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Abstract
The method of image segmentation by pyramid relinking is extended to the formalism of
hierarchies of region adjacency graphs. This approach has a number of advantages: (1
resulting regions are connected, (2) the method is adaptive, and therefore artifacts caused by
a regular grid are avoided, and (3) information on regions and boundaries between regions
can be combined to guide the segmentation procedure. The method is evaluated by the
segmentation of a number of synthetic and natural images.
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1. Introduction

In this paper, the extension of pyramid relinking to hierarchies of graphs is developed. This
approach allows the segmentation of an image into connected regions and the use of boundary
information in the relinking process.

Pyramid relinking, which was originally described by Burt et al. [5], is a powerful and
conceptually attractive method for image segmentation. In the past, a number of techniques
have been proposed to reduce some of its weaknesses (e.g. [1, 2]). A number of extensions have
been made, which allow the application of relinking to other image types, such as flow fields [8]
or textured images [16].

Conventional image segmentation by relinking uses a regular pyramid structure, as illus-
trated in figure 1.1. This is a stack of regular grids of sizes 2" X gn gn—1yon-1 [ 1x 1.
In the lowest level of the pyramid, each cell corresponds to a pixel in the image grid. Each cell
in level i + 1 represents a cluster of cells in level 7. The cells which may be contained in such
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L a 4 X 4 square in level ;. These squares overlap in such a way that each cell on
long to one out of four clusters. The cells in the cluster represented by a given
the children of this cell; the representing cell is called the parent of its children.
one parent. Note that, for cells near the image border, the number of possible
hildren of a cell is smaller than 4 and 16, respectively.

L7 <7

1: The regular pyramid structure used in conventional relinking. The lines
levels show the relative positions of cells in different levels. On the left, the
1aded cells in the lower level are the candidate children for the shaded cell in
r level. On the right, the four shaded cells in the higher level are the candidate
o the shaded cell in the lower level.

mt-child links induce a tree structure in the hierarchy. Thus, each cell in the
asents a region in the image plane, which can be found by tracking all series of
inks leaving from a given cell, in a downward direction.

ition by relinking is performed by iteratively updating the cluster membership of
lapting parent-child links. This is done in such a way that the standard deviation
els of the regions represented in each cell decreases. Thus, the relinking procedure
ards a state in which the region represented by each vertex is as homogeneous as

aper, some drawbacks of the relinking method are discussed and a relinking
on hierarchies of graphs is presented, which solves these problems. The drawbacks
| the fact that the levels in a relinking pyramid do not represent a region adjacency
rely a subdivision of the image points in a predefined number of classes. Moreover,
isions corresponding to a subdivision of the image in the correct number of classes,
mted [4].

problem is the fact that the clusters represented by a cell need not correspond
regions in the image plane. The relinking process takes the spatial structure of
o consideration by allowing only a fixed set of possible children for each cell.
1 does not use connectivity: cells which are adjacent in some higher level grid of
1eed not represent adjacent regions in the image plane, or vice versa. This can
tion of regions which are scattered over the image plane and which consist of
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many connected components. If the pyramid structure is adapted by increasing the number
of candidate children for each cell, regions can become increasingly scattered and the process
becomes similar to isodata clustering of grey values, in which no account is taken of spatial
structure. (See Kasif and Rosenfeld [11] for a discussion of the relations between pyramid
relinking and isodata clustering.)

The second problem is caused by the regularity of the grid of cells in each level of the image
grid and the associated set of 16 possible children for each cell. In such a configuration, not
all possible subdivisions of the image plane can be represented, as was shown by Bister et al.
[4]. Therefore, artifacts can occur in the segmentation of particular shapes such as elongated
ones. This can be repaired by allowing irregular structures, in which the number of levels and
the number of neighbors for each vertex is not fixed in advance.

The third problem is related to the first one. As the concept of a connected region can
not be represented in the conventional relinking pyramid, it is also not possible to manipulate
or represent the boundary between two classes or regions. Therefore, it is not possible to use
information on boundaries between regions, such as length and average response of an edge
detection filter, in a relinking based segmentation method.

In this paper, we attack these three difficulties by using the hierarchy of graphs formalism.
In section 2, we describe new relinking rules that force the regions represented by each cell to
be connected.

However, this relinking strategy fails to detect strongly elongated objects, such as spirals,
as a single region. Moreover, the number of regions represented by the hierarchy is fixed. In
section 3, a method for the adaptive construction of subsequent levels in a hierarchy of graphs
is presented, in which arbitrary image subdivisions can be represented.

