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Abstract
The symmetrical shortest queueing model has been studied in several papers. It resulted that the two unknown
functions needed for the complete analytic description of the solution are meromorphic functions. In the present
paper it is shown that this meromorphy can be simple established from the functional equation. Also the zeros
and poles of these meromorphic functions are simple to locate. The information so obtained determines these
meromorphic functions and leads to simple expressions for the operational characteristics of the symmetrical
shortest queue, which are easily calculated with any desired accuracy. helhe
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1. INTRODUCTION

The “two-servers shortest queueing” model, also called the “two-queues in parallel]” model has ob-
tained quite some attention in the literature of Queueing Theory. This attention is not due to the
fact that it is an appropriate model for queueing situations which occur frequently in practice, but
stems from the analytical problems encountered in the theoretical analysis of the involved stochastic
process. The process is a Markov chain on the lattice points with integer-valued coordinates in the
first quarter-plane, and actually a rather simple one in this class of Markov chains. As such, in partic-
ular the symmetric model, has been used as a starting point to obtain information concerning fruitful
techniques for the investigation of the stationary distribution of this type of Markov chain. Presently,
several fruitful techniques are available. They fall into two classes, viz. the analytical one and the
numerical-iterative one.

In the analytical approach the functional equation for the bivariate generating function of the two-
dimensional distribution of the state-variable is the starting point of the analysis. In the numerical-
iterative approach the stationary state-probabilities are expressed as series expansions of which the
coefliciency are iteratively determined from the Kolmogorov equations.

Concerning the analytic approach we mention here the studies of KINGMAN [4], FLATTO and Mc-
KEAN [5], FAYOLLE and IASNOGORODSKI [6], COHEN and BOXMA [1]; for the numerical-iterative
approach, see HOOGHIEMSTRA, e.a. [7], BLANC [8], ADAN, e.a. [9].

In [4] and [5] the functional equations for the bivariate generating function is analysed by using the
uniformisation of a polynomial of two variables; in [1] and [6] the functional equation is transformed
into a Riemann-Hilbert boundary value problem. The outcome of these studies shows that the un-
known generating functions in the functional equation are meromorphic functions for the model of
the symmetrical shortest queue. In [2] the class of Markov chains with this property has been charac-
terised; this property can be straightforwardly derived from the functional equation. A meromorphic
function is an analytic function apart from a finite number of poles in every finite domain. If the
number of poles is infinite and if they increase in absolute value sufficiently fast to oo then the mero-
morphic function is apart from a scaling factor completely determined if its zeros and poles are known.



This actually is the case for the random walks studied in [2], and in particular for the symmetrical
shortest queue. So the question occurs whether these zeros and poles cannot be determined directly
from the functional equation. For the symmetrical shortest queue model this is indeed the case, as it
will be shown in the present study. This approach leads to a very simple analysis of the symmetrical
shortest queue and provides formulas which can be evaluated numerically quite easily.

In section 2 the functional equation is formulated, see (2.3), for a detailed derivation of it the reader
is referred to [2] chapter III.1. In section 3 it is shown that the unknown functions in the functional
equation are meromorphic and their zeros and poles are determined. In section 4 the solution of
the functional equation is constructed and expressions for the various generating functions and first
moments are derived. Appendix A contains some algebra needed for the determination of the zeros
and poles of the meromorphic functions. In appendix B a recursive scheme is given for the calculation
of these zeros and poles. Further some relations are derived for the estimation of the errors made
by approximating infinite products and sums by finite ones. Here are also some numerical results
presented for the case with a = 1.

The results of the present study have all been derived already in the existing literature. The
merit of the present approach is the simplicity of the derivations and the resulting expressions for the
generating functions.

2. THE FUNCTIONAL EQUATION

In the symmetrical shortest queue model the arrival process of the customers is a Poisson process
with arrival rate A. The queueing system consists of two servers, the server times of the customers are
independent, negative exponentially distributed stochastic variables with first moment 3. An arriving
customer joins the shorter queue, if both queues are equal he chooses a queue with probability 1/2.
The queue length process has a unique stationary distribution if and only if (cf. [10]),

a:= A3 <2. (2.1)

Denote by (x1,X2) a pair of stochastic variables with joint distribution the stationary distribution just
mentioned.
We then have, cf. [1]. p. 242: for |r1| < 1,|re| <1,

B{rXirXe(x; > x5)Hrs + 1(:1 + %) _ % S 1+ (2.2)
E{rXrXe (xy > x1 1 + 1(:1 + %) -2+

E{rO (= xo)H5(rn +r2) + (5 ) = = — 11+

E{F (a1 = 0)} (1 = 1) +EpT G = 00} (1- ) =0.

