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Abstract

This paper presents a unifying approach to the problem of morphologically processing image
sequences (or, equivalently, vector-valued images), by means of lattice theory, thus providing
a mathematical foundation for vector morphology. Lattice theory is an abstract algebraic
tool that has been extensively used as a theoretical framework for scalar morphology (i.e.,
mathematical morphology applied on single images). Two approaches to vector morphology
are discussed. According to the first approach, vector morphology is viewed as a natural
extension of the well known scalar morphology. This approach formalizes and generalizes
Wilson’s matrix morphology and shows that the latter is a direct consequence of marginal
vector ordering. The derivation of the second approach is more delicate and requires careful
treatment. This approach is a direct consequence of a vector transformation followed by
marginal ordering. When the vector transformation is the identity transformation, the two
approaches are equivalent. A number of examples demonstrate the applicability of the proposed
theory in a number of image processing and analysis problems.
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1. Introduction

In recent years, the wide applicability of fast and affordable computer hardware, and the increas-
ing sophistication in image data gathering, have resulted in problems which require processing
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and analysis of image sequences. One good example is in remote sensing, where a sequence
{I | k = 1,2,...,K} of K multi-spectral images is usually available, with K typically being
between 2 and 12 [16, 28]. Color image processing is another area of increasing interest, due,
primarily to the recent development of high resolution video systems (e.g., HDTV systems). In
this case, three images are usually available, each containing information about the red, green,
and blue color image components [16]. Another interesting example is in magnetic resonance
imaging, where a number of images (e.g., proton density (PD) weighted, T1-weighted, and T2-
weighted [39]) are recorded, each image containing a certain type of tissue information, which
corresponds to the same anatomic site of interest.

A straightforward approach to processing these images is by means of a component-wise
transformation (i.e., a transformation which is independently applied on each image component).
However, this approach is bound to fail, since, in most cases, image components are highly
correlated. T'wo simple examples, demonstrating the pitfalls of carelessly applying component-
wise processing, can be found in [1]. Therefore, it is strongly recommended that the design of a
multi-frame image processing and analysis module should take into consideration the existence
of correlations among images in the same sequence [1, 11, 16, 25, 28, 35]. In this paper, we shall
consider the problem of processing image sequences by means of mathematical morphology [10,
13, 33, 34]. So far, mathematical morphology has been primarily developed for the case of single
(scalar) images. If we choose to apply this technique on image sequences, we are immediately
limited to component-wise processing. Therefore, the need for developing a theory of vector
morphology is imminent.

Recently, a number of morphological techniques have been proposed for dealing with the
problem of processing vector images; see [35], [42, 43, 44] and [8]. One of these techniques is
Wilson’s matriz morphology [44]; see also [42, 43]. This technique is based on a direct generaliza-
tion of the standard scalar morphology concepts, achieved by imposing a vector space structure
on the image sequences under consideration, and by employing standard translation invariant
erosions and dilations. A number of interesting examples, which demonstrate the effectiveness
of matrix morphology in a variety of image processing and analysis applications, can be found
in [44] and [45]. However, matrix morphology is somehow limited by, mainly, two factors.

It has been pointed out in [13, 14, 34| that there exist applications which require development
of more general types of erosions and dilations. Furthermore, as we shall demonstrate later in
this paper, Wilson’s matrix morphology is a direct consequence of a marginal vector ordering
principle, which may not be desirable in certain applications. Therefore, it would be natural
to investigate whether matrix morphology is the only type of vector morphology. As we shall
demonstrate in this paper, matrix morphology is a special case of a more general approach.
However, and in order to develop such an approach, we shall need to employ lattice theory [3].

Lattice theory has proven itself to be fundamental in mathematical morphology, since it
provides a powerful tool for understanding and abstracting a number of important morphological
concepts [13, 14, 29, 30, 34]. This theory has been recently employed in [35] and [8] for the
development of a general approach to vector morphology. The majority of the work in [35] is
oriented towards constructing vector morphological transformations by means of set primitives
and flat operators. On the other hand, the work in [8], based on generalizing fundamental
lattice theoretic concepts to the case of image sequences, is directly related to the theory of
matrix morphology, and it complements the work in [35].

The present paper is an extended version of [8], and is structured as follows: Section 2
provides a brief review of the theory of complete lattices and adjunctions, and introduces the
new notion of h-adjunction. Furthermore, it contains a general discussion on two complete
lattices for image sequences. In Section 3, a more specialized discussion is provided, regarding
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the two complete lattices derived in Section 2, which leads to two distinct, in general, approaches
to vector morphology. Finally, in Section 4, a number of image processing and analysis examples
demonstrate the utility of the proposed approaches in practical applications. Additionally, it is
shown that Wilson’s matrix morphology is a special case of the first vector morphology approach
and that the widely used Euclidean distance transform can be obtained by means of the second

approach.

2. Complete lattices and image sequences

In this section, we shall review the fundamentals of the theory of complete lattices and introduce
two important classes of complete lattices of image sequences. For a detailed exposition on
complete lattice theory refer to [3] and [20]. We shall first repeat some results from this theory for
notational purposes and completeness. Then we introduce h-adjunctions, a new concept which
forms the basis of our theory. The connection of complete lattice theory with mathematical
morphology is thoroughly discussed in [34], [14, 30}, and [13].

2.1. Complete lattice theory fundamentals A

A set £ with a partial ordering < is called a complete lattice if every subset H of L has a least
upper bound (supremum) \/ M and a greatest lower bound (infimum) A H.

Let £, M be two complete lattices. The set of all operators mapping £ into M forms a
complete lattice under the partial ordering given by

$<p = ¢(X)<p(X), forallX €L

The identity operator on £, which maps every element onto itself, is denoted by id., or, when
no confusion is possible, by id. An operator ¥ : L — M is increasing if X < Y implies
that ¥(X) < 9(Y). It is called a dilation if Y(Vier Xi) = Vier ¥(X;), for every collection
{X; | i € I}. Dually, it is called an erosion if B(Nier Xi) = Nier ¥(Xs). Let £ : L — M and
§: M — L be two operators; we say that the pair (e, ) is an adjunction between £ and M if

§(Y)<X <= Y <e(X), foral X €LY e M.

If (¢, 6) is an adjunction, then ¢ is an erosion and § a dilation. With every erosion € : £L — M
there corresponds a unique dilation § : M — £ such that (e, 6) is an adjunction. Similarly, with
every dilation § one can associate a unique erosion & such that this holds. We say that € and §
are adjoint to each other.

Assume that (¢, 6) is an adjunction between £ and M. Then

ebe = ¢ and 6eb = 6.

Furthermore,
be <idg and €6 > idag,

where idg,idy are the identity operators on £ and M, respectively. The operators é¢ and €6
form an opening on £ and a closing on M, respectively.

An operator ¢ : L — L is called a lattice isomorphism if 9 is bijective and X < VY iff
¥(X) < 9(Y), for all X,Y € L. In this case, the pairs (4~1,%) and (¢,% ') form adjunctions
on L. Further results about adjunctions can be found in [14] and [13].

We conclude this subsection with a more detailed examination of adjunctions on the complete
lattice IR, as these play an important role in the sequel of this paper.




e. In this paper we use the following convention: in general, dilations and erosions

y 6 and e, respectively. However, if the underlying lattice has the interpretation

y-values (one- or multi-dimensional), then we use d and e instead.

ote (see [13, Lemma 11.22]) that d is a dilation on IR if d is increasing, continuous
and satisfies d(—oco0) = —oco. Dually, e is an erosion on IR if e is increasing,

ym the right, and satisfies e(400) = +400. In order that (e,d) constitutes an
must have

e(t)=\/{s€R|d(s) <t} and d(t)= A{s€R|t<e(s)}.
=at+b, e(t) = (t — b)/a, where a > 0 and b € R, forms an adjunction on IR.

3s+t=~c0ifs=—~0ort=—o0,and s —t=+o00 if s = 400 or t = —00.

1is section, we consider power lattices as these play an important role in this paper.
mplete lattice and P an arbitrary nonempty set. We denote the elements of the
by X. For a given p € P, the value of X at p is denoted by X,. The set LF is a
ce, known as a complete power lattice, with the pointwise ordering

X<Yiff X,<Y,, peP,

7 € LF; see [13, Ex. 2.10].
15 between a complete power lattice £F and another complete power lattice M¥
n in terms of adjuctions between £ and M; refer to [13, Prop. 5.3].

don. The pair (g, 6) is an adjunction between the complete power lattices LF and
ly if there exist adjunctions (epk, 6k p) between £ and M, for allp e P, k € K,

Xk = N epr(X),

pEP
(6(Y))p = v 6k,p(Yk),
kEK
e MK,
inctions

! is a complete lattice and that 7 is a nonempty set. Furthermore, let h: 7 — R
mapping. Define an equivalence relation =; on 7 as follows:

t=pt < h(t)=hn{), tteT.
‘her relation <;, on 7 in the following way:
t<pt' < h(t)<K{), t,t eT.
at this relation is reflexive (¢ <5, t) and transitive (t; <j t; and t3 <}, t3 implies
However, <}, is not a partial ordering because ¢ <j, ¢’ and ¢ <; ¢ implies only

t not ¢ = t'. We refer to < as the h-ordering.
me further definitions.

n. An operator 9 : 7 — T is h-increasing if t <j, t' implies that (t) <p ¥(t").




