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Abstract

This paper presents a top-down search method for boundary refinement based on cost mini-
mization. Many image segmentation methods produce a series of successively coarser image
subdivisions, which can be represented in a hierarchy of graphs. Sometimes it is necessary to
refine boundaries in the coarsest segmentation by considering the successively finer segmenta-
tions presented in the hierarchy. We consider the problem of the detection of fiber boundaries
in microscope images of muscle tissue. Based on a model for muscle fibers, a cost function
suitable for application in hierarchies of graphs is derived. This cost function depends on
both the grey value gradient along the boundary and on boundary shape. It is shown that
minimization of this cost function reliably detects fiber boundaries.
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1. Introduction

Many image segmentation techniques [11, 14, 13, 1] produce a series of coarser and coarser im-
age representations by initially considering individual pixels as regions, and subsequently merg-
ing clusters of adjacent regions into larger regions. This yields a sequence of image subdivisions,
which can be represented conveniently through a hierarchy of region adjacency graphs {12].
Such a description reflects the structure of the image, but sometimes the final, top level
segmentation must be refined and some effort must be made to extract relevant information.
Each level in the hierarchy represents the subdivision of the image plane in a number of regions.
Often a significant object in the image will coincide with such a region, but sometimes this is
not the case. It is possible that an object is represented by several regions in one level, while
it is only a part of a region in the next level. It is also possible, that the location of region
boundaries in higher levels of the hierarchy is not accurate and some refinement is required.
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all regions have the same significance. Some search method is required to detect
ficant structures in the hierarchy.

per, a top-down boundary localization method in a hierarchy of region adjacency
ssed. Such a method uses a priori knowledge of image content and must therefore
» a particular problem. Our specific application is the detection of fibers in a
age of muscle tissue (figure 1.1). The individual fibers appear in the image as
>und regions with a uniform grey value, which are bounded by a curve on which
dient is large.

An image of muscle tissue, on which our top-down methods will be tested.

lown method presented in this paper is based on cost minimization by dynamic

Dynamic programming (e.g. [2]) is a well-known technique for many optimiza-
and has been used for a long time in image processing for edge detection, e.g.
[10] and Martelli [8, 9]. Recent contributions have been made by Gerbrands [3]
5]. '
echniques, some initial guess for the approximate location of the curve must be
boundary of a region in a high level of the hierarchy is used as an initial guess,
1dary parts in an intermediate level of the hierarchy are used as possible parts
»undary.
uzation of the rest of this paper is as follows. A series of coarser and coarser
;ations can be represented by a hierarchy of region adjacency graphs. Object
rrespond to closed paths in the dual of the region adjacency graph. This is
iction 2.
presents an optimization approach for the detection of fiber boundaries. Based
of boundaries—more or less round curves through points with a large gradient
a cost function is constructed, such that minimal cost paths correspond to fiber
ynamic programming is used to detect optimal paths.

4, the optimization approach is used in a hierarchical structure in order to
vise refinement of object boundaries. Some results are shown and the effect of
ices is illustrated.
presents the conclusions of this paper.



9. Hierarchies of Region Adjacency Graphs and their Duals.

A partition of the image plane into connected regions can be represented by a region adjacency
graph. In this representation, each region acts as a vertex in a graph. Two vertices are
connected by an edge if the corresponfing regions are adjacent.

The edges in a region adjacency graph correspond with boundaries between regions in the
image. By selecting a proper set of edges in the region adjacency graph, the outline of an
object in the image can be constructed. This section presents an optimization approach for
the computation of edge sets which correspond to fiber boundaries.

Edges in the region adjacency graph correspond to boundary parts in the image plane. In
order to select series of consecutive boundary parts, a representation is required in which it can
be seen, which edges of the region adjacency graph represent consecutive curves in the image
plane. In the region adjacency graph, this ordering is not represented explicitly.

(2) (b)

Figure 2.1: Figure (a) shows a region adjacency graph (in thin lines) and its dual (in
bold lines). Note the correspondence between faces of one graph and vertices of the other
one. Note also the correspondence between mutually intersecting edges of both graphs.
In figure (b), the edges of the dual graph have been redrawn in the shape of the curves
they represent in the image plane. There is a double edge between the vertices marked by
a * because the boundary between the corresponding regions consists of two connected
components.