In [1] it has been shown that the relation (2.2) is equivalent with: for |r1| < 1,|re| <1,

E{r® (e > x)Hr o+ 5o+ ) = - — 1)+ (23)
(1= D)) + g+ 5 (= 1) = 5180um) =0,

with
Q(rg) := E{r;c2 (x1 =0)}, P(rire) := E{r1 Tz 2(x1 = X3)}. (2.4)

Denote by (71,72) a zero tuple of the “kernel”



1.1 1 2
T1+_(_+_)___1; |T1|S1’ |T2|§17 (25)
a T T9 a

then it follows because [E{r}"r3>(xa > x1)}| is finite that: for |ri| < 1, |re| < 1,

L0 i0) + i+ L 1) — 518 2) =0, (2.6)
Put

t:=rire, T:=79, (2.7)
then (2.6) may be rewritten as:

Q(7) + ko (7, 1) ®(F) = 0, (2.8)
with

ki(r,t) := at® +[1 — (2 + a)r]t + 12, (2.9)

1 1
kao(r,t) := -1+ §a2t — 5ar,

and (7,1) a zero tuple of, cf. (2.5) and (2.7),
ki(r,t) =0, |r[<1, |t/ <1
In the derivation of (2.8) from (2.6) the relation

1—7y o,
= — —]_
=5 b

has been used, this relation follows simply from (2.5).
The relation (2.8) represents the functional equation for Q(r) and ®(¢). Obviously Q(r) and ®(¢)
should further satisfy the conditions:

i ®(t) is regular for |t| < 1, continuous for |t| <1 and its series expansion in powers of (2.10)
t, [t| < 1, has nonnegative coefficients of which at least one is positive;

. Q(r) is regular for |r| < 1, continuous for |r| < 1, and its series expansion in powers of
r, |r| £ 1, has nonnegative coefficients of which at least one is positive.

REMARK 2.1. Because there is a unique stationary distribution it follows readily that Q(r) > 0 for
0<7<1and ®(t) >0 for 0 <t < 1. Note further that

Q(0) = 8(0) > 0, (2.11)

since the queueing process is positive recurrent. O

3. ANALYSIS OF THE FUNCTIONAL EQUATION

In appendix A, cf. (a.4), it has been shown that k; (r,t) has for |r| > 1 7 # 1, one zero t;(r) in |t]| < 1,
and one zero to(r) in [t| > 1, here

1

tia(r) = (2 +a)r —1£2+a)V/(r—p)(r—p)], 0<p<p2<1, (3.1)

a

with the branch points p; o given by (a.8). Hence, ki (r,t) possesses zero tuples with |#| = 1, |{| < 1.
Put



r=r7

t=1=t(r), (32)

() <lr[=1, r#1,
G:={r:p1 <r < pa},
then we have from (2.8) : for |r| =1, 7 # 1,
Q) + ka(r,t1(r)) ®(t1(r)) = 0. (3.3)

By noting the Q(r) is regular in |r| < 1, continuous in |r| < 1, cf. (2.10)ii, and that ka(r,t1(r)) # 0 for
[r] <1, cf. (a.11), and regular in {r : |r| < 1}\G it follows from (3.3) that ®(¢1(r)) can be continued
analytically out from |r| = 1 into {r : |r| < 1}\G. Because |Q(r)| and |ka(r,t1(r))| are both finite
for r € G it follows that the analytic continuation of ®(¢1(r)) has for r approaching a point of G a
limiting value, this value being dependent on the way r approaches G, viz. from above or below,. At
an interior point of G these values are complex conjugate. Hence (3.3) also holds by continuity for
r € G, and so does its complex conjugate, i.e.

Q(r) + ko(r,t1(r)) @(t1(r)) =0, r€QG. (3.4)

It is readily seen that (3.4) is equivalent with
Q(r) + ka(r,ta(r)) ®(t2(r)) =0, re€Qg, (3.5)

because

ti(r) =ta2(r), TEQG.

