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Impatient Customers in the MAP/G/1 queue
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Abstract

This paper considers a single server queueing model with customer impatience. This work
extends results on the M/G/1 queue with impatient customers to the case of customers
arriving according to a Markovian Arrival Process. We derive a transform for the virtual
waiting time, from which expressions for customer waiting time and the probability of a
premature departure of a customer are obtained.
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1 INTRODUCTION
In queueing models of communication systems various forms of interaction between the ar-
rival process of customers and the workload of the system may occur. Examples are queueing
networks with limited buffer space and admission control, and queueing networks with cus-
tomer impatience. A key reference is Baccelli et al.[1], which considers GI/G/1 queueing
systems where customers at the moment of arrival decide whether to join the queue or not,
their decision depending on the amount of work present at that time.

One can look at this situation from different perspectives; Baccelli et al.[1] describe the
following situations: '

-Customers are impatient, i.e., each customer is prepared to wait a limited period of time in
the queue, and when the actual waiting time is larger, the customer’s patience runs out and
he leaves the system. Such a situation might for example occur in a telephone system, where
customers disconnect if the waiting time is too large.

-The workload capacity of the system is limited, and customer access is regulated. For
example, in a queueing system with finite buffer space a customer might be rejected when
his service time would cause an overflow.

There are a number of variants of both examples. In the first example a customer might
leave the system without joining the queue, or the decision whether to join the queue or not
might be based on the sojourn time instead of the waiting time. In the second example, a
customer causing an overflow might not be blocked completely; if at the moment of arrival
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- not completely loaded, a part of the customer’s service request might fill up
e remainder of its service request being rejected.

we study the first example for the case of a Markovian Arrival Process (MAP)
ially(«) distributed patience. The latter means that when a customer enters the
1e total remaining work in the system is equal to z, the customer will eventually
e with probability e™*®, and will eventually leave the queue without receiving
srobability 1 — e~**. The (FCFS) queueing model under consideration will be
{AP/G/1+ M.

ation for the analysis of this queueing system is twofold. Firstly, it extends
"Baccelli et al.[1] on the M/G/1 + M queue for the more general MAP. The
1 more accurate description of the arrival processes in modern queueing systems
sson process. For example the Markov Modulated Poisson Process (MMPP),
:d to model On/Off sources in a communication network, fits into the framework
Secondly, any G(I) arrival process can be approximated arbitrarily close by a
he analysis of the MAP/G/1 4+ M queue can be used to provide (approximate)
e more general G(I)/G/1 + M queue. Note that no explixit expressions are
> latter model, cf. Baccelli et al.[1], as their efforts on the G(I)/G/1 + M did
axplicit expressions for the waiting times of customers.

he paper.
), we first describe the M AP/G/1 + M queue in more detail, then present an

e workload process, resulting in the Laplace-Stieltjes Transform (LST) of its

tribution. In section 3 we consider the moments of the workload process, and
he LST of the waiting time and the probability that a customer prematurely
ue.

KLOAD PROCESS

| we present an analysis of the workload process in the M AP/G/1+ M queue.
ibe the MAP/G/1+ M queue in more detail.

description of the MAP/G/1 + M queue.

. single server queue in which the arrival epochs of customers are directed by a
ne Markov process, and in which for a customer at the moment of his arrival
vhether this customer will eventually receive service or not, this decision being
amount of work present in the system at that moment, i.e. the actual waitin
stomer. :
consider the arrival process. In the MAP, the interarrival times of customers
y a continuous time Markov process {J(t),t > 0} on a finite state space E. A
n a state ¢ to a state j may induce the arrival of a customer. Let the sojourn
t € E be exponentially distributed with parameter X; > 0, and given that a
es place, let p;; be the probability of a transition from 7 to a state 5 € E\{i},
. Defining A;; = pi; A;, with p; = —1, then the generator of the Markov process

s given by the matrix D = ();;). Next, conditional on a transition from a state
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i to a state j, the probability of an arrival is denoted by g¢;;. With this notation, pi;gi; A
is the transition rate from state 1 to state j inducing an arrival. Defining ¢;; = 0, then the
MAP is completely characterized by the matrices Do = (N\ipij(1 — gij)) and D1 = (Nipijgij)-