5

It is easy to see that the composition of two h-increasing operators is again h-increasing. Let
1,12 be two operators on 7; we write 91 <p g if 1 (t) <p Pa(t) forevery t € 7.

Let 7 € R; since h is surjective, there exists a ¢, € 7 such that h(t.) = r. Define the
equivalence class 7[r] = {t € T | h(t) = r}. The Axiom of Choice [7] implies that there exist
mappings b~ : R — 7 such that

hh=(r)=r, forreR.

Unless h is injective, there exist more than one (possibly an infinite number of) such “inverse”
mappings. Note that h—h is not the identity mapping in general (but h—h =4 id); we call A
the semi-inverse of h. For every semi-inverse i~ and for every r € R we have h=(r) € Tlr].

2.4. Lemma. Let ¢ : T — T be h-increasing, and let h~ be a semi-inverse of h. Then
hyh~h = hi. (2.1)
PROOF. Since h—h =p, id we find that ¥h—h =4 9. This yields the result. |

2.5. Proposition. A mapping ¢ : T — T is h-increasing iff there exzists an increasing mapping
¥° : R — R such that

Y°h = ha. (2.2)
The mapping ¥° is uniquely determined by ¥, and can be computed from
° = hph~, (2.3)

where h— is an arbitrary semi-inverse of h. The ezpression in (2.3) is independent of h™.

PROOF. ‘if’: assume that there exists an increasing mapping 1° : R — R such that ¢°h = hi.
Let t,t' € T such that t <j, ¢/, that is, h(t) < R(t'). Then hip(t) = ¥°h(t) < ¢°h(t') = hyp(t'),
ie., B(t) <n ().

‘only if’: assume that ¢ is h-increasing. Choose an arbitrary semi-inverse h and define
¥° = hiph~. Then °h = hph~h = he by Lemma 2.4. We must show that ¢° is increasing.
Let 7,7/ € R such that r < ', and define ¢ = h=(r), ' = h=(r'). Clearly, t <, t', hence
P(t) <p ¥(t'). This means that

°(r) = p°hh—(r) = Yoh(t) = hip(t) < hp(t)) = $°h(t) = ¥hh™(r') = ¢°(),

which shows that 1° is increasing.

It remains to be shown that 1° given by (2.3) does not depend on the choice of the semi-
inverse h—. If hy,hy are two different semi-inverses, then hy =, hy, hence Yhy =y Phy,
yielding that hyphi = hiphs . This concludes the proof. 1

We write 9 A 1° if the assumptions in Proposition 2.5 are satisfied. It is obvious that
ko - b o
P Y° = hThy = 9P,

for every semi-inverse h*".

2.6. Definition. Let ,6 : 7 — T be two mappings with the property that for s,t €7,
6(s) <nt <> s <ne(t);

then the pair (¢, 6) is called an h-adjunction.
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h-adjunctions inherit a large number of properties from ordinary adjunctions between complete
lattices.

2.7. Proposition. If (¢,6) is an h-adjunction on T, then both € and 6 are h-increasing.
PROOF. We show here that ¢ is h-increasing; the proof for 6 is similar. Let ¢t <; t'. We get
e(t) <ne(t) = be(t) <n't
= be(t) <p t'
= e(t) <p (t).
This proves the result. 1

2.8. Proposition. Let (g,6) be h-increasing mappings on T, and let € KA e° 6 2 89, Then
(,0) is an h-adjunction on T iff (£°,6°) is an adjunction on R.
PrOOF. We prove the ‘only if’-statement. The proof of the ‘if’-statement is left to the reader.
Assume that (g, ) is an h-adjunction. Let 7,5 € R and §°(r) < s. We must show that r < £°(s).
Let t.,t; € T be such that A(t,) = r and h(t;) = s. Thus 6°h(t,) < h(t,), ie., hé(t,) < h(t,).
In other words, 6(,) < t,, which yields that ¢, <j e(t;), i.e., h(t,) < he(t,) = €°h(t,). This
means that 7 < £°(s), which had to be shown. Analogously, one shows that r < £°(s) implies
8°(r) < s. ]
If (,6) is an h-adjunction on 7 and if ¢’ = hi he, § = hy hé, for two arbitrary semi-inverses
hi*,hs of h, then (¢',4’) is an h-adjunction as well.

We have seen that for every lattice isomorphism % on a complete lattice £ with inverse 9~1,
the pairs (¢,%~) and (¢~!,%) are adjunctions on £. A similar result holds for A-adjunctions.

A mapping ¢ : T — T which is h-increasing, bijective, and has an h-increasing inverse )1
is called an h-isomorphism on 7.

2.9. Proposition. Assume that 1 is an h-isomorphism on T, then both (,v~1) and (=1, 4)
are h-adjunctions on 7T .

The proof is straightforward. Note that ¢ 5 1° iff %~ (°)~. Indeed, if ¢~ v ¢°, then
¥°¢° = hyph~hip~ h—. However, since h—h = id, then Yh—h =, 1, or hph~h = hi, and,
therefore, ¥°¢° = hypyp~'h~ = hh~ = id. Similarly, ¢°¢° = id. Therefore, ¢° = (¢°)~1. A
similar argument leads to the ‘if’ part.

We now present some simple examples.

2.10. Examples.

(a) Let T = R,R = Ry, and let h : T — R be given by A(t) = [t|]. The pair (e,d) of
mappings on IR given by e(t) =t — b, d(t) = ¢t + b, where b € R, is an adjunction on IR; see
Example 2.1. However, it is not an h-adjunction unless b = 0. Namely, in order that this pair
is an h-adjunction the following condition must hold:

|s+b] < |t] <= |s| < |t -1,

for 5,t € IR. Tt is easy to check that this holds if and only if b = 0. Note that A~ : R, — R is
a semi-inverse iff h—(r) € {-r,r} for r € R,.
(b) Let T = 11_22, R = IR, and h(t;,t;) = t; + t5. In this case, the pair (g,6) given by

e(t1,t2) = (81 — a,t2 — b) and d(t1,t2) = (t1 +a,ts +b),

with a,b € IR, defines an h-adjunction on R. Furthermore, e KN e°,d KA d°, where (e°,d°) is
the adjunction on IR given by €°(r) =7 —a — b, d°(r) =7+ a + b.
Letd : R — R be given by d'(t1,t) = (t1 +b,t2 +a), then (e, d’) is an h-adjunction, too.



2.11. Proposition. Assume that (¢,6) is an h-adjunction, then

65 <h id Sh 567

and also
gbe =p € and beb =p 0.

The proof is straightforward. A mapping ¥ on T with ¢ A 1° is called h-dilation (resp. h-
erosion) if ° is a dilation (erosion) on R. Similarly, an operator o on T is called an h-opening
if the operator a® on R determined by « P o0 is an opening. It is easy to check that any o is
an h-opening iff it is h-increasing, and satisfies o =, o (h-idempotence) and a <, id (h-anti-
eztensivity). The previous result shows that 6¢ is an h-opening if (g, 6) is an h-adjunction. An
h-closing is similarly defined.

If he or she wishes, the reader can readily verify that many results from the theory of
morphological filters have h-analogues. We illustrate this by means of the alternating filters,
which are compositions of openings and closings [36]. An operator % on 7 is called an h-filter
if it is h-increasing and satisfies 9> =p .

2.12. Proposition. Let o be an h-opening and B an h-closing on T. Then all compositions
of these operators are h-filters and

o <p afa <y {ﬁZ} <n Bapf <n B
o

We leave the proof as an exercise to the reader. (Hint: use (2.1)-(2.2).)

2.3. Image sequences
Let F,7 be nonempty sets. We denote by Fun(E,T) the power set TE, i.e., the functions from
E into 7. If T is a complete lattice, then Fun(E, T') is a complete lattice too. Given an index set
P, we denote by Fun(E, T)P all image sequences indexed by P. It is obvious that Fun(E, 7)F is
isomorphic with Fun(FE, TP); both expressions yield two alternative representations of the same
family. In the following, we shall examine their general structure. More details will be discussed
in Section 3.

We denote the elements of Fun(E,T)F by F, and the value of F at index p € P, which is
an element of Fun(E, T), by F,. Using the representation Fun(E,T7T) the value of F at a point
¢ € E, which lies in 77, is denoted by F(z). Note that '

F<G <> F,<Gp,peEP <= Fy(z) < Gp(z), pE Px € E. (2.4)

The inequality at the right hand-side has to be interpreted in the complete lattice 7.

Assume that 7 is a nonempty set, R is a complete lattice, and P, K are nonempty index
sets. Furthermore, let h: TP — R¥ be a surjective mapping. We can extend h as a mapping
h : Fun(E, TP) — Fun(E, R¥) by putting

h(F)(z) = h(F(z)), = € E.