The relation (3.5) may be continued analytically out from G into {r : |r| < 1}\§ taking proper care of
the two-valuedness of t5(r) for r € G, note that ky(r,t2(r)) # 0, |r| < 1. Hence we have: for |r| <1,

i. Q(r) + ka(r,t1(r)) ®(t1(r)) =0, (3.6)
ii. Q(r) + ka(r,ta(r)) ®(t2(r)) = 0.

Next note that ko(r,t1(r)) is regular for all » € G, and |t;(r)] < 1 for |r| = 1, r # 1. Because
[t1(r)] < 1for |r| =1, 7 # 1 and t1(r) is regular for all r € G we can continue ¢;(r) in |r| > 1 and
for this continuation ®(t1(r)) exists as long as t1(r) remains bounded by one. Consequently (3.6)i
implies that Q(r) has an analytic continuation for those |r| > 1 for which [¢t1(r)| < 1. With the Q(r)
continued analytically into this region we can by starting from (3.6)ii continue ®(t3(r)) analytically,
excluding those values of r for which ko(r,t2(r)) becomes zero, because ®(t3(r)) may have poles at
those r. It is evident that by repeating the arguments just mentioned Q(r) and ®(t) can be continued
analytically into |r| > 1 and || > 1, respectively, and since kq(7,t) is a first degree linear form in r
and in t the only singularities, which these analytical continuations can have, are poles. Whenever
these poles do not have a finite accumulation point then (r) and ®(t) are meromorphic functions.
This is indeed the case and will be shown below, cf. also [2].

In appendix A it has been shown that the hyperbola ki (r,t) = 0 and the line ka(7,t) = O intersect
at two points, viz. (ry,ty) and (r§,td), see below (a.10), (ry,t5 ) being located on the left branch
of the hyperbola, (r(']", tg') on the right branch, see fig. 1 in the appendix.

Starting from the point (rg', tg') the following sequence is constructed

Lt + +

+ + ot "
Ty — T —(rg,tg) o oty

n—>t;|;—>r;|;+1—>t:+1... . (3.7)
It is defined as follows:

i. rt and t} satisfy (3.8)



ki(rt,,th) =0, i >t n=0,1,2,...,
kEy(rt, th) =0, th >t n=12,...,

ii. k(rt, _,tt)=0, +F _, >tt n=0,1,2,...,NT,
kEi(rE,, tT,.) =0, tt o >rt, n=12,...,NT,

where N* is the smallest value of n for which ¥ or t*  is less than or equal to one, see fig. 2.
Because at least one of the coordinates of the top of the right branch of the hyperbola is less than one
it follows that Nt is finite. Note that, cf. (a.11),

th>1, n=0,1,2,..., (3.9)

rh>1, n=12,...,

fig. 2
right branch of the hyperbola

fig. 3
left branch of the hyperbola



A similar sequence is constructed by starting from the point (ry , %5 ), viz.

e g =t =Dy (g ,ty) =t = =ty =t = =t

which is defined by

i. ki(r,t,) =0, r, <t,, n=1,2,... (3.10)
ki(ry,the) =0, tor1 <7, n=0,1,2,...;

ii. ky(r=,,t=,) =0, Pz, <t n=0,1,2,...,N7,
ki(rZ,_4,t_,) =0, T_ g >t n=12,...,N°,

where N~ is the smallest value of n for which 0 < =, < 1. Because (0,0) and (0,—a~!) are points
of the hyperbola and the top of the left branch of the hyperbola has a positive r-coordinate which is
less than p; > 0, see fig. al, it follows that N~ is finite. Note that, cf. (a.11),

r, <—1, n=20,1,2,...,

t- <0, n=12,....

For obvious reasons the sequence in (3.7) will be indicated as the ladder generated by (rg,t{),
it consists of an “up”-ladder, formed by the elements rf’,ti", ..., and a “down” ladder formed by
tfl,ri'l, .... Similarly (ry,t;) generates a ladder. Actually any point of the hyperbola generates a
ladder by using the procedure (3.8) or (3.10) depending on the location of the starting point on the
right or left branch of the hyperbola.

For the further analysis of the functions Q(r) and ®(t) we consider the relations (3.6) at the points
of the ladder generated by (rg,t1).

