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Multigrid and Advection

Paul M. de Zeeuw
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Abstract

A study is made of the application of multigrid methods for the solution of linear systems resulting from the
discretization of advection-diffusion problems. Matrix-dependent grid transfer operators are investigated; it is
shown that an upwind approach for these operators correlates to an upwind discretization of the advection on
coarser grids. The Incomplete Line LU (or: Incomplete Block LU) is employed as a smoother within a black-box
multigrid solver. It is proven that for a certain (limited) class of problems this smoother turns into an exact
linear solver. The black-box multigrid solver is tested for the Molenkamp problem.

A certain type of 2D implicit schemes is proven to produce an unstable discretization.
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Note: This report is an extended version of [19].

1. INTRODUCTION

We present a multigrid method that comes close to solving real-life problems. For the general concept
of multigrid methods we refer to the extensive literature on this subject (for lots of exquisite theory
see [6], for a more practical viewpoint see [18]). An introduction to the virtues of multigrid method

through an elaborate example can be found in e.g. [6, 13]. We consider a general linear 2nd order
elliptic PDE in two dimensions

Lu= -V - (DVu) + by (z, y)g—z + by(z, y)g—; + o(z, y)u = f(z,y), (1.1)

on a bounded domain © ¢ R? with suitable boundary conditions. D(z,y) is a positive definite 2 x 2

matrix function and c¢(z,y) > 0. We suppose that Q is a rectangular domain. For the multigrid

method to be discussed we consider a set of increasingly coarser grids (vertex-centered):
UOU_1D...2:,D...D Q.

The grids are described as follows:

QU ={(zs,9:) | @i = 01 + (i — Dhe,yi = 0 + (j — 1)hs} (1.2)

where (01, 09) is the origin and hj_1 = 2hi. The discretization on the finest grid {; evokes the linear
system

Liw = fi. (1.3)
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Neither uniformity nor rectangularity of the grids is essential to our approach, problem (1.1) may be
discretized on a curvilinear grid.

Firstly, in section 2, we consider the coarse grid correction. It is explained why, with a standard
choice for the prolongation and restriction a multigrid algorithm may fail to converge. We go on to
show a remedy. Secondly, in section 3, we consider the other major part of the multigrid algorithm:
the smoother. In this chapter we confine ourselves to structured grids and for that the Incomplete
Line LU appears to be most appropriate as smoother. Thirdly, in section 4 we show numerical results
for the Molenkamp problem as it is defined in [15, 16]. Within an implicit time-stepping scheme a
multigrid solver is used, of which the major parts are described in the foregoing sections. This solver
has proven to be able to solve many 9-point discretized advection-diffusion problems [21]. The Molen-
kamp problem, as it is specified, can be considered as the (difficult) limit-case of an advection-diffusion
problem for which the diffusion vanishes. Our main concern here is the efficiency of iterative solvers
and not so much the accuracy of differencing schemes. In section 5 conclusions are summarized.

2. THE GALERKIN APPROXIMATION

In this section we study one of the main parts of a multigrid algorithm: the coarse grid correction.
It is demonstrated that the standard approach is not satisfactory; a full analysis of the occurring
difficulty is given, followed by a remedy which consists of choosing the prolongation and restriction in
an operator-dependent way.

Consider the coarse grid correction (CGC) within the multigrid correction scheme:

dik-1 = Re-1(fx — Liur); (2.4a)
solve Ly_jex—1 = di_1; (2.4b)
U = ug+ Prep_1. (2.4c)

Ry, is the restriction operator that transfers the residual from the fine grid Q; onto the coarse
grid Q_1, Py is the operator that transfers a correction for the solution from the coarse to the fine
grid. Firstly we raise the question how to make an appropriate choice for Ly_;. One obvious and
straightforward way is by discretization of the operator L on Q4_;. A disadvantage of this approach
is that it may fail if L has (rapidly) varying coefficients and Q;_; is a very coarse grid, because then
the sampling of the coefficients becomes faulty. Another approach is suggested by the diagram in
Figure 1 (5(f2) denotes the space of grid-functions defined on ;).