With this definition the relations <; and = can also be extended to Fun(E,T Py, Let, for
example, F, G € Fun(E,T PY: we put

F<, G < F(z) <; G(z), forallz € E.




s of these relations remain also valid for their extensions.

le this section we consider some examples for the case that 7 = R = R. First
? = K and that h is the identity mapping A(t) = ¢. Then the partial ordering
is the usual pointwise ordering (see (2.4)), also known as marginal ordering or

. . . P o1 .
|; i.e., ordering of elements ¢ in IR* takes place within the marginal components

>ontains one element, h is a mapping from r into IR, and in this case the k-
led the reduced or R-ordering [2]. In this case, each element ¢ in R” is reduced to
h(t) by means of some combination of its components. In contrast to M-ordering,
ordering is to produce a total ordering, i.e., for every pair (s, t) in R xR we
t Sh S [3]

interesting types of ordering in ﬁp have been proposed in [2]. The first type is
ordering or P-ordering, whereas the second type is called conditional (sequential)
-ordering. In the case of C-ordering, the elements ¢ of —ﬁp are ordered by means
nal components of ¢ conditioned on the selection, or ordering, of other marginal
f . We can usually formulate a desired type of C-ordering analytically, but the
ulation is quite complicated and depends on the particular type of C-ordering
ration. We will not expand on this subject any further. P-ordering is rather
. nature and is of no special interest here. For additional discussion on these
g principles see also [11].

1[2], M-ordering may serve as a prelude to some further partial ordering principle.
VI-ordering may be applied to transformations of the available data set, instead.
n general h(t) = {hx(t) | k € K}, in which case the partial ordering <; on R’
jata transformation from R’ onto R via h, followed by an M-ordering in .
b is equivalent to h(s) < h(t), which in turn is equivalent to hy(s) < hi(t), for
n the rest of the paper we shall illustrate the potential of these concepts in terms
sting image processing and analysis examples.

hological operators for image sequences

we give, in some detail, general expressions for adjunctions and h-adjunctions on
\d Fun(E, TF), respectively.

ictions on Fun(E, T)?

ion we assume that 7 is a complete lattice. We present a general expression for
. Fun(E,T)? in terms of adjunctions on 7. Thereto we apply Proposition 2.2
.4), we get that (£, A) is an adjunction on Fun(E, T)P iff there exist adjunctions
Fun(E,T), for all p,q € P, such that

(S(F))p = /\ gq,p(Fq)a

qeP

(A(F))p = v Aq,P(Fq)a

geP

T)P.



9

Now we use that Fun(E,7) = TP. Applying Proposition 2.2 once more we find that
(Ep.g>Aqp) is an adjunction on Fun(E,T) iff there exist adjunctions (€p,q,2,y> a,py,z) 00 T,
for all z,y € E, such that

Epa(F)(z) = /\ Ep,au.2(F(¥));

yeE

Aq,p(F)(a;) = v Jq,p,y,w(F(y)),

y€E
for F € Fun(E,T). Combining these two facts we arrive at the following result.

3.1. Proposition. (€,A) is an adjunction on Fun(E, T)? if and only if there ezist adjunctions

(Ep,q,2,y> dgpwz) on T, for all ¢,y € E,p,q € P, such that

Ep(@) = N\ N CapvaFa®)); (3.1)
qeP yeE

(AF)p@) =V V dopva(Fa®), | (3.2)
qeEP yeE

for F € Fun(E, T)F.

From Proposition 3.1 we see that, in the case of transformations on Fun(E, 7T )P, the erosion of
an image sequence F' can be obtained by first eroding each single frame F, of F. The resulting
erosion at frame ¢ is the infimum of erosions on Fp, p € P. This is illustrated in Figure 1 for
the special case where P = {1,2}. For dilations we have found an analogous result.

(e (),

Flg 1. Erosion of an image sequence F' can be obtained by first eroding each single frame Fp
of F, and by then combining the results by means of infimum; P = {1,2} in this example

In gray-scale morphology one can distinguish two important classes of morphological op-
erators, the H-operators and the T-operators [12, 13]. We will extend these definitions to the
framework of image sequences considered here. To introduce H-operators we have to assume
that E has an abelian group structure, which we denote by ‘4. We define the translation F, of




10

a function F € Fun(E,7)¥ by an element z € E by F,(z) = F(z — z). An operator ¥ is called
an H-operator if
U(F,) = [¥(F)., FeFm(E,T)", z¢E.

To define a T-operator, we assume in addition that 7 = IR (though the same definitions apply
to T = Z). If F € Fun(E, R)? and t € RF we define

(F+t)(z) =F(z)+t, z€E.

We use the convention that +00 +¢ = 400 and —o0o +¢ = —o0, for t € IR. An operator
¥ : Fun(E,R)® — Fun(E, R)* is called a T-operator if it is an H-operator, and if

U(F + t) = U(F) + t,

for F € Fun(E, R)? and t € RF.
In the same way as in [13] one can show that the operators £, A given by (3.1)-(3.2) are
H-operators if and only if

e}h‘]ﬂyy = ep,q,:c-{—z,y—l—zy dq,p,'y,a: = q9,p,y+z,zt+z

for every z € E. Writing €, 4.0 = €pq.. and dgp .0 = dgp . the expressions in (3.1)-(3.2)
reduce to

(E(F))p(z) = /\ /\ €q.p,2(Fo(z + 2)),

q€P z€E

(AE)p(@) =\ V dop,=(Fo(z — 2)).

qEP z€EE

Every H-adjunction on Fun(E, T)¥ is of this form.
Assume in addition that 7 = RR. In order that the adjunction given previously is a T-
adjunction we must have that the pair (ep,q,,,dgp,,) is T-invariant, i.e.,.

€p,q,2(8 +1) = €pq.(s)+1t and dgp,z(8+1) = dgp.(5) +1,

for s € R,t € R. Putting
qup(z) = d‘];P;Z(O)S

we find
€p,q,2 ()=t~ Bq,p(z) and dgp . (t)=t+ Bq,p(z)- (3.3)

This shows that every T-adjunction on Fun(E, R)¥ is given by

EENp@) = N\ N [Falz+2) — Bpo(2)], (3.4)
gEP z€E

(AE)p(z) =\ V [Falz - 2) + Byp(2)]. (3.5)
qEP z€FE

Finally, it is worthwile noticing that the previous discussion carries over almost wordly to the
more general case of adjunctions between Fun(E, 7)? and Fun(E, T)¥, where K is a nonempty
index set.
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3.2. h-adjunctions on Fun(E,T7%)

The results stated in Proposition 3.1 are possible because 7 is assumed to be a complete lattice
and there exists a factorization of the complete lattice Fun(E,T )P. In certain applications such
a factorization may be undesirable; see Section 4. In this section we do not assume that 7 (hence
TP) is a complete lattice, but rather that there exists a surjective mapping h : TP — RK where
K is a non-empty set, and R (hence RK) is a complete lattice. The least and greatest elements
in RX are denoted by —oo and +oo, respectively. In Subsection 2.3 we have explained that h
induces a surjection from Fun(E, 7F) to Fun(E, R¥). This means in particular that all results
about h-operators derived in Subsection 2.2 apply in the present situation. The next result gives
a complete characterization of h-adjunctions on Fun(E,T?) in terms of h-adjunctions on TF
and in terms of adjunctions on RK.

3.2. Proposition.
(a) The pair (€,A) is an h-adjunction on Fun(E,TF) if and only if for every z,y € E there
exists an h-adjunction (eg y,dy,z) 0N TP such that

hEF) (@) = N\ bley=(F®)), (3.6)
yeE .

hAF) (@) =\ rdy=(F®)), (3.7)
yEE

for F € Fun(E,TF).
(b) Let ez y A €9, and dyz 2, o, then (€3, dy ;) is an adjunction on RE. Let (£°,A°) be
the adjunction on Fun(E,'R,K ) given by

e (F) ) = N e(F@)),

yeE

A (F)(z) = \/ & .(F(»)),

yeE

for F € Fun(E, R¥). Instead of (3.6)~(3.7) we can write

REF) (@) = E(WE)(@) = N e (H(F®)), (3.8)
yEE

R(AF) () = A°(R(F))(@) = \/ dg - (A(F (), (3.9)
yeE :

for F € Fun(E, TP). In other words, € s £° and A ¥ A°.

The proof of this result follows by a straightforward combination of Proposition 2.2 and Propo-
sition 2.8.

3.3. Remarks.

(a) Note that, in general, £(F) and A(F) are not uniquely determined by Proposition 3.2. For
example, if the function G satisfies the equation in (3.6), i.e., if h(G(z)) = Nyer Pleyo(F(y))),
then the same holds for A~ h(G), for every semi-inverse h™.

(b) The adjunctions (3 ,,d; ) on RE can be decomposed in terms of adjunctions on R; see
Proposition 2.2.
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From now on we will restrict ourselves to the H-invariant case. We get

REFE) ) = A hle:(F(z +2)) = \ e (h(Fz +2))), (3.10)
z€E z€EFE
h(AF)(2) = \ h(d(Fz - 2))) = \/ &(h(F(z - 2))), (3.11)
z€EE 2€E
where e, = e, 0,d, = d_,,€, o g0 e2, and d, A d3. Notice that (ez,d ) and (€2, z) are h-

adjunctions on 7% and adjunctions on R¥, respectively. Assume further that R = JR. The
corresponding adjunctions on Fun(E, JI_%K) are given by

E(F)(2) = N &s(F(z+2)),

z€EFE

A°(F)(z) = \/ &(F(z - 2)).
z€E
Let ek Lz dp e,z where k,l € K, denote the decompositions of e, dS in terms of mappings on R.
We may write

(E°(F)i(z) = /\ /\ ek, (Fi(z + 2)),

leK ze E
(A @)i(z) =\ V &x.(Fi(z - 2)).
€K z€FE
In the T-invariant case we have

er1 (1) =7— Al (2) and dj (r) =71+ A7 (2),

(cf. (3.3)) where A7, (-) : E — R is given by AP (2) = dfy, .(0). Note that, when A7, (2) = —oo,
then (ef; ,,df; ) is the trivial adjunction which is identically (400, ~00). We consider the

special case where
Pp(z) = —oo if l#k, z€E.