Because ky(rf,t) = 0, cf. the definition of (rf,#7) in appendix A, it follows from (3.6)i that
|®(t)] < oo = Q(ry) =0. (3.11)

Since (g ,t{) is the only point at the right branch of the hyperbola for which ks (r,t) = 0 it follows
from (3.6)ii that

Qrg) =0 = &(tf,) =0, (3.12)
and similarly
®(tt,) =0 = Q@t,) =0, (3.13)

Qrt,)=0 = &t _,)=0.

—-n

Because Nt is finite and 0 < 7t , <1or0<tt,, <1itis seen that by assuming |®(t{)| < oo
a contradiction results from (2.10), (3.11) (3.12), (3.13), cf. also remark 2.1. Consequently

|B(t5)| = oo (3.14)

The conclusion (3.14) implies that |Q(r{ )| < co. Because if |(r{ )| = co then again by using (3.6)
and descending along the “down” ladder generated by (r{,tl) it is seen that Q(r) or ®(t) is not
finite at an interior point of 0 < r < 1 or 0 < t < 1, note ka(r,t) # 0 at all points of the ladder
generated by (rg,t7), with the point (r,t{) excepted. Hence |Q(r{ )| = oo leads by using (2.10) to
a contradiction, so since 7‘3’ >1,

0 < |Qrd)| < o0. (3.15)



Because ka(r,t) = 0 is a linear relation in r and ¢ it follows from (3.14) and (3.15) that
®(t) has at tg a single pole. (3.16)
Again by noting that ko(r,t) # 0 at the points of the “up” ladder ri", ti", r;', t;’, ..., it follows from
(3.6) that
Qr) has at rr,n=12,..., a single pole,
o) ,, ,, tF

n?

(3.17)

n=0,1,2,..., a single pole.

Next we consider the relations (3.6) at the points of the ladder generated by (ry , %, ).

Starting at (rg , ¢, ), ascending along the “up” ladder, the assumption that |®(t; )| = oo leads again
to the conclusion that |Q(r)| or |®(t)| is infinite for a value of r or of ¢ with || < 1 or [t| < 1,
respectively. This contradicts (2.10). The assumption ®(tg) = 0 yields Q(rZ;) = 0, so that by
ascending the (ry,t; )-ladder it follows from (3.6) that Q(r) = 0 at r~,, and because 0 < 7~ < 1,
(2.10) leads again to a contradiction, so

0 < [®(t0)| < o0. (3.18)
By descending the ladder generated by (rg ,ty ) it follows from similar arguments as above that

Q(r) has at 7, n=0,1,2,... a simple zero,

(3.19)

ety ,, ,, t,, n=12... a simple zero.

Next we show that (3.17) and (3.8) list all the zeros and poles of Q(r) and ®(t).

Suppose that (p, T) is a point not belonging to the set of the points of ladders generated by (g , ;)
or (rf,tl). Consider the ladder generated by (p,7), note that kz(r,t) # 0 at all points of this ladder.
Consider the case that (p,7) is a point of the right branch of the hyperbola. If |Q(r)| = co at a point
of the (p,7)-ladder then by descending this ladder we reach again a contradiction by using (3.6) and
(2.10); similarly if it is supposed that |®(t)| = oo at a point of this ladder. Further Q(r) # 0 and
®(t) # 0 because at this ladder r and t are both positive. Hence ®(t) and Q(r) have no zeros nor
poles on this (p,7)-ladder. It is readily seen, by using the same arguments as above that ®(t) and
Q(r) have no zeros nor poles at any (p, 7)-ladder with (p,7) a point of k;(r,t) = 0. Consequently, it
follows that

Q(r) and ®(t) have no other zeros and poles than those listed in (3.17) and (3.19). (3.20)

4. THE SOLUTION OF THE FUNCTIONAL EQUATION
With the results obtained in the preceding section Q(r) and ®(¢) can be determined.
It is readily seen that: for n — oo,

+

+ — o0, tF — 00, T, — —o00, t; — —o00. (4.1)