The operator Ly, (corresponding to the dashed arrow) is defined by the sequence of operations
Ly 1=Ry_1LiP;. (2.5)

Definition (2.5) is called the Galerkin coarse grid approximation [18]. Definition (2.5) is an essential
ingredient for a black-box algorithm. By the latter we mean an algorithm with the linear system (1.3)
as input, the solution as output and without parameters which have to be tuned. No interference of
the user with the algorithm is required. In the context of multigrid methods this means that the user
only needs to provide the system on the finest grid. The corresponding systems on the coarser grids
are derived by an explicit construction according to (2.5). An advantage of (2.5) is that after the
coarse grid correction the restriction of the residual vanishes

Ri—1(fx — Lytix) = 0p—1. (2.6)

This means that at each coarse grid point a weighted average (with non-negative weights) of the fine-
grid residual is zero, which implies that the residual consists of short wavelength components only.
Such components can be reduced efficiently by a subsequent smoothing step.

We choose the restriction to be the transpose of the prolongation
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S(Q) > S(Q)

Py Ry,
Ly,

S(Q%-1) — — —  — S(Qu-1)

Figure 1: Diagram of Galerkin approximation.

Ri1 =P, (2.7)

Hence, once Py has been chosen, Ri_1 and Li_; follow automatically and the coarse grid correction
is determined. Note that by (2.7) the possible (anti)symmetry of Lj is maintained on the coarser
grid. Further, when Ly is a conservative discretization of L and Py interpolates a constant function
exactly, then the Galerkin approximation Li_; is conservative just as well (see [21]).

So finally we end up by having to make a choice for the prolongation. Under the assumption of (2.7),
the prolongation must satisfy an accuracy condition in order to obtain mesh-size independent rate of
MG-convergence (see [2, 6, 7, 18])

2mp > 2m, (2.8)

where 2m is the order of the PDE, and mp is the highest order plus one, of polynomials that are
interpolated exactly by the prolongation. A standard choice for the prolongation is bilinear interpo-
lation which satisfies the accuracy condition. This interpolation amounts to taking an equal average
of solution-values at neighbouring coarse-grid points (see Figure 2).

At the grid-points of the fine grid that coincide with the coarse grid we take identical values. The
bilinear prolongation can also be denoted by the stencil

Py~ (2.9)

PN N N
[ ey I
NI TN N

This stencil shows the non-zero values of the fine-grid function generated by the prolongation of
a coarse-grid function which equals 1 at one point and O elsewhere. Because of (2.7), the same
stencil also represents the chosen restriction operator. Because of the foregoing remarks it looks as if
an accordingly constructed MG-algorithm, furnished with an effective smoother, should do the job.
Indeed, this is the case for a considerable class of problems. Yet, when a dominating advection term
is present, divergence may occur. This is the topic of the next section.
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Figure 2: Bilinear prolongation.

2.1 Ezample of Galerkin approzimation for an advection dominated problem
Consider the following linear operator:

Lu = —eAu+ g—z (2.10)

For vanishing diffusion the following stencil is the result from some simple upwind discretization on a
grid with mesh-size equal to 1:

0 0 0
Li~| -1 1 o0]}. (2.11)
0 0 0

By repeatedly applying (2.5) for the standard choice (2.7,2.9) we observe on the n times coarsened
grid Q;_,, the stencil: '

1 1 1 1 1
“iz § iz 7 0 +gp
Liian~| =3 3 =3 l|+2"| =} 0 41|+ (2.12)
1 1 1 1 1
"1z 0§ 12 1z 0 +g '

with a remainder that is rapidly decreasing with n. (This observation is verified in the next section.)
The two stencils are the same ones as evoked by discretization with bilinear finite elements of a diffusion
and advection term in the z-direction. Apparently the advection-stencil increases exponentially with
n. Each time the grid is coarsened by the factor 2, the mesh Péclet numbers are multiplied by
the same factor, which is reflected by the Galerkin coarse grid approximation. For increasing n the
central advection-stencil will dominate and spurious high-frequent solutions will be created on the
coarse grid and subsequently transferred to the fine grid. For small n it may be a feasible approach
to require that the relaxation method on the fine grids is such that those components are sufficiently
smoothed. However, when a really fine grid is employed, we need a substantial number of grid-levels
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to make use of the coarsest grid, where the components with the lowest frequency are reduced. In
this case n can be so large that the spurious solutions created on the coarse grids affect severely the
convergence of the multigrid algorithm as a whole. The equality (2.6) may still hold after the CGC,
but we have to recognize that the amplitude of the short wavelength components comes to a very
large magnitude. A first experimental result of divergence for an advection-diffusion problem, even
when a robust smoother like ILU is in use, can be found in [22] (together with a Fourier local mode
analysis).