For this purpose, the dual [4] of a region adjacency graph must be used.

Definition 2.1 Let G be a planar graph with vertices V and edges E. Its dual graph
is denoted by G and its vertex and edge sets by V and E, respectively. FEach vertex in G
corresponds with a face (a region surrounded by a closed path and with no interior edges) of
G. Two vertices of G are connected by an edge if the corresponding faces in G share an edge.

The faces of the dual graph correspond to vertices in the original graph. There is a
one-to-one relation between the edges of G and G.



hs are defined for graphs which are embedded in the plane; for regions adjacency
n embedding exists obviously. This is illustrated in figure 2.1. In the present
necessary to take double edges into account. Double edges occur when the
7een two regions consists of more than one connected component. This is the
sle, for the two vertices marked by a x in figure 2.1: the boundaries between the
regions consists of two connected components.

1 here to consider the image grid in terms of pixels, cracks and points. In this
rrespond to open squares of the form (z,z + 1) x (y,y+ 1) with z,y € Z, in
plane. Pairs of directly adjacent pixels (4-neighbors) meet at cracks, which are
of the form (z,z + 1) x {y} or {z} x (y,y + 1). Four pixels meet in points
scription corresponds with the topological notion of a cell complez, as noted by

the dual region adjacency graph correspond to boundaries between regions in
ile. These boundaries are formed by series of cracks, connected at points. The
dual region adjacency graph correspond to points in the image plane where
‘ween regions meet.
...,Tp be a path in the dual graph and let €; be the edge between 7;_; and ;.
., €, corresponds with a series of contiguous curves in the image plane.
ararchy of region adjacency graphs, a hierarchy of dual region adjacency graphs
cted. This has been described in detail by Kropatsch et al. [7] for the situation
archy is built by graph decimation, but their description is also valid for more
hies. The levels of the dual hierarchy are constructed by constructing the dual
level independently. Each edge in a higher level of the dual hierarchy corresponds
ntiguous edges in a lower level. In terms of curves in the image plane, this means
in a higher level represents a curve which consists of a number of consecutive
‘e each represented by an edge in a lower level.
» path in some higher level of a hierarchy of dual region adjacency graphs and
presents in the image plane. This curve can also be represented by a path in
el of the dual hierarchy. This path can be constructed by considering all the
z in the higher level, and computing the corresponding edges in the lower level
enating all of these edges yields the desired path in the lower level.

-uction of the Cost Function

n a dual region adjacency graph correspond with closed curves in the image
section, a cost minimization procedure will be used in order to detect closed
correspond to fiber boundaries. This will be done by means of a hierarchical
section describes the procedure used in each level; the next sections describe the
scedure and presents some results.

ction, three issues must be addressed: a suitable cost function must be con-
of allowed paths must be defined and an optimization algorithm must be cho-
lization procedure will be carried out by dynamic programming. Using dynamic
we will minimize a cost function of the form

(B0, T1s- -+, Bn) = (1= @) Y P03, %i41) + @ Y Q(Bic1, i, Bi1)- (3.1)

>sed paths, so U,; must be read as T; for ¢ = 1,2. The terms P(7;,vi41) repre-
mtributed by pairs of adjacent vertices, i.e. by edges. The terms Q(7;,Tiy1, it2)
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represent the cost contributed by triples of consecutive vertices, i.e. by pairs of contiguous edges.
In the rest of this section, P and Q will be chosen such that P depends on the extent to which
the curve follows maximal gradient paths, while @ depends on the circularity of the curve. The
weight factor a can be adapted to make one of these curve characteristics more dominant. As
the costs P and Q will be positive, dynamic programming can be used for the computation of
a minimal cost path.
Fiber boundaries are characterized by two properties:

1. Fiber boundaries separate regions of different brightness.

2. Fiber boundaries are more or less round.
The cost function will be chosen such that this type of curves can be detected.