The methods discussed in sections 2 and 3 require the application of the hierarchy of .
graphs formalism. In this formalism, information on the boundaries between regions can be
represented as the attributes of the edges of the region adjacency graphs. In section 4, it is
described how this possibility can be exploited for the combination of region and boundary
information in order to improve the segmentation process.

In section 5, the integration in a single system of the methods described in the previous
section is described and some segmentation results are shown.

Section 6 presents the conclusions of this paper.

2. Connectivity Preserving Relinking

In the classical relinking method [5], the spatial arrangement of cells in a regular grid in higher
levels of the pyramid does not reflect the spatial arrangement or connectivity of the regions
represented by such cells. In this section, an adaptation of the relinking rules is proposed. If
these new rules are used, regions are guaranteed to be connected and the adjacency relations
between the regions can be represented by a region adjacency graph. The proper framework
in this section is the hierarchy of graphs. From now on, graphs will be denoted as G = (V, E),
where V is the vertex set of the graph and F is the edge set.

Definition 2.1 A hierarchy of graphs is a sequence G; = (Vi, E;) (with ¢ = 0,.. .,n) of

graphs and a sequence (o, . . .,Tn_1) of mappings m; : V; — V;4 such that:

(1) fori=0,...,n =1, m(Vi) = Vig1 ;

(2) foreach i =0,...,n—1 and each z € Viy1, 7;}(z) is a connected subset of G; ;

(3) foreachi=0,...,n—1 and z,y € Viy1, (2,y) € Eiyq if and only if there are z' e wi_l(z)
and y' € 77} (y) such that (z',y') € E; .



hy of graphs is illustared in figure 2.1. The mapping w; : V; — V;4, assigns to
L V; a parent in Viyy. The mapping k; : V; — P(V;-1) assigns to each vertex
dren {w € V;_1 | m;—1{w) = v}. Where no confusion can occur, the subscripts of
mitted.

An example of a hierarchy of graphs, consisting of three levels. Edges in each
1dicated by solid lines and parent-child relations by dashed lines. The groups of
f each parent are encircled; these groups are represented by their parent on the

1se notations such as k(X) for {(v) | v € X}, where X is a set of vertices.
v) will be identified with the subgraph consisting of the children of v. We will
* the set of neighbors of v in the graph. If v € V;, the set k1k3 .. .k;(v) is the set
he base level graph which corresponds to the region in the image represented by
i region is called the receptive field of v and is denoted by R(v). If v € V;, then
ote 7itk-1  xi*lxi(v) and kF(v) will denote x*~F+1 .. ki—lki(v).

st level graph Go = (W, Ey) corresponds to the image grid, which is considered
ed graph. It is also possible to use a 6-connected or 8-connected grid. The latter
antage that it is not a planar graph. This is not a problem in the present paper,
e a problem for other methods, which will be described elsewhere [15].

; in the higher levels represent the adjacency structure for the receptive fields of
that level. These edges depend on the parent-child relations and on the structure
el graph. Two vertices v and w on leve] ¢ are connected by an edge if they have
¢(v) and w' € k(w) which are connected in level 7 — 1. Recursive application of
ullows for the construction of all levels of the graph from the base level.

e discussion of the connectivity of regions, the following result will be used.

Consider a hierarchy of graphs G; = (V;, E;) with parent assignments 7; and
nts k;. Suppose that the edges of Gy are fixed and that the edges in higher levels
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are induced by the base level and the parent assignments. Then the following statements are
equivalent.
1. For each i and for each vertex v € V;, the subgraph of G;_y induced by the vertices in
ki(v) is connected.
2. Each vertex v has a connected receptive field.

PROOF. Suppose that the first statement holds. It will be shown with induction in the level ¢
that each vertex v € V; has a connected receptive field in Go. For i =0, this is obviously true:
each vertex in the base level is its own receptive field. Now suppose that the first statement
holds for level i — 1 and let v € V;. Consider two vertices wy, w2 in the receptive field R(v) of
v.

As k;(v) is connected, there is a path from 7i=1(wy) to 7'~ (ws) in k(v) C Vi—1. Denote
this path by ui,...,un. For each edge (uj,uj+1) in this path there is an edge (u},u},;) in
the base level with u} € R(u;) and uj € R(u;). By the induction hypothesis, each R(u;)
is connected. As u} and uj are both in R(uj), there are paths in the base level from uj to
uj. For the same reason, there are paths from w; to ] and from u” to wq in the base level.
Concatenation of these paths yields a path from w; to wy in the base level, which is entirely
contained in R(v). Thus, there is a path from w; to w; in the receptive field R(v) and R(v) is
connected.