2.2 Analysis of the Galerkin approach for constant coefficients

In this section we give an analysis of the behaviour of the Galerkin coarse grid approximation for the
advection-diffusion equation. We confine ourselves to the case of constant coefficients. The matrix
L, is represented by a single nine-point stencil only. With the choices (2.5),(2.7) and (2.9) we obtain
a coarse grid matrix Li_; which is also represented by a nine-point stencil. Because of the constant
coefficients, the construction (2.5) can be seen as the linear transformation

[ i \ a \
f2 c2
f3 cs
fa cs
Gl fs |=] ¢ |, (2.13)
fe cs
fr cr
fs cs
\ fo \ cy
with G a 9 X 9-matrix. The vectors correspond to the stencils
fr fs fo 7 g cg
fre fa fs fo |, I~ @ o oo | (2.14)
fi o fa ¢4 ¢ c3

The stencil f* is defined on the fine grid, the stencil ¢* is defined on the coarse grid. The matrix G
describes what becomes of a stencil on the fine grid under the Galerkin coarse grid approximation.
An eigenvalue decomposition of G exists and reads:

G=vDV~',G,V,DeR’ xR’ (2.15)

where D is a diagonal matrix showing the eigenvalues of G and

bbb ch bk o110
1 -z 0o 0 -3 § -2 0 -2
bbb b h ok 1o
-2 I 0 -3 0 3 -2 -2
Vv = $ 2 0 0 o0 3 0 4|, (2.16a)
-2 0 F 0 3 2 -2
I R
L -2 o o 3 ¥ 2 0 -2
A T I A




_1 1 _1 _1 1 1 _1 1 _1
( 3 6 3 3 6 3 3 6 3\
-l 1 1 1 1 1 _1 _1 _1
3 3 3 6 6 6 3 3 3
-1 0 1 0 0 0 1 0 -1
-1 0 1 -1 0 1 -1 0 1
vl o= -1 -1 -1 0 0 o0 1 1 1], (2.16b)
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
§ "2 s 0 0 0 -5 5 -5
1 1 1 1 1 1
§ 0 -5 -z 0 5 §F 0 —§
1 _1 1 _1 1 1 1 1 1
\ 9 18 9 18 36 18 5 18 §}
D = diag(1 11224} L1

). (2.16¢)
The proof follows from a straightforward but tedious evaluation (see [21]). .

The column-vectors of V' are the right-eigenvectors of G, the row-vectors of V=1 are the left-
eigenvectors of G. Below we depict these vectors as 9-point stencils, together with the corresponding
eigenvalues. The stencils with the first six right-eigenvectors are the ones as evoked by discretization
with bilinear finite elements of partial derivatives, ranging from zeroth to second order. The stencils

read:

1 1 7 B 1 1 1 7
B A O T A s B Y
L 73 6 3 L — 6 3 76
[ 1 _1 _17 -1 _2 _17
I P ; 0
1 1 —
? -f 'f 3 :1? g‘ ?—- N—h a‘yz, A2—1, (2.17b)
L 3 T3 T3/ L6 ~3 ~ 6
[ 1 0 —17 [ ;7 0 -1 52
0 0 0|, 0 0 o0 ~—ht —— A3=1, (2.17¢)
1 0 1 1 o 1 9=y
L~ . L T 1 i |
[ -1 0 1] [ -5 0 L] 5
-1 0 1}, -3 0 1% ~hos Ay =2, (2.17d)
1
| -1 0 1] |- 0 ]
T r 1 1 1 7
1 1 1 5 3 = 5
0 0 o], 0 o 0 ~h—, s =2, (2.17e)
1 1 1 1 1 1 ay
- -1 =1 L "1z T3 13
T 1 1 1 7
1 1 1 % 5 =
1 1 1], s 5 3| ~1, Xe = 4, (2.171)
1 1 1
11 1] 3 9 36 .
B 1 1 1 7 B T
“5 tn —% -2 -1 5
0 0 0|, 0 0 0 ~—2h3m,,\7= 5 (2.17g)
BEEE T B N U Y !
[ 5 0 =1 [ 1 0 -1 5
1 1 3 -1
o -1 1 0 -1
. 6 6 J I J
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1 1 1
i 1 -2 1 o8
1 4 -1 s
L _ 1 1 1 -2 1
9 18 9

We denote the set of right-eigenvectors by {v;};=1,.,9 and the set of left-eigenvectors by {w; }=1,...,9-

The right-eigenvectors {v;};=1,...,y form a linearly independent set of vectors that span R®. Because
trivially V=1V = I, we observe that the two sets of eigenvectors satisfy a bi-orthonormality relation.
Therefore, if we have some stencil f*, we can easily determine the coefficients of the unique linear
combination of the v; to which it is equal

9
f=> (wj, flv;. (2.18)

i=1

For the advection-diffusion example described by (2.10) and (2.11) we find

L} = Lo +of + Sof + Sod. (2.19)
Because
G =VD"V~1, (2.20)

we find after the n times subsequent application of the Galerkin coarse grid approximation the stencil
fon = 301 +270] + (3)" 1508 + (1) 138 (2.21)

on the n times coarsened grid. We observe how, for increasing n, L}_, is dominated by the central
advection stencil vy.