The terms P(7;,Vi4+1) will be used to express the extent to which the curve separates
regions of different brightness. Each pair (Wi, Vi+1) corresponds with a curve in the image
plane. Let ¢;,¢3,...,ck be the cracks that constitute this curve, where k is the length of the
curve. As we are interested in the actual localization of curves in the image plane, and not
in the number of edges by which they are represented, the cost function >>; P(%i,Tis1) should
not depend on the number of parts from which a curve is constitutes, but only on layout of the
curve on the image plane. Therefore, P must have the form

k
P(T;,Ti41) = ), p(¢5), (3-2)

i=1

where p(c;) is a measure for the contrast across a single crack. A common choice in literature
for the contrast function p(c;) is M —|V f(¢;)|, where M is some large constant and V flcj)isa
measure of the image gradient at the crack; usually, it is simply the difference of the grey values
of the pixels on both sides of the crack. This choice has an undesirable property: because all
p(c;) must be positive, M must be larger than the largest gradient value in the image. This
can be a large number, implying that most of the time, p(c;) will be quite large. Therefore,
short curves will be favored, which may lead to artifacts. In our application, parts of fibers
might be cut off, as a shorter path through the interior of a fiber may have a lower cost than
the actual boundary, which is longer.
A more suitable choice is therefore

1

p(C]) € + Ivf(c])l ’ (33)
where ¢ is some small number (in our implementation 0.1) which avoids division by zero, and
Vf(c) is an estimator for the image gradient. In our case the difference of the grey values of
the pixels on both sides of the crack. With this choice, the presence of large gradients in the
image does not enforce an increase of the cost of all the cracks. Moreover, this choice has a
clear interpretation: a path with a given length and grey value contrast has the same cost as
a path which is twice as long, but has also twice the contrast.

The second criterion for fiber boundaries is that they are more or less round. The roundness
measure proposed here uses an estimation ¢ = (%, y.) of the center of the fiber. Consider a
curve segment with end points p1 = (z1,%1) and py = (z3,%2). If this curve part is part of
a round curve around ¢, the vector p; — p; is perpendicular to the vector between ¢ and the
center (1/2)(p1+pz) of the line segment pyps. The deviation 6 of the angle between the vectors
p2 — p1 and (1/2)(p1 + p2) — ¢ from the optimal value of 7/2 is a measure for the non-roundness
of the curve.



This observation is used for the construction of Q(7;,v;41,Vit2). The three vertices define
two adjacent curve segments. The curve represented by the concatenation of the two corre-
sponding edges is considered, and the direction of the line segment between its end points is
compared with the optimal direction given the estimated center ¢. Let § denote the deviation
from the optimal angle and let [ denote the length of the line segment between both end points.
Then @ is defined by

Q(Ti, Dig1, Vigz) = 167, (3.4)
The square is introduced to reduce the cost of small deviations, while increasing the cost of
large deviations. This allows more deviations from exact circularity than a linear cost function.
The length [ is used again because the cost must be proportional to the actual length of the
curve in the image plane and not to the number of edges by which it is represented.

The boundary shape is evaluated using two edges instead of one. This is done in order to
avoid undesirable effects which can occur if the curves represented by edges become short at
the lower levels of the hierarchy. This can be especially disadvantageous in the lowest level,
where edges correspond with individual cracks and only horizontal and vertical directions are
possible.

We still have to define the set of allowed paths over which cost minimization must be
performed. As we will work in a top-down procedure, there will be an initial coarse guess,
which was computed at some higher level. This guess is some closed curve in a dual region
adjacency graph. Let X C E be the set of edges in this path. Then a set Y C E of edges is
constructed which lie in a strip around the coarse path. An edge € € E is in Y if and only
there is a face in the dual region adjacency graph which is bounded by both e and some edge
in X. Thus, the allowed paths all lie in a narrow strip which follows the initial guess. '

The set of allowed paths is the set of all paths containing only edges in Y. One restriction
must be made: in order to avoid artifacts, paths which do not go around the estimated center
¢ must be excluded. This is done by allowing certain pairs of adjacent vertices to occur only
in a particular order in the path, effectively making the edges in the dual graph directed.

4. Results of the Hierarchical Search Method

The cost minimization approach described in the previous sections can be used for top-down
boundary refinement in a hierarchical structure. In the examples presented here, we use a
hierarchy of region adjacency graphs constructed by the method presented in Nacken [13].
Figure 4.1 shows some levels in this hierarchy.