Define B° : E — R by
Bi(z) = A (2), k€K, 2z € E.

The corresponding H-invariant h-adjunction is now given by

MEFE @) = N\ [h(F(:c +2)) - B°(z)], (3.12)
zeFE

MAFE) @) = \/ [h(F(:c —2)+ B°(z)]. (3.13)
z€E

In practical situations, 7 will often be equal to IR (or a subset of it). In that case we can, for a
given B: F — EP, modify (3.12)-(3.13) in the following way:
MEF)() = [\ h(Flz+2) - B(z)),
zeE
h(A(F)(z)) = \/ h(F(z - 2) + B(2)).
z€E
Under what conditions does (£,A), which satisfies these expressions, define an h-adjunction?
To answer this questlon we use the expressions in (3.10)—(3.11). Here (e,,d,) must be an h-
adjunction on R". To arrive at the previous expressmns we must take e, (t) = t—B(2), d.(t) =
t+ B(z). This defines an h-adjunction on R" if h satisfies the condition stated in the following
proposition.
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on. The pair (e,d) on Al given by e(t) =t — b, d(t) = t+ b, where b€ TEP,
junction if and only if

h(s) < h(t) <= h(s+b) < h(t+b), (3.14)

sle 2.10(b) for an example.

ion. Let B: E — R bea function such that h satzsﬁes condition (3.14) for
) | z € E}. Then the pair (€,A) of operators on Fun(E, R’ ) determined by the

L(EE) () = N\ h(FE+2) - B(2)),

z€E

R(AF) (@) = \/ R(F(z - 2) + B(2)),

z€E

wariant h-adjunction on Fun(E, ﬁp).
that, in general, h cannot be omitted in both expressions, and therefore £, A are
, in general. Furthermore, condition (3. 14) will only be satisfied for b in a subset

sent some examples.

s. We assume that P is a finite set. With an abuse of notation, we replace P
}, where P > 1.
— IR be one of the mappings given by

P

P
hint(t1sta, - tp) = [\ to»  Poup(tiste,. . tp) = V t
p:]_ p=1

satisfied for b € R with b, =bforallp=1,2,. ., P, where b € R.

end the previous example to arbitrary order statistics. Let (M, t(z) ., t(P)) be
lues of (t1,t2,:..,tp) such that ) > @ > >#P) Let h: ]R — IR be given
tp) = (™, where 1 < n < P. Then (3.14) is satlsﬁed for be R with b, = b for

, P, where b € IR.
so take h(ti,t2,...,tp) = P ow #(P) where w, are given weights. Note that
p=1Wp P g

—1andwp—0forp>1 Dually, A = hine if wp =1 and w, =0 for p < P.

for h : ]R — IR the linear transformation
h(ti,te, ... tp) = pr P

siven weights, then (3.14) is satisfied for any b € R’. We point out that in this
as to be careful with expressions which contain +o0 or —oo It is evident how one

e the present example to linear transformations h: ]R Ny

wariant h-adjunctions which is of special interest are the flat h- adjunctions. This
»d by making the following special choices for (€3, d) in (3.10)—(3.11). Let AC E
-ucturing element, and define e3(t) = dg(t) = ¢ for t € R and z € A. For
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2 outside A we define e2(t) = +o00 and d2(t) = —oo for all t € RX. The corresponding
h-adjunction (£, A) is given by

WEF)(2) = \ MF(z+2), (3.15)
z€A

h(AF)(z)) = \/ W(F(z - 2)). (3.16)
z€EA

3.7. Algorithm. In general, £(F)(z) is not uniquely determined by (3.6). Dually, A(F)(z) is
not uniquely determined by (3.7). We indicate a special, but practically useful, way to choose
E(F)(z) and A(F)(z) from the various possibilities. Instead of (3.6)-(3.7) we consider (3.15)-
(3.16), and we assume that RS is totally ordered (which holds automatically if K = 1) and
that the structuring element A is finite (which is true in almost all cases of interest). Consider
(3.15) for a given F. Let, for z € E, z.(z) € A be such that h(F(z + z)) assumes its minimum
at z = z¢(x); then
h(E(F)(z)) = h(F(z + 2(z))),

and we may choose
E(F)(z) = F(z + z.()).

For the dilation in (3.16), let z = z4(z) be such that
h(A(F)(z)) = h(F(z — za(z))),

and choose
A(F)(z) = F(z — za()).

In general, there will not be a unique choice for 2z, and zg.
It is obvious how to extend this algorithm for non-flat structuring functions.

3.3. h-increasing operators on Fun(E,TF)

So far, we have mainly concentrated on (H-invariant) h-adjunctions on Fun(E,7F). We are
now in a position to study more complicated transformations, like openings and closings. In [13,
Thm. 11.23], Matheron’s theorem has been extended to H-operators for gray-scale functions.
The proof given there carries over almost literally to the present framework. Let O, I denote
the functions which are identically —oo and +oo, respectively.

3.8. Proposition.

(a) Every increasing H-operator ¥ on Fun(E,RX) with ¥(0) = O can be represented as an
infimum of H-dilations on Fun(E, R¥X).

(b) Ewvery increasing H-operator U on Fun(E, RX) with W(I) = I can be represented as a supre-
mum of H-erosions on Fun(E,R¥).

Recall from Subsection 2.2 that 7F[r] = {t € TP | h(t) = r}, for a given r € RX. For
h-increasing operators, the condition ¥(0O) = O translates into “the class of functions in
Fun(E,TF) with values in 7F[-o0] is invariant under ¥”. Dually, the condition ¥(I) = I
translates into “the class of functions in Fun(E, 7F) with values in 77 [+o0] is invariant under
‘I,”
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3.9. Theorem.

(a) Let U be an h-increasing H-operator on Fun(E,T7T) such that the class of functions in
Fun(E, TF) with values in T¥[—oo| is invariant under ¥; then there exists a collection
A;, i € I, of H-invariant h-dilations on Fun(E, TP) such that

he = \ hA.

i€l

(b) Let ¥ be an h-increasing H-operator on Fun(E,TF) such that the class of functions in
Fun(E, TF) with values in T¥[+o0] is invariant under U; then there exists a collection
E;, i € I, of H-invariant h-erosions on Fun(E,T P ) such that

h¥ = \/ hé.
el

PROOF. We prove (a); then (b) follows by duality. Assume that ¥ satisfies the assumptions
in (a), and let ¥ % ¥°. Then U° satisfies the assumptions of Proposition 3.8(a), and we
have a decomposition ¥° = A, A?, for some collection of H-invariant dilations A?, ¢ € I, on
Fun(E, RX). This yields that ¥°h = A,y Ah. Leti € 1 be fixed. For every semi-inverse h*,
the operator A; = h~Agh is an H-invariant h-dilation on Fun(E,T?) with A%h = hA;. We get
that h¥ = ¥°h = A,c; hA;. This proves the result. [

Recall that an operator & on Fun(E,7F) is an h-opening if
e (¢ is h-increasing;
e 02 =, ¢ (h-idempotence);
o (¢ < id (h-anti-extensivity).

h-closings are defined similarly.

From Proposition 2.11 we know that A€ and £A are an h-opening and h-closing, respectively,
when (£,A) is an h-adjunction. As stated in Proposition 2.12, composition of an h-opening &
and an h-closing ,8 yields h-filters, the so-called alternating h-filters.

4. Examples and applications

In this section, we shall discuss a number of interesting image processing and analysis examples
which utilize the theory developed in the previous sections. As a direct result of our discussions,
we shall immediately see that the proposed theory is general enough to be applied in a number
of problems, including noise smoothing, color image processing, biomedical image processing,
analysis of multi-spectral images, computation of the Euclidean distance transform, etc. Like in
Example 3.6 we replace the index set P by the finite set {1,2,...,P}.

