batch size
distribution, rather than just being the number of customers in a batch. 0

® Variant 2: General arrival processes.

In the original collector model of Borst et al.[3] the arrival process of customers at the bus
stop and the arrival process of busses are both Poisson. For more general arrival processes
it seems hard to extend the approach of [3] to obtain analytical results. However, when the
interarrival times of busses and customers are of semi-Markov type, the BMAP modelling can
provide approximations for the case of infinite bus capacity, and exact results for the case of
finite bus capacity. Here we remark that most results on the BM AP/G/1 theoretically seem
to extend for the case of a countable underlying Markov chain. However, numerical methods
available are mainly developed for the case of a finite underlying Markov chain.

As an example of more general arrival processes we present the case in which the interarrival
times of busses are Erlang-2 distributed, the customers arrive according to a Poisson process
at the bus stop, and customers are rejected once the bus is full. Figure 3.5 shows the
corresponding transition rate diagram for the case M = 3. The nodes (j1,72) € {0,1} x
{0,1,2, 3} in figure 3.5 represent the state of (J1, J2), J1 being the state of the bus interarrival
process, Ja representing the number of customers at the bus stop.

(1,0 \Y\‘(l,l)\y\‘(l,?\.a,s)
A

A A

(0,0) 0,1) ©0,2) (0,3)
L L
A A A

Figure 3.5: Transition rate diagram for the collector model with Erlang-2 distributed inter-
arrival times of batches.

e Variant 3: Other types of correlation.

The above mentioned variants of the model with customer collection all consider a positive
correlation between the interarrival and service time of a batch customer. More specific,
the batch size distribution is stochastically non-decreasing as a function of the interarrival
time. In particular, the Markov chain in the first example (cf. figure 3.1) is related to a birth
process. An obvious extension is to construct a negative correlation between interarrival
and service times, for example by letting the batch size distribution be stochastically non-
increasing as a function of the interarrival time. A second extension is to model customer




‘he bus stop; customers may for example leave the bus stop after a while when
¢’. This queueing model with impatient customers can be adequately modeled
orocesses J1 and Ja.

AL RESULTS

. we numerically illustrate the possibilities of our model. We show how infinite
els might adequately be approximated by a BMAP/G/1 queue. We pay at-
effect of the maximum batch size and we also investigate the influence of the
f the intercollecting interval on performance measures of the queueing model.
nce measures considered are the waiting time and the busy period length.
tricted ourself to a few examples, because numerical exploration of BMAP/G/1
not the main purpose of this paper. Lucantoni[6] presents both for batches as
lividual customers many results and numerical procedures.

mating infinite bus capacity.

ing variant 2 we remarked that most numerical methods for the BM AP/ G/1
inly for the case of a finite underlying Markov chain. In table 4.1 we examine
‘mance measures as a function of the dimension of this Markov chain for the
n arrivals of customers and exponentially distributed intercollecting intervals
or M — oo exact results are adopted from Borst et al.[3]. Unforced collect and
respectively are the first and second approach of variant 1. In the example, the
of customers at the bus stop is 1, the mean service time of a customer is 0.5,
.ollecting distribution has parameter 1. For this collector model we distinguish
.ypes of busy periods: busy periods B that also include busy periods of length
eriods started by empty busses, and busy periods B/, for which only strictly
periods are taken into account.

hat for moderate M the values of the mean waiting times EW and mean busy
EB' are already reasonably close to these values for M = co. The difference for
olained by the fact that for unforced collect not all customers arriving at the bus
ve service; when Jo = M, newly arriving customers are rejected. In connection
.1 we note that this might be avoided by having a batch size distribution rather
€ batch size to M for Jo= M.