The MAP is a special case of the Batch Markovian Arrival Process (BMAP), in which
a transition from state i to state j generates a batch arrival of size k with probability q,l"j,
k=0,1,.... The BMAP/G/1 queue is defined as the single server queue with the BMAP
describing the arrival process of batch customers, where batches are served in FCFS order,
and the service times of single customers are independent and identically distributed with
a general distribution function By(-). The BM AP/G/1 has been studied in Lucantonil6},
in which one can find results for most of the performance measures of interest, such as the
number of customers, waiting times, and the busy period.

Next we consider the impatience structure. If at the moment of an arrival of a customer
the amount of work in the system is z, (z > 0), then this customer will eventually receive
service with probability e™*%, and will eventually leave the queue without receiving service
with probability 1 — e™**. Hence the probability that a customer runs out of patience and
leaves the queue before receiving service has an exponential distribution with parameter a.

We remark that for o — oo the model reduces to a MAP/G/1/1 loss system, and with
a — 0 we return to the standard M AP/G/1 queue.

The workload process.
The workload of the system at time ¢ is defined as the total remaining work of the customer
presently in service plus the sum of the service times of the customers in the queue who will
receive service. So, the service times of customers who will leave the system prematurely do
not add to the amount of work in the system. Denote by {V(t),t > 0} the process describing
the workload of the system, and let {J(t),t > O} describe the state of the underlying Markov
chain of the MAP. The finite state space of this Markov chain is denoted by E. The workload
process is defined as the Markov process {(V (%), J (t)),t > 0}, which has state space [0,00)x E.

Let {V,J} be the random variable with distribution the stationary distribution of
{(V(t),3(t)),t > 0}. In appendix A we show that a unique stationary distribution exists if
a>0.

We start our analysis of the process {(V(t),J(£)),t > 0} by writing down an equivalent of
the Takécs integro-differential equation.

First we describe the evolution of the workload process during a small period of time A.

Defining for t > 0,z > 0,5 € E: Vi(t,z) = Pr{V(t) < z,J(t) = j}, then for ¢t > 0, > 0,
and A > 0 small,

Vit+A,z) = (L=XNAWVihz+A)+ D, X(l—g)AVi(t e+ A)+
1€E i#]

z

> AijgiiA / (e™¥By(z — y) + 1 — e *¥)dVi(t,y) + o(AD). (2.1)
i€E y=0

To avoid technical issues concerning continuity and differentiability of V;(t,z) we directly



'T' of the amount of work. This LST is defined for ¢ > 0 and Rew > 0 as
o0
B;(t,w) = Ble" VI g, 1} = / e~ dVi (4, ).
=0
concerns are mainly caused by the distribution function of the service time,
ot be absolutely continuous, e.g. when the service time is deterministic. For

ot to Hasofer[2]. However, in an analogous way to the derivation of similar
,oynes[5] and Takdcs[7, p. 52-53], we obtain from (2.1)

v) = w®;(t,w)—wV;(t,0) — \;®;(t,w) + Z Aij®i(t,w) —
i€E,its
Z Xijgii (1 — B(w))®i(t, w + @), t>0,Rew > 0. (2.2)
iI€EE

the LST of the service time distribution B,.

“ investigating the steady state of the workload process. However, the analysis
:d for the transient behaviour.
ne the Laplace-Stieltjes Transform (LST) related to the process {V,J}:

e “*dV;(z), Rew > 0.