4.1. Matrix morphology

The theory developed in Subsection 3.1 is directly related to Wilson’s theory of matriz mor-
phology [42, 43, 44, 45]; see also [13, §5.5.D]. In fact, our theory extends Wilson’s theory to the
case of general erosions, dilations, openings, and closings, and shows that Wilson’s approach to
matrix morphology is a direct consequence of vector M-ordering. Indeed, let us consider a 1 x P
row vector image

F=[F, F, --- Fp],
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and a P x P matrix structuring function

Bin Bz - Bip
_ | Ba B -+ Bop
Bpi Bpa - Bpp
The matrix erosion of F by B is defined by
Biy Ba -+ Bps
FEB' =[F, F - Fp|B B:”‘ B:” Bf” —[E, E, --- Ep],
B.lP B.ZP BI.’P

where

g=1
Similarly, the matrix dilation is defined by
Bin Bz -+ Bip
FEB=|F, F, --- Fpl@ Bfl B:” B?P =[D;, D, Dpl,
By Bpy - Bep
where

P
Dy = v Fq® Bgp.
g=1
These expressions coincide with those given in (3.4)—(3.5). These results have been generalized
in [44] by considering an N x P matrix image

Fyy, Fip -+ Fip

Foy Fop -+ Fyp
F= . . . ]

Fyi Fna --- Fnp

The matrix erosion of F by B is now given by

fn Fiz -+ Fip Bin Ba - Bp: E;y Ey --- Ep
e T L A B R |
Fyi Fya --- Fnp Bip Bep -+ Bpp Eni Enz -+ Enp
where
P
Enpz/\anequ, TL=1,...,N.
g=1

The theory presented in Subsection 3.1 trivially extends to this case, by considering N different
image sequences (each with P components), which are processed by means of the same P x P
matrix structuring function B.

Since a number of interesting examples, illustrating this theory, have been already presented
in [44] and [45], we shall not provide any additional examples here. Rather, we shall focus our
attention on discussing a number of applications associated with h-operators on Fun(E, TF).
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4.2. The case that h is invertible

As we have previously discussed, we may decide upon the functional form of A and transform
our image sequence from TP into RE. We can now decide upon the proper set of adjunctions
(€9,4,d5.2) On RE . and use (3.8)-(3.9), in order to define erosions and dilations on Fun(E,TF),
provided that h is invertible. The simplest invertible transformation that we may think of is the
linear transformation:

h(t) = At, (4.1)
where A is an invertible P x P matrix. When processing multi-spectral images, A might be the
Karhunen-Loeve transform matriz [16, 28], the Kauth-Thomas tasseled cap transform matriz [28],
or the mazimum noise fraction (MNF) transform matrix [9, 17].

In the case of the MNF transform, a sequence of (possibly) mutually correlated and noisy
multi-spectral images F' = Fo + N = (F1, Fa, ... , Fp), consisting of P bands is transformed,
by means of a linear invertible transformation, to a new image sequence G = (G1,Ga,..-,G P)-
If the corrupting additive noise sequence N = (N1, Na,..., N, p) is uncorrelated from Fp, and
if Cp, = Cov(Fo(z)) and Cn = Cov(N(z)), for every = € E, are the (stationary) covariance
matrices of Fo(z) and N(z), respectively, then

G(x) = ApntF(z), for every z € E,

with
Al=len e - ep], _

where e,, p = 1,2,..., P, are the left eigenvectors of matrix CNCEDI, with corresponding eigen-
values Ay > Ag > --- > Ap. It can be easily shown [9, 17] that Gi(z),G2(z),...,Gp(x) are
mutually uncorrelated and that the signal-to-noise ratio (SNR) in Gp41 will be greater than
the SNR. in G,, for every p = 1,2,... ,P — 1. Since the components of G are now mutually
uncorrelated, they can be processed independently (i.e., component-wise processing of G will
be natural here).

If noise smoothing is desirable, we may decide to apply morphological filtering (e.g., by
means of alternating filtering [34, 36]) on components G1,Gg, ..., Gy, for some p' < P, leaving
components Gy +1,Gpr42,---,GP unprocessed, since these components will be characterized by
high SNR’s. It is shown in [9] that the SNR in component G, is proportional to 1/M,; therefore,
9’ may be chosen such that 1/, > S, for every p > p', whereas, 1/}, < S, for every p < p/,
where S is a predefined SNR threshold. This type of filtering will produce an image G’ which,
in turn, will result in a filtered version F’ of the image F, by means of F(z) = A7l.G'(z), for
every z € E. Tt is now not difficult to show that the overall transformation F — F will be a
morphological h-filter on Fun(E, T¥), where h is given by (4.1).

To illustrate this process, let us consider the three-band, 256 x 256 pixel, 256 gray-level image
F, depicted in the first row of Figure 2. This image is a proton density weighted, T1-weighted,
and T2-weighted magnetic resonance vector image of the same anatomical site of a human brain.
The second row of Figure 2 depicts the bands of image F obtained by corrupting the original
bands with additive i.i.d. vector salt and pepper noise IN, with zero mean and covariance matrix
given by

1.0 08 01
Cn = 0.8 1.0 -0.5
0.1 —0.5 1.0
The image covariance matrix has been estimated to be

0.3405 0.2510 0.5189
Cr, = | 0.2510 0.4159 0.5814
0.5189 0.5814 1.0000
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In this case the MNF transform matrix is given by

0.5563  0.5551 —0.6184
Ape=] 08366 -0.5399  0.0931 |,
—0.5896  0.6910  0.4182

whereas, the eigenvalues of matrix CNCEOI are given by A\; = 1.1961 x 102, Xy = 2.0946, and
A3 = 2.6802 x 10~2. The uncorrelated image G is depicted in the third row of Figure 2.

Observe that most of the noise energy is concentrated in the first band of G, whereas the third
band is virtually noise free. Image G', whose bands are depicted in the fourth row of Figure 2,
is obtained by independently applying alternating filtering on the first and second bands of G.
The filtering is based on a flat structuring function B, with domain {(0,0), (0,1),(1,0), (1,1)}.
Observe that no filtering is applied on G3. The fifth row of Figure 2 depicts the resulting filtered
image F’. The quality of F' is remarkable. Most of the noise has been eliminated from all three
bands, whereas, morphological filtering has been successful in preserving most image features of
interest.

Another important application of using invertible transformations A is color image processing.
Color images contain three primary colors: red (R), green (G), and blue (B). If morphological
operators are directly applied on each of these three primary color images, the resulting image
will not preserve its original color; see [24, 35]. One way to preserve color is to transform the
RGB image sequence F = (F,, Fy, F},) into an HLS (Hue-Lightness-Saturation) image sequence
G = (G#,Gi,G,), by means of a non-linear invertible transformation h, such that G(z) =
h(F(z)), for every x € E [16, 24, 35]. We can, then, independently process all, or some, of
the components in G, in order to produce a morphologically processed image sequence G'. For
example, in [24], only the L-component G; of G is processed, whereas, in [35], morphological
processing of both G, and G, is suggested. Image sequence G’ is now transformed back to
the RGB space, in order to produce an image sequence F’, such that F'(z) = h~1(G'(z)), for
every z € E. Alternatively, we may transform the RGB image sequence F into a chrominance-
luminance sequence G, by means of an invertible linear transformation, morphologically process
the luminance components in G, independently from its chrominance cbmponents, in order to
obtain G, and transform back to the RGB space, in order to obtain F’. This, for example, may
be achieved by means of the RGB to NTSC transmission system transformation, given by [16]

G, 0.177 0.814 00117 [F,
G| =] 053¢ —0.247 —0179| | F, ],
G, 0.247 —0.679  0.405 | | R

where G, is the luminance component, and G; and G4 are two chrominance components in G.
Again, the overall transformation F ~ F’ will be a morphological operator on Fun(E, 7 F).
Finally, it has been suggested by Serra [35] that an image sequence should be morphologically
processed by introducing priorities in processing its individual components. This idea leads to the
so-called conditional lattices, which involve functional relationships between their components.
When linear relationships are employed, it has been suggested in [35] that the partial order <
relationship associated with a conditional lattice should be given by (for the case when P = 3)
s1<1%
st {82 Stz—}-al(tl—-sl)
s3 <tz + az(ts — s1) + ax(ta — s2),
where a1, a2, and a3 are constants. Instead of s < t we can write s <j, t, where h is given by
(4.1), with
1 0 0
A= ai 1 0
az Qa2 1
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Fig. 2. An example of vector morphological filtering by means of an invertible linear trans-

formation.
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4.3. Operators based on Mahalanobis distance

We shall now discuss a simple example where h is a scalar transformation from R’ into R.
A more complicated example follows. In both cases, we shall consider erosions and dilations
obtained from Algorithm 3.7.

Let us first consider the image sequence F, employed in the MNF example of the previous
sub-section. It has been suggested in [11] and [25] that if filtering of F is of interest, then the
vector data under consideration may be ordered by means of the Mahalanobis distance

h(t) = (t — 70)" C, (t — o), (4.2)

where 79 = E(Fy(z)), for every z € E, is the (stationary) mean vector of Fo(z). The Maha-
lanobis distance has been employed in [11] and [25] for the development of rank-order filters
applied on image sequences. This vector-to-scalar transformation can be also used in the mor-
phological framework of this paper, provided that only flat structuring elements are used (since,
in this case, (3.14) is satisfied). Figures 3 and 4 depict an example of applying Algorithm 3.7,
where h is given by (4.2), on F.

Fig. 3. An example of vector morphological filtering by means of a scalar Mahalanobis

distance transformation.
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The mean vector 7o has been estimated to be

0.5823
T0 = 0.5745
0.9913

The first row of Figure 3 depicts the three bands of the noise-free image Fo, whereas, the second
row depicts the three bands of the noisy image F. The filtered image F’, obtained by applying
alternating filtering on F is depicted in the third row of Figure 3. The same flat structuring
function, as the one used in Figure 2, has been employed here. The resulting images are very
similar to the ones depicted in the fifth row of Figure 2. However, the MNF transform based
procedure has resulted in slightly better noise smoothing performance. Finally, Figure 4 depicts
the Mahalanobis distance images, obtained by applying transformation (4.2) on F, Fy, and F.