T n

From (3.7), (3.8), (3.10), (3.11) and (a.7) it is seen that

. tr 7"7—11—-1-1
lim &+ =¢, lim =, (4.2)
+
n—oo T, n—oo tn,
. T Lty
lim Tl — 8, lim 2 =3§,
n—oo t, Tn

with, cf. (2.1),

1
5= 2—[2+a+\/a2+4]>1. (4.3)
a



Hence
i+ rt t T
8= lim 2 = lim 28 = lim 2 = lim 22 (4.4)
n—oo {1 n—oo o n—oo {, n—oo .,

From (3.17), (3.19), (3.20) it is seen that each of the four sequences describing the zeros and poles of
Q(r) and ®(t) have no finite accumulation point. So that by the construction described below (3.6)
Q(r) can be continued analytically into the domain |r| > 1, punctured at the points r}t,n =1,2,....
Hence

i. Q(r) is a meromorphic function, (4.5)
ii. (I)(t)nn X IR) )

the proof of (4.5)ii is analogous to that of (4.5)i.
From (4.2) and (4.3) it follows that each of the series below converge:

SN S S L S (46)
n=1 n=0 n=0 n=1

This together with (4.5) determines (r) and ®(¢) uniquely apart from a constant, cf. [3]. p. 296,
and we have for 7 # r, t # tT

(- 2) L0 )
R TN Ol M () “n

H:O:1(1 - é) Hff:o(l - %)
M- 1) o= )

Note that a meromorphic function is completely determined by its poles and zeros if (4.6) holds and
that (4.6) guarantees the convergence of the infinite products in (4.7).
It remains to determine (1) and ®(1).
By taking r; =re = 1 in (2.2) it follows that
2—a

Q1) = ——. (4.8)

®(t) = ®(1)

From this and from (2.8) with t =# =1 and with # =1, f=a"' if 1 < a < 2 it is seen that

1
i = < (4.9)
i ®(1) Tta for a<l,
1 1
ii. @(5)25(2—@ s, 1<a<2;

below, cf. (4.15), it will be shown that (4.9)i also holds, for 1 < a < 2, and so the constant factors in
(4.7) are known.

Because, cf. (2.4),
Q(0) = @(0), (4.10)
we obtain from (4.7), (4.8) and (4.9) the identity

9
2—a HZO=1(1 - %) B Hfzo(l - é)
¢ Moo "WIsa- by

(4.11)



From (2.3) we obtain

(1—=7r1)Q(re) — %[G/I“l?"z — (24 a)ry + 2]®(r17r2)
ar?ro +ry +11 — (2—a)riry

E{ri ¥ (xo > %)} =12 , (4.12)
for all those r1, 73 with |r1] < 1, |rz| < 1 for which the denominator in (4.12) differs from zero. If it
is zero the righthand side of (4.12) has to be replaced by its appriopriate limit, i.e. the limit obtained
for (r1,72) — (#1,72) with (#1,72) a zero of the denominator in (4.12).

From (2.7) and (4.12) it is seen that

(r—t)Q(r) + lat(1 —7) +2(t — )] ()
at? +[1—(2+ a)r|t + r2

E{tX ¥ %1 (x, > %)} = , (4.13)
for all those 7,t which are not poles of Q(r) and ®(t), respectively, and which are not zeros of the
denominator in (4.13), if they are the appropriate limit replaces the righthand side of (4.13). From
the analysis above it follows that this limit exists. obviously (4.13) is a meromorphic function in r for
fixed t, and also in t for fixed r.

By taking 1 = 79 = r in (2.2) and in (4.13) once with ¢ = 1 and once with » = 1 it follows: for
<1, <1,

i B{NR) = _2(” @), (4.14)
i B > x)} = 1o (52— a) - B0,
i, B{%(xp >3} = %attb(t),
v, B{S(xa =)} = 8(),
v. E{r® (x2 = 0)} = Q(r);

for the last two relations in (4.14), see the definitions in (2.4). By taking in (4.14)ii and iii, t =1, a
linear relation for ®(1) follows from the symmetry of our model, it results that

1
From (4.8), (4.14) and (4.15) it readily follows that
1 1
i Prixi=x} = Prix >x}=Pro>x)=g lia, (4.16)
ii. E{XZ(XQ > Xl)} = a [1 + ( )]
2(1+a) (1)
_ 11, 0
iii. E{xi(x2 > x1)} = T a2l59 ~ <I>( ] ] for a #1,
: 1 @0(1)
iv. E{x1(x; =x9)} = T2 30)
)
v B{x,} = a 1Q0)(1)