» and using the vector notation ®(w) = (®;(w)) together with the vector V(0) .
; tlim V;(¢,0), we derive from (2.2)
— 00

+ D] =wV(0) + (1 - f(w))®(w + @)Dy, Rew >0. (2.3)
the identity-matrix of dimension |E|, D = Dy + D; is the generator of

hat for & = 0 equation (2.3) gives the LST equation for the stationary workload
rdinary M AP/G/1 queue, provided that this workload process is ergodic. For
nodel can be interpreted as the MAP/G/1/1 loss model; in particular for
on (2.3) reduces to the LST equation of the stationary workload distribution
1 loss model.

th solving equation (2.3) by iteration.
. generator of a Markov process on a finite state space E, hence the matrix
1-singular for Re w > 0, except for at most |E| values of w. Defining

(v = {w|Rew > 0,Det[wl + D] # 0}, (note that 0 ¢ (),

) for w € {, into

V(O)w[wI + D! + &(w + @) D1 [wl + D]~1(1 — B(w)). (2.4)
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We remark that wjwl + D]™! is a matrix of rational functions and that the set (,, contains

the poles of these functions.
Defining A(w) = w[wl + D|™%, and B(w) = D1[wI + D]~}(1 — B(w)), equation (2.4) can be

rewritten into

dw) = V(0)A(w)+dw+a)BWw), w € . (2.5)

k
Next define wy = w + ke, k = 0,1,..., and [] B(w)) = B(wg)... B(wi)B(wo), with the
‘ =0
convention that an empty product (k < 0) is equal to I.

Iterating (2.5) K times we derive

K k-1 K
8(w) = V(0) Y Alws) [] Blwr) + Blwxs) [[ Bwn), w e, (26)
k=0 =0 =0

with ¢, = {w € C|Re w > 0,w; € {,,[ =0,1,...}. Since o > 0, this set ¢, is finite.

ASSUMPTION 2.1 : For the sake of simplicity we assume in our analysis of {V,J} that

the eigenvalues of D are distinct. The analysis can be extended to the case of non-simple

eigenvalues. Moreover, we claim without proof that a M AP/G/1+ M queue for which this

assumption does not hold, can be approximated arbitrarily close by a M AP/G/1+ M queue
for which D does satisfy this condition.

In proving the convergence of (2.6) for K — oo we use the following lemma

LEMMA 2.1 :
() Ask— o0, A(wg)— I, for Re w 2 0.
K "
(4) For K=0,1,..., || [T Bw)l| £ c, 7K, for w € {y,
=0
with 7 < 1, ¢, < 00, and where ||C|| = |F| max |C;;| is a matrix norm of C € ClExIE],
0]
PROOF:

(i) Letn;, j = 1,...,|E|, be the eigenvalues of D. Since D is a generator matrix of a

non-degenerate Markov process, there exists a constant £ < oo such that [nj] < €. According

to the spectral theorem for matrices (cf. Lancaster & Tismenetsky[3] p. 314), for w € (u
|E|

there exist matrices Z;,j = 1,...,|E| such that [w] + DI7t=% Z:_-ll-'n—,-ZJ" Since a > 0 and

¢ < oo, there exists a Kg > 0 such that wy € {,, for ¥ > Ky. Moreover, g’; — 0, as k — oo.
It readily follows that ||A(wg) — I|| — O. Applying proposition 1 on page 361 of Lancaster &
Tismenetsky[3] finishes the proof of (i).
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(22) Next, define 8§ = max D:(3,7). Then ||Dy]|| = |EJ8 < ]E[meabx/\,-. From (i) also fol-
1,7 H
lows [wgI + D]~ — 0 when K — oo, hence there exists a K; such that for all k > Ki,
2l : . : :

||]_z=:1 w—k%’;Zsz go[E] With 7 < 1. Since || - || is a matrix norm, [|C1Cs|| < ||C1]|.]|C2]|, for

C1,C € CIEHEL Tt follows that [|B(wg)|| < T, for kK > K;. Hence there exists a ¢, < oo,
K

such that || [ B(w)|] < cumE¥! forall 6 =0,1,... . O
=0

As a corollary of lemma 2.1 we obtain

THEOREM 2.1 :

oo k-1
w) = V(0) ) (A(wk) II B(wz)) , wely, ®(0)=m. (2.7)
k=0 =0

In (2.7), m is the stationary probability (row) vector of {J(t),¢ > 0}, fulfilling 7D = 0 and
me = 1, with e the |E| dimensional unit (column) vector.

Next we derive V' (0) = (V;(0)), with V;(0) the steady state joint probability that the server
is idle and J is in state j.