Remark  Analogous results hold for 7-point stencils of type

fo fr
fs  fa S (2.22)
i f

provided (2.7) holds and

B[ DO

Py ~ (2.23)

N et DO
[SIE

Here also exists an eigenvalue decomposition of G, which reads:

G=vDV1,G,V,DeR xR (2.24)



D is a diagonal matrix representing the eigenvalues of G and

1 1 1 1
[0 -1 -3 -} -} & 1
1 1 1 1
0 0 3 § -5 1 -1
1 1 1 1
-0 -3 -3 =5 &5 -1
V = 2 2 1 0 o } o], (2.25a)
1 1 1 1
-1 0 -3 5 5 o33 1
1 1 1 1
0 0 3 -5 5 1 1)
1 1 1 1
\ 0 -1 -5 § 3§ & -1
T T S S
6 3 3 6 3 3 6
L -1 1 1 1 _1 _1
3 3 6 6 6 3 3
-1 5 _1 _1 _1 5 _1
6 6 6 6 6 6 6
vl = 0 1 -1 0 1 -1 o0 [, (2.25b)
-1 -1 0 0 o0 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1
58 8 0§ %)
D = diag(1 1 1 2 2 4 1), (2.25¢)

2.3 Upwind prolongation

The Galerkin coarse grid approximation (2.5) can be looked upon as discretizing Ly into Lj_; (the
analogue of discretizing L into L;_;). The type of this discretization is determined by the choice of
Py and Ry_;. When we choose (2.7) and the bilinear prolongation (2.9), the type of discretization is
some central differencing scheme. This central differencing is the reason why the ratio of numerical
advection and numerical diffusion is increasing at the same pace as the mesh Péclet number when
the grid is coarsened. The remedy is to use an upwind prolongation, that is related to the method of
characteristics. The restriction is again defined by (2.7), which hereby becomes of upwind-type as well.
By this remedy, the Galerkin coarse grid approximation (2.5) becomes an upwind-type discretization
of Ly into Li_;. As an example, suppose we only accept information from the left-hand side, i.e. the
solution upstream. This corresponds to a prolongation with biased weights as depicted in Figure 3.

In stencil notation the upwind prolongation and restriction look like

1 1

2 3 0

1 1 o0]. (2.26)
1 1

z 3 0

In this case the Galerkin coarse grid approximation is given by
Gup = VDV_I,Gup, D € Rg X ]Rg, (227)

with V given by (2.16a) and
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@ coarse-grid point

1/2 1/2 0

o fine-grid point

1/2 1/2 0
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Figure 3: Example of upwind prolongation.

(2.28)

M- o 0o 0o 0 o o = o
=== ==
=== ===
O N
== === =
o 0o~ 0 o0 o0 o0 o o
oM O O O O O O O
N O O O O 0O O O O

—

O
Il
O O O O O O © O N

We observe that now the amplification of the diffusion-stencil (2.17a) in the z-direction keeps pace
with the amplification of the advection-stencil (2.17d). For the example from section 2.1 and by
repeatedly applying (2.7) and (2.5) we obtain on the n times coarsened grid ;_, (see [21]):

=27 0f 4 2%0f + (3) vk + (3)" 159, (2.29)
that is
1 1
-5 § 0
.=20 -2 %2 o0 |+27... (2.30)
-1 1 0
6 6

and we observe that the upwind approximation of the derivative is preserved.

Generally speaking, the point we like to make is as follows. We can use the 9-point discretization that
we prefer on the finest grid (not necessarily of upwind-type). The coarse grid correction (2.4) can be
viewed as accelerating method for the relaxation on the finest grid. When we use bilinear interpolation
for prolongation, the ratio of convection over numerical diffusion may grow much larger on increasingly
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coarser grids and thereby divergence of the CGC may occur. When we use a prolongation of upwind-
type, the ratio of convection over numerical diffusion remains roughly the same at all grids in use with
the multigrid algorithm.