Now suppose that the second statement holds. Consider a vertex v € V;. Let wy and wo
be two vertices in x;(v) C Vi—q1. It will be shown that there is a path in x(v) from wy to wa.
Let w| € ki~1(w;) and w) € £~ (wz) be two vertices in the base level. Then there is a path
W} = Uy, Uz, ..., Un = W) in R(v) from w] to wj. Consider the vertices uf =2 rtnl(uy)
in Vi_;. For each pair (u;,u;41), either uf = uf,, or (u},uj ) is an edge in k(v). Thus, by
deleting repetitions, the sequence u},...,u, yields a path in k(v) from wy = v} to wy = ul,. B
The second property in theorem 2.2 (connectivity of receptive fields) is the one we are interested
in; yet the first one (connectivity of the set of children of a given vertex) is the most manageable
one, because it is a local property. Therefore, in the sequel, only connectivity of sets of children
will be discussed.

Consider a hierarchy of graphs G; in which each vertex represents a connected region in
the base level. Suppose 7(v) = poa for some v € Vj, for some k. Consider the adapted stack
of graphs G% which is constructed from G; by putting 7(v) = Pnew and adapting the edge
structure accordingly. In a relinking process, the hierarchy of graphs is adapted repeatedly
in this way, until an optimal segmentation is achieved. All vertices can be relinked to a new
parent simultaneously or they can be relinked one at a time.

We now discuss, for which vertices the connectivity of the receptive field is lost by this
relinking step. Edges change only in levels k£ and higher and the receptive fields of vertices in
the levels i < k do not change. Vertices in level k 4 1 and vertices in levels 7 > k+ 1 will be

discussed separately.
2.1. Connectivity Preservation in the Parent Level

Suppose a vertex v in level k with parent poid is relinked to a new parent phew. In level k£ + 1,
the receptive fields of poiq and ppew change. After the relinking step, the children of poq are
k(po1a) \ {v}; the children of prew are K(Pnew) U {v}. The receptive fields of other vertices in
this level do not change.

Connectivity of receptive fields in level & + 1 is lost in two cases (see figure 2.2). The first
case (shown to the left) is the situation where K(Pnew) U {v} is not connected. This happens
when v is not connected to some vertex in &(Ppew), i-6. When ppew is not the parent of some
neighbor of .



The two ways in which connectivity can be lost at the parent level by relinking.
tive fields that become disconnected by a relinking step are marked.

\d case (shown to the right) is the situation where removing v from k(po14) changes
"connected components of £(po1a). Such a vertex v is called an articulation point
7] of k(poia)- Note that this also includes the case where v is the only child of
case poig would have an empty receptive field after the relinking step.

required for the computation of the articulation points of the subgraph &(po14)
[17]. They need only be recomputed when x(v) is changed by a relinking step.
1ing, retaining the connectivity of the receptive fields of vertices in level & + 1
onditions on the relinking rules:

v which is an articulation point of k(7 (v)) may not be relinked to a new parent.
v may choose only a new parent from the set 7(N(v)),i.e. a parent of a neighbor

[20] has tried to find a connectivity preserving relinking method, but overlooked
serion, and the possible loss of connectivity on higher levels of the pyramid which
ied in subsection 2.2.

2 desirable to perform relinking for many vertices of a level in parallel. Then,
st be taken in order not to loose connectivity: two vertices which can be relinked
om a given situation may not always be relinked simultaneously. Only a subset
. in a level can be relinked to a new parent in each step. A safe strategy is to
: v only if none of the other vertices in k(7 (v)) or N(v) is relinked.

e subset of vertices which may be relinked in parallel can be computed by a
cedure, similar to stochastic decimation [12, 14]. Each vertex v for which a
t be performed draws a random variable from some distribution. If that random
ger than that drawn by all the vertices in x(7(v)) U N(v) which may not be
taneously, the vertex v ‘wins the right’ to be relinked, and the other vertices in
) are prohibited to relink. New random numbers can be drawn and new vertices
g as there are vertices which are neither selected for relinking nor prohibited to

ctivity Preservation in Higher Levels

ave ignored the connectivity of receptive fields of vertices at levels i > k+ 1. If
constructed bottom-up, like in section 3, such levels do not exist at the moment
rst, levels 0 and 1 are built and the parent-child links between levels 0 and 1 are
elinking. Then level 2 is constructed and the parent-child links between levels
ocessed by relinking, et cetera. In this case, no higher levels are present during
teps.

g is performed when higher levels are present, the connectivity of receptive fields
; of the pyramid can be lost, as illustrated in figure 2.3. Suppose a vertex v € V},
1d € Viy1 is relinked to a new parent ppey € Viyy. For a vertex w € Vigpy1,



If edges in the parent level disappear by a relinking step, the connectivity in
ir level can be lost.