The MAP/G/1 + M is ergodic for @ > 0 (cf. appendix A), hence equation (2.3) has
a unique solution, as given by (2.7). Moreover, V(0) is the only vector that fits (2.7) for
all w € C,Re w > 0. The latter remains valid if we post-multiply both sides of (2.3) with
the non-singular matrix R = (r;), r; being the right (column) eigenvector of D, associated
with eigenvalue 7;, 7 = 1,...,|E|. In particular, r; = e is the eigenvector for the eigenvalue
m = 0. The matrix R is non-singular because all eigenvalues of D are distinct (cf. Lancaster
& Tismenetsky[3] pg. 153). Dividing by w, observing that the limit w | O exists, results in
the following set of equations

B(w) (1 + %) r; = V{O)r; + Liuf—(“i)<1>(w +&)Dirj, j=1,...,|E|, Re w3 0.(28)

Subsequently, we fixate w = —7; in the j—th equation of (2.8). Rewriting the right hand side
of (2.7) as V(0)C(w), and defining constants 3; = llim %ﬂ, then (2.8) becomes
wl-n;

V(0)r; = I{1=j} +[V(0)C(a - n;)B;Dilri, i=1,..., |E|, ; (2.9)

with Iy the indicator function.

The set of equations (2.9) has a unique positive solution. This follows from a probabilistic
argument. Since the workload process is ergodic, ®(w) is analytic for w € {Re w > 0}.
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Moreover, ®(w) is unique. Since the solution of (2.9) establishes an analytic solution of the
functional equation (2.3), the uniqueness of ®(w) forces V(0) to be the only solution of (2.9).
The vector V(0) is obtained from (2.9) by post-multiplying the j—th equation of (2.9) with
l;, the left (row) eigenvector of D, associated with r; (Lir; = Iji=j3,%5 = 1,... ,|E|), and
|E|
applying ¥ r;l; = I. Note that [; = =, since 7 is the unique solution of zD = 0,ze = 1.
=)

Finally, we have obtained

THEOREM 2.2 :

|E]
V) = « |- ZC(a —n;)B;Dirjl; . (2.10)

i=1

REMARK 2.1 : For w = —5;, j = 2,...,|E|, ®(w) can be derived by taking limits in (2.7),
then the remaining w & {, can be obtained using relation (2.3). Since ®(w) is analytic for
w € {Rew > 0}, these limits exist. O

REMARK 2.2 : For the analysis it is necessary that o € éw. We assume that this is the case;
by slightly altering the parameters we can approximate any M AP/G/1+ M queue arbitrarily
closely by a MAP/G/1+ M queue for which this assumption does hold. o

REMARK 2.3 : We conclude this section by reflecting on other MAP generalisations of queue-
ing models with impatient customers. In Baccelli et al.[1] the only other model that could be
solved completely was the M/M/1+ D queue, i.e. the M/M/1 queue with deterministically
distributed patience. Unfortunately its MAP equivalent results in a differential equation
which seems hard to solve. The general M/G/1+ G queue was not explicitly solvable, so one
could not expect more for the general M AP/G/1 + G queue. o

3 DERIVED RESULTS
Moments of {V,J}.
The moments of {V,J} can be obtained from (2.3). These are not obtainable by differenti-
ating in equation (2.7) because 0 ¢ {‘w. Below we present the first moment, higher moments
follow analogously.

Multiplying both sides of (2.3) with the unit vector e, using De = 0, dividing by w, and
taking derivatives with respect to w, we obtain

1
' (w)e = (llé(—@) ®(w+ a)Dre+ (—l;ggﬁ> ®'(w + a)De. (3.1)

w

Letting w | O we find the mean total workload of the system

’ g@ '
®'(0)e = ———Z—Q(a)Dle + 3% () D1e, (3.2)
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in which 8 and 8 respectively are the first and second moment of the service time distri-
bution. ®(a) and ®'(«) can be derived from (2.7). By taking derivatives directly in equation
(2.3), we also find an expression for '(0)D. Post-multiplying in (3.2) with 7, and noting
that [er + D] is non-singular, we finally obtain the mean workload vector