Exponential service Deterministic service
orced collect forced collect unforced collect forced collect
EB’ EW EB’ EW EB’ EW EB’

280 | 1.507388 | 0.630328 | 1.527809 [} 0.398027 | 1.454060 | 0.417376 | 1.441434
372 | 1.554330 | 0.657011 | 1.562283 || 0.436232 | 1.490878 | 0.445759 | 1.486589
197 | 1.578507 | 0.674647 | 1.581514 {| 0.459451 | 1.511221 | 0.464061 | 1.509814
677 | 1.590791 | 0.685685 | 1.591904 || 0.473076 | 1.522049 | 0.475293 | 1.521601
428 | 1.596987 | 0.692327 | 1.597393 || 0.480881 | 1.527681 | 0.481952 | 1.527540
301 | 1.600099 | 0.696207 | 1.600245 || 0.485275 | 1.530565 | 0.485796 | 1.530522
151 | 1.603123 | 0.701182 | 1.603130 || 0.490637 | 1.533424 | 0.701182 | 1.533416
155 | 1.603122 | 0.701155 | 1.603122 || 0.490648 | 1.533418 | 0.490648 | 1.533418
san waiting times and mean busy period lengths as a function of the bus




4.2 The distribution of the collecting interval.

Figure 4.1 illustrates variant 2. Mean busy period lengths and mean waiting times are pre-
sented as functions of the coefficient of variation of Erlang distributed intercollection times.
The mean collecting interval is 1, the number of phases in the Erlang intercollection distri-
bution ranges from 1 to 7, and we also examined EW, EB, and EB’ for a deterministically
distributed collecting interval. For the last two instances we performed a simulation experi-
ment. Customers arrive according to Poisson processes with rate 1, the mean service time of
a customer is 0.5.

Figure 4.1 illustrates the possibility of the BMAP framework to obtain insight in queueing
systems with dependence between interarrival and service times, in particular when this
dependence is the result of a collection/reservation mechanism. The first observation in
figure 4.1 is that both mean waiting times and busy period lengths are decreasing as the
intercollection interval becomes ‘more deterministic’. Secondly, the performance measures are
almost linear functions of the coeflicient of variation of the intercollection interval distribution.
Finally, not shown here, we observed that the coefficient of variation of the busy period
remains almost constant.

Exponential service Deterministic service
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0 D BeEE 0w o oEp
ol fu] i
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Figure 4.1: The effect of the intercollection interval distribution on mean waiting times and
mean busy period lengths.

5 INTEGRATING VARIOUS DEPENDENCE STRUCTURES.

In general one considers three types of dependence in queueing systems: between consecutive
interarrival times, between consecutive service times, and between the interarrival and service
times of customers. Fendick et al.[4] state that in packet queues with multiple classes of traffic
and variable packet lengths all three types of dependence occur simultaneously. The BMAP
allows us to model this phenomenon. To illustrate this, we present an example in which
the arrival process of busses is a two-state Markov Modulated Poisson Process (MMPP), the



responds to a collecting procedure, and consecutive batch sizes are positively
1e example features all three types of dependence.

lence between two consecutive batch sizes can be modeled in several ways; for
tting the arrival process of customers at the bus stop be a Markov Modulated
ss, or by assuming that when the number of customers at the bus stop equals
_capacity M of the bus, newly arriving customers will wait for the next bus.
1 be modeled as follows; at the moments J; generates a bus arrival, also allow
J, to states other than O (this state representing the empty batch).

wmple we choose to model the dependency of consecutive service times by a
[PP. The two-state MMPP’s for the arrivals of busses and customers are as
. the underlying Markov process is in state ¢, the arrival rate for the arrival
sses (of customers at the bus stop) is v; (A:), and the sojourn time in state ¢
ly distributed with parameter 7; (v;), 2 = 1,2. For this model it is convenient
e evolution of the batch size distribution by a two dimensional Markov chain
J3 representing the state of the MMPP for the individual customers, and the
sresenting the number of customers at the bus stop.

L the transition rate diagram is presented for the case M = 3.
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ransition rate diagram for the collector model. Busses and customers arrive
swo-state Markov Modulated Poisson Processes.
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