:(w) is not changed by relinking. Connectivity of the receptive field of w can only
emoval of edges between vertices in £(w). On level k+n, an edge which might be
e form (7™(v), 7"(v")), where v’ € N(v). Removal of this edge may destroy the
R(7x™+1(v)). If the connectivity of a connected graph is lost by the deletion of a
s edge is called a bridge [7]. The edge is indeed removed if all the edges in level
() and k™7"(v') have v as an end point, i.e. K"7"(v) 0 N(&"x™(v")) = {v}.
ust not end up in the receptive field of s™(v) or £™(2') after the relinking step.
condition 7" (ppew) & {7™(v), 7™(w)} must hold.

ing, relinking of vertex v € Vi t0 pnew = m(v'), with ' € N (v), destroys the
" the receptive field of 7"+1(v) if the following conditions are satisfied:

(v")) is a bridge in 7™+ (v).

N(k"n"™(v")) = {v}.

) & (o), 7(0)).

ns can be tested for each vertex v and new parent ppew. For each vertex v this
tion of a set of vertices of the form 7™(v), up to the level where |7™(N(v)U
ng these conditions, the set of possible parents for each vertex can be restricted
that connectivity of receptive fields is not destroyed by relinking.

ve described in the previous subsection, it is possible to generate sets of vertices
relinked in parallel. Again, there are combinations of vertices which cannot be
;aneously. As before, a random procedure can be used to compute such a set. In
uation, however, vertices which may not be relinked simultaneously can be far
pagation of information through the levels of the pyramid is required to compare
yels for all mutually exclusive pairs. This makes the resulting algorithm is rather

elinking Method

s subsections, it has been described how a set of candidate parents for a vertex
ted. This subsection describes the relinking procedure. In the present method,
isited one by one. For each vertex, a new parent is chosen from the set of
late parents. The vertex is relinked to the new parent and the graph structure
. of vertices are updated accordingly. This procedure is repeated until a stable

is reached.
parent ppew is chosen for each vertex v such that the difference between g(v) and

imized.




s which determine the selection of a new parent for a vertex can be formulated as
nimization problem. For each level m in the hierarchy, an energy

Eregion(m) = > n(v)[g(v) — g(x ()], (2.1)

vEV,
d. Here, n(v) denotes the area of the receptive field of v and g(v) denotes its grey

ce method used here is a steepest descent method: a vertex v € Vj is relinked to a
1 such a way that Eiegion(k) is reduced as much as possible in each step. This can
gy to converge in a local minimum. Spann [18] proposed a stochastic relinking
nilar to simulated annealing, which tries to avoid local minima.

1king method can be shown to converge by an argument due to Cibulskis and
lenever a vertex in level k is relinked, the energies Egion(7) with ¢ < k are not
e the energy Eiegion(k) is reduced. This implies that the energy of the base level is
g. As there is only a finite number of possible configuration for the links between
* levels, these links must reach a stable configuration in a finite number of steps.
s happened, Eregion(0) will remain constant and the energy FEregion(1) will start
1onotonically. Therefore, the links between G; and G5 will finally reach a stable
, et cetera.

nt way of formulating the region based relinking criteria uses the score Qregion

Qregion = —9(v) — g(Pnew)|- (22)

:nt will be the one which maximizes this score. When the maximal score equals
1a)| for all vertices, the relinking procedure has converged.

b With the classical relinking algorithm, noise can scatter points of each class
ige. With the new method, classes are connected. From left to right: a synthetic
rrupted with noise; its segmentation by the classical algorithm; its segmentation
nnectivity preserving algorithm.

t of connectivity preservation in relinking can be seen from figure 2.4. The initial
s four regions of grey values 64, 128, 128 and 192, corrupted with Gaussian noise
| deviation ¢ = 32. If-the image were divided in four squares along horizontal
ines, the initial configuration of the parent-child links would already represent
gmentation, and no conclusions can be drawn from the segmentation of such an
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image. Therefore, the image is segmented along diagonal lines. The middle image shows, in
false grey scale, the subdivision in 4 classes computed by the classical algorithm of Burt et al.
[5]. The image to the right shows the classification into four classes, obtained by connectivity
preserving relinking. In can be seen that Burts algorithm scatters the points in each class over
the image, while the connectivity preserving method generates connected classes, which are
less affected by noise.

components
600

500}

400 .