ﬂ(2)

EV = —3/(0) = [7r—V(0)——,B<I>(a)D1][e7r+D]‘1+[—Z—Q(a)——ﬂ@’(a)] Dier.  (3.3)

REMARK 3.1 : As stated in the beginning of this section, for a | 0, the MAP/G/1 + M
queue reduces to the ordinary MAP/G/1 queue, although the M AP/G/1 + M queue is
always stable for & > 0 while the corresponding M AP/G/1 might not be. The stability
condition for the ordinary M AP/G/1 queue is 7Diefl < 1. Provided that this condition is
satisfied, then, for a | 0, the equation (2.3) for the LST’s of the workload process holds for
the M AP/G/1 queue. Moreover, the expressions (3.2) and (3.3) are also consistent with the
ordinary M AP/G/1 queue when a | 0. However, they do not yield the moments for the
ordinary M AP/G/1 queue, since in the right hand sides of (3.2) and (3.3) the term ®'(0)D;
appears for o | 0. The moments of the workload vector can be obtained as follows: rewrite
(2.3) for @ | 0 as ®(w)|wl + Dy + B(w)D1] = wV(0), postmultiply with the eigenvector r1(w)
which belongs to the smallest eigenvalue n(w) of [wI + Dy + B(w)D;]. Taking derivatives with
respect to w and letting w | O gives an expression for EFV, containing the unknown vector
V(0). This vector can be obtained in the same way as for the MAP/G/1 + M queue. A
second method to derive this vector is presented in Lucantoni [6], it involves the iteration of
the matrix equivalent of the M/G/1 busy period equation. O

The watting time.

®(w) is the LST vector of the virtual waiting time and the probability that J is in state 7. The

time between transitions in the Markov process is exponentially distributed, hence we can

use the PASTA property to obtain the LST vector of the waiting time W and the probability

that a customer prematurely leaves the system. Denote by g; = ¥ pjig;; the probability
i€E

that an arrival occurs given a transition out of state j, j € E. Then, with q = (g;),

Pr{iW <z} = z Pr{V < z,J = jlarrival of a customer}
JEE
-3 Pr{V < z,J = j,arrival of a customer} V(z)q

: > 0.
e Pr{arrival of a customer} Tq £=

From this we find W(w), the LST of the waiting time of an arbitrary customer in steady
state

Ww) = ?%22, Rew > 0. (3.4)



y that a customer leaves the system prematurely.
the derivation of the LST for the waiting time we find P,, the probability of a

parture

T e, V(@ _ . ®@a_, _
1—/e m =1 - T =1 - W(a), (3.5)

z=0

JEMENT:  The author is grateful to Professors O.J. Boxma and J.W. Cohen
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JITY OF THE MAP/G/1+ M QUEUE.

dix we prove that the workload process {(V(t),3(t)),t > 0} of the

M queue is ergodic for o > 0.

this is clear, due to the impatience of the customers: as the amount of work in
\creases, the number of customers joining the queue gets smaller and smaller.
he work that joins the queue per unit of time is less than 1, hence there exists
uch that the drift of the Markov process is towards the origin for all states
¢ E, ([0,00) x E is the state space of {(V(¢),J(t)),t > 0}). The basic idea of
ows this intuition. If one can show the existence of a positive recurrent subset
E then, under certain conditions, this is sufficient for the existence of a unique

stribution of {(V(¢),J(¢)),t > 0}.




10

The proof follows the scheme of Laslett et al.[4], to which we refer for details and technical
issues.

First we mention a number of concepts that are used in Laslett et al.[4].
¢-irreducibility.
A Markov chain {X,} with state space x is called ¢-irreducible if there exists a nonzero
measure ¢ on F (F is the o-algebra of Borel subsets of x), such that for any =z € x and
A € F with ¢(A) > 0, there exists an n for which P™(z, 4) > 0. P™(x, A) denotes the n-step
transition probability of {X,,}.
Ergodicity.
If {X,} is ¢-irreducible then there exists at most one stationary distribution, {X,} is ergodic
if it has a unique stationary distribution. If {X,,} is ergodic the n-step probability transitions
converge to this stationary distribution in the strong Cesaro sense.