Fig. 4. The Mahalanobis distance images of the (a) noise-free image Fy, (b) noisy image F,
and (c) filtered image F' depicted in Figure 3.

These images verify the fact that a vector morphological filtering approach, based on (4.2),
is able to remove vector image outliers, due to corrupting noise, by first removing outliers in the
distance domain and by then mapping the results back to the vector domain.

4.4. Vector distance transform

Finally, we shall apply our theory to the problem of calculating distance transforms. In many
image processing and analysis applications, it is necessary to devise a procedure which calculates
the distance between a point u and a set X in the P-dimensional Euclidean vector space R?,
given by '

— /\xEX “X— u”7 u ¢Xa
Ax(u) = {0, we X, (4.3)
where || - || is a norm on R”. The function Ax(-) is known as the distance transform of set X,

and has been extensively used for skeletonization, segmentation, smoothing, matching, etc., of
objects in RF [18, 21, 22, 23, 26, 27, 31, 33, 41].

Quite frequently, computation of A x (u) may not be sufficient; rather, knowledge of a vector
dx(u), which satisfies

dy (u) = {g’x(") o onel (4.4)

where py(u) is a vector in X such that

Ipx(u) —ull = A lIx—ul, ug X, (4.5)

xeX



ble. This is the case with many signal and image processing techniques and
ch as template matching [16], logarithmic, sequential, and hierarchical search
scene matching and detection [16], unsupervised learning [16, 32|, predictive
otion compensation [16], and learning vector quantization [19], to mention a few
We call px(u) the projection of u on X and dx(u) the vector distance transform

at
Ax(u) = |dx(u)ll, € R".

u) is not uniquely determined by (4.4)—(4.5). If there is no danger of confusion
bindex “X” and write, e.g., d(u) instead of dx (u).

, Space IRY is discretized. Let €1, es,...,ep be the usual P orthonormal vectors in
ienote by E the set of all vectors uin RY such that u = u;e; +ugey+- - -+upep,
,,...,up € Z. In this case, the distance transform should be either re-defined [4,
: computed via (4.3), by replacing X with X N E and by considering u € E. The
is limited by the types of norms ||-]| allowed. The second approach is quite general
cact distance computations for any choice of || - ||| We shall adopt this approach
| focus on the problem of computing the vector distance transform dx(u) € E,
e morphological operators discussed in Subsection 3.2.

1e space of all image sequences Fun(E,ZP) and let X C F. Let X be the element
with "
_J oo, ugX ; :
= {3 28X (49)
,2,...,P. Put
C(z) =—2z, zc E.

)), and (4.6) we get that
d(u) = X(u+ z.(u)) — C(z.(u)), uc E (4.7)
u) is such that

1X(u+2) — Clz.)l = \ I1X(u+2) - Cz)||. (4.8)
z€E

|| would satisfy (3.14), i.e.,
lull < |Ivll == [lu+ 2| <[lv+ 2], (4.9)

then d(u) in (4.7) would be given by the h-erosion (with h(u) = ||u]|) of X by C
see Proposition 3.5 and Algorithm 3.7. Computation of the vector distance trans-
of an erosion is desirable for a variety of theoretical and computational reasons.
e can always define the adjoint dilation, which, in turn, may allow the construc-
norphological algorithms. Additionally, morphological computer hardware may
d here.

ely, the norm || - | does not satisfy (4.9) in general. We make the following
the norm || - ||.
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—_ i —p —
4.1. Assumption. There exists a mapping r: £ — ZP and a mapping h : Z — IRy such

that ‘
flull = ~(r(u)),

r(+o00) = +o0,
k(i) < h(j) < h(i+n) < h(j+ n),
for all i,j,n € Al
It is easy to verify that

r(X(u+ z) — C(z)) = X(u+ 2) — B(2),

where
B(z) = —r(—C(2z)) = —r(z), z€ E.

Thus we get that
I X(u+ z) ~ C(2)|| = M(X(u+ 2z) — B(2)).

From (4.7) and (4.8) we get that r(d(u)) is the h-erosion of X by B, i.e.,
r(d(u)) = X(u + z.) — B(ze),
where z, = z.(u) is such that

h(X(u+z) — B(z.) = /\ H(X(u+2) - B(2)).
zEE

(4.10)

(4.11)

Calculation of the vector distance transform by means of these formulas is not efficient, since
it requires computation of the infimum A,z h(X(u + 2) — B(z)), for every u € E. These
calculations may be performed recursively, under additional constraints on r and k. Indeed, let

us define subsets F of E by

Ex={ucE|u=(u,...,up), 0< |up| <k, p=1,2,..., P}

for k=1,2,.... Clearly, Ey C Ep41 C E for all k. Let Dy = E¢ \ Ex—1 and Ep = Do = {0}. In

this case
DinD =2, k#I,
UDe=Ea. n21,
k=0

and

Ooeos
k=0

Define a sequence {By | k =0,1,...} of structuring functions by

By(u) = { —r(u), u€ E;

— 00, otherwise.

Observe that

Bk(u) < Biti(u), ue B, and Bg(u) = Bk+1(u), u € Eg.

(4.12)




aer sequence {Ag | £ =0,1,...} of structuring functions defined by

r(ku) — r((k +1)u), u€E,

—00, ' otherwise. (4.13)

Ak(")={
A0)=0, k=1,2,...,

| that r(0) =0,
Ag(u) = Bi(u), u€eE.

Fun(E,Z"), let us define

G e Fun(E,ZP) | G(u) = F(u+ z.) — A(z.), for some z, € C(F, A, u)}, (4.14)

|, u) = {z. € E | l(F(u+z.) — A(z.)) = /\ M(F(u+2)— A(2)}. (4.15)
zeFE

E,ZP), we also define
ForA= |J{FlenA
FeF

(Fon A)(u) = {G(u) | G € Fo, A}, uc E. (4.16)

for G1, Gy € {F} 6 A, b(G1(u)) = h(G2(u)), for every u € E. We shall denote
A)(u)) the value h(G(u)), for G € {F} &, A.
endix we shall prove the following result.

ion. Letr: E — ZP be a mapping that satisfies
r(u) = r(uy,...,up) = (r1(lu1l), ..., 7p(lupl)), (4.17)
0, rp(+00) = +00, (k) < 00 if k < 00, and
rp(k + 1) — rp(k) > rp(k) —rp(k — 1) > 0, (4.18)

. and p =1,2,...,P. Furthermore, let h : ZP — R, be a mapping such that
g(i) = Z;;l ip and f is a lattice isomorphism on R. Then

({X} ©n Bi—1) ©r A1 € {X} O Bs.

are interested in computing d(u), at every point u € E such that A x(u) < +oo.
1.11), (4.14), and (4.15), it is easy to show that,

i€ ({X} en Bx)(u) = ({X} &1 Bk)(u) <= r(d(w)) =1, (4.19)

h that A x(u) < +o00, where K is a large enough finite integer which depends on
)sition 4.2 and (4.19), it is now easy to show by induction that

X} on Bk)(a) 2 ((--- ({X} On Ao) O A1) On - +*) Or Ak-1)(u), (4.20)
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for every u € E such that |d,(u)| < K, p = 1,2,..., P, and, therefore, any element in the
right-hand side of (4.20) will be the vector distance transform, assigned at u. Equations (4.10),
(4.11), and (4.20) show that the vector distance transform (4.4) and (4.5) can be recursively
computed by means of H-invariant h-erosions with varying vector structuring functions of size
3x 3. From the assumed form (4.17) of r, we see that only |d(u)| can be recovered from r(d(u)),
provided that r,(-) is invertible, for every p = 1,2,..., P. Recovery of the correct signs in d(u)
can be accomplished by considering all possible sign combinations and by checking whether the
resulting vectors u + d(u) are in X.

Let us now illustrate the previous discussion with an example. Consider the problem of
calculating the Holder vector distance transform, for which [40]

P i/m
Jull = (Z |up|m) 1<m < oo,

p=1
If we set
TP(u) = rp(luPD = 'uplm7 for r= 1’27 e 7P1 (421)
P
g('i) = Zilh
p=1
and

£(s) = (s)/™,

then ||u|| = f(g(r(u))), where r is given by (4.17) and (4.21), and mappings rp, g, and f, satisfy:
all requirements in Proposition 4.2. Furthermore, r,,(-) is invertible, and

P 1/m
h(i) = (Z z',,) .

p=1

The Holder vector distance transform can be now computed by means of (4.20) , where (see
(4.13), (4.17), and (4.21))

(k™ = (k+1)™)up|, u€ B

. for k=0,1,....
—00, otherwise * 1,

Ap,p(u) = {
When m = 1 (which is the case of the city-block distance [31, 41]) we have that

Ak,p(u)z{—lu”[’ u € B , for k=0,1,...,

—00, otherwise
whereas, when m = 2 (which is the case of the Fuclidean distance [6, 31]), we have that

—2(k + 1)|up[, uc E1

—00, otherwise ’ for k=0,1,....

App(u) = {
In the first case, the vector structuring function is independent of the iteration number £,
whereas, in the second case, the vector structuring function does depend on k.