3001

200+ . °

100 ¢

10 20 30 20 50 noise

Figure 2.5: The number of connected components generated by Burt’s algorithm at
various noise levels

The number of 8-connected components generated by Burts relinking algorithm depends

on the amount of noise added. In figure 2.5, the number of connected components is shown for
a number of realizations of Gaussian noise with varying standard deviations. It can be seen
that the number of connected components is large, even for very low noise levels. Moreover,
the number of connected components for a given noise level assumes values in a rather broad
range. :
"It can also be seen that the boundaries detected by the connectivity preserving method are
not always smooth. This is caused by the fact that relinking is a steepest descent procedure. In
order to remove the indentations present in some parts of the boundary, a number of relinking
steps would have to be performed in which the difference between parent and child grey values
is incremented temporarily.

3. Adaptive Construction of Successive Levels

As mentioned before, classical relinking suffers from a number of problems. Firstly, not all
segmentations can be represented in a regular structure: elongated objects cannot be repre-
sented [4]. Moreover, the number of regions in each level is fixed. Originally, relinking was
used for images containing a single light object on a dark background, for which this restriction
is not a problem, but for segmentation of more general images, the number of regions must
be adapted to image contents. Various authors [2, 10, 19] have described methods for root
detection, i.e. the marking of cells in the pyramid as the representatives for a region in the




ation. This can improve the results, but the methods still operate in a regular

oblems can be avoided if a hierarchy of region adjacency graphs is built level by
e to image contents. This idea has been used by Montanvert et al. [14] for image

:ction, level by level construction of a hierarchy is combined with relinking. This
ows: from the base level G, the next level Gy is constructed and the parent-child
these levels are initialized. The parent-child links which are created in this phase
e role as the regular structure in the classical relinking scheme: they serve as
figuration which is adapted by relinking. This adaptation is performed by the
icribed in section 2.

: second level GGy is constructed. The parent-child links between Gy and Gy are
1 updated by relinking, et cetera.

to create the vertices of a new level in the hierarchy, the vertices of the lower level
d into a number of connected sets or clusters. Each of these clusters will be the
1 of a vertex on the next level. Like in graph decimation [14], each cluster will
tral vertex and a number of its neighbors.

to avoid adjacent, but dissimilar regions to be merged into a single cluster, such
rbidden to become members of a single cluster. Dissimilarity of adjacent vertices
\g an edge strength measure. We consider two choices for the edge strength. The
fined by

SEt (9 0) = l9(2) — g(w)] ~ 5(0(0) + (), (3.1)

the average grey value within the receptive field of a vertex and o(v) is the
ation of the grey value. The second choice is

Shhhalo,0) = TR (3.2)

5 depend on the difference of the grey values of the regions, corrected for variations
gion. The measure Sy;, has the advantage that it is dimensionless. On the other
nation for o(v) and o(w) can be bad for small regions, yielding a large uncertainty
f Slczuicva.l'

artex stores the size, the average grey value and the standard deviation of its
, these values can be recomputed for each vertex by considering only the corre-
as of its children after each relinking step. Therefore, local communication in the
ces for the execution of these computations.

er levels of the hierarchy, receptive fields are very small, maybe just a single pixel.
e fields are relatively homogeneous, so the corresponding edge strengths are high.
: strength of the boundary between small receptive fields must be corrected for
his is achieved by multiplying all edge strengths with a geometry factor of the

the area of the receptive field of v and § is some small number. This factor
for large regions, but is small for small regions. For single pixel receptive fields
ately equal to §%. Thus, survival of small noise regions to higher levels of the
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hierarchy is suppressed. Vertices are said to be dissimilar when the strength of the edge between
them is larger than some predefined value.

Now that dissimilarity of vertices has been defined, the determination of clusters can be
performed. Clusters will have the following properties:

1. For each cluster C C V, there is a center vertex ¢ € C such that C C N(c)U {c}.

9. No cluster contains a pair of adjacent, dissimilar vertices.

3. Two center vertices ¢; and ¢, can be neighbors only if the cluster of ¢; contains a dissimilar

neighbor of ¢; or vice versa.