Hitting times.
Hitting times T4 are defined as T4 = inf{n > 0|X,, € A}.

Test set.
Assume {X,} is ¢-irreducible. Then, if sup E[T4|Xp = 2] < oo is a sufficient condition for
z€A

{Xn} to be ergodic, A € F is called a test set.
The main theorem for testing this condition for a set A € F is (cf. Theorem 2.1 of [4])

THEOREM A.l : Let g be a nonnegative function on x. If for some e >0 and A € F
E[g(X1)|Xo = ] < g(z) —¢, for z € A°,

then

sup E[T4| X0 = z] < co.
z€A

|

The scheme in [4] for proving that a Markov chain {X,} is ergodic consists of three steps:
1. Prove that {X,} is ¢-irreducible.
2. Identify possible test sets.
3. Apply theorem A.l to one of these sets.

For the workload process {(V(t),J(t)),t > 0} of the M AP/G/1+M queue, we prove ergod-
icity of the embedded Markov chain {(Vy,J.),n =0,1,...} = {(V(t,),I(tn)),n =0,1,...},
where t, is the time just before the n—th transition in {J(t),t > 0}. Applying the condi-
tional PASTA property, we find that the stationary distribution of the embedded Markov
chain equals the stationary distribution of {(V(¢),J()),t > 0}.

Next we perform the three steps of the scheme.

1. We choose for ¢ an arbitrary nonzero measure on F', such that ¢ has an atom at
(0,%) € [0,00) x E, where ¢ is an arbitrary element of E. Since the Markov chain is irreducible
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it follows that (0,%) can be reached from any subset A C [0,00) X E in at most |E| steps.
Hence, {(Vyn,Jn),n =0,1,...} is ¢-irreducible.

9. According to Theorem 3.2 of Laslett et al.[4], any set A containing {(0,7)} is a test set if
for some integer N and some § > 0, max P™(y,(0,7)) > 6, for all y € A. With N = |E| this
k(3

condition holds when A is of the form [0, z¢) x E, with z¢ > 0.

3. We apply theorem A.1, using the function g((z,%)) = , (z,%) € [0,00) X E. 1o is defined as
the time just before the first transition in {J(t),¢ > 0}. Denote by (zo,1) the state of (V¢, Jo)
and (g, ;) the amount of work joining the queue at time tg. Define by o(4, ) = t1 — to the
time until the first jump after g in {J(£),t > 0}, conditioned on the state of (Vo,Jo). Then

E[g(V1,J1)—9(Vo, Jo)|(Vo, Jo) = (0, 1)|=E[max[zo + 7(z,4) = O(zo,), 0] — To] =

2o -
E[max[7(z05) = T(zo,i)> —0l] = / (—z0)dH g 5)(u) + / udH (g, 5)(u),
UTZ-— 00 U=—20

with H(zy ) = T(zo,i) = O(so,i)» and Higoi)(w) = Pr{H(g, ) < u}, v €R.
It is readily verified that EH(y, ;) is a continuous non-increasing function of zop when a > 0.

Finally, lim EH (g, < —1 <0, with § = max A

It follows that for o > 0, Jzg > 0 such that for all i € E, E[g(V1,J1) — ¢(Vo,J0)(Vo,Jo) =
(z0,1)] <0, hence sup E[T4](Vo,J0) = (z,4)] < o0, for A =[0,z0) x E (we remark that in

z,i)EA
general zo depends on a). This completes the last step of our scheme.

Remark A.l: From equation (2.2) the ergodicity of the workload process can also be ob-
tained via a more classical analysis method. This method involves the (double) LST of
V;(t,z) with respect to t and z. The ergodicity of the workload process is proved by first
showing that if & > 0 the limit lims—ooV (£,0).e = V(0).e exist and that V(0).e > 0. From
renewal theory then follows that the set of states {V;(0),7 € E} is positive recurrent, which
completes the proof. 0