2.4 Matriz-dependent prolongations and restrictions

The bias in the upwind prolongation may have to be different in each grid-point because of the varying
problem-coefficients. The only way to obtain information about these coefficients is by deriving
them from the matrix (because we agreed to construct a black box which only needs to know the
matrix and the right-hand side). Therefore, in this context, the upwind prolongation wished for is a
matrix-dependent prolongation. Matrix-dependent prolongations were introduced in [1,4]. In[21] a
matrix-dependent prolongation operator has been proposed, able to handle both the case of dominant
advection (in general directions) and interface problems at the same time. Here we give only an outline
of the method. The grid € is split into four disjoint sub-grids as follows:

Qk,00,0) = -1,

Q1,0 ={(z +he,y) € U | (z,9) € U1},
Q,0,0) = {(z,y + he) € U | (z,9) € U1},
Q1) = {(z + he, y+ he) € U | (z,9) € Uy},

where hy, is the mesh-size of grid .

1. Let £ € QO (1,0) or € € 4, (0,1) be a point where we have to interpolate a coarse grid correction.
Decompose the matrix L in its symmetric and antisymmetric part. The symmetric part Sj is
presumed to correspond with diffusion and the zeroth order term, the antisymmetric part T}
with advection.

2. Reconstruct the diffusion and zeroth order coefficients at ¢ from S, and the advection coefficients
from Tj.

3. Use expressions that define an optimal choice for each sample of a set of degenerated cases for
Ly.

4. At the fine-grid points in Q (o,0), adopt the values on ;.

5. At the fine-grid points in € (11, solve the homogeneous equation to obtain the correction.

Applying the derived formulae to the particular example of section 2.1 we obtain the upwind prolonga-
tion in Figure 3. Also here we adhere to (2.7) and (2.5), though the implementation of the latter is far
from trivial. The actual computation of the coarse grid matrices takes less work than the Incomplete
Line LU-decompositions described in the next section. The above is employed in the code MGD9V
(this author). The code has a NAG-like outward appearance and is readily available. It uses the
sawtooth multigrid correction scheme [17] and Incomplete Line LU for smoother. For a more detailed
motivation of the prolongation and a description of the code, together with numerical experiments to
illustrate its good behaviour, see [21]. Reusken [11] proves uniform convergence for a multigrid method
applied to a 1D singularly perturbed boundary value problem when matrix-dependent prolongations
and restrictions are employed.
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3. SMOOTHERS FOR THE ADVECTION-DIFFUSION EQUATION

A comprehensive survey of smoothers applicable to the advection-diffusion equation (1.1) can be
found in [18, § 7]. For non-adaptive grids the Incomplete Line LU (ILLU) (or Incomplete Block LU)
appears to be the most robust choice (see [8, 9, 12, 21]). By this method full advantage is taken of
the matrix-structure. Here we repeat the general outline of this method, which has been originated

by Underwood [14] (see also [3] for an overview on block-type methods). We want to solve the linear
system

Az=b (3.31)

that we assume to have a block tridiagonal form, so

D, U
Ly Dy Uy

Ls D_3 (3.32)

D,

v

where n, is the number of grid-points in the y-direction. The block D; has the tridiagonal form:

dlj Uj
laj  dyj ugj
D; = ls; df’i o (3.33)

dn.;

where n, is the number of grid-points in the z-direction. In case of a discretization with nine-point
stencils the blocks L; and U; have a similar form. The ILLU-decomposition is defined by

Li(G=2,...,ny),D;(G=1,...,m),U;(7=1,...,my — 1)

with

!

1 = Dy, (3.34a)
i = Dj—tridiag(L;D;,Uj-1), j=2(1)ny. (3.34b)

Sl

The operator tridiag() forces a block (by clipping) into the sparsity pattern of the D;. Without this
particular operator, the factorization of A would be a complete one (see [5, § 8.5]). Performing one

ILLU-relaxation sweep requires the following steps
ILLU-sweep:

r=b— Az,
Z1 =T1;
——1 .

zj=rj —leDJ-_lzj_l, J=2(1)ny;
Cn, = Dy, 2n,;

—-1 .
¢; =D; (2 = Ujcj41), j=ny—1(-1)];
Tpew =T+ C.
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In [20] the ILLU-relaxation has been generalized from the case of a discretized scalar PDE to a set
of coupled PDEs.

There exist several degenerated cases for which ILLU becomes a complete decomposition, e.g. when
all L; or all U; are zero. Another case of interest is the following

Proposition 3.1 If L; = o;D1,U;_; = Bj-1D1,D; = 4;D1,5 = 2(1)n, where oj,Bj-1,7; are
arbitrary scalars, then the ILLU-decomposition, if existent, is a complete factorization.