The difference with graph decimation is that, in graph decimation, pairs of dissimilar vertices
in a cluster are forbidden only if one of these vertices is the center of the cluster, while here,
all pairs in a cluster are to be considered. If conventional graph decimation were used here,
undesirable merges of regions can occur when there is a small region on the boundary between
two large dissimilar regions, and this small region is selected as the center of a cluster.

The computation of clusters is similar to stochastic decimation, but some changes have
to be made in order to avoid dissimilar vertices to be put in a single cluster. Clusters are
computed by repeated application of the following steps

1. Every vertex v; which is not yet part of a cluster is given some label A;.
9. Every vertex whose label is larger than that of all of its similar neighbors is selected as
the center of a new cluster.
3. For each newly selected center ¢, a maximal subset of N(c) containing no dissimilar pairs
is added to complete the cluster.
The label ); can be a random number, but it can also be some image dependent value. Through-
out this paper, the area of the receptive field of a vertex is used as its label. An additional
random number is assigned to each vertex for resolving ties between regions of equal size.

The difference with the stochastic decimation procedure is in the order of the steps. In
stochastic decimation, the computation of a maximal independent set by repeated selection of
local maxima is completed before the clusters are computed by assignments of neighbors; here,
a number of clusters is computed in each selection of local maxima.

R S R TR B SR RS

Figure 3.1: Three 128 X 128 images, each containing four regions.

The effect of adaptive construction of subsequent levels is shown by comparing the seg-
mentations of some spiral images (figure 3.1). These are 128 x 128 images, each containing four
regions. Figure 3.2 shows the segmentation of these images. The top row shows the segmen-
tation according to the method described in the previous section; the bottom row shows the
segmentation computed with adaptive construction.
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2: Segmentation of images with four connected regions using the regular
‘top row) and adaptive construction of levels (bottom row).

 seen that the regular pyramid is too rigid for the detection of strongly elongated
adaptively constructed pyramid, on the other hand, finds these regions exactly.

ining Region and Edge Information

itations can be based on a variety of criteria. Two important groups of criteria are
roperties of regions and those using properties of the boundaries between regions.
y of graphs formalism, both types of information can be represented. In this
lescribed how region and boundary information can be combined in a relinking

ased methods presuppose a model for homogeneous regions. It can for example
hat each region has a uniform grey value, or that the grey value of each pixel
1 some distribution, which is the same for each pixel in a homogeneous region.
ferent types of images, such as flow fields [9] or textured images [16}, can also be
king methods using region information, the new parent is chosen in such a way
"the receptive fields of the old and new parent vertices are improved in each step.
ition methods based on boundary information detect differences between the
adjacent locations in the image, for example by the application of an edge de-
Boundaries between regions are then detected, for example by the application
er on the gradient or by the computation of the zero crossings of a second or-
operator, which correspond to the extrema of a first order difference operator.
methods using peak filters can have problems with the generation of compact
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e if a small part of the boundary between two regions is missing, these regions
. Segmentation methods based on zero crossings do generate compact regions,
ems with situations where three regions meet in a point.

ional relinking schemes, there is no representation available for connected regions
aries between such regions. Therefore, these schemes cannot handle boundary
uch information can be represented in a hierarchy of graphs. This was done for
yy Montanvert and Bertolino [13], using 2 randomized edge detector which can
. all scales simultaneously [3].

entation method presented in the previous section consists of two parts: the
«dure and the procedure for the adaptive construction of new levels. In both
bination of region and edge information can be used.

ning Region and Boundary Information for Relinking

s section, we described the selection of a new parent in terms of energy mini-
same approach will be taken here in order to incorporate boundary information

; procedure.
sel based relinking as described in section 2, the energy being minimized was

Fregion(m) = 3. a()[g(v) = g(x(»))]", (4.1)

vEVy,

mds with a choice criterion using the score
Qregion = -—lg(v) - g(pnew)l- (42)

-based segmentation evaluates regions by considering the edges surrounding each
sponse of an edge detector should be strong on the boundary of a region, while
eak in the interior of a region.

gth of each edge is measured as the average response of an edge detector along
represented by the edge. For the results presented here, the Sobel edge detector
indary-based image segmentation in a hierarchical structure can be performed
»n of the sum over all regions of the average edge strength over the boundary
. When each edge carries its length and its average edge detector response as
average edge response of an edge can be computed recursively. When relinking
or a given level in a hierarchy, each vertex on the upper level corresponds to a
e boundaries of such regions are composed of active edges in the lower level.