202-a) "2 00) "
and for a = 1, from (4.14)ii and (4.16)i,
(4.17)



10

i B> x)}=lm {0 - a0} = 30() = |,
1 o0
=20
(@
T P A L

For the calculation of the derivatives in the formulas above, note that (4.7) implies:

3()(¢) 1 > 1 1
= + — .t <, 4.18
(1) th —t ;{ti—t t;—t} 1= (4.18)
QO (r) —1 =1 1
= + - ] < 17
Q(r) Ty — T ;{r;{{ —r Th — r} Irl <

1 > 1 1
e (7 PRl )

q)(”)(t) 3 <I>(')(t)
(1) =1 ®(t)

It is seen from (4.3) and (4.4) that these series converge uniformly, for |¢| < 1, and |r| < 1, respectively.
Finally we consider the size of the shorter and of the longer queue, i.e.

12+ ( P <1

X, := min(X1,X3), 2:= max(Xy,Xz). (4.19)

It follows from (1.14)i by using the symmetry that for |¢| < 1,

E{t*} = B{t*' (x1 < x2)} + E{t*(x2 < x1)} + E{t*' (x1 = x2)} (4.20)
_ 2—a—(1+at)d(t) 1
- 1—at 17 a’

E{t*} = (1 + at)®(t).

From which it follows

B{x,} = ﬁ[& —(1+a) L, a#l, (4.21)

113091

127y P YT

"

a a(")(1)
et ga)

E{x;} =

Denote by w the waiting time of a customer. Since the service times are negative exponentially
distributed with moment £ it follows readily from (4.20) that: for Rep > 0,

2—a+(1+af(p)2(B(p)

E{e™} = E{[B(p)F"} = e ,

(4.22)

with




11

It is of interest to note that a customer who can judge the queue lengths at his arrival epoch is
confronted with an average queue length E{x;(x2 > x;)} and then experiences an average waiting
time equal to 8 E{x1(x2 > x1)}.
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APPENDIX A.
In this appendix we derive some relations for the zero tuples of kq(r,t). We introduce the stochastic
variables & and n with distribution given by

a
Pr{é=2,m=0}= 5"
Pr{f:l,n=0}=2+a, (a.1)
Pr{€=0,n=2}= 1 a’

Then
a 1 1 9

Ey(rt) =0 <= rt=E{&} — rt= t .
1(r,1) " {t>r} " 2+a +2+a+2+ar

With t = rp it follows

ki(r,rp) =0 <= p= E{p£r£+n_2}. (a.3)
From (a.1) it is seen that

Pr{{+n-2<0}=1,

and so it follows by using Rouché’s theorem that: kj(r,rp) has for fixed r with |r| > 1, r # 1, one
and only one zero in [p| < 1. Because ki (r,t) has for fixed r two zeros, ti,t9, say, it follows that: for
Ir| > 1,7 #1,

[t2(r)| > [r] > [t (r)]- (a.4)

It is readily seen that ki (r,t) = 0 with real » and t represents a hyperbola with center (7,,,t,,) given

by

2+a _ 2
m—4+027

T 44402

(a.5)

Tm

and asymptotes given by

t—tmz;—a 2+ a+ a4 (r —rm). (2.6)

The zeros of ki (r,t) are

i. t1,2(r) = %[(2 +a)r —1+£4/[(2+ a)r — 1]2 — 4ar?], (a.7)

B ra(t) = % (2 +a)t + /(4 + @) — a1).



12

The branch points of ¢ 2(r), i.e. the zeros of the square root in (a.7)i, are given by
pre=[1+(1£Va)?]"", 0<p<pp<1, (a.8)

those of r1 2(t) by

0 T (2.9
= T = . a.
T 2T 2 +4
Some special zeros of ky(r,t) =0 are
1
t(0) =——,  #(0)=0,
7'1(0) = 0, 7‘2(0 = 0,
1
t1(1) =1, ta(1) = —, a<l, (a.10)
a
1
= = 17 a 2 17
a
ri(l) =1, re(l) =1+a.