To conclude this section, we should point-out that mathematical morphology has been also
proposed in [15, 37, 38] (see also [46]) as a tool for calculating the two-dimensional Euclidean
distance transform. However, our approach here is more general, and demonstrates the fact that,
such computations can be performed by means of more general morphological transformations,
which directly deal with image sequences.
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5. Discussion

If one tries to extend mathematical morphology to image sequences (i.e., multi-valued functions)
one is faced with a very serious problem: there does not exist a canonical total ordering for
vectors like for scalars. One may attempt to circumvent this problem by endowing the space of
multi-valued functions with the marginal ordering; which defines a partial ordering. In this way,
the space becomes a complete lattice, and one may use the abstract theory of morphological
operators on complete lattices. Such an approach is very useful indeed in many situations;
among others, it leads (as was also explained in [13]) to Wilson’s theory of matrix morphology.

However, this approach, which leads to component-wise transformations, is bound to fail
in situations where image components are correlated. In this paper we therefore suggest an
alternative approach, also strongly based upon the complete lattice framework. The basic idea
is to transform the image data by means of a surjective transformation h. The underlying
assumption is that the transformed image data is better suited for the “classical” morphological
approach. There may be several reasons for this to be true. Either h can map onto a totally
ordered set (e.g., a subset of the extended reals), in which case classical gray-scale morphological
operators can be used. We have discussed an example based on the Mahalanobis distance.
Alternatively, h can be chosen in such a way that the data becomes uncorrelated. We have
discussed an application based on the maximum noise fraction transform.

The major drawback of applying morphological operators on the transformed images instead
on the original ones is that it is not a priori clear how to interpret the outcome in terms of the
original data: in general b will not be invertible. To deal with such problems we introduce some
new concepts: h-dilations and h-erosions, and mappings derived from them. To illustrate the
great generality of our approach we have shown that vector distance transforms can be computed
by means of h-erosions.

Acknowledgment.

The work of J. Goutsias and K. Sivakumar has been supported by the Office of Naval Research,
Mathematical Sciences Division, under ONR Grant N00014-90-J-1345.

References.

[1] AsTora, J., HaAavisTO, P., AND NEUVO, Y. Vector median filters. Proceedings of the
IEEE 78 (1990), 678-689.

[2] BARNETT, V. The ordering of multivariate data, (with discussion). Journal of the Royal
Statistical Society, Series A 139 (1976), 318-354.

[3] BIRKHOFF, G. Lattice Theory, 3rd ed., vol. 25 of American Mathematical Society Collo-
quium Publications. American Mathematical Society, Providence, RI, 1967.

[4] BOrRGEFORS, G. Distance transformations in arbitrary dimensions. Computer Vision,
Graphics and Image Processing 27 (1984), 321-345.

[5] BORGEFORS, G. Distance transformations in digital images. Computer Vision, Graphics
and Image Processing 34 (1986), 344-371.

[6] DANIELSSON, P. E. Euclidean distance mapping. Computer Graphics and I'mage Processing
14 (1980), 227-248.

[7] DucunDJ1, J. Topology. Allyn and Bacon, Boston, 1966.

T



(8]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

22]

27

GouTsIAS, J. Morphological transformations of image sequences: A lattice theory approach.
In Image Algebra and Morphological Image Processing IIT (San Diego, 1992), vol. 1769 of
SPIE Proceedings, pp- 306-317.

GREEN, A. A, BERMAN, M., SWITZER, P., AND CRAIG, M. D. A transformation for
ordering multispectral data in terms of image quality with implications for noise removal.
IEEE Transactions on Geoscience and Remote Sensing 26 (1988), 65-74. ‘

HARALICK, R. M., STERNBERG, S. R., AND ZHUANG, X. Image analysis using mathe-
matical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9
(1987), 532-550.

HARDIE, R. C., AND ARCE, G. R. Ranking in RP and its use in multivariate image
estimation. IEEE Transactions on Circuits and Systems for Video Technology 1 (1991),
197-209.

HEDMANS, H. J. A. M. Theoretical aspects of gray-level morphology. IEEFE Transactions
on Pattern Analysis and Machine Intelligence 13 (1991), 568-582.

HewMANs, H. J. A. M. Morphological Image Operators. Academic Press, Boston, 1994.

HELMANS, H. J. A. M., AND RONSE, C. The algebraic basis of mathematical morphology -
part I: Dilations and erosions. Computer Vision, Graphics and Image Processing 50 (1990),
245-295.

Huang, C.-T., AND MITCHELL, O. R. Rapid Euclidean distance transform using grayscale -
morphology decomposition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Maui, Hawaii (1991), pp. 695-697.

JAIN, A. K. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs,
New Jersey, 1989.

LEE, J. B.,, WOODYATT, A. S., AND BERMAN, M. Enhancement of high spectral res-
olution remote-sensing data by a noise-adjusted principal components transform. IEEE
Transactions on Geoscience and Remote Sensing 28 (1990), 295-304.

LEYMARIE, F., AND LEVINE, M. D. Simulating the grassfire transform using an active
contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992),
56-75.

MAKHOUL, J., Roucos, S., AND GIsH, H. Vector quantization in speech coding. Proceed-
ings of the IEEE 73 (1985), 1551-1558.

MEYER-NIEBERG, P. Banach Lattices. Springer-Verlag, Berlin, 1991.

MONTANARI, U. A method for obtaining skeletons using a quasi-Euclidean distance. Jour-
nal of the Association for Computing Machinery 15 (1968), 600-624.

NIBLACK, C'. W., GiBBONS, P. B., AND CAPSON, D. W. Generating skeletons and
centerlines from the distance transform. Computer Vision, Graphics and Image Processing:
Graphical Models and Image Processing 54 (1992), 420-437.

PAGLIERONI, D. W. Distance transforms: Properties and machine vision applications.
Computer Vision, Graphics and Image Processing: Graphical Models and Image Processing
54 (1992), 56-74.




3., AND CHEN, F.-C. Subband decomposition of monochrome and color images
matical morphology. Optical Engineering 30 (1991), 921-933.

., AND TSAKALIDES, P. Multivariate ordering in color image filtering. IEEE
'ons on Circuits and Systems for Video Technology 1 (1991), 247-259.

17X, F. Watershed and skeleton by influence zones: A distance-based approach.
f Mathematical Imaging and Vision 1 (1992), 239-255.

ALM, I. Generation of Euclidean distance maps. Thesis 206, Linkoping Studies in
nd Technology, Department of Electrical Engineering, Linképing University, 1990.

S, J. A. Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin, 1986.

2. Why mathematical morphology needs complete lattices. Signal Processing 21
29-154.

>., AND HEIIMANS, H. J. A. M. The algebraic basis of mathematical morphology
Openings and closings. Computer Vision, Graphics and Image Processing: Image
nding 54 (1991), 74-97.

LD, A., AND PraLTZ, J. L. Distance functions on digital pictures. Patiern
on 1 (1968), 33-61.

'FF, R. Pattern Recognition: Statistical, Structural, and Neural Approaches. John
i Sons, New York, 1992.

". Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

I., Ed. Image Analysis and Mathematical Morphology. II: Theoretical Advances.
: Press, London, 1988.

. Anamorphoses and function lattices (multivalued morphology). In Mathematical
gy in Image Processing, E. R. Dougherty, Ed. Marcel Dekker, New York, 1993,
). 483-523.

l., AND VINCENT, L. An overview of morphological filtering. Circuits, Systems
il Processing 11 (1992), 47-108.

Y., AND MITCHELL, O. R. A mathematical morphology approach to Euclidean
ransformation. IEEE Transactions on Image Processing 1 (1992), 197-204.

Y., AND Wu, H. Optimization on Euclidean distance transform using grayscale
gy. Journal of Visual Communication and Image Representation 3 (1992), 104-

). D., AND BRADLEY JR., W. G. Magnetic Resonance Imaging. C. V. Mosby
, St. Louis, Missouri, 1988.

', G. W. Introduction to Matriz Computations. Academic Press, New York, 1973.

1, J.-I., AND YOKoI, S. Distance transformations and skeletons of digitized pic-
1 applications. In Progress in Pattern Recognition, L. N. Kanal and A. Rosenfeld,
h-Holland, New York, 1981, pp. 187-264.

S. S. Morphological networks. In Visual Communications and Image Processing
adelphia, 1989), vol. 1199 of SPIE Proceedings, pp. 483-493.



[43]

[44]

[45]

(46]

WILSON, S. S. Vector morphology and iconic neural 1
Systems, Man, and Cybernetics 19 (1989), 1636-1644.

WILSON, S. S. Theory of matrix morphology. IEEE Tra:
Machine Intelligence 14 (1992), 636-652.

WILSON, S. S. Training structuring elements in morpho
Morphology in Image Processing, E. R. Dougherty, Ed.
ch. 1, pp. 1-41.

YAMADA, H. Complete Euclidean distance transform by
of the 7th IEEE International Conference on Pattern Recc
pp. 69-71.

29

E Transactions on

ittern Analysis and

s. In Mathematical
,, New York, 1993,

ion. In Proceedings
eal, Canada, 1984),



s
ke

lix we present a proof of Proposition 4.2. We start with the following lemma.