7)) denote the average response of an edge detection filter along the receptive
x v. Our boundary based relinking criterion will be based on the minimization

Eboundary(m): Z ’I](R(’U)), (43)

VEVm 41

avel of the hierarchy, the boundary around a vertex v, represented by edges
| its neighbors, consist of boundary parts on the previous level. These boundary
nd to edges between vertices in x(v) and vertices not in x(v). An edge (v, w)
) = w(w) is not part of some boundary in the next level; such an edge is called
v) # m(w), the edge (v, w) represents a boundary fragment which is part of the
veen the receptive fields of 7(v) and 7(w). Such an edge is called an active edge.



x v is relinked from an old parent p,iq to a new parent ppew, some active edges
ve and vice versa. The edges which become inactive are the edges (v, ") with
the edges which become active are the edges (v,v') with 7(v') = powa.

gth of each edge is measured as the average response of an edge detector along
represented by the edge. For the results presented here, the Sobel edge detector
undary-based image segmentation in a hierarchical structure can be performed
on of the sum over all regions of the average edge strengths over the boundary
. When each edge carries its length and its average edge detector response as
: average edge response of an edge can be computed recursively. When relinking
or a given level in a hierarchy, each vertex on the upper level corresponds to a
e boundaries of such regions are composed of active edges in the lower level.
vertex v is relinked from polq tO prew, the only average edge strengths which
»se of the receptive fields of po1g and ppew. Thus, the total change in the average
is

1(R(pota) \ B(v)) + 7(R(pnew)) — 1(R(pora)) — 1(R(pnew) \ R(v)), (4.4)

iotes the average edge strength along the boundary of a region.
to maximize the average edge strength, in each time the new parent must be
1at the score

Qedge = U(R(pnew)) —_ T](R(pnew) \ R(’U)) (45)

’hen the maximal score is equal to 7(R(pold)) — 7(R(poa) \ B(v)), the relinking
converged. Convergence of this relinking procedure can be proven with the

| before.

g region and edge information in a relinking method can be done by using a

e

Qo = aQedge + (1- a)Qregion, (4.6)

veight factor between 0 and 1. Again, the relinking method can be shown to
the argument used before [6]

ning Region and Boundary Information for Construction of New

xt of our segmentation method is the construction of new levels, which is per-
vely to image contents through the influence of vertex dissimilarities. It will now
region and boundary information can be combined in the definition of these dis-
nis can be done simply by choosing a region dissimilarity measure which depends
~and edge information.

3 we considered the edge strengths

Sgiohat = 19(v) ~ g(w)| - %(G(v) +o(w)) (4.7)

i 9(v) — g(v)|
Sdlwb | = l 4.8
gebst = T 1 (0(0) + o(w)) “9
engths are based on the average grey values of adjacent regions, i.e. on global
cal properties of the boundaries between adjacent regions can be measured by
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considering the average response of an edge detector along this boundary. Let s2(v, w) denote
the average response of an edge detector along the boundary of the receptive fields R(v) an
R(w) and let s1(v) denote the average response within the receptive field R(v).

Then the strength of an edge, corrected for the structure within regions, can be expressed
as

Sttt(v,0) = s2(v,) — 3(s1(9) + $1(w)) (49)

or as

div (o o) — s2(v, w)
Slocal( ’ )_' 1+%(31(’U)+31(’U)))‘ (4.10)

A combined dissimilarity measure can then be defined as
5¢(v,w) = aS§ (v, w) + (1— )85 pa (v ), (4.11)

where ¢ denotes either ‘div’ or ‘sub’. In all cases, the value of & used here will be the same
values as the one used previously for weighing scores in the relinking method described earlier
in this section.

5. Results

The elements described in the previous sections have been combined in a segmentation al-
gorithm. A hierarchy is constructed in a bottom-up order. Alternatingly, a new level is
constructed by decimation of a region adjacency graph, and the parent-child links between the
lower and the upper level are updated by relinking. Relinking is performed in a connectivity-
preserving manner, and region and edge information are combined both in the construction of
the similarity graph and during relinking. This section presents the segmentation results for
some synthetic and natural images.