Consider next the equation ko(r,t) = 0, cf. (2.9), which for real r and t represents a straight line of
which the slope lies in between the slopes of the two asymptotes of the hyperbola, cf. (a.6). Hence
ki(r,t) = 0, ko(r,t) = O intersect at two points (g ,t;) and (ry,tg), say, with (ry,t;) on the left
branch and (r(']{', ta') on the right branch of the hyperbola. It is readily seen cf. fig. al.,

2
ry < —- < -1, ty <0, (a.11)

2 1
+ +
ty > F(l + §ap2) >1, rg > 1.
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APPENDIX B.
For the numerical evaluation of the results derived in this study the values r,,t, of the ladders
generated by (rf,t3) and (ry,t;) are needed. For their calculation we described here a simple
recursive algorithm.

The points (g ,ty ), (rd,td) are determined, cf. (2.9) and end of appendix A, as the roots of

i.  at?+[1—(2+a)yt+r2=0, (b.1)
. 1, 1
ii. —a“t — —ar —1 =0,

2 2

here (g ,ty ) and (rf,tl) are defined so that

g <—1,ty <1, rf>1,tF>0. (b.2)
From (b.1) it follows that ry ,r§ and t;,t{ given by,

(it ) = (2, ), (b.3)

(T(]_a 0_) = (_1_ %a_%)'

For the points of the (r{,tF)-ladder it follows readily from (3.8), see also fig. 2, by using the
properties of the zeros of the quadratic polynomial (b.1)i that for n = 0,1,2,.. .,

riree = a(th)? +th, (b.4)
t+t+ 1 (7‘+ )2
nlny1l = a n+1l/ »
and
i =2+,
1
t+ + tn+1 [(2 + a) n+1 1]
Similarly, for the (rq ,tg )-ladder: for n =0,1,2,...,

tatni = E(T;)2’ (b.5)

T’n Tn—l—l = ( n—l—l) +tn+15

and
_ 1 _
t, +t = E[(Z +a)r, —1], (b.6)
T + 7oy = 2+ a)t .

By using (b.3) or (b.4) the values of 7}, ¢, 75 ,t1,..., are easily computed once r{ or t§ is known.

It is noted that for n sufficiently large the asymptotic relations, cf. (4.4),

th, ~ 8%tE, rE .~ 82rE, (b.7)

n+1
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may be used, here § > 1.
In order to calculated, cf. (4.17),

)= 20 (b.8)

the infinite products have to be replaced by finite products, and it is of interest to estimate the involved
error. First note that
> 1, 5 1
[Tao-s<Jla-=). ~N=>1, (b.9)
n=1

Tn it Th

since all 7} > 1. Further for 0 < z << 1 and any € > 1 it follows from
e <<l—z<e®

and (b.7) that for N sufficiently large

n=0 TJ_I{I'{‘” ’

so that for N — oo.

o 1 1 1
i. (1- Y~ 1l— (b.10)

Ho-F~t=wm—

o 1 1 1

il. 1+ — )~ 1t

nl;[() ~TNin r]‘*\',+n52—1

the derivation of the second relation in (b.10) is analogous to the first one, note that r, < —1.
Consequently, for N sufficiently large

oo N
[0~ ~(I0- - ), (b.11)

[0~ o ~(Il0- 20 =gty

Tn n=1
Similarly we obtain for IV sufficiently large

1 1

>© 1 N
D i D Rl a (b.12)
ern -1 a1 Ty 6 1

Finally we present a few numerical results for the case a = 1, 8 = 1 and compare them with those for

the M/M/2 model with a = 1. From (b.3) we obtain for a = 1,
g =3, t; =—1, rf =2 tf =4 (b.13)

The values of 7 and t* are listed in the table below, they are obtained from (b.14) and (b.13).
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rt tt —r, —t
n=20 2 4 3 1
1 10 25 24 9
6% = 6.854102
2 65 169 168 64

3 442 1156 1155 441

4 3026 7921 7920 3025

5| 20737 | 54289 | 54288 | 20736

6 | 142130 | 372100 | 372099 | 142129

The calculations yield after error correction, cf. (b.11), (b.12),

Q1) \
) = 04282 = E{x,} 0.33333
¢(H)(1)
= 0.35264
(1)

0.33333

E{Xl(XQ Z Xl) = 0.33816

!
!
!
!
!
$(0) = 0.31597 = E{(x1 = x2 = 0)} | 0.28571
!
!
!
!
!
!

M/M/2

shortest queue

and confirm the numerical results obtained in [8], [9].
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