Proof. If
‘1 =-1 —=—1 .
tridiag(L; D; _,U;_1) = L;D; _,U;_1,j = 2(1)n,,
then the factorization is complete. We prove that scalars ki # 0 exist such that

Dj = [Lle,j = l(l)ny - 1.

The equality holds trivially for j = 1 with g; = 1. For j > 1 we obtain (by induction)

D; = D; — tridiag(L,;D;_,U;1) = D; = D; — tridiag(L;u;", D7 U;_,) =

o

i = #kiD1
with
i =7 = 05Bj-1p7 1.

From the assumption that the decomposition exists, it follows that 1 #0. a

Note that (but for existence of the ILLU-decomposition) this proposition applies to all the stencils
on the right-hand side of (2.17), which correspond to the various partial derivatives.

4. THE MOLENKAMP TEST-PROBLEM

This is a two-dimensional advection problem; it does not contain diffusion. The description here
complies in full with the prescription in [15, Chapter 1]. The equation reads:

Oc Oc Oc 9
o Y +va—y_0, (z,y) € =[-1,+1]%t >0, (4.35)

where the velocity field describes a rotation:

(2)-(2) wmne (436

We have Dirichlet boundary conditions at the following inflow boundaries:

{(z,y) [z =~1,-1<y <0}, (4.37a)
{(zy)lz=+1,0<y <1}, (4.37b)
{(z,y)|ly=-1,0<z <1}, (4.37¢)
{(z.y) |ly=+1,-1<z <0}. (4.37d)

The problem describes the rigid rotation of a cone. After one revolution, that is at ¢t = 1, the solution
is identical to the initial condition (¢ = 0). Both the initial condition and the Dirichlet boundary
conditions are obtained by imposing the exact solution:
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o(z,y,t) = 0.014, r= \/(:c + 1 cos(wt))? + (y + § sin(wt))?.

Exact discrete solutions of the Molenkamp test-problem at ¢t = 1 for various grid-sizes are shown in
Figure 4 (courtesy of B. Koren). Iso-lines are shown for ¢ = 107 +0.1n, n=0,1,...,9 (the iso-line

I | o i
I ! [
7 / /
7 / /
/ / 7/
7 7 e
\\\ _ \\‘_’,/ \\——’//
T - T , T r
-1 0 1 -1 0 -1 0 1
x X
21 x 21-grid 41 x 41-grid 81 x 81-grid

Figure 4: Exact discrete solutions of the Molenkamp test-problem.

¢ = 1075 has been dashed). In [16, Chapter 2], Vreugdenhil applies several difference schemes to the
Molenkamp problem. Those schemes are generated by central differencing in space and implicit time-
stepping. In scheme (2.28) of [16, Chapter 2], two parameters do occur: § and c. Here this scheme
is reproduced by the stencil in equation (4.38). This stencil represents the discretization of (4.35) on
the inner area of Q. The 6 determines the degree of time-implicitness: § = 1 corresponds to backward
Euler, § = 0 corresponds to forward Euler. Only if § = % the accuracy of the scheme is of second
order in time. The parameter o determines the space-discretization: a = 0 corresponds to the classical
five-point scheme with central differences, o = % corresponds to the bilinear finite element method
(see also (2.17)) and & = } to the box-scheme. We recall that u and v are the given components of the
velocity field (4.36); c**! is (an approximation of) the solution searched for at point of time ¢"*1.

a? a(l —2a) a? ]
a(l-2a) (1-22)? ol -2a) | (" —c")+
a? a(l - 2a) o? |
S o
1 Ot n+l n
P Ay —(1-2a) 0 (1-2a) | u(fc" —(1-6)")+
L & a B
i ! (1-2a) o 1
%% 0 0 0 v(8c™tt — (1 -8)c") =0. (4.38)
| —a —(1-2a) —-a |

The outflow boundary conditions are discretized in forms which are consistent with (4.38). The
Courant number reads:

o = max(u,v) at

Az
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Thus at each time-step a large, sparse linear system has to be solved. In [16, Chapter 2] this is done by
using a standard banded-matrix routine from the NAG library. The corresponding LU-decomposition
needs to be done only once, yet this method puts too high demands concerning CPU-time and memory
allocation. Typically, on an n X n-grid such a direct method takes

n* flops
for the decomposition, and at least
2n® flops

for each subsequent solution step (one flop is the amount of work associated with a multiplication
joined with an addition). The storage requirements amount to

2(n+1)n? reals.

Here we report on the performance of the iterative multigrid solver MGD9V (section 2.4) for the
solution of the said large, sparse linear systems. Of course, also here the automatic construction
of the coarse grid matrices and the ILLU-decompositions need to be done only once. The storage
requirements of MGD9V amount to

Es—8-n2 reals.

The total amount of work is not a fixed function of n because for an iterative method it also depends
on its convergence rate and the desired tolerance. However, if a multigrid method is well constructed,
it is known from both theory and practice that the work necessary to reach some tolerance is ideally
proportional to as little as n2, i.e. the number of grid-points. In this section we check by experiment
whether this statement holds for MGD9V.

In principle, the convergence rate of MGD9V may depend on the parameters 6 and a.

4.1 Complezity and the Courant number

We solve the Molenkamp problem with the 2-d implicit schemes given by (4.38), and perform - as
specified - a full rotation of the cone. When we solve the linear system at each point of time by means
of complete LU-factorization, this is called the direct approach; when at each point of time we use the
multigrid solver MGD9V instead, this is called the multigrid approach. We use the solution at the
previous point of time as initial solution for MGD9V, and we solve the linear system up to a certain
(fixed) tolerance. Suppose we perform numerical experiments with varying n, but with fixed Courant
number 0. When n is increased by a factor 2, the direct approach takes twice the number of time
steps. Because of the complexity of the decomposition and the subsequent time-stepping, the work
for one rotation then increases by a factor 2*. With the multigrid approach the work for one rotation
increases by a factor 23, a factor 2 is explained by the number of time-steps and the remaining factor
22 is explained by the number of grid-points. This statement is valid under the condition that MGD9V
presents mesh-independent convergence rate. The experimental verification of the statement follows
from Figure 5. Horizontally we put the 2-logarithm of the Courant number o, vertically we show the
number of multigrid cycles needed for a full rotation of the cone. Note that a multigrid cycle is a fixed
amount of work for a given grid, and proportional to n%. The experiments are performed with o = %
and 6§ = %, which gives the highest accuracy of the solution. For o = -;— the number of time-steps is
250, 500, 1000 for a 41 x 41, 81 x 81 and 161 x 161 grid respectively. We observe that for Courant
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Figure 5: MG-cycles consumed versus log, of Courant number, o = % and 0 = %

numbers in the range of interest (¢ < 1), the number of multigrid cycles is multiplied by a factor
2 when the grid-dimensions are doubled. This factor is due to the doubled number of time-steps.
Apparently the number of multigrid cycles per time-step remains unchanged, which demonstrates the
mesh-independent convergence rate of the multigrid algorithm. Indeed, MGD9V turns out to be very
efficient; an average of only two multigrid cycles per time-step proves to be quite common for this
problem. This is due to the high convergence rate (typically a reduction factor of 10™* per multigrid
cycle), and the advantage that is taken by using the solution at the previous point of time as initial
one (the smaller the time-step, the better). Further we observe in Figure 5 that for each grid a range
of Courant numbers exists for which the amount of work is constant (we call this a plateau). Of
course, the lower Courant numbers yield the more accurate results because of the smaller time-step.
Apparently, when increasing the time accuracy, the computational cost of the multigrid approach does
not increase (provided o remains within the range of the plateau). This is obviously contrary to the
direct approach. For very small Courant numbers (at the left-hand side of the plateau) the amount
of work increases in a linear way with o~!. That is because at each time step, at least one multigrid
cycle has to be performed. (A mere fraction of a multigrid cycle cannot be performed, of course). For
very high Courant numbers (at the right-hand side of the plateau) the amount of work increases (and
even divergence may occur) because of the deteriorating convergence rate and the worsening initial
solutions. For & = 0 we find similar results, see Figure 6.

4.2 Miscellaneous results

In Table 1 we observe how the accuracy and the amount of work depends on 8. The results are for
a 161 x 161-grid, a = %, Courant number o = %, and for a full rotation of the cone. Apparently, the

results for 6§ = % are both the most accurate and the cheapest to obtain.

In Table 2 we measure the CPU-seconds consumed on a Silicon Graphics workstation (R3000 Pro-
cessor), by the multigrid approach for various grids. Again, the results are for a full rotation of the
cone, fized Courant number o = % and 6 = %, a= é. The benchmark-problem of [10, Chapter 15]
took 2.40 CPU-seconds. By means of the timing of this benchmark-problem, we can provide Table 2
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Figure 6: MG-cycles consumed versus log, of Courant number, a = 0 and § = %

Table 1: Accuracy and amount of work depending on 6.

|0 || # MG-cycles |  cmia | 1 — cmax |
I 2000 | —2.9010-0 | 4.3310~7
3 2052 | —7.2710~ | 7.0810~7
1 3000 —1.3110~% | 1.4210°1

also with the (fictitious) numbers of CPU-seconds consumed by the direct approach on the R3000
Processor (courtesy of Vreugdenhil). We observe how the results match the predictions as made at

Table 2: CPU-seconds consumed for a full rotation.

B | 414181 x81 161 x 161 |
direct approach 58 721
multigrid approach 28 216 1644

the outset of section 4.1.

4.3 Unstable discretization

In section 4.1 we reported on results of MGD9V for a = % and o = 0, but not on results for a = }1—.

In fact, MGD9V fails to convergence for this value of o even for extremely small Courant numbers.
The explanation is as follows. Let o = 0, then the difference scheme involves the following stencil for
o=} (see 4.38)



4. The Molenkamp test-problem 17

;|"" 00| ;l"
00— x| 0O
;|"‘ 00|+ ;I"‘

When .we apply the corresponding matrix to the chess-board grid-function
c(ihy, ) = (1)

defined on §2;, we obtain the zero grid-function. Also when Dirichlet boundary conditions are taken
into account, we obtain a similar result as we will see below. Consider the unit square with Dirichlet
boundary conditions all around. We take a uniform [0 : n] X [0 : n]-grid on this area. Consider the
matrix for a = %, o = 0. We substitute the discretized Dirichlet boundary conditions. Define the
near chess-board grid-function

b(ih, jh) = (1) sin(vr%)sin(w;—i-), i=1)n—-1, j=11)n-1, (4.39)

with A = 1. (This grid-function vanishes on the boundaries of the unit square.) It can be easily
verified that b corresponds to an eigenvector of the matrix, with eigenvalue

wh
“A=si [ Y .
A=sin ( 5 )
Hence, for h | 0, this eigenvalue goes very rapidly to zero:

_ 1434
A= .—l-s‘ﬂ' h*.
It follows that a small perturbation of the right-hand side of the linear system to be solved, may
produce a huge perturbation of the solution, an effect that is not present for the continuous problem.
In this sense we speak of an unstable discretization. The foregoing explains why we ﬁnd a highly
osc1llat1ng (spurious) solution when we solve, or try to solve, the linear system fora =7 and o = 0.

A similar argument holds when o > 0, as we will see below. Cons1der the matrix C(h) that
corresponds to the convection-stencil (in the z-direction, a = })

1 1

~2 0 +3

1 1 1

£l -3 0 +35

' 1 1
-1 0 +3

and with substituted Dirichlet boundary conditions. When the matrix C(h) is applied to the grid-
function (4.39), then

4 . ., 7h
IC(R)b| < Esm“(—2—),

in the maximum-norm. Apparently, here too the near chess-board grid-function is annihilated for

h 0.

Note that the test-problem under consideration does not involve a dlﬂ'usxon-term Addition of such
a term to the equation would have a stabilizing effect on the discretization for a = ‘11
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5. CONCLUSIONS

In this paper we considered the multigrid solution of advection-diffusion problems. The use of implicit
methods, as some of them are described in [16, Chapter 2], requires the solution of large, sparse linear
systems. We studied the feasibility of a black-box multigrid solver for the solution of such systems.
We have shown that a standard choice for the prolongation and restriction is not satisfactory and that
an upwind approach for these operators leads to an important improvement.

The implementation of this approach, together with a robust relaxation method, resulted in the
multigrid-code MGD9V. This code proves to be a highly efficient iterative solver. Hence it is feasible
to solve problems with both small mesh-size and small time-steps. In this way, implicit methods
become competitive again. It is noteworthy that smaller time-steps do not necessarily increase the
amount of work, because of a better convergence rate and a better initial solution.

The code performs only for the scalar case and within the constraints of a regular domain and
a structured grid. In [21] various results are reported for some hard advection-diffusion problems
(with stagnation points) and for problems with discontinuous diffusion-coefficients (among which
Kershaw’s problem). In [20] a result is reported for Van der Vorst’s aquifer-problem that is marked by
both dominating convection and discontinuous diffusion-coefficients. The code (written in standard
FORTRAN 77) is available from this author (electronic mail address: pauldz@cws.nl).
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