The effect of combining region and edge information is illustrated in figure 5.1. It shows an
128 x 128 image consisting of four ramps with grey values from 112 to 144, contaminated with
Gaussian noise with standard deviation o = 8. The four regions cannot be discerned based
on their average grey values, because these are all the same. Therefore, boundary information
must be used. On the other hand, in the lower levels, information on average grey values is
more suitable for the classification of pixels, because boundary information is rather noisy for
small regions. a with edge strength S%"P. Therefore, some intermediate value of & must be
used for the optimal segmentation of the ramps image.

The segmentations, computed with edge strength §5ub " are shown for @ = 0.95, a = 0.5
and o = 0.1. If « is too large, the region boundaries are disturbed because of disturbances in
the lower levels of the hierarchy. If, on the other hand, @ is too small, the average grey level
criterion dominates and the regions are split. Increasing the threshold with low values of o
causes all the regions to be merged, possibly leaving some small noise segments.

Figures 5.2 and 5.3 show the number of misclassified pixels (with respect to the original
four bands image) for various values of o and for different realizations of the noise. Figure 5.2
shows the situation for the strength measure S5°P and figure 5.3 shows the situation for gdiv,
It can be seen that the quality of the segmentation is good for a wide range of o values.
Note that, in one case in figure 5.2, the segmentation with o = 0.65 has a large number of
misclassified pixels. This is caused by a ‘wrong’ link in a high level of the hierarchy, in which
a large receptive field is involved.




(c)

: A synthetic image (a), contaminated with noise and its segmentations with
»), = .50 (¢) and o = .10 (d).

v is used, a satisfactory segmentation can be obtained with @ = 1. On the other
nentation method breaks down for a < 0.5. A wider range of possible values for
when S5 is used.

t shows the results obtained for an MRI image of a head, both for the edge
(figure 5.4a, threshold 1.5) and the edge strength S§%P. (figure 5.4b, threshold

) shows the segmentation result for an image of muscle tissue without (a) and
ting. As the individual muscle fibers do not have a strictly homogeneous grey
formation must be emphasized more in the segmentation process. Therefore,
1sed.

seen that the construction without‘re]jnking extracts some of the structures from
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Figure 5.2: The number of misclassified pixels as a function of the parameter a with
edge strength S5°°.
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Figure 5.3: The number of misclassified pixels as a function of the parameter o with
edge strength Sdiv.

the image, but improvement can be made by applying relinking. The segmentation obtained
when relinking is used shows more individual fibers than the segmentation obtained without
relinking. This can be understood as follows. FEach time a level is constructed by graph
decimation, the boundaries between the resulting regions are not located optimally. Therefore,
the response of an edge detection filter will not be maximal on the boundaries found by the
procedure, but more in the interior of some regions. Similarly, the regions found by graph
decimation do not correspond exactly with the boundaries between homogeneous regions in
the image. Therefore, a region detected by the decimation process can contain pixels from
different regions in the image. This causes an increase in the standard deviation of the grey



(a) (b)

:  Segmentation for the muscle image without (a) and with (b) relinking. The
igth S8¥ was used with a = 0.75 and threshold 1.25.

ion.

indaries are not corrected in the subsequent relinking phase, these effects reduce
gths S3V and §5°P. More adjacent vertices will be similar and therefore, more
: merged in the construction of subsequent levels.
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sions

we have presented the extension of pyramid relinking to hierarchies of graphs.
solves a number of problems associated with conventional relinking methods.

yroblem we solved was the problem of connectivity preservation. Conventional
1ot produce connected regions, but classes which may be scattered in the image
/e been able to adapt the relinking rules in such a way that connectivity of
anteed. When the pyramid is built level by level, two criteria (illustrated in
t be used to select suitable relinking steps. When relinking is performed in a
nid, in which all levels are present, a third criterion (illustrated in figure 2.3)
1 order to avoid the destruction of the connectivity of receptive fields of vertices

-ts from which relinking in regular pyramids suffers were avoided by constructing
wel by level, adaptive to image contents. The construction of a new level can be
ruess for the aggregation of region primitives which is improved by the relinking

o1 to the connectivity preservation problem required the introduction of a graph
edges in this graph correspond with the boundaries between receptive fields in
le. This provides the possibility to represent information on these boundaries
ucture and to combine region and boundary information in the segmentation
been shown that the combination of region and edge information can be useful
srresponding segmentation scheme is robust under the change of the parameter

aentation results for natural images have been presented, showing that satisfac- -
n be obtained in practice.
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