As the initial guess for the curve boundary, the boundary of the receptive field of some
vertex in the hierarchy of region adjacency graphs is used. An estimation for the center of the
corresponding fiber must also be given. At present, these initial guesses are generated by a
human operator, but they can also be generated automatically.

The circumference of the selected region corresponds with a closed path in the top level of
the dual region adjacency graph. Top-down search is started at some intermediate level in the
hierarchy, typically the third one. The curve corresponding to the initial guess is represented
as a closed path in this level. Then the allowed paths are defined by selecting a set of allowed
edges, and the minimal cost path is computed, yielding the first refinement of the initial guess.
This path is then represented at the next lowest level, where it is again used as an initial guess,
which is refined by cost minimization. This procedure is repeated, until the final curve in the
base level of the hierarchy is reached.

Some results are presented in figure 4.2. The pictures show the initial guess, generated
at the top level, the allowed edges in the third level of the hierarchy, the minimal cost path
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Figure 4.1: The segmentations corresponding to several levels of the hierarchy. The
segmentation 6 levels below the top (a), the segmentation 4 levels below the top (b)
and the top level segmentation (c) are shown. Note that the base level segmentation
corresponds with the pixel grid.

detected at the third level of the hierarchy and the final path, detected at the base level. Note
that the initial guess shows some large deviations from the true fiber boundary. In terms
of the hierarchy, these deviations are small, because they correspond to just a few ‘wrong’
parent-child links. Therefore, the path refinement procedure has no difficulties in finding the
correct boundary. The method described here detects almost all fibers correctly. In practice,
errors occur only when the structure of the hierarchy is deformed so much that the correct fiber
boundaries cannot be detected by repeatedly applying relatively small changes in successive '
levels.

Figure 4.3: Optimal boundaries detected with o = 0.002 (a), & = 0.01 (b) and & = 0.05
(¢)-

The parameter « in equation (3.1) was chosen to be 0.01. With this choice the P and @
terms have about the same order of magnitude, and both shape and gradient information are
taken into account. The value of & for which both terms have the same order of magnitude
is image dependent. The contrast cost function depends on the grey values present in the
image, while the shape cost function does not. Therefore, the optimal value of « is related to
the contrast or the grey value range of the image. In practice, it appears that one value of a
suffices for all fibers in an image.

Figure 4.3 shows the effect of modification of a. In the middle image, a = 0.01 and the




(b)

2: Boundary refinement by cost minimization: the initial guess (a), the set of
:dges in the intermediate level (b), the minimal cost path at the intermediate
and the final path in the base level (d).

'y is detected correctly. In the left image, & = 0.002 was used. The cost function is
r contrast terms and the boundary traces strong contrasts, yielding an undesirable
boundary. In the right image, @ = 0.05 was used. The cost function is dominated
terms and a more or less circular boundary is generated, although this one does
ightness edges.

lusions

:al image description is constructed in a bottom-up fashion, some post-processing
search methods are required for the extraction of image content from this de-
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scription. In this paper, it has been shown how this can be done with a cost minimization
approach.

Top-down search methods require some image model or a priori knowledge of image content
and are therefore always used for a particular problem or image type. We have described a
method for the detection of more or less round objects with smooth boundaries and step edges
at their boundaries.

The method searches for object boundaries which are optimal with respect to a cost
function, which is constructed based on a priori knowledge of image content. This method
requires the extension of well known curve detection methods, used on pixels grids, to region
adjacency graphs. It consists of a number of optimization steps, performed in top-down order
on the levels of the hierarchy. The objects are detected with satisfactory accuracy and the
method is able to correct for errors in the tree structure of the hierarchy, which originate from
the bottom-up procedure. There is one free parameter. It has been argued that this parameter
must be chosen in such a way that the two terms in the cost function have the same order of
magnitude. It has been demonstrated that changing this parameter has the expected effect on
the result.

Model-based image processing techniques, such as those based on active contours or
snakes [5] and parametrically deformable models [16] have become popular recently, and their
combination with hierarchical methods might become a fruitful field of research.

Acknowledgements: The author thanks C. Orange, F. Groen, A. Toet and H. Heijmans for
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