—P . . . iy
vLetr: E— 7 be a mapping that satisfies the requirements of Proposition 4.2.

(u) — r(kv) + r((k +1)v) > r(|u| + |v]) > r(u+ V), u€ Eg, ve E,, (A1)
., where both inequalities and |- | are applied component-wise.

the assumed form of mapping r we have
r(u) — r(kv) + r((k + 1)v))p = rp(|up|) — rp(k|vp]) + mp((k + 1)]vp]).

s Jvp] £ 1, for p=1,2,...,P. If v, = 0 for some p = 1,2,..., P, then, since

7p([up]) — rp(klvp|) + 15 ((k + D)vp]) = rp(lupl) = rp(lup| + |vpl)-
 up| <k, for p=1,2,...,P. If |yp| = 1 for some p = 1,2,..., P, then (see also

pl) = To(klvp]) + 1p((k + 1vp]) = rp(fup| + 1) — (rp(lup| +1) — 7p([up]))
+ (rp(k + 1) — 7p(k))
> rp(lup| + 1) = rp(fup| + |vp)).-

e first inequality in (A.1). The second inequality is obvious from (4.17) and (4.18),
pl 2 [up + vyl |

ROPOSITION 4.2 It suffices to show that (see also (4.16)),
({X} ©n Be-1) ©n Ag-1)(u) € ({X} O Bi)(u), u€ E. (A.2)

or z, & Ey, for some, and hence for all, z. € C(X, By, u), then the right hand-side
ins only +oo. On the left hand-side, { X} 65, Bk is a collection of functions, all of
2 value +oo at the points u+v, v € E;. Hence the set (({ X} 6, Bi—1)OpAk—1)(1)
nd-side contains only the vector +oo. Thus (A.2) holds in this case.

e that u+ 2z, € X and z, € Ey, for some, and hence for all, z, € C(X, By, u). We
v the following three assertions:

ve b

hG(u+v) - Ap-1(v)) 2 H(({X} ©r Bi)(u)), G € {X} ©p B (A.3)

ts a v € E; for which equality holds in (A.3). It is clear from the form of h that,
v € Ey, if equality holds in (A.3) for some G € {X} &, Bi_1, then equality holds
: {X} 61, Bi-1. In the sequel, we shall denote by E}(u) C E}, the set of vectors
h equality holds in (A.3).

v € Fi(u), v+ z, € C(X, By, u), for every z, € C(X, By_1,u+ v).

: C(X, By, u), we have (see also (4.14) and (4.15))

} ©n By)(u)) = M(X(u+ ze) — Bi(z.)) = h(r(ze)) < h(r(2)) < +oo, (A4)
Er such that u+z € X. When G € {X} eh By._1, we have

G(u+v)=X(u+ v+z,) — Bir_1(2)), v Ey, (A.5)
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2(X, Bg—1,u+ v), and
On Be_1)(u+ V) = h(G(u+v)) = H(X(u+ v+ 2.) — Br_1(2.)); (A.6)
C(X, Bg—1, u+ v). When v € Ej, we have (see also (4.6) and (4.12))

X(u+ v+2.) — Be-1(2)) > 1(2)), 2, € C(X, Bx—1,u+v), (A.7)

uality is a component-wise vector inequality. If u+ v+ 7z, & X or z,, ¢ Er_, for
ce for all, z, € C(X, Bx_1, u+ v), then clearly (see also (A.4)),

R(X(u+ v+2.) — Be-1(2,) — Ag—1(v)) = +oo > h(r(z.)), (A.8)

- with (A.4), (A.6) and the assumed form of h, shows (A.3). If u+ v+ z, € X
. for some, and hence for all, z, € C(X, Bg_1, u+v), then (see also (4.13), (A.1),

-7,) = Bi_1(2L) — A1 (v) 2 r(#)) — r((k = 1)) + x(kv) 2 r(v+2,),  (A9)

jualities are component-wise vector inequalities. From (A.4), (A.9), and the as-
"h, we obtain

(X(u+v+2,) - Beo1(2) — Ae—1(v) 2 h(r(v +2)) 2 h(x(z)), (A.10)

used the fact that v+ z, € E. From (A.4), (A.6), and (A.10), we obtain (A.3).

} above.
eed to show that equality holds in (A.3), for some v € E;. Let z. = (a1,. .-, ap) €
e fixed but arbitrary, so that |a,| < k, for p=1,2,..., P. Define v € E; by

0, iflay| <k
Up = 1, ifap=k%k (A.11)
-1, ifa, = —k.

7, — v € E_; and |z, — v| = |2e| — |v]. When 2z € C(X, Bg—1, u+ v) (see also
ve that

) =h(X(u+v+2) - Bri1(z)) S M(X(u+v+2z) - Bi_1(2)), (A.12)
-1, and in particular,
h(r(z;)) < h(r(ze — v)), (A.13)

Ey_iandu+v+(ze—v)=u+z.€X. Let vz, = _(ml,...,mp), for some
ant fixed) 2, € C(X, Bg_1,u+ V), so that |m,| <k, forp=1,2,...,P. In this
an be written as

P P
W(r(v+2.) = FO_raimp))) = FO_ rallas))) = h(r(ze)), (A.14)

p=1

n be written as

- P P
(r(z;)) = f(z Tp(lmp - 'Upl)) < f(z 'rp(lap - 'Upl)) = h(r(z. — v)). (A.15)
p=1

p=1
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Since f(-) is a lattice isomorphism, (A.14) and (A.15) become (see also (A.11))

P

> o ralimal) 2 er(lapl), (A.16)

p=1

and

P .
er(lmpl) + Z [rp(lmp +1]) — rp(Imp|)] — Z [rp(Impl) — mp(lmp — 1))

p=1 {plop=—1} {plvp=1}
P
< Z"'p(‘a'pD - Z [rp(lapl) — To(lap + 1] - Z [rp(las]) — rp(lap — 1])]
p=1 {plvp=-1} {plvp=1}

P
=S e = Y eR) —rpk =1 = Y [rp(k) —rp(k - 1)),
p=1 {plvp= -1} {PI"’le}

(A.17)

respectively. Combining (A.16) and (A.17) we get

P P
0> ZT‘pﬂapD - sz(lmpD

p=1 p=1
2 Z [rp(Imp + 1)) = rp(|my )] - Z [rp(Impl) — rp(lmp — 1])]
{plvp=—1} {plvp=1}
D I Y ORTNCES) E DI ORTACESY)
{plvp=—1} - {plvp=1}

= Y [0 —rplk = 1) = (rp(mp) —p(my ~ 1))]
{plvp=1,mp>0}
+ Z [(rp(k) — rp(k — 1)) + (rp(|myp — 11) — rp(|myp)))]
{plvp=1,m<0}
+ Z [(rp(k) — rp(k — 1)) + (rp(myp +1) — mp(myp)))
{plvp=—1,m,20}
+ > [(rp(k) — p(k — 1)) — (rp(|Ims|) — rp(jmp +1]))] 20,

{plvp=—1,mp<0}

where the last inequality follows from (4.18) and the fact that |m,| < &, for p = 1,2,..., P.
Hence, we must have equality throughout, which, in particular, implies that equality holds in
(A.14), for our choice of v € E;. But since z, € C(X, Bx_1,u+ v) was arbitrary, we have
equality in (A.3). This shows (2) above.

Finally, if v € E{(u), then we must have equality throughout in (A.9) and (A.10). Hence,
u+v+2z, € X and 2z, € Ey_1, for some, and hence for all, z, € C(X, Bx_1,u+ v), and

W(X(u+v+2,) — Bi-1(z,) — Ap-1(v)) = h(r(v + 2;)) = h(r(2)) = h(X(u + 2) — Bi(2c)),

which together with (4.15) and (A.4) gives v+ 2z, € C(X, B, u), for every z,, € C(X, By_j, u+
v). This shows (3) above. ‘

We can now complete the proof as follows: from (1) and (2), it follows that Ej(u) is non-
empty and C(G, Ak—1, u) = E{(u), for every G € {X}©,Bj_1 (see also (4.15) and the assumed

-
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form of h). We then have (see also (4.12), (4.13), and (A.5))

(({X} ©n Bi-1) ©1 Ag—1)(u)
— {G(u+v2) — Apor(e) | Ve € C(G, Ax—1,u), G € {X} O B}
= {X(u+ ve + 2.) — Br_a(2) — Ap—1(ve) | ve € E1(u), 2z, € C(X, Bg_1, u+ ve)}
= {X(u+ Ve +2) + (7)) — r((k — 1)ve) + r(kve) | ve € Ey(u), 2 € C(X, By_1,u+ve)}

Also, for v, € E}(u) we have equality throughout in (A.9) and (A.10). Hence, we obtain

(({X} ©r B-1) ©n Ax-1)(u)
= {X(u+v.+2.) + r(ve + 2,) | v. € E1(u), 2, € C(X, By, u+ ve)}
= {X(u+ ve +2.) — Bi(2. + ve) | ve € E1(n), 2, € C(X, Bp—1,u+ ve)}
C {X(u+ z.) — Bi(z.) | 2. € C(X, By, u)}
= ({X} ©n Bx)(u),

where we have used (3) in the inequality above. This shows (A.2) which completes the proof. §



