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duction

vairing: dividing a collection of objects into pairs. Typically the objective is to
al profit (or minimize cost), where the profit of each possible pair is known in

e formal definition, let G be an undirected graph with node set V' and edge
sset M of F such that no two edges in M are incident to a common node is
If M has exactly one edge incident to each node v € V, we call M a perfect
e mazimum weight matching problem with respect to the weights w on the edges

matching M with total weight ) .5 we as large as possible.
v weight perfect matching problem is:
perfect matching M with total weight ) cpr we as small as possible.

1g problem is defined by two parameters: the graph G and the weights w. We
1ing problems by these different parameters:

— cardinality or weighted matching. Finding a maximum cardinality matching,

sidering all edges to have weight one, is easier than dealing with more general

. Moreover, an algorithm for finding a maximum cardinality matching can be,
ur presentation is, used as a subroutine for solving the general weighted problem.

re, we discuss the cardinality case first, in Section 2, and study general weights
Section 6.

bipartite or non-bipartite matching. Matching problems are significantly easier
tite graphs. So, we discuss several topics in bipartite matching before venturing
complications of the non-bipartite case.

theory is one of the cornerstones of mathematical programming. Yet, match-
s ubiquitous in practice as network flow problems (for applications of network
1ja, Magnanti and Orlin [1989]) and, when they do arise in practice, it is most
tite graphs where they can be modeled as network flow problems anyway (see
So, to what does ‘Matching’ owe its prominence?

‘e is the position of matching problems between the ‘easier’ problems like net-
1d the hard (NP-hard) problems like general integer linear programming. This
)een pointed out by Edmonds and Johnson [1970]. It is probably best expressed
cation: “Optimum matching problems ... constitute the only class of genuine
ms for which a good solution is known” (Cunningham and Marsh [1978]). In a
mingham and Marsh clarify this statement with: “.. Every other class of well-
atorial problems is not “genuine” because either: (a) No ezplicit formulation as
sgram using a reasonable amount of data is known (ezample: minimum span-
ems); or (b) When such a formulation is known, the resulting linear program
iteger-valued optimal solutions (example: network flow problems).”

1d perhaps more intrinsic to the importance of matching, there is the intricate
natching theory. Just a glimpse in the excellent book Matching Theory by



mmmer [1986] should convince the reader of this. For instance, there are the
riptions of the class of all maximum cardinality matchings in a graph. In this
how one of these, the Edmonds-Gallai structure (see Section 4.1), helps in
algorithmic issues — in this case an algorithm for finding a minimum weight
ng (see Section 6.2). Third, there is the ‘self-refining’ property of matching
ains a wide class of its generalizations as special cases (see Sections 3 and 7).

les of matching problems

four examples of matching problems. A classic example is:

it problem: Suppose n tasks are to be carried out and each must be assigned
son. We have a staff of n people available and each person can be assigned
Moreover, we know for each person p and task ¢ a number w,; quantifying the
* p when carrying out t. Now, the question is: How do we assign the tasks to
make task-person pairs, so that the total productivity is as large as possible?

s is a bipartite matching problem. An example of a non-bipartite matching

Irilling problem (Devine [1973]): Suppose we are given the locations of oil
want to exploit all the deposits at minimum drilling cost. It is technically
ess two deposits with one well: drill a hole to the first deposit, and then
1g from that same hole, possibly at a different angle, to the second deposit.
1 brought up from both deposits via concentric pipes. We know the savings
combined drilling operations for each pair of deposits. The question is: How
» the drilling operations so that the savings are as large as possible?

-hese cases, the matching character of the problem is immediately obvious from
1. A more disguised matching problem is:

maps: (Iri and Taguchi [1980], Iri, Murota and Matsui [1983]) A pen-plotter
street map of a city. Since the total length of the lines to be drawn is fixed,
o minimizing the total distance of the ‘non- drawing’ moves, or shifts, the pen
ge position. A natural assumption is that the pen starts from some prescribed
1rns to it when the drawing is finished. For simplicity, we assume that this
ng and ending point is a point of the map to be drawn. Moreover, we assume
| of the map (edges are streets, nodes are intersections) is connected, i.e., that
_between any two intersections in the city along streets. The question is: In
>uld the edges be drawn to minimize the total drawing time?

1 famous theorem of Euler’s [1736] asserts that if all the nodes in a connected
en degree, one can draw the graph without making any shifts. However, when
s with odd degree, shifts are unavoidable. In this case, the problem amounts to
;0 the graph, which will become the shifts, so that every node in the resulting
n degree. Distances in the city are Euclidean. So we may assume, by the



juality, that no two shifts have a common endpoint. Hence, finding the fastest
v the map amounts to pairing up the nodes with odd degree so that the total
> line segments connecting the two nodes in each pair is as short as possible. This
m weight perfect matching problem.

>wing application is even less obvious. Again, we solve this problem as a matching
it now the resulting matching must be modified in a non-trivial way to obtain a
the original problem.

‘Fuji, Kasami and Ninomiya [1969], Coffman and Graham [1972]): Suppose, you
rtner want to restore this lovely old house you just bought. You have divided the
ct into a number of one-week jobs that must be carried out in accordance with
edence relations. For example, it is difficult to paper a new wall before putting
\e project puts already enough pressure on the relationship, you have agreed not
ether on any job. You both have about the same skills, however, so either of you
job equally well. The question is: How do you allocate the jobs between you so
sh the project as early as possible?
» a list of one-week jobs Ji,..., Ji, together with a partial order < on them. The
< J; means that J; should be carried out before J; and two jobs are incomparable
ust precede the other. Minimizing the project duration amounts to scheduling the
srdance with the precedence constraints, so that in as many weeks as possible you
wrtner are both assigned jobs. Clearly, if you and your partner are both working
veek, your jobs must be incomparable. Therefore, as a first attempt at finding
schedule, we look for a largest set of disjoint, incomparable pairs: a maximum
matching problem.
est matching P consists of £ disjoint, incomparable pairs, then we know that the
ct will take at least k — £ weeks. In fact, we can complete the project within that
s idea is to schedule the jobs from each pair in P in a single week. Each of the
obs, called the singleton jobs, is assigned to a week by itself. We might, however,
nge P to make this possible.
of that we can complete the project in & — ¢ weeks is by induction on k, the
jobs. Let £ denote the jobs that are minimal with respect to <. If there is a
Ii,J2) € P with both J; and Jp in £, we schedule these two jobs in the first
T1, Jo) is still a largest collection of incomparable pairs among the remaining jobs.
nduction hypothesis assures us we can schedule the jobs in & — £ weeks. A similar
pplies if £ contains a singleton job.
ypose £ contains neither a singleton job nor a pair in P. Among all pairs (J1, J2) €
: €& choose one with J minimal with respect to <. As Js & £ there existsa J3 € €
',. Moreover, as J; is not a singleton job, there exists a job Jy with (J3,Js) € P.
Jo does not precede Jy. Moreover, by the choice of Jo, J4 does not precede Jy. So
Jy are incomparable. Hence, (P \ {(J1, J2), (J3, Ja)}) U{(J1, J3),(J2, J4)} is also
llection of disjoint, incomparable pairs. As this collection does have pair in £, we
| as before, schedule that pair in the first week, and by the induction hypothesm
'bs in the remaining k — £ — 1 weeks.



For another application of matching see Ball, Bodin and Dial [1983].

1.2 Generalizations of the matching problem

There are two obvious directions in which the matching problem can be generalized.

Degree-constrained optimization

Matchings are subgraphs in which each edge appears at most once and each node has degree at
most one. This suggests extensions allowing more general degree constraints and allowing an
edge to appear more than once in a feasible solution. These generalizations lead to so-called
‘b-factors’ and ‘b-matchings’, and — if we limit the number of times an edge can appear —
to ‘capacitated’ b-matchings. We can also impose lower bounds on the degrees of nodes and
on the number of times edges appear. Thus we can extend the matching problem to a quite
general degree-constrained (multi-)graph optimization problem. Surprisingly, many results
for ordinary matchings extend to these generalizations. This phenomenon, which we explain
in Section 7, is part of the self-refining nature of matching theory previously mentioned.

This self-refining nature persists even when we impose parity conditions on the degrees
of nodes, e.g. demanding that feasible solutions have an odd number of edges incident to
particular nodes (see Section 7.4).

Set-packing problems

As matching is finding disjoint pairs, a natural generalization of the matching problem is
trying to find, in some sense optimal, collections of disjoint triples, quadruples or otherwise
structured sets. This gives rise to the very general set-packing problem, which includes many
combinatorial optimization problems as special cases. Unfortunately the set-packing problem
is too general, it is NP-hard (even if we only consider packing triples, Karp [1972]). Except
for a few lines on stable sets in perfect graphs (in Section 3.2), we do not study them here
but confine ourselves to matchings.

1.3 Other sources on matching

The number of publications concerning matching problems is enormous, the references in this
chapter constitute only a very limited part of them. There are many good books on matching.
We mentioned already Matching Theory by Lovasz and Plummer [1986], which really is the
most complete source on matchings available at this moment. Other highly recommendable
books that deal (partly) with matchings are: Graphs by Berge [1985], Combinatorics and
Optimization: Networks and Matroids by Lawler [1976], Graphs and Algorithms by Gondran
and Minoux [1984] and Programming in Networks and Graphs by U. Derigs [1988a]. Sources
on general integer programming (including matching) are: Theory of Linear and Integer
Programming by Schrijver [1986] and Integer and Combinatorial Optimization by Nemhauser
and Wolsey [1988].

Excellent introductions to matchings are: Schrijver’s [1983a] survey paper on min-max
relations in combinatorial optimization, with special emphasis on the self-refining properties
of matching and the paper by Pulleyblank [1995], with more emphasis on structural results



find in this chapter. A very nice historical overview of matching theory — from
odays state of the art — is the paper by Plummer [1992].

oned, bipartite matchings are really network flows. Network flows are also dis-
st of the just mentioned publications. For extensive treatments of network flows
ie surveys by Ahuja, Magnanti and Orlin [1989], by Goldberg, Tardos and Tarjan
y Helgason and Kennington [1995, this volume].

ne

1 of this chapter considers algorithms for finding maximum cardinality as well
. weight matchings (Sections 2 and 6). We start with the Hungarian method
. maximum cardinality matching in a bipartite graph (Section 2.1). We then
iethod in two directions: to Edmonds’ blossom algorithm for finding a maximum
natching in a general graph (Section 2.2) and to the Hungarian method for
ximum weight matching in a bipartite graph (Section 6.1). Finally, the ideas of
sthods are combined in Edmonds’ algorithm for the weighted matching problem
-aphs (Section 6.2). From the insight provided by the Hungarian method for
rdinality matching in bipartite graphs the classical theorems of Fr6benius and
artite matchings easily follow (Section 3). Some of the self-refining properties of
n be found in that section. Edmonds’ blossom algorithm for cardinality matching
eorems of Tutte and Berge on matchings in general, non-bipartite, graphs and
s-Gallai structure theorem (Section 4). This structure theorem facilitates the
ind analysis of Edmonds’ blossom algorithm for weighted matching. Because
or the weighted matching problem are closely related to the formulation of this
. linear program, we discuss the matching polytope in Section 5. In that section
ly mention stable matchings (Section 5.2). Together these sections contain the
amic and structural aspects of matchings.

ad part of this chapter consists of four sections. In Section 7 we consider general
raints and discuss some of the self-refining aspects of matching. In Section 8
sther algorithms for matching problems, including randomized algorithms for
atching and for counting matchings. In Section 9, we discuss applications of
other combinatorial optimization problems like the traveling salesman problem.
concludes with a (short) section on the computer implementation of matching
nd on heuristics for matching problems.

ude this section with some notation and conventions.

tion and conventions

denote the edge set of an undirected graph G by E and its node set by V. When
ight arise, we write E(G) and V(G). We write uv € E to mean that uv is an
dpoints v and v. In case of parallel edges this might seem a bit ambiguous, but
s not. Parallel edges are not particularly relevant for matching problems and we
ssume that there are none. Yet, parallel edges hardly complicate the problem.



In fact, in solving matching problems we construct graphs with parallel edges. So we do not
explicitly forbid them.

We assume the reader is familiar with the basic notions of graph theory (cf. Bondy and
Murty [1976]) and only discuss those most important for this chapter. For each subset U C
V(G), we define: §(U) := {uv € E(G)|u € U,v ¢ U} and (U) := {uv € E(G)lu € U,v € U}.
We let G|U denote the subgraph of G induced by U, ie., V(G|U) = U, E(G|U) = (U), and

we let G\ U := G|(V(G) \ U). For each node u € V(G) G\ u:= G\ {u}, 6(u) = 6({u})
and deg(u) := |6(u)|, the degree of u. For each edge e € E(G), G \ e is the graph with node
set V(@) and edge set E(G)\ {e}. We use G Ue to denote the graph obtained by adding
the new edge ¢ ¢ E(G) to G, ie., V(GUe) = V(G) and E(GUe) = E(G) U {e}. The
notions of connected graphs, components, paths, trees and forests are so standard that we
omit their definitions here. Circuits and Eulerian graphs are standard notions too, but there
is a rather wide-spread babel as far as the terminology is ‘concerned. We refer to a circuit
(of length k) as a graph C with k distinct nodes V(C) := {v1,..., v} and the k distinct
edges E(C) := {v1v2, v2vs, ..., Vk-1Vk, Ukv1}. A cycle is a graph w1th all degrees even. So a
cycle is an edge-disjoint union of circuits (in other writings one might find ‘cycle’ where we
use ‘circuit’). A connected cycle is called an Eulerian graph. We often identify a circuit C
with its edge set E(C), and so write e € C, meaning e € E(C). Similarly, we identify other
subgraphs like paths or trees with their edge sets.

We denote a bipartite graph by G = (V4 U V3, E) where V; and V, are the color classes
(so each edge has one endpoint in ¥ and one in Vo).

Given a directed graph D, V(D) denotes the node set, A(D) denotes the arc set, and uv
denotes an arc from u to v. For each subset U C V, 6~ (U) := {uve A(G)|u ¢ U,v € U} and
§+(U) == {uwwe A(G)|u € U,v ¢ U}. Again, for each node u € V(D), we abbreviate §~({u})
as 6~ (u) and 6+ ({u}) as 67 (u).

Numbers, vectors, polytopes and polyhedra

For o € R, || denotes the largest integer not greater than a. Similarly [a] denotes the
smallest integer not smaller than o.

Given a set R and a finite set S, RS denotes the collection of vectors indexed over S
with components in R. So, for example, RS is the collection of real vectors and Z% is the
collection of integral vectors with components indexed by S. We use Ry to denote the set of
non—negatlve reals and Z., to denote the set of non-negative integers. For each subset T C S,
xT € {0,1}° denotes the characteristic vector of T' as a subset of S, ie., (xT)e=1ifteT
and (xT); =0ift ¢ T. Given z € RS and T C S, we frequently use z(T') to denote 3,7 T¢-

The node-edge incidence matriz N = (N, ) of an undirected graph G is the V(G) x E(G)
matrix w1th Nue = 1 if u is an endpoint of edge e and N, e = = 0 otherwise.

Let z!,...,zF € RS. Any vector of the form Y%, }\zw with 3% /A, =1 and )\; > 0 for
each i € {1, ..., k}, is called a conver combination of zt,...,z*. The convex hull of a set X
is the collection of all convex combinations of finite subsets of X. A polytope is the convex
hull of a finite set. A polyhedron is the solution set of a finite system of linear inequalities,
i.e., a set of the form {z € R" | Az < b} for some matrix A and vector b.



> of the running time of an algorithm is the number of arithmetic steps it re-
. an arithmetic step is the addition, multiplication, division or comparison of two
e report the running time of an algorithm by giving its asymptotic behavior as
f the size of the input. So, we say for instance that the running time is O(n)
t there exists a constant y so that given input of size n the algorithm takes no
n steps before it produces the output. An algorithm is polynomial if its running
) for some p € Z,.

it for matching problems is in the form of graphs and rational numbers. We
the graph G is represented by its adjacency lists, i.e., for each node v we have
nodes adjacent to v. Thus, the size of the input of a graph is proportional to
‘G)|. (Note that every edge is represented twice in this way.)

we measure the running time of algorithms with respect to the number of arith-
we can consider the input size of a rational number to be 1. However, when
g the algorithms on a computer, rationals take more space to encode. A rational
vhere p and ¢ are integers, can be represented with log(|p| + 1) + log(lg| + 1)
On the other hand, an arithmetic operation on two rationals can be carried out
of binary operations that is polynomial in the number of binary bits required to
wo rationals. So, if the number of arithmetic operations an algorithm requires
J in the number of input rationals, the number of binary operations it requires
10mial in the number of binary digits needed to encode those rationals; that is,
- numbers that are calculated in the process do not become too big! Though not
-al, in this chapter the numbers computed do not become too large and so, it is
gue that the number of arithmetic operations an algorithm requires is polynomial
f the graph considered.

ing a Matching of Maximum Cardinality

im cardinality of a matching in an undirected graph G = (V, E) is denoted by
main question of this section is: How do we find — in polynomial time — a
atching, that is, a matching of maximum cardinality? We consider this problem
-om the more general weighted problem because it is easier and it contains the
nd notions of the weighted problem: ‘alternating paths’ and ‘shrinking’.

nating paths and forests

1 a graph G = (V, E) is said to be alternating with respect to a matching M,
ating, if the edges of P are alternately in M and not in M (see Figure la; for
» paths {e4, e7,e6} and {e1, ez, €3, €4, €5, €6} are M-alternating). So, every node in
ating path P, except possibly its end nodes, is incident to an edge in M N E (P).
» is in a matching M, we say that the node u is matched by M and that the two

v are matched. We also write up to denote v. Nodes not matched by M are
od and we denote the set of exposed nodes by exp(M). We define the deficiency
7) == |V(G)| — 2v(G). So the deficiency is minimum cardinality of ezp(M). An



(a) )

Figure 1: The bold edges are in the matchings M respectively M !

alternating path P is augmenting, or more precisely M-augmenting, if both its end nodes are
exposed (see Figure 1a; the dotted line indicates an M-augmenting path). Augmenting paths
obviously yield larger matchings: (We refer to the operation described in (3) and illustrated
in Figure 1, as AUGMENT.)

(8)  If P is an augmenting path with respect to a matching M, then the symmetric difference
"M’ := P A M is a matching too. Moreover, |M'| =|M|+ 1.

In fact, the converse is also true: if there is no augmenting path, there is no larger matching.

Theorem 1 (Berge [1957], Norman and Rabin [1959]) A matching M in a graph G is a
mazimum matching if and only if there is no M-augmenting path in G.

Proof Let M’ be a matching in G with |M’| > |M|. The graph consisting of the edges in
M' A M has maximum degree 2. Hence, each of its components is either a path or a circuit
in which the edges are alternately in M’ and in M. Clearly one of these components must
contain more edges from M’ than from M and that component must be an augmenting path
with respect to M. The converse is (3). O

Mulder [1992] pointed out that this result was in fact already known by Julius Petersen [1891],
probably the first to study matchings in graphs.

So, searching for maximum matchings amounts to searching for augmenting paths. We
search for augmenting paths by ‘growing alternating forests’.

Alternating trees and forests

Let M be a matching in a graph G = (V,E). A tree T in G is called alternating if the
following hold (see Figure 2):

- T contains exactly one exposed node, denoted by rr,
- for each node v € V(T), the path from r7 to v in T is alternating, and

- for each node v of degree one in 7', other than rr, the matching-edge vvps is in 7.

10



e solid edges form an alternating tree. The bold edges, dashed or not, are in the
ven square nodes are odd; filled square nodes are even.

\g forest is a node-disjoint union of alternating trees such that each exposed node
he trees. So, the forest consisting only of the exposed nodes without any edges
. For each node v in an alternating forest F', F, denotes the alternating tree in
v and r, p denotes the unique exposed node in F,. We call a node v in F even
inique path in F from r, g to v contains an even (odd) number of edges. We
t of even nodes of an alternating forest F' by even(F') and the set of odd nodes

ving procedure uses alternating forests to search for augmenting paths.

ar 1 or 2 below applies:

-is a node u € even(F) adjacent to a node v ¢ odd(F), then exactly one of the
1g occurs:

n(F). In this case, we extend F to a larger alternating forest by adding the
ges uv and vvys (v is matched). We refer to this as ‘GROWING the alternating
-est’. (See Figure 2; u =1u', v ="7".)

n(F) and F, # F,. Inthis case, we have FOUND AN AUGMENTING PATH, namely
e union of: the path in F, from 7, r to u, the edge uv, and the path in F;, from
to 7y p. (See Figure 2; u =", v ="1".)

n(F) and F, = F,. In this case, the procedure HALTS. (See Figure 2; u = v/,
— 'U,”-)

de u € even(F) is adjacent to a node v ¢ odd(F’), the procedure TERMINATES.
case, the forest F' is called Hungarian.

et M be a matching in a graph G = (V,E) and let F be an alternating forest
to M. If F is Hungarian, then M is a mazimum matching.

» F' is Hungarian, nodes in even(F) are adjacent only to nodes in odd(F'). So,
gin G has at least |even(F)| —|odd(F')| exposed nodes. On the other hand, from

11




the definition of alternating forest it follows that |ezp(M)| = |even(F)| — |odd(F)|. So M is
a maximum matching. O

Lemma 2 implies that GROW either finds an augmenting path, terminates with a maximum
matching, or HALTS. When G is bipartite, each even node v is in the same color class of
G as ry,p. So, no two adjacent even nodes can be in the same component of F and GROW
cannot HALT. Thus, we can find a maximum matching in a bipartite graph by iteratively
applying GROW and AUGMENT. This algorithm has been introduced by Kuhn [1955], in
the context of matchings in bipartite graphs, and Hall [1956], in the context of ‘systems of
distinct representatives’ (see Section 3). Kuhn called it the Hungarian method in recognition
of Kénig and Egervary’s contributions to the theory of matchings. The Hungarian method
is easy to implement.

Theorem 3 The Hungarian method finds a matching of mazimum cardinality in a bipartite
graph in O(|E|min(|V1], |V2|)) time.

Proof It takes O(|E|) time for GROW to find an augmenting path or construct a Hungarian
alternating forest. Each augmentation takes O(|E|) time as well. Since we AUGMENT v(G) <
min(|Vi|,|Va|) times, the theorem follows. (Note that we apply GROW v(G) + 1 times.) O

Hopcroft and Karp [1971, 1973] improved on this running time by searching for a collection of
disjoint, shortest augmenting paths and then augmenting along all the paths simultaneously.

Given a matching M, we define £(M) to be the number of edges in a shortest M-
augmenting path. A collection of node-disjoint, shortest augmenting paths Py,...,P is
called mazimal if there is no shortest augmenting path in G' node-disjoint from each of the
paths Py, ..., P;. Hopcroft and Karp’s algorithm is based on the following two observations.

(4)  We can find a mazimal collection of node-disjoint shortest augmenting paths in O(|E))
time.

Indeed, breadth-first search starting from ezp(M) N Vi accomplishes this.

(5) If P1,..., P, is a mazimal collection of shortest M-augmenting paths, then
{MAPA---AP)> M)

To see this, let @ be an augmenting path with respect to M' := M A P A--- A F;. Now,
observe that in proving Theorem 1 we actually proved:

(6)  Let My and My be two matchings with k := |Mg| — |M1] > 0. Then there exists a
collection of k mutually node-disjoint Mi-augmenting paths in My A M.

Applying (6) to M and M’ AQ, we get t+ 1 node-disjoint M-augmenting paths Q1, ..., Qt+1
in M A M' A Q. Now one easily verifies:

(M) M(E+1) < Qi+ +H|Qul SIMAM AQ|=|PA---APAQ]
= |(PLU---UR)AQ|=|PU---UB|+|Q[-2[(PU---UP)NQ|
= MX+|Q|-2|(PLU---UP)NQ|

Hence

12



AM)+2/(PLU---UPR)NQ|.

7). Suppose |Q| = £(M). Then @Q has no edge in common with any of Py,..., P
Q is augmenting with respect to M A P, A--- A P,, it must also have no node in
h any of Py,..., P;. This contradicts the maximality of the collection P,..., B;.
ide that |@| > (M), which proves (5).

he algorithm of Hopcroft and Karp. In each phase we are given an (initially
shing M. We find a maximal collection of node-disjoint shortest M-augmenting
, P, and augment along all of them to obtain the larger matching M' :== M A
%. We iteratively repeat this procedure using as input to each successive phase
g M' constructed in the previous phase.

dgorithm of Hopcroft and Karp finds a mazimum cardinality matching in a bi-
graph in O(|E|\/]V]) time.

vhase can be carried out in O(|E}) time, it suffices to prove that we need only
ases. Let M; be the matching found after 1/[V] phases. By (5), &(M1) > /[V].
1 be at most |V|/+/[V] = +/]V] mutually edge-disjoint M;-augmenting paths.
) to M) and some maximum matching M, we see that |Mi| > »(G) — /|V].
at most 4/]V] further phases we obtain a maximum cardinality matching.

and Karp [1971, 1973] originally argued that the running-time of this algorithm
Later, Galil [1986a] observed the better running-time of O(|E|/[V]). This is still
nown algorithm for finding a maximum matching in a bipartite graph.

n 3.1 we show how to find a maximum cardinality matching by solving a max-
a. In fact, Even and Tarjan [1975] observed that we can interpret Hopcroft
algorithm as Dinic’s max-flow algorithm (Dinic [1970]) applied to matchings in
pphs. Recently, Balinski and Gonzalez [1991] developed an O(|E||V'|) algorithm
naximum matchings in bipartite graphs that is not based on augmenting path

bipartite graphs — shrinking blossoms

rtite graphs the procedure GROW may HALT even when there are augmenting
ed, consider the example in Figure 3. Nodes u and v are even, adjacent and
e same alternating tree. Clearly, we cannot grow the tree any further. On the
there is an augmenting path (in this case it is unique) and it contains edge uv.
modify our procedure for finding augmenting paths.

g circuits and blossoms

s said to be alternating with respect to a matching M if M N E(C) is a maximum

C. So, when C is an alternating odd circuit with respect to a matching M,
node in C is exposed with respect to M N E(C). We call this node the tip of
ing odd circuit C. If the tip ¢ of an alternating odd circuit C is connected to an
le by an even alternating path P with V(P) NV (C) = {t}, then C is called a
P is called a stem of C.

13



Figure 3: Solid edges are in the alternating forest; bold edges, dashed or not, are in the
matching. The shaded region indicates a blossom.

(10)  When the procedure GROW HALTS, G contains a blossom.

Indeed, suppose we have two adjacent even nodes u and v in an alternating forest F, both
belonging to the same alternating tree T’ of F (see Figure 3). Consider the paths P, from rp
to u and P, from rr to v in F. Then E(P,) A E(P,) together with uv forms a blossom and
the intersection of P, and P, is one of its stems.

Having detected a blossom C, we ‘shrink’ it. That is, we apply the procedure SHRINK to
V(C). Figure 4 illustrates the effect of shrinking V(C) in Figure 3.

SHRINK: The graph G x S obtained from G by shrinking S C V is constructed as follows.
Remove S from V and add the new node s, called a pseudo-node. Remove (S) from E
and replace each edge uv with one endpoint, v, in S with an edge us. We denote by
M x S the edges of M in G x S, i.e., M x § = (M \ (S)) U {usluv € M N §(S) and
v € S}. Similarly, F x S denotes the edges of F' in G x S. If no confusion is likely, we
write M and F in place of the more cumbersome M x S and F' x S.

When we apply SHRINK to a blossom C with node set S, M x S is a matching and F' x S is
an M x S-alternating forest in G x S. In fact, we can continue our search for an augmenting
path in the shrunken graph.

(11)  Each augmenting path Q in G x S can be extended to an augmenting path Q inG.

Indeed, if s € V(Q) then take Q' = Q. Otherwise, there is a unique even path P in C with
the tip as one of the endpoints, such that adding P to @ yields a path @' in G. It is easy to
see that Q' is an augmenting path in G. So, finding an augmenting path in G x S, amounts
to finding one in G. We can EXPAND the blossom to extend the alternating path @ in G X S
to an alternating path @' in G, and augment the matching in G. Therefor, when GrOW
HALTS we SHRINK.

The next theorem shows that alternately applying GROW and SHRINK finds an augment-
ing path, if one exists.

Theorem 4 Let S be a blossom with respect to the matching M in the graph G. Then M
is a mazimum cardinality matching in G if and only if M x S is a mazimum cardinality
matching in G X S.

14
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11), M is a maximum cardinality matching only if M x S is. To prove the
assume that M is not maximum in G.

ssume that the tip ¢ of S and the pseudo-node s corresponding to S are exposed
d, if this is not the case, we simply take the stem P of S and replace M and
:he matchings M A P and (M x S) A P having the same cardinalities.

an augmenting path in G with endpoints u and v, where u # £. If Q is disjoint
augmenting in G x S. Otherwise,  x S contains a unique us-path P. Clearly,
ing in G x S, so M x S is not maximum in G X S. ]

e an algorithm for finding a largest matching in a non-bipartite graph. This
lled the blossom algorithm has been developed by Edmonds [1965¢] (Figure 5
examples in Figures 3 and 4). Witzgall and Zahn [1965] developed an O(|V|?)
general non-bipartite matching that does not rely on shrinking.

1e blossom algorithm can be implemented to run in polynomial time. Edmonds’
on runs in O(|V[*). Balinski [1969], Gabow [1973, 1976], and Lawler [1976]
|V|®) versions (but only the latter two authors explicitly state the running
»ping an O(|V|?) version requires careful implementation of SHRINK.

ition of the blossom algorithm

during the search for an augmenting path, the blossom algorithm successively
y graphs G = Gy, Gy,...,GE, i.e., GROW identifies the blossom S; in G; and
luces the graph G;1; = G; x S; by shrinking S; to the pseudo-node s; (i =
We identify each node v in G;, not in S;, with the corresponding node in G;4;.
; are considered to be new elements. (So, V(G;y1) = (V(G:) \ S;) U {s;} for
-1.)

ie following notation to represent the relations between the pseudo-node s; and
nodes and pseudo-nodes ‘contained’ in it. For each node s € Uf_V(G;) (=
-+, Sg—1}) we define:
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0 if s € V(G)
[to, P ,te] ifs= 8; (Z - 0, ‘e ,k - 1), totl,t1t2, AP ,tgto is the alter-
nating odd circuit defining the blossom S;, and g is the
tip of S;,

v[s] =

.LOW]/s] is an ordered list) and

i) = t if s € SHALLOW[t],t € {s0,...,Sk—1}
o 0 otherwise.

ie, recursively, the relations:

8 if s € V(G)
UsesnarLow]s] DEEP[t] otherwise

s] := tifs e DEEP[t],t € V(G;)

xecution of the algorithm, we are mainly interested in the most recently con-
>h G and so denote OUTER; by OUTER. Together with the adjacency lists
G, OUTER represents the current shrunken graph Gj.

ion 1 — explicitly updating OUTER: We maintain the functions SHALLOW, DEEP
as data structures. Each time we detect a blossom S, we introduce a new
5. We can determine SHALLOW[s] and the nodes in S in O(|S]) time and we can
:EP[s] and update the array OUTER in O(Xiesuarrow(s] [IPEEP[E]]) = O(IV(G)I)
ce we shrink at most %|V(G )| times between successive augmentations, we spend
ime updating SHALLOW, DEEP and OUTER between successive augmentations.
to implement GROW with these data structures. We grow an alternating forest
-rent shrunken graph G’ represented by OUTER by scanning the edges uv in G
JTER[u] € even(F'). Note that we can determine OUTER[u] and OUTER[v] in
e. We keep track of the forest by creating a label FOREST[OUTER[v]]= u for the
v] each time we decide to add the edge uv to F'. When we shrink a blossom S
;0 a pseudo-node s, we easily create F’ X S in the new graph G' x S by setting
: FOREST][t]. Implemented in this way, GROW takes O(|E(G)]) time (disregarding
nt on updating SHALLOW, DEEP and OUTER) just as in the Hungarian method.
detect an augmenting path in G’, we can use FOREST to construct it and OUTER
red list SHALLOW to expand it to an augmenting path in G. This, and carrying
.entation, takes O(|E(@)]) time plus O(|V(G)|?) time for updating OUTER (which
sach time we expand a blossom).

are at most |V (G)| augmentations, we obtain the following result:

blossom algorithm can be implemented to run in O(|V(G)|?) time.

graphs, when |E(G)| is significantly smaller than (/V{®)1), the running time is
v the time required to update DEEP and OUTER. The other operations take
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O(|[V(G)||E(G)]) time. So, to improve the running time one could economize on the im-
plementation of the blossoms. This can be done by employing a more implicit method of
updating OUTER.

Implementation 2 — implicitly updating OUTER: To represent the blossoms, we maintain a
single (dynamic) function IN, with the property that IN[u] = OUTER;[u] for some (unspecified)
i. Initially, IN[u] = u. When we shrink a blossom S to a pseudo-node s we update IN by
resetting INJu] := s for u € S and setting IN[s] := s. This takes O(|S]) time. So, between
two successive augmentations we spend, overall, O(| E(G)|) time updating IN. To determine
OUTER][ug], we iterate u; := IN[u;_1] until, at some point u; = IN[uz), then OUTER[ug] = ug.
This can take as many as -l?:lV(G)I iterations, but — in the hope that the next time we
need OUTER[ug), we get it almost for free — we reset IN[u;] := OUTER[ug](= us) for each
i=0,...,k

The disadvantage of this approach is that we no longer have the data structure SHALLOW
to help expand augmenting paths. We can, however, overcome this by extending the labels
in FOREST to include labels on the nodes in a blossom indicating how to trace an augmenting
path through the blossom. It is quite straightforward to find such labeling, but some care is
needed to handle the tips of the blossoms properly. The labeling can be implemented so that
finding the labels and using them to find an augmenting path can be carried out in O(|E(G)))
time per augmentation (cf. Lawler [1976], Lovasz and Plummer [1986}, or Tarjan [1983)).

(13)  Implementing the blossoms with IN, the blossom algorithm uses ‘almost a constant’

times |E(G)||V(G)] steps.

Gabow [1973, 1976] demonstrated this result. To make the statement (13) precise, ‘almost
a constant’ refers to a function a(|E(G)|,|V(G)|) (the inverse of the Ackerman function) that
grows very slowly. The procedure is in fact a standard implementation of the ‘set union’
problem: blossoms are sets, which are united into new sets every time we shrink. For a
precise definition of @ and a proof of (13), see Aho, Hopcroft and Ullman {1974] or Tarjan
[1983]. Gabow and Tarjan [1983] developed a linear time algorithm for set union problems
with special structure. As blossoms have that structure (cf. Gabow and Tarjan [1983]), this
implies:

(14)  The blossom algorithm can be implemented in O(|[E(G||V(G)]) time.

The same time bound has been achieved by Kameda and Munro [1974], but in a different
manner. Instead of fine tuning the implementation of the set union problem, they obtain the
O(|V||E|) time bound by growing the alternating forest in a depth-first manner.

The result (14) and the way it is achieved reflect the following perspective on Edmond’s
blossom algorithm: The algorithm searches for augmenting paths as though the graph were
bipartite and, as soon as it encounters an odd circuit, it ‘shrinks the trouble away’. So, we
might hope that by implementing shrinking efficiently, we could achieve the same time bound
for non-bipartite matching as for the bipartite matching algorithm used as a subroutine. We
have just seen that this is indeed the case when the bipartite matching subroutine is the
Hungarian method. Generally, it appears that the hope is idle. For instance, we cannot simply
apply this idea to Hopcroft and Karp’s O(+/]V]|E|) algorithm for bipartite matching because
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wmnges the length of augmenting paths. On the other hand, the O(\/]V]|E|)
» achieved for non-bipartite graphs. Indeed, Hopcroft and Karp’s algorithm can
1to achieve this bound, but the generalization is far from trivial. Even and Kariv
O(]V|%) algorithm (as did Bartnik [1978]) and an O(y/[V]|E|log|V) algorithm
ariv [1975), Kariv [1976]). Micali and Vazirani [1980] developed an O(y/[V]|E|)
- general cardinality matching (see also Vazirani [1994]) finally bridging the
the (asymptotic) running times of algorithms for bipartite and non-bipartite
scently, Gabow and Tarjan [1991] achieved the same time bound in a different

tite Matching Duality

- V(Q) is called a node cover if each edge has at least one endpoint in N. 7(GQ)
ninimum cardinality of a node cover in G. Because a node cover is always at
a matching we have that — for any graph G, bipartite or not:

< 7(G).

ete graph K3 on 3 nodes: v(K3) =1 # 2 = 7(K3). So, v and 7 need not be
hen G is bipartite we have equality in (15):

(Kénig [1931, 1933]) For each bipartite graph G, v(G) = 7(G).

" be a Hungarian forest with respect to a maximum matching M. Then N :=
YU (V2 N odd(F)) is a node cover with |N| = |M]. O

ent versions of Kdnig’s theorem (Theorem 5) appeared in the first half of this
oldest of these is probably the following result due to Frobenius [1917]. (For a
algebra’-proof see Edmonds [1967).)

leterminant of a square matriz A viewed as a polynomial in its non-zero coef-
is identically zero, i.e., is zero for all values of its non-zero coefficients, if and
there ezists, for some p with 0 <p < n, ap X (n—p+ 1) submatriz of A having
‘0 coefficients.

hand, the best known version addresses the existence of a system of distinct rep-

A system of distinct representatives for a finite collection of finite sets Si,..., S,
. of distinct elements s1,...,8, with 5; € S; for each 7 € {1,2,...,n}.
exists a system of distinct representatives for Si,. .., Sy if and only if |U;er S;| >

sach I C {1,2,...,n}.
:d in terms of matchings in bipartite graphs, (16) and (17) become:.

(Frobenius [1917], Hall [1935]) In each bipartite graph G = (V1 U Vo, E) ezactly
lowing holds:

|Vi|, i.e. there exists a matching ‘of Vi into Vo ’;
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sts a set U C Vi, such that |T(U)| < |U|.

{v € Vy| there is a node u € U with uv € E}. (See Ore [1955] for a version of
sm in terms of T'(U).) In fact, (16) is the special case of Theorem 6 in which
early, Theorem 6 follows from K&nig’s theorem. If v(G) < |V1|, there is 2 node
N| = v(G) < |V4]. Since N is anode cover, U := V1\ N satisfies T(U) C VoNN,
Vo N N| < |Vi \ N| = |U|. On the other hand, even though Theorem 6 seems a
case of K&nig’s theorem, the latter can easily be proved from the former. (Add
w nodes to Vs, each adjacent to every node in V;.) This is an example of the
ature of matching theory.

[1912] used (16) to simplify the proof of one of his earlier results describing
rminant of a matrix viewed as a polynomial in its non-zero coefficients can be
)olynomials of lower degree. K&nig [1915] also gave a simpler proof of Frobenius’
1t in which he pointed out the relation to matchings in graphs. Frobenius
ciate this relation: “Die Theorie der Graphen, mittels deren Hr. Kinig den
bgeleitet hat, is nach meiner Ansicht ein wenig geeignetes Hilfsmittel fir die
ler Determinantentheorie. In diesem Falle flihrt sie zu einem ganz speziellen
wgem Werte [essentially statement (18) below]. Was von seinem Inhalt Wert
m Satze II [statement (16)] ausgesprochen” (Frobenius [1917]). Moreover he
wledge K6nig’s proof, though Ko6nig had sent it to him. Apparently, this did
nig (cf. Kénig [1933, 1936]). Like so many fields, matching theory also has its
(Schneider [1977], in trying to reconstruct the issue, speculates that Frobenius
ad this criticism. He hypothesized that because Frobenius was already very ill
— he died in August 1917 — someone else finished the paper and wrote the
Schneider [1977] for Mirsky’s refutation of this hypothesis.)

» proved the following consequence of Theorem 6 for regular graphs, i.e., graphs
odes have the same degree.

g [1916a, 1916b]) Each regular bipartite graph admits a perfect matching.

iate consequence of (18) deals with edge colorings in bipartite graphs. An edge
assignment of colors to the edges so that if two edges share an end node they
solors. The minimum number of colors needed to color the edges of G in this
'd by xe(G). Clearly, xe(G) is at least the maximum degree of a node in G,
). In finding an edge coloring we may assume that the graph is regular (just
1 nodes to G until this is the case; of course without changing the maximum
s an edge coloring is just a partition of the edge set into matchings, (18) implies

g [1916a, 1916b]) For each bipartite graph G, x.(G) = A(G).

iefly from our discussion of bipartite graphs to point out that although x.(G)
) or A(G) + 1 for each simple (non-bipartite) graph G (Vizing [1964, 1965]),
vhether or not xe(G) = A(G) is N'P-hard, even when G is regular of degree 3
)2

orm of edge coloring asks for a coloring of the edges of G so that there is at
3 of each color incident to each node. A coloring of this form corresponds to a
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E(G) into edge covers. An edge cover in a graph G is a collection of edges F'
sh node in V is an endpoint of at least one of the edges in F. Clearly, when the
gree of a node in G is 6(G), a coloring of this form cannot use more than 6(G)
7 [1916a, 1916b] showed that when G is bipartite this upper bound is achievable,
a coloring of the edges using §(G) colors such that each node is incident to each

heorem establishes a strong relationship between matchings and node covers in
phs. There is also a strong relationship in bipartite graphs between edge covers
gs and between node covers and stable sets. A stable set in G is a collection
non-adjacent nodes in G. We use a(G) to denote the maximum cardinality
et in G and p(G) to denote the minimum cardinality of an edge cover in G.
) < p(G). The following relationship among these problems is true for all graphs,
not.

(Gallai [1959)) For each graph G = (V, E) without isolated nodes, o(G)+7(G) =
- p(G).

first equality is trivial: stable sets are exactly the complements of node covers.
» second equality we use edge/node covers instead of edge covers. An edge/node
s a covering of the nodes of G by edges and nodes. It is easy to see that the
rdinality of an edge/node cover is also p(G): each edge cover is an edge/node
onversely, each edge/node cover can be turned into an edge cover of the same
y replacing each node by an incident edge (G has no isolated nodes). Now observe
es a minimum cardinality edge/node cover may assumed to form a matching —
matching in fact. So: p(G) = def(G) + v(G) = |V| - v(G). a

te consequence of this result is:

nig [1931]) For each bipartite graph G = (V1 U Vo, E) without isolated nodes,

. graphs are not the only graphs with v(G) = 7(G) and, equivalently, a(G) =
class of graphs with this property — called the Kénig property — has been
1 by Deming [1979] and Sterboul [1979] (see also Bourjolly and Pulleyblank
sz [1983] and Lovasz and Plummer [1986]).

»» min-max relations and good characterizations

1d Theorem 7 are characterizations for the maximum size of a stable set. Even
applies only to bipartite graphs we consider it to be a ‘better’ characterization
m 7. The reason is that (20) assures that whatever the answer to the question:
rtite graph G, is (@) < k? is, we can always give a polynomial length certificate
y, either a stable set with k£ nodes or an edge-cover with less than k edges. This
se with Theorem 7. If &(G) < k it only guarantees that all node-covers of G are
V| — k, and it is not clear how to verify that.
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s called well-characterized if whatever the answer is, there exists a polynomial
te for the correctness of that answer. Note that the existence of the certificate
-antee us that we can find it in polynomial time. A theorem asserting that
ell-characterized is called a good characterization for the problem. (In NP-
:ision problem is well-characterized if it belongs to NP N co-NP.)

k?' is well-characterized for bipartite graphs and (20) is a good characteri-

Cheorem 7 is not a good characterization for ‘a(G) < k7°. For non-bipartite
< k7?7 is not known to be well-characterized. (If it would be, then NP=co-NP,
illy believed not to be true.) It was Edmonds who first explicitly made the
ween characterizations that are good and those that are not.
\cterizations for optimization problems often come in the form of a min-max
heorem 5 or (20). However, they can have other forms as well. For instance
ime algorithm is a good-characterization (implying that P C NP N co-NP).
and, many polynomial time algorithms for optimization problems use a good
n, mostly a min-max relation, as stopping criterion — also in this chapter.
in this section (except for Theorem 7) are good characterizations, and there
me in the sequel of this chapter.

'k flows

1g relation between bipartite matching problems and flow problems; essentially
cal.

acted graph D = (V(D), A(D)) and two nodes s and ¢. An st-flowis a function
o R, such that for each v € V(D) \ {s,t}: f(6~(v)) = f(6*(v)). The value of
ned by val(f) = f(6%(s)) — f(6(s)) (= f(67(8)) — f(67(t))). The maz-flow
nd a flow f of maximum value subject to the capacity constraints: f(a) < c(a)
4. Here, c is a given capacity function from A(D) to Ry U {oo}. For each
h s € Ut &V, the capacity of the st-cut 67 (U) is defined to be ¢(6T(U)).
d cut capacities satisfy the following min-max relation known as the Maz-flow
m.

Ford and Fulkerson [1956], Elias, Feinstein and Shannon[1956]) The mazimum
flow with respect to a given capacity function is equal to the minimum capacily
foreover, if the capacity function is integral, then there is an integral mazimum

ng construction demonstrates the relation between flow problems and bipartite
lems. Given a bipartite graph G = (V] U V,, E); construct a directed graph
‘D)) as follows. Add a node s to V and directed edges from s to each node of
edges in G from V; to V5. Add a node ¢t and a directed edge from each node
sign the following capacities to the directed edges. The capacity of each arc
to an edge in G has infinite capacity. The arcs out of s or into ¢ each have
ere is a one-to-one correspondence between matchings in G and integral flows
een node covers in G and cuts with finite capacity in D. Figure 6 illustrates
: bold edges form a matching and bold arcs indicate a corresponding flow (bold
1; the other arcs carry flow 0). The black nodes indicate a node cover and the
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on identifies the set U such that §*(U) is the corresponding cut. Thus, Kénig’s
ows from the Max-flow min-cut theorem. Similarly, the algorithm for finding a
atching in a bipartite graph is essentially Ford and Fulkerson’s maximum flow
Jonversely, it is possible to derive the Max-flow min-cut theorem from Koénig's

6 b W

Figure 6:

itead, we use Ko6nig's theorem to prove another closely related result on directed
ely Menger’s theorem (Theorem 9).

2 a directed graph and let S,7 C V(D). An S,T-path in D is a directed path
in S to anode in 7. A set U C V(D) is called an S, T-separator if it intersects
th.

(Menger [1927]) Let D be a directed graph and let S,T C V(D). Then the
umber of mutually node-disjoint S, T-paths is equal to the minimum cardinality
:parator.

rly, we may assume that S and T are disjoint. Let W := V(D) \ (SUT) and
sipartite graph G as follows. For each node u € W we have two nodes u* and u~
ch node u € S we have only one node u* in G. Similarly, for each node u € T
node v~ in G. (We refer to the set {u* : u € S} of nodes in G as S and to the
: T} of nodes in G as T.) There are two types of edges in G: for each arc uv in
in edge in G and for each u € W, u™u~ is an edge in G.
e a maximum matching in G and assume, without loss of generality, that
'UT. Let k := |S\ exp(M)| = |T\ ezp(M)|. Tt is easy to see that the col-
: A(D)|utv™ € M} forms the node-disjoint union of k directed S, T-paths and
of directed circuits in D.
the theorem it suffices to show the existence of an S, T- separator with cardinality
)e & minimum node cover. By Kénig’s theorem, |N| = v(G) = $(|V(G)| -
LW + S| +|T| — |ezp(M)]) = 1(2|W| + 2k) = |W| + k. For each node
:over the edge utu™ in G either u* or v~ must be in N. Hence the set U :=
N)U{u € W|u" and u~ € N} has cardinality k. It remains to prove that U is an
or. Let up,...,u: be a directed S, T-path. Since |N N {ud,ul,uf,...,u; } > ¢,
n N in which case ug is in U, u; isin N in which case u; is in U, or {u; ,uf } C N

1 < t in which case u; is in U. O
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There are many equivalent versions of Menger’s theorem. One can, for instance, consider
internally node-disjoint directed s,#-paths (shrink S and 7' to the single nodes s and t).
Further, similar min-max relations hold for arc-disjoint s, {-paths as well as node- or edge-
disjoint s, t-paths in undirected graphs. All these results are equivalent in the sense that we
can easily derive one from another. In fact, all these results can be seen as versions of Kénig’s
theorem (or conversely).

Menger’s theorem for the number of arc-disjoint s, {-paths is a special case of the Max-flow
min-cut theorem in which all capacities are one. And conversely, one can derive the Max-
flow min-cut theorem from this version of Menger’s theorem. So there is a close relationship
between matchings in bipartite graphs and flows. It extends to almost every problem on
bipartite graphs discussed in this chapter. For instance, the minimum weight matching
problem in bipartite graphs corresponds to the min-cost flow problem in which we are given
the unit costs of flow through each arc and are asked to find a maximum flow of minimum
total cost.

For further consequences of K6nig’s theorem, e.g., Dilworth’s theorems on chains and anti-
chains in partially ordered sets (Dilworth [1950]), see Lovész and Plummer [1986] or Mirsky
[1971]. For a tour along all the above mentioned equivalences, see Reichmeider [1984].

3.2 Intermezzo: perfect graphs and matroids

We conclude this graphs with a short discussion on extensions of the results on matchings
in bipartite graphs described in this section. This brings us outside the context of bipartite
graphs. We go here in two directions: first, node coloring and stable sets in general graphs,
and second, matroids.

Node coloring and stable sets

The chromatic number x(G) of G is the minimum number of colors needed to color the nodes
of G such that adjacent nodes receive different colors. x(G) is at least the maximum size
w(G) of a collection of mutually adjacent nodes in G. A graph is called perfect if and only if
x(H) = w(H) for each induced subgraph H in G. Odd circuits are not perfect. On the other
hand, bipartite graphs are, trivially, perfect. Knig's results stated in the beginning of this
section yield three other, less trivial, classes of perfect graphs. ‘

We need a few definitions. The complement G of a graph G has the same nodes as . But
nodes are adjacent in G when they are non-adjacent in G. The line graph of G has the edges
of G as nodes; two edges in G are adjacent in the line graph when they share an end node in
G. Clearly, x(G) is the chromatic number of the line graph of G. Similarly, matchings in G
are stable sets in the line graph of G.

With these definitions we get the following results. By (20), the complement of bipartite
graph is perfect. By (19), the line graph of a bipartite graph is perfect. And, by Theorem 5,
the complement of the line graph of a bipartite graph is perfect.

So perfect graphs not only generalize bipartite graphs but also their line graphs. Moreover,
also the complements of all these graphs are perfect. The latter is not so much of a coincidence:
The complement of a perfect graph is perfect. This is the famous Perfect graph theorem proved
by Lévasz [1972b]. Although, many classes of perfect graphs have been discovered over the
last decennia, the main conjecture on perfect graphs is stil open: If a graph is not perfect,
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s complement contains an odd circuit with 5 or more edges as an induced subgraph
2])-

sle set problem is: Given a graph G and a weight function on V(G), find a stable
mum weight. In general this problem is NP-hard (Karp [1972]). On the other
2 Perfect graph theorem, we have a min-max relation for the maximum cardinality
\ a perfect graph: o(G) = x(G). In fact, the stable set problem can be solved in
time when G is perfect (Gré6tschel, Lovész, Schrijver [1981, 1982, 1988)).
another class of graphs for which the stable set problem is polynomially solvable.
; very strongly related to matchings. A graph is claw-free if it has no node with
ally non-adjacent neighbors. Line graphs are claw-free. Sbihi [1980] and Minty
»d that one can find a maximum cardinality stable set in a claw-free graph in
time. Minty [1980] did this by reducing the problem to a matching problem (see
and Plummer [1986]). His algorithm also solves the weighted case.

atersection

.on we will see an extension of K&nig’s theorem.

sid M = (E,T) consists of a finite set E, the ground set, and a collection T of
E satisfying the following three axioms: @ € Z; I € T and J C I implies that
. finally, I,J € T and |I| < |J| implies that there exist an e € J \ I such that
. The members of Z are called the independent sets of M. The rank-function raq
d M is defined by rap(F) := max{|I||I € T;I C F}. Examples of matroids are:
ts of forests in a graph and the linearly independent collections of columns of a

s a vast theory on matroids (cf. Welsh [1976], Recski [1989], Truemper [1992],
]) and many of the results there are inspired by results on matchings (cf. Lovész
ler [1986]). Here we just mention one of these results.

troid intersection problem is: given two matroids on the same ground set find the
set that is independent in both matroids. The maximum matching problem in a
-aph is a matroid intersection problem: given G = (Vi U Wy, E); define M; and
-ound set E(QG), and with Z; := {I C E|[INé(v) < 1 for each v € V;} for i = 1,2.
3 check that these are matroids, and that a collection of edges is independent in
nd My if and only if it is a matching.

1s [1970] derived the following min-max relation for the matroid intersection prob-

M; = (E,T;) and My := (E,I3) be two matroids on the same ground set E.
max{|I||I € Ty UT,} = min{rap, (F) +ram,(E\ F)|F C E}.

srem is a special case of (21). Indeed, let G = (V1 U V4, E) be a bipartite graph
. and M, be the two matroids defined above. If F is a set of edges in G then
he cardinality of set of nodes in V; incident to at least one of the edges in F. From
lation between sizes of node covers and raq, (F') + rau,(E \ F) is easy.

ar extension of non-bipartite matching to a problem on matroids is the matroid
roblem (cf. Lovasz and Plummer [1986]).
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4 Non-bipartite Matching Duality

We begin our discussion of non-bