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Abstract

. studies the behaviour of the maximum queue length both in queues with uniformly bounded
a5, such as multiserver queues, and in queues with unbounded service rates, such as the infinite
1e. It is shown that the behaviour of this maximum is substantially different for these two classes

First the maximum queue length is characterised in one busy cycle. The relation between this
and blocking probabilities, and the Palm distribution at arrival instants is discussed. Then, bounds
mptotic distribution of normalised maxima are derived. For queties with uniformly bounded service
shown that the sequence of partial maxima for uniformizable queues is stochastically compact,
his sequence increases logarithmically with probability 1. For queues with unbounded service rates
sein probability is obtained. Almost sure convergence of the sequence of normalised partial maxima

ant is obtained for a subclass, which includes the infinite server queue.
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CTION
m number of customers simultaneously present in a queueing system is

t performance measure directly related to the quality of service. It not
nes the maximum queue size found by customers arriving to the queueing
might also be used to determine optimal buffer sizes for queues with finite
a. This paper characterises the behaviour of the maximum number of

multaneously present in a single queue.

iote the maximum number of customers simultaneously present during a
Then, for all queues studied in this paper,

‘n)=1-x0)" /Y k)™, n=012,..., (1.1)
k=0

s the probability that an arriving customer finds n customers in the queue.
wble simplicity of this expression allows us to obtain not only the limiting
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2

of Y, but also the limiting behaviour of Y*), the maximum number of
imultaneously present in & subsequent busy cycles.

L) we obtain an interesting dual relation between the discrete failure rate
">n)=mw(n)"1 /T o7(k)"! and the probability that an arriving customer
with finite capacity n is lost (blocked and cleared upon arrival): B(n) =
w(k). This form of duality was first observed in Cohen [1971] for the Erlang
is of a form similar to the dual or inverse relation between the M/G/1 and
sue observed in Takdcs [1962], and further discussed and generalised in Niu
- [1989], and Kimura [1993].

ing behaviour of Y can be obtained from (1.1). It will be shown that
~ 7(n) (n — o), that is the probability that the maximum exceeds n
nal to the probability that an arriving customer meets n customers. This
s us to use the theory on extremal values to characterise the limiting be-
7(¥) as k — oco. In particular, results from extremal value theory for discrete
s such as developed by Anderson [1970] and Vervaat [1973] can be used to
Y®*), Of main interest in this respect is the existence of norming con-
> 0, bg}r>1 such that (Y® — b;)/a, converges weakly to a non-degenerate
G(-). However, for the discrete distributions #(-) typically occurring for
es, it is a consequence of standard results (e.g. Leadbetter et al. [1983],
hat norming constants such that limy_.., P((Y® — bt)/ax, < z) = G(z),
is non-degenerate, do not exist. Anderson [1970] computes liminf’s and
Ve will show that norming constants {a; > 0, bx}x>1 exist such that the
sample maxima Y® for stable, uniformizable queues is stochastically com-
ply results of De Haan and Resnick [1984] to show that every sequence
:k)) / an(k) contains a subsequence that converges weakly to a non-degenerate
G(z) = exp[— exp[—(z+¢€)]], —00 < & < oo. This adequately characterises
behaviour of Y® for queues with uniformly bounded service rates. In con-
sues with unbounded service rates such as the infinite server queue, we show
uence of sample maxima is not stochastically compact, but we do compute
lim sup’s of a form closely related to the results for queues with uniformly
vice rates.

lim inf’s and lim sup’s for P((Y® — b;)/ay < z), following arguments such
L in Cohen [1982], and Galambos [1987], we obtain that Y*) /b, converges
iy to 1. For queues with uniformly bounded service rates this can be seen
ation of known results for sample maxima. For such queues, under mild
ssumptions, this result is strengthened: we will show that Y'¥) /b, converges
‘obability 1. For queues with unbounded service rates we cannot obtain
| the general framework, but from the specific form of the distribution 7(-)
ult is obtained for a subclass containing the infinite server queue.

r applies results from extremal value theory such as developed in Anderson
mbos [1987], De Haan and Resnick [1984], and Leadbetter et al. [1983] in
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in one busy cycle 3
-amework. We will focus on positive recurrent processes. Null recurrent
| processes that are close to null recurrent processes are discussed in Serfozo
sient processes are the topic of heavy traffic theory, and results can for
ound in Iglehart and Whitt [1970], Iglehart [1972].

is organised as follows. Section 2 introduces the model for a single quene
several relations for the maximum number of customers simultaneously
single busy cycle. Although the queue studied in this paper is introduced
l-death processes, the distribution for the maximum queue size is derived
sdded chain for which the transition probabilities are of a general form.
we characterise the tail properties of P(Y < n) for stable and unstable
se results are then applied to study weak convergence of sample maxima.
we investigate convergence in probability and almost sure convergence of
naxima. Finally, section 5 presents some examples from queueing theory,
3 presents conclusions and aims for further research.

KIMUM IN ONE BUSY CYCLE

single queue to which customers arrive singly and according to a state-
'oisson process with arrival rate A¢y(n) when n customers are present at
‘he service times of the customers are independent stochastic variables, all
onentially distributed with rate u. The service speed of the server at the
) when n customers are present.

(X(t), t > 0) record the number of customers in the queue at time ¢,
birth-and-death process at state space S = INg, with birth and death
+1) = M(n), g(n + L,n) = pd(n +1), n = 0,1,2,.... Define ¢(n) =
1)/é(k)), and (n) = 9(n) ey ($(k — 1)/6(k)), ¥(n) = 0 if n <0, and

en the birth and death rates are

+1)= %A’ n>0, g(nn—-1)= %2#, n > 0. (2.1)

f the birth and death rates is chosen in agreement with the form used in
e on product form queueing networks (cf. Boucherie and van Dijk [1991],
wnd Taylor [1990]). For example, the single server queue corresponds to
) =1, n > 0, and the infinite server queue is obtained by setting P(n) =
,n > 0. The form (2.1) for the rates enables us to obtain simple expressions
librium distribution, and the Palm distribution at arrival instants, as will

d below.

ith finite waiting room are included in the model. If N = min{n > 0 :
then ¢(N, N + 1) = 0. As a consequence, when the queue starts off empty
of customers in the queue cannot exceed N. Without loss of generality we
P(n) =0, n > N. In this case, if X(0) < N, then § = {0,1,...,N}. For
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«d death rates to be properly defined, it must be assumed that ¢(n) > 0,
/.

e m = (m(n), n € S) is an invariant measure for X if m satisfies the
ance equations (Kelly [1979], p. 5), for all n,n' € S,

(n,n') — m(n)g(n',n) = 0. (2.2)
rth and death rates (2.1) we obtain that, with p = A/p,
=¢(n)p", n=0,1,...,N <0 (2.3)

ant measure for X. Observe that the form of m is independent of N, i.e.,
of the size of the waiting room (finite or infinite).

7 of X can be determined from the birth and death rates. If ¢(n) > 0,

.., we will assume that ¥ ,{q(n,n + 1) + g(n,n — 1)} = co. This
hat X can make at most a finite number of steps in any finite interval (X
From (2.3) we obtain that X is ergodic if and only if

| f) $(n)p" < 0. (2.4)

n=0

case, then X has a unique stationary distribution
= tl_i}gP(X(t) =n) = Bggp(n)p", n=0,1,...,N < 0.

r of X is determined by ¢(-) via (2.4). The function (-) characterises
ur of X when ¥, m(n) = co. To this end, from the assumption that
1) + g(n,n — 1)}7! = oo we first obtain that for B;' < oo it must be
1)p"} 1 = co. From Foster’s criterions (Foster [1953]) we see that X is null

Y.m(n) = oo and ¥, {#(n)p"} ! = oo, and transient iff ¥, {¢(n)p"} ! <
e, if

5 $(n)o" < oo,

n=0

current (ergodic or null recurrent). Furthermore, if By < oo, the Palm
1t arrival instants is well defined, and is given by (Brumelle [1978])

: B’ll’")l’(n)pn) n 2> 0)
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ty that an arriving customer finds n customers in the queue. Note that, in
# mg(n). Equality holds iff the birth rates are state independent, which

;o a Poisson arrival process.

Z(k) the state X(t) immediately after the k-th jump of X after t = 0.
2 Z = (Z(k), k = 1,2,...) is a discrete-time Markov chain with state

with stationary one-step transition probabilities p(n,n’') & P(Z(k+1)=
. If N = oo these probabilities are

=) =D
"n)—}\cp(n——l)’ p(’ 1) H <P(TL) ) .>_13 (25)

PNt S (Gl R _ )
-)\go(n——l)’ p(n, 1)=u o) 1,...,N, p(N,N) )‘(p(N)’

= AY(n) + wp(n — 1), n > 0. By insertion into the detailed balance
.2), with p(-,) replacing q(-,-), we obtain that the jump-chain Z has an
asure

= p(n)(A/p)", n=0,...,N.

f Z is completely determined by .

mp-chain we denote for 0 < h < N, the taboo probability that the chain,
g in state i reaches state j without reaching state h+ 1 (taboo state), by

PU{Z®) =4, §< 2 <h r=1,..,k=1}|Z() =9), j<i<h
k=2

el with finite waiting room, define fy,; as the probability that the chain,
g in state i reaches state j without the occurence of a transition from state
7, i.e., without the occurence of an arrival for X when the waiting room is

> probability fi;; is an entrance probability. For a proper definition of
ty of X or Z is not required. Therefore, in the following result fp;; is
the invariant measure at arrival instants.

n 2.1 (Chung [1967], p. 73) For finite and infinite queues, for h < N

S k)Y k)Y, =gk §=0,1,0 (2.6)

k=i k=j
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e |Z(m + 1) — Z(m)| = 1 with probability one for m < N, it is easily seen
model with finite and infinite waiting room, for b < N, {fn.i ;}n>o0, 0<j<i is
of

= 1, j=0,1,...,
== p(i1i_1)fh;i—1,j +p(i7i+1)fh;i+1,j) 7'=.7+1))h) .7 =0711°'°1
= 0, i=h+L,h+2,...,

nplicity of notation we have introduced p(N, N +1) = 0. O

hat each discrete time Markov chain with transition probabilities p(n,n +
»n — 1) = B, where o, + B, = 1, can be modelled using #(-) and ¢(-) as
'2.5). Therefore, the result of Proposition 2.1 is not restricted to processes
tive exponentially distributed interarrival and service times.

; of Proposition 2.1 allows us to determine the probability that customers
ng a busy cycle for a queue with finite waiting room. This loss probability
ed from the distribution of the maximum number of customers present in
ring a busy cycle, as is illustrated below.

; the maximum number of customers in the queue can be determined.
" the maximum number of customers simultaneously present during a busy
llows that P(Y < n) = fn.1,0, and thus

n)=1- Lz:%{q/;(k)pk}-l]"l, n=1,...,N < oo. 27)

the probability P(Y < N) must be interpreted as the probability that
y cycle no customers are lost. For N = oo and X recurrent, from Foster’s
have that 322 ({4(k)pF}! = oo. As a consequence, P(Y < n) is an
bution. If X is transient, then lim, ., P(Y < n) < 1. This is obvious,
nsient X the number times the process returns to state n is finite with
, for all n.

.bility that the maximum number of customers during a busy cycle is n
te maximum number of customers in a busy cycle is at least n is given by

Y > n) = W)} /S {eE)t (2.8)

k=0

s of the form (2.8) are known as discrete failure rates in reliability theory.
chain X the probability that an arriving customer meets 7 customers
val given that a customer meets at most n customers is defined when X
ind is given by
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jx <) =(n) 3 70) = )" / > (k)" (29)

k=0

n of (2.8) and (2.9) shows an interesting duality: we find ¥(k)p* in (2.9)
ve found {4(k)p*}~! in (2.8). This form of duality was first observed
g model in Cohen [1971], and is of a form very similar to the dual or
on between the M/G/1 queue and the GI/M/1 queue (Niu and Cooper
1 is extended to a similar dual relation between the M/G/s/s queue and
's/s queue in Kimura [1993]: The queue obtained from a queue by inter-
interarrival and service-time distributions is called the dual or inverse.
the equilibrium distribution of a queue contains the factor A/u then the
listribution of its dual contains the factor u/A. Note that in our case the
ot restricted to the factor A/u, but takes up the whole invariant measure.

and (2.9) we obtain that
(Y = nlY > n) = Pygmma (X =nX <n),

n-stable M())/M(1)/1 queue is the dual of the stable M(x) /M(X)/1 queue.
hat the dual relation between the M/G/1 and GI/M/1 queue goes beyond
measures related to the forward Kolmogorov equations and equilibrium

he system with finite waiting room. From the interpretation of P(Y < N)
>(Y = N|Y > N) is the probability that during a busy cycle no customers
1 that during this busy cycle the waiting room is full at least once. Thus
> N) is the probability that no customer meets congestion during a busy
hat at least once no vacancies exist. For this finite system the probability
/ing customer finds the queue full and is lost equals B(N,p) = Po(X =
which is also the probability that a customer meets congestion during a
This gives an interesting interpretation of the dual relation between (2.8)

{EOREMS: CONVERGENCE IN DISTRIBUTION

sults above we can obtain limit theorems for the maximum number of
multaneously present in a queue. In this section we will first discuss the
it of the distribution of Y. Then we apply the obtained results to char-
vergence of P((Y® — a;)/b; < z) for suitable normalisation constants
be>1- In section 4 we will discuss convergence in probability and conver-
yrobability 1 for the sequence of partial maxima Y®,

, the maximum number of customers simultaneously present in the n + 1st
fter t = 0, n > 0, where we assume that the 1st busy cycle starts at ¢ = 0.
srties of X, the busy cycles are independent and statistically identical, and
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: random variables Y, are iid, and all have the same distribution as Y. Let
Yo,..., Yg_1}, the maximum of the number of customers simultaneously
subsequent busy cycles. From (2.7) we obtain

<) =P(Y <n)t= (1 ) [§{¢(k)pk}_l] ) k'

to investigate the behaviour of P((Y®) — &;)/a; < z) for suitable nor-
onstants {ar > 0, br}x>1. To this end we will first investigate the tail
" P(Y < n). Then we will use the theory on extremal distributions to
he distribution of the normalised sample maxima. By Theorem 1.7.13 of
't al. [1983], a necessary and sufficient condition for the sequence of partial
) to possess normalisation constants leading to a non-degenerate limit is
.P(Y > z)/P(Y > z) = 1, where z is the right endpoint of the sup-
ondition is not satisfied for most discrete valued distributions, such as the
ibution (Leadbetter et al. [1983], Example 1.7.14), and the geometric dis-
sadbetter et al. [1983], Example 1.7.15), distributions typically occurring
; are involved. Anderson [1970], and Cohen [1982] show that asymptotic
he limit of P((Y®) —b;)/ax < z) can be found, and compute lim inf’s and
1ese lim inf’s and lim sup’s are sufficient to characterise weak convergence
] maxima for recurrent processes.

behaviour of P(Y < n)

1 it will be assumed that all arriving customers are accepted (N = o0),
t (n) > 0 for all n > 0. We will first investigate P(Y < n) when X is
- particular, we will first investigate the case

5 p(n)e" < co. (3.1)

n=0

. investigate the case on the boundary between transient and recurrent X

)p" = oo and i{gb(n)pn}‘l = 00. : (3.2)

n=0

nll discuss results for transient X
n)p"}! < oo. (3.3)

e the following notation:



3. Limit theorems: convergence in distribution

B = limsup,_,..(¥(n + 1)/¥(n)),
B = lim inf, o (P(n + 1)/%(n)),
B = limyoo(®(n + 1)/9(n)) (if it exists).

Assumption (3.1) suggests that § < 1/p. The following lemma characterises the lim-
iting behaviour of P(Y < n) for general ¢ and for two interesting special cases corre-
sponding to the single server queue, and the infinite server queue.

Lemma 3.1 Assume that 3 < 1/p. Then

(1~pB)/ By < liminf P(Y > n)/m(n) < limsup P(Y > n)/7m(n) < (1—pB)/By-(3.4)

If 8 < 1/p exists, then

lim n(n)~![1 — P(Y < n)] = (1 - ppB)/By. (3.5)

n—00

If Y(n) = B, then m(n) = (1 — pB)(pB)", and limy .0 7(n) 1 -P(Y <n)] =1
If (n) = 1/n!, then n(n) = e ™?p"/n!, and limy o 7(n)71 - P(Y < n)] =€

Proof Define T(n) = (1/p)"4(n)"*P(Y > n). We have 0 < T(n) < oo forn > 0, and

1 P(n+1) 1

ToxD) 7 o) Tm)

Taking limits gives since %%%12 > 0 for all n, and ﬂln—) >0 foralln

. ) P(n+1) 1 = 1
— e = < =
hfzn—»sgp T(n+1) phgl_)s;}p ¥(n) T(n) +1s<0b hg:scgp T(n) +1
. 1 . . Pn+1) 1 ... 1
———— = > e
lim inf Tn+1) plim inf ¥(n) T(n) +12 pflim inf T(n) +1

or equivalently, since Bp <1

- < lim inf ——-—l—— < limsup 1 < 1
(1—Bp) = == T(n+1) = oo T(n+1) = (1-Fp)

yielding the first statement.

In the two special cases presented in the lemma, lim,_,oo(%(n + 1)/ ¥(n)) exists. If
(n) = B" then (3(n + 1)/4(n)) = B for all n. Furthermore, By = (1 — ppP) yielding
the first special case. If ¢(n) = 1/n! then lim, oo (¥(n+1)/4(n)) = 0. Since By = e
this gives the second special case. 0O
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t of Lemma 3.1 is that P(Y > n) ~ n(n) (n — o0): the probability that
m number of customers simultaneously present in a busy cycle exceeds n
irobability that an arriving customer meets n customers in the queue. If
large, this suggests that P(Y > N) can be used to approximate the loss

investigate the limiting behaviour of P(Y < n) in the case § = 1/p,
which the ratio test does not give a conclusion about the convergence or
f 382 o {4 (k)p*} 1. This conclusion depends on the detailed behaviour of
re values of k. The following lemma characterises P(Y < n) for polynomial
k)p*. Depending on the dominant power of the polynomial, the behaviour
) for n — oo changes completely.

)} Assume that there exist constants a, 0 < o < 00, and p, —00 < p < 00,
My oo Y(k)p¥ kP = a. Then, for all p, —co < p < oo, there exists a
1), 0 < v(p) < oo, such that

n,p)[1 = P(Y <n)] =7(p), (3.6)
P, ifp<l, o1l - p), ifp <1,

=4 logn, ifp=1, ’Y(p) =q & 1 ifp=1, (37)
L ifp>1, [ERolw(®)p] ", ifp> 1.

n the assumptions, for all € > 0, 3 n(e) such that (@ — €)k? < Y(k)p* <
- all k£ > n(e). Therefore, for all n > n(e)

R L P3N N
ot o+ ke B T iUkt a—e k=n(a+1 K7

>k kP converges, and (3.6) holds true with y(p)™! = T2 0[¢(k)o*]~%, and
For p = 1, ¥;_; kP behaves like logn, and for p < 1, Y7_; k~? behaves
lich can easily be checked via the integral test. O

neter p figuring in the rates of convergence, 6(n,p), of 1 — P(Y < n) also
ecurrence properties of X. In particular, X is transient if and only if p > 1.
t the distinction between positive recurrence and null recurrence can be
basis of ¢(-) (and not of 9(-)) only. For ¢ = 9 we have that X is ergodic
fp< 1. '

milar to (3.6) can be obtained for other choices of the tail behaviour of
>. Obvious choices are ¥(k)p* ~ k(log k)? and v(k)p* ~ klog k(loglog k)?
n,p) is obtained from (3.7) by changing n into logn and n into loglogn
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The important observation made in the lemma above is that (3.6) is
she specific choice for 9. This behaviour is completely different from the
1ma 3.1, where we found that 1 — P(Y < n) ~ ¢(n)p".

nsient, then the tail behaviour of P(Y > n) is identical to the result for
ima 3.2. If we condition on Y < oo, that is if we only consider asymptotic
busy cycles in which the maximum number of customers present remains
wsymptotic relations similar to the results of Lemma 3.1 can be obtained.
urpose of the following lemma.

. Assume that ¥(n) > 0 for alln > 0, and that § > 1/p exists. Then

(ML= P(Y < nlY < o0)] = [(08 — VB.(B. ~ ], (38)

zzio{@b(k)Pk}_l-

ne T'(n) = p"p(n)[1 —P(Y < n|Y < o0)]. Then, 0 < T(n) < oo forn >0,
S DT 1

D=5y SR (B - Do)

ts, and using that lim, . Z’,;=O{¢(k)p’“}—1 and lim,_.(¥(n + 1)/¥(n))
e finite, completes the proof. O

4 Ii is interesting to compare the result (3.5) for pf < 1 with the result
> 1:

'P(Y < n)l/[Byp(n)p"] = (1 = 0B)/ By, PB <1,
P(Y < n|Y < 00)]/[1/(Bup(n)p™)] = 1/[(pB — P(Y < 0)B], pf>1.

Byi(n)p" is a probability distribution, and for pf > 1, 1 [(Bup(n)p™) is a
distribution. This shows that the behaviour of Y conditioned on Y < oo
t X is similar to the behaviour of Y for recurrent X.

MaTima
P(Y® < n) (k — oo) in the case that 0 < B < 1/p can be obtained from
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.5 Assume that 0 < 3 < 1/p. Then there exists a continuous and decreas-
f:[0,00) — [0,00) such that for —co < z < 00

P(Y® < )+1) > e,

T ﬁ)k

*) e
PV < ) < 6

13 >0, then for —oo < z < o0

'P(Y(k) )) e (Bp)te®

1((1 pﬁ)k

P(Y® < ) < e

T

':[0,00) — [0, 00) the function obtained from p™(n) by linear interpola-
for y = an+(1—a)(n+1) define g(y) = ag(n)+(1—a)g(n+1). It can eas-

that liminf, o (g(y + 1)/g(y)) = B, and limsup,_,,(9(y + 1)/9(y)) = B
also that, for ¢ < 1 — pf there exists an yy such that for all y > yp

’p + €)g(y), which implies that g(y) is decreasing for y > yq. If 3o = 0 set

>0 set f(y) = g(y) for y > yo, and f(y) = yo — y + g(30) for 0 < y < yo.
continuous and decreasing function, and f~! is well-defined.

we obtain that for all € > 0, 3 n(e) such that for all n > n(e)

= pB) + €)p"Y(n) SP(Y < n) <1~ ((1 = pfB) — €)p"9(n). (3.9)
Ye)} <y—1<n<ywehave P(Y < n)=P(Y < y), and

—pB)+e)fly—1) < 1-((1-pB)+e)f(n) <P(Y <y)
< 1-((1-pB)—e)f(n) <1—((1 - pB) — &) f(v).

sertion of

and y=f~

((1 —pﬂ_)k)-’ (3.10)

d right inequalities respectively, yields the first set of results.

en for all Bp > € > 0, 3 y(¢) such that

19(y) < 9(y +1) < (Bp + €)g(y), (3.11)

(€), and the same relation holds for f for all y > max{ys,y(¢)}. For
y(€)} <y —1<n <y we now obtain
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((1—pB)+€)/(Bp— )} (y) <P(Y <y) <1—((1—pB) — ) f(v)

s defined in (3.10) in the left and right inequalities, yields the second set of
O

ts, and 0 < B < 1/p, then from Anderson [1970], or the result above (via
ition that we may apply results for distributions with a continuous support
»f above) we obtain that there exist norming constants {ax > 0, bx}r>1, ar
% — 00 as k — 00, such that for —oo < z < 0

e < liminf P(Y® < axz + by)

< limsup P(Y(k) <apz4b)<e . (3.12)

- k—00

gle server queue this result is also obtained in Cohen [1982], p. 623.

# [ (3.12) is not valid. This is the main reason for the fact that we have
) in the formulation of the theorem above. Norming constants exist, but
ce of norming constants corresponding to f“l(ﬁ%;—;ﬁ) will be different from

-

ce corresponding to f_l((‘fiTiﬁE)' Furthermore, the liminf’s above are not
smaller than the lim sup’s due to the difference in the arguments.

It (3.12) cannot be strengthened, that is limy_,.o P(Y® < apz + b;) does
This can, for example, be obtained from Serfozo [1988], Theorem 2.3. (3.12)
every sequence has a subsequence with limit between the upper and lower
ssented in (3.12) for fixed z. From the results on stochastic compactness
>xtremes (De Haan and Resnick [1984]) we can show that this limit in fact
non-degenerate distribution of the form e=®"". This is a powerful result that
characterises the limiting behaviour of P(Y® < arz+8;) for 0 < 8 < 1/p.

1 3.6 (De Haan and Resnick [1984]) The sequence of sample maxima
*hastically compact if there exist {a, > 0, b, }n>1 such that every sequence
(k) )/ Gn(k) }k>1 contains a subsequence whose distributions converge weakly
legenerate probability distribution. Such a limit distribution is called a
't distribution. We will also call the distribution function of Y stochastically
the above holds.

3.7 For 0 < Bp < 1, P(Y < y) is stochastically compact. The possible
it distributions are G(z) = exp[—exp[—(z + €)]], —©0 < z < oo, with
<0.

*f > 0 we will show that P(Y < y) satisfies the conditions of Theorem 4 in
nd Resnick [1984]: for some 6 > 1,
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P(Y <))’ dy < oo, (3.13)

21 -P(Y <y))’dy :
=P <2) [°0-P(Y <y)dy 0, (3.14)

[2(1=P(Y < y))°dy
AP <o) [F(1-P(Y <o) Tdy = - (3.15)

min{pg, (1-pB)}. From (3.5) there exists an n(¢) such that for all n+1 >
we have (1~ pf) — pp(n)p" < 1 — P(Y < n) < (1 - pB) + p(n)e"
i(n)p™ < (n +1)p" < (Bp + €)d(n)p™. As a consequence, for § > 2

Y <y))ldy < i (1 -P(Y < n))’?
n=n(e)
S (= 0B)+ B + " O((€)p"9] " < oo.

n=n(¢€)

IA

lower bounds on ¥(n)p™ and 1 —P(Y < y) it can also be shown that the
holds for 0 < § < 1, which shows that (3.13) is satisfied for all § > 1.

€) we have, with [z| the integer part of z, and [z] the smallest integer
z (note that [z] = |z] iff 2 = [z]), for 6 > 2
1-P(Y <y))’dy _
) 7°(1-P(Y <y)-ldy

(e = [2))(1 —P(Y < [2]))’ + T2 (1 - P(Y < n))°
(Y < ) {(@— 2])(1 - P(Y < [2]))'! + Ei2 (1 - P(Y <n))P2}
— 08) + €)(Bp+ - telg((2))p)] (k2 + =)
pB) — &)(Bp — e)=1-lely(z])plel]’ (e + ot
—pB)+)Bp+ ' (G + gpray)
o8) — 6o ~ €)' (57 + )

the right hand side is a periodic function of z. It therefore suffices to
pression for 0 <z < 1.

< 1 let 7(z) denote the z-dependent part of the right hand side above,

z 1 5 1 _ (Be=e\® 1

Gote® T Tl _ (ﬂp - 6) ey (%5) o
T 1 - T 1 “

G + Gmo—r  \PPte Gr—o° T Bro-Go—o"
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< 1+log[1/(Bp+e€)]/ log[(Bp+€)/(Bp—¢)], which is possible for ¢ sufficiently
¢ — 0 the right hand side goes to o), the denominator of the second term,
Bp—e€ b 1
(ﬂp+f) (Bp—€)—(Bp—e)
quence, maxo<z<1 7(z) = r(1).

s is negative, and 7(z) is an increasing function on [0, 1].

e results above,

J2(1 - P(Y < y))’dy < limsup ((L=pB) +I(Bp+ I
-P(Y <2)) [P(L-P(Y <)) ldy = e [((1 - pB)e)(Bo—€)]

—e\d
(1= pB) + )(Bp + ) { (ﬂp - ) , o ~ (%) mroree }

[(1—pB)—e)(Bo—¢€))’ | \Bo+e Gt T G-

iently small the right hand side is strictly smaller than 1, which can easily
by taking the limit ¢ — 0. :

milar arguments, it can also be shown that (3.15) is satisfied for all 6 > 1,
3.14) is satisfied for all § > 1, which completes the proof. O

0, corresponding to a non-uniformizable Markov chain X, the situation is
different. From Lemma 3.1 we obtain

1-P(Y<n-1) .. 7(n-1)
1-P(Y <n)  noe m(n)

ary 4 of De Haan and Resnick [1984] shows that P(Y < y) is not stochas-
pact. As a consequence, although we have obtained bounds on the limiting
ns, these bounds do not allow us to characterise the limiting behaviour of
w + by) for B =0.

1/p the distribution of Y(*) can be obtained from Lemma 3.2.

3.8 Under the assumptions of Lemma 3.2, for p < 1,

Y (F) ez 0P 250
P < —— 3 ] .
(et =p =2 { 0, 2 <0, (3.16)

=1

p log YR
ak

-1
_J e, >0,

r p < 1, from (3.6) we obtain that for all 0 < € < a(l — p), 3 y(¢) such that

y(e)
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a(l—p)+e a(l—p)—c¢
1 — Y < -
EN= PY <y) <1 y'-?
We may set y = (ka(l — p))/0~Pz for 2 > 0, k = 1,2,..., which proves (3.16). The
proof of (3.17) follows the same lines. a

For the single server queue, corresponding to p = 0, the result of Theorem 3.8 is
obtained by Cohen [1982]. Extensions of this result for p < 1 are presented in Serfozo
[1988]. Here limit theorems are obtained for null recurrent, and almost null recurrent
processes. In this reference the birth and death rates depend not only on the number
of customers in the queue, but also on the number of busy cycles that have past, that
is in busy cycle k we have g(n,n +1) = A1, and g(n,n — 1) = pnz. Serfozo [1988]
defines parameters pg, related to the traffic intensity, and obtains limit results when
pr — 1 along a suitable sequence.

For 8 > 1/p limit theorems can be obtained for Y*) conditioned on Y* < co. In

view of Remark 3.4, it is not surprising that a result similar to Theorem 3.7 can be
derived for Bp > 1.

Theorem 3.9 For 1 < fp < o0, P(Y < y|Y < o0) is stochastically compact. The
possible partial limit distributions are G(z) = exp|[— exp[—(z + €)]], —00 < = < o0,
with —log[Bp] < e < 0.

Proof Follows the lines of the proof of Theorem 3.7, and is based on the inequalities
7~ Vg < g < (5 + g and ([(08 = D) BB — 1)) = €) gy <
1-P(Y <ylY < 00) < ([(p8 = 1)Bu(Be = )] ™ + &) grar- |
For 3 = oo we obtain from Corollary 4 of De Haan and Resnick [1984] that P(Y <
y|Y < o0) is not stochastically compact, similar to the result for 5 = 0.

4. LIMIT THEOREMS: ALMOST SURE CONVERGENCE

This section records some results related to convergence in probability for the sample
extremes. These results can be obtained as corollaries to the results of the previous sec-
tion. Furthermore, almost sure convergence of the normalised maxima is investigated.
It is shown that for 0 < 8 < 1/p, Y® /by — 1 with probability 1.

For 3 > 0 we obtain the asymptotic relation ¥(n + k)/4(n) ~ B¥ (n — oo), which
shows that the dominant behaviour of ¥(n) for large n is geometrical. However, for
1 to have a geometric tail, that is for ¥(n) ~ ™ (n — o0) additional assumptions
on v are required. From Theorem 3.5 and the discussion following that theorem, we
obtain that the tail behaviour of f~! is of interest (f(n) = ¥(n)p"™). Suggested by this
discussion we now assume that for all y, —oco < y < 00, there exist norming constants
{ar > 0, bi}r>1, ar bounded, and limy_,o, by = 0o, such that

Tim £(52) (ovy + i) = 1 (4.1)
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n (4.1) can be seen as the asymptotic characterisation of the inverse of f.
ption (4.1) holds for all functions f for which F(y) = 1 — f(y) is in the
attraction of exp[—e™]. In particular, (4.1) is satisfied if # > 0, but is
«d for the infinite server queue, as is shown in the examples. The increasing
bx}72; can be chosen as

inf{z: (o) < 7} = /), (4.2)

first equality gives the definition of by, and the last equality is obtained by
lity of f.
ywing result is a corollary to Theorem 3.5. Its proof follows standard lines

ssented in Galambos [1987], section 4.1, but deviates from these lines be-
rguments in the upper and lower bounds presented in Theorem 3.5 are not

4.1 Assume that 0 < § < 1/p. Under the additional assumption (4.1), the
*) /by, converges for k — oo in probability to 1.

m (4.1) for all y, —00 < y < o0, for all § > 0, 3 k(6) such that (1 —&6)(ary+
=2) < (14 6)(ary + be) for all k > k(6). From Theorem 3.5 we obtain, for

o0

1p P(Y(k) < (1 — 6)(arz + axlog[l — PP + b))

limsup P(Y® < £~ ) <e™ T,

(T
k—so0 (1 - pB)k
1y, for —oo <z < ©

—a— %

fP(Y® < (1 +6)(arz + arlog[l — pf) + b)) +1) > e
for 6§ <1, —0o < & < 00, since by >0

af ar 1
85— 85— log[1 — —
> (1+ )bk:c+(1+ )bklog[ pg]+bk+6)

Y(Ic) )
1pP(I——b—’-c—— -1

Y(k) ar ag 1
. I < ar ax _ 1
Y (*)
b

+1-liminfP— — 1< (14 6%z + (1+6) 2 loglt — pf] + — +9)
k—oo k bk bk bk

limsup P(Y® < —(1+4 8)arz — (1+ 6)ax log[l — pB] + (1 — 8)b)

k—oo

+1- ﬁgﬁ;ﬂ)(ﬂ“ < (14 8)apz + (1 + 8)arlog[l — pf] + (1 + &)bg + 1)

eHifg z+c
e

-

+1—-e% 7,
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where ¢ = 2log[l — pB]/(1 - 6).

For fixed 0 < € < 1, 3 K(¢) such that 1/b; < €/4, for all k > K(¢). Let § < ¢/4.
Since ay /b — 0 for all K there exists a Ko > K such that for all & > K, we have
ag/br < ax/bx. With z = [(1 — 8)ax/bx]|€/2,

(k)
lim sup P( X—— — 1‘ > €)
b,

k—o0
Y® 1
< limsup P(|—— — 1| >(1+ 6)?[(1 + 6)ax [bx] Te/2+ (1+ 5)%’31og[1 — pfl + 5 +9)
k—ro0 br. k k k
< o—ele- —8)agc/bg] ™ e/2+e +1- e_e—[(1+s)ax/bxrle/z
For K — oo the right-hand side converges to 0, which completes the proof. O

For Bp =1 and Bp > 1 limit theorems for Y® cannot be obtained from the results
of section 3 based on extremal values. In these cases limit theorems agree with ordinary
limit theorems since X is growing. Such results can be found in Iglehart and Whitt
[1970]. For Bp > 1 limit theorems for Y®) conditional on Y < oo can be obtained
from Theorem 3.9 by analogy with the result of Corollary 4.1.

If we assume that 0 < 8 < 1/p the result of Corollary 4.1 can be strengthened. The
following theorem shows that Y® /by, converges for k — oo to 1 with probability 1. The
proof of this result is based on Theorem 4.4.4 on page 268 of Galambos [1987]. Observe
that our definition of b, differs from the definition used by Galambos. Therefore, we
cannot directly apply Theorem 4.4.4, however, the proof of the result below follows the
same lines.

Theorem 4.2 Assume that 0 < 3 < 1/p. Let by = log[k]/log[1/(pB)]. Then

(k)
P(limz——zl)=1.
k—00 bk

Proof Forn < 1, and € < Bp — (Bp)*/™, let n(e) such that 1 — P(Y < nb) >

(1 = pB) — €)f(|nbx]) for all k& > n(e), and (Bp — €)f(|nbr|) < f(|nbx] + 1) for all
k > n(e). We obtain

S (1-P(Y<nby) > 3 ((1-p8) - If(Lnbe))

k=n(¢€) k=n(¢)
> (1-pB)—€) X (Br— "7 f(n(e))
k=n(¢)

H

n(e o e
> Gpoga 2 (5)

k=n(e)
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at $22 (1 — P(Y < nby)) diverges for all n < 1.

1, and € < (Bp)/™ — Bp, let n(e) such that 1 — P(Y < nb) < ((1 — pB) +
for all k > n(e), and (Bp + €)f(|nbe]) > f(|nbx] + 1) for all k > n(e). We

(A-P(Y <nb) < 3 ((1-p8)+f(lnbe))
k=n(¢)
< f(n(e)) i ( ) T
< o+ o 2 ’
7s that 3552 ,(1 — P(Y < nbi)) converges for all n > 1. As a consequence,
.4.1 on p. 263 of Galambos [1987] implies that P (hm SUPk 00 Y—Ui)— = 1) =1.

apply Lemma 4.3.3 on page 255 of Galambos [1987] with u; = nbk, 0O<n<
application of this lemma, implying that P (hm infy o0 ‘gk) = 1) =1, it is
> prove that

— P(Y < nb)]exp{—k[l — P(Y < nb)]} < o0

.ed n < 1. Application of the bounds on the distribution used above gives
— (Bp)'/™, and n(e) sufficiently large (see above)

[1 —P(Y < nbg)]exp{—k[1 - P(Y < nb)]} =

> f(n(e) (1)"%%){ £(n(e)) (l)n‘-f‘“’ta—‘rl}

k-§€) (Bp + )+ \k (Bp — )™

b]

log[Bp—¢
iite, since n gl < 1. O

. part of the proof, showing that P (hm SUPL 00 ~F— Y(k) = 1) = 1, cannot be
> the case 0 < B < . If B < 3 we obtain the followmg bounds

Y &) (k)
msup— >1] =P hmsupX—<1 =1,
k—oo —bk k—o0 bk

= log[k]/log[1/(pB)] < loglkl/log[1/(pB)] = bi. 1f 0 = f < j only the
nd (involving ) can be concluded from the proof above, and if # = 0 we

)ly any of the parts of the proof above. The problem involved is similar
slem encountered in the proof of Theorem 3.5. To obtain results for the
e of Y(¥) we need the specific form of f(-). The following result considers
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the logical extension of the geometric case f(z) ~ p® to a queue with unbounded
service rates: f(z) ~ (p/z)®, which approximates the Poisson distribution. This result
includes the infinite server queue.

Theorem 4.3 For o > 0, v > 0 define f(z) = ay®(1/z)**’, > 0, and assume that
P(Y > n) ~ f(n) (n — c0), then

where b, = f~1(1/k), k > 1.

Proof The proof follows the same lines as the proof of Theorem 4.2.
For n < 1, and n(e) sufficiently large

S (L=P(Y <nb))>(1-0) 3 f(be) = oo,

k=n(e) k=n(¢)

by the definition of b;. For n > 1, n(e) sufficiently large

f: (1 - P(Y < nbk)) < (1 + 6) i f(nbk —_ 1)

k=n(e) k=n(¢)
o0 1 n
= (1+6 3 oy (E) exp [—(nbg + 6 — 1) logln — (1/b)] + log[bi]] < oo,
k=n(¢)
which shows that lim sup;_,, —Ygl = 1 almost surely.

For 0 < n < 1 and n(e) sufficiently large we have for k > n(e) that b < loglk] < k,
0< in <n—(1/b) <n <1 This gives

flnbr —1) = ay G;)nem) [—nbi logln — (1/b;)] + log[be] + (1 — 8) log[n — (1/4)]]
<y (1) expl-nlog[2/n] loglk] + loglk] +1(6 — 1) log[2/n]l],

and

k

As a consequence, with C; and C; positive constants incorporating the constants ap-
pearing above

f(nby) = a (l)nexp [—n (b + 6) log[be] — (nbr + 6) log[nby]] > o (i—)n .

1\**t" log[2/n]—1
) exp[—Cak'™].

[1 — P(Y < nby)]exp{—k[l — P(Y < nb)]} < C1 (75

Lemma 4.3.3 on page 255 of Galambos [1987] completes the proof. O



21

LES

resent some examples from queueing theory. In particular, in the first exam-
liscuss results for the single server queue, a model that combines a relatively
:ture with the property that the limiting behaviour is representative for uni-
jueues (queues with a uniform bound on the service speed). Results can be
>hen [1982], and the references therein. The second example presents some
3 of the results of this paper to the M/M/s queue. Finally, the third ex-
vses the infinite server queue, the standard example of a non-uniformizable

1gle server queue

server queue with Poisson arrivals and negative exponential services is a
eath process with birth rates g(n,n+1) = A, and death rates g¢(n+1,n) = p,
.,N — 1 < o0, where N is the size of the waiting room. (We set § = 1.)

nt measure m(n) = p*, n=0,...,N, where p = A\/u, equals the invariant
arrival instants. We have
(1-p)p", n=0,1,2,..., (N=o0, p<1),
=7rq(n)= (l_p)pn/(l—pN+1)7 n=0,...,N, (N(OO, p¢1)7
1/(N +1), n=0,...,N, (N<oo, p=1),

als to a full queue are discarded.

imum number of customers simultaneously present in a busy cycle is ob-
(2.7)

1-(1
<n)= 1—1T(1'(/7,L)§)I1'7 p#L
- 1--L =1
n+1? P ’
»e expanded for p < 1
_m(n) n+1
<n)=1- o 1 —7(n)(1+O0((p)*"))- (5.1)

liately establishes the result of Lemma 3.1. For y — 1 < n <y,

L= p)p* {1+ 0((p)*)) < P(Y <) <1—(1-p)p*(1+O((p)"))-

= —(z + log[k(1 — p)])/ log|p] reproduces the result of Theorem 3.5 with
= —(z+log[k(1—p)])/log[p]. Corollary 4.1 holds with bx = — loglk]/ log|p],

ates that Y® increases logarithmically for the single server queue. Theorem
hat Y*)/log[k] converges almost surely to log[1/p].

| we obtain the conditional probability (for N < o)
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ap _ AN 1-5
n[Y <N)=1- (ip_ ﬁNp)(l)(_ ﬁnf—:)l)’ ’ (5:2)

. If the queue is unstable (p > 1) we may take the limit N — oo, which

#i(n . o~
WY < 00) = 1= TE0Ls = 1 )1+ O™,
(1 — p)p™. Comparison with (5.1) shows that we may now draw similar
. in the case p < 1.

nore interesting application of (5.2) is the following result that allows us
2 the behaviour when the buffer is almost full:

[<nY<N) _ (1-7)

= 1—5
"= =z P

>, and n — N. For example, we have p¥ 'P(Y = N|Y < N)] — 1 for
we may apply the theorems obtained in this paper to this distribution.

iserver queue

jueue is a birth-and-death process with birth rates g(n,n + 1) = A and
‘n,n — 1) = umin{n, s}, that is customers depart at rate ny when less
aers are present, and at rate sy when s or more customers are present,
» number of servers of the queue. For the limit theorems derived in this
he behaviour of the process for large values of the queue is of interest.
les the multiserver queue behaves similar to the single server queue. The
ive recurrent when /sy < 1. In the formalism of this paper: p = A/u,
For Bp < 1 we have

By2: n<s
r(n) =4 ’
! By& (Bp)" ™", n>s.

iows that

Y > )/ (o) = (1- )%,

3.7 implies that the sequence of sample maxima Y® is stochastically
1 norming constants ay = [log[s/p]] %, br = (log[k] +log[s*/s!])/ log[s/p])
imit distributions G(z) = exp[— exp[—(z + €)]], —00 < = < oo, with
< 0. Note that the single server queue corresponds to s = 1. Finally, we
1eorem 4.2 to show that Y®)/log[k] converges to log[s/p] almost surely.
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finite server queue

e server queue is a birth-and-death process with birth rates g(n,n+1) = A,
rates g(n,n — 1) = nu. It corresponds to a queue with Poisson arrivals in
arriving customer is assigned its own server. The queue is positive recurrent
es of p = A/, and the equilibrium distribution is Poisson with mean p:

= mg(n) = e ?p" [nl.
. presents this queue as a special case:
P(Y > n)/(p"/n!) = 1.

: explicit appearance of n! in this expression, the analysis of the maximum
customers simultaneously present in an infinite server queue is considerably
ult than in a multiserver queue, although it seems that the former appears
t of the latter. Comparison of the multiserver queue with the infinite server
7s that the multiserver queue is uniformizable for all choices of s, the number
n the queue (the service speed is uniformly bounded), whereas the infinite
1e is not uniformizable.

1 3.5 presents upper and lower bounds for the distribution of the sample max-
5 is shown after the proof of Theorem 3.7, these bounds do not characterise
ce of sample maxima: P(Y < n) is not stochastically compact.

characterisation of limit theorems the behaviour of f(n) = p®/n! for large
srest only. Stirling’s formula for n! shows that f(z) = 1/(52 )(pe)w/z”% is

n appearing in (4.1). This can be obtained from Von Mises conditions, e.g.
).7.8 on page 115 of Galambos [1987): The distribution function F(z) =
as a negative second derivative F"(z) for all z > 1, and satisfies

F'(z)(1 - F(z))

F@E "

there exist norming constants {a; > 0, bx}r>1 such that (4.1) is satisfied.
ke by as given in (4.2), and ax = (1 — F(bx))/F"(br), that is by is the unique

FYH1/k), and a; = [log[bi] + (1/2b;) —log[p]]™}, k> 1.

iat by ~ loglk]/logloglk] (k — o0). We may now apply Corollary 4.1 to
Y®) /by, converges to 1 in probability.

lite server queue is also covered by Theorem 4.3, which shows that Y(*) /b,
;0 1 with probability 1.
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as discussed the behaviour of the maximum number of customers that
usly present in a queue. It has characterised the distribution of this
a single busy cycle, and a (dual) relation with loss probabilities and
lities at arrival instants has been discussed. The tail of the distribu-
aximum has allowed us to study the limiting behaviour of normalised
a large number of busy cycles. Applying results from the theory on
ibutions, it is shown that for queues with bounded service rates, includ-
) queues, this maximum over k cycles, Y®, increases logarithmically
ity 1: Y® /logk — 1. For a class of queues with unbounded service
1g the infinite server queue, this maximum grows as log k/loglogk, that
k/logk — 1 almost surely.

resting extensions remain to be investigated. Queues with general arrival
-ocesses will most likely behave similarly as can be seen from the results
/1-queue. The extension to queues with finite waiting room is of current
is allows the application of limit theorems to buffer-dimensioning prob-
-more, such results could be investigated in a queueing network. Then
alysis would be feasible using the maximum queue size in the bottle-
a methods from the theory on extremal distributions. The extension to
(and batch queueing networks) is of current interest since many of the
nvolve simultaneous transmission of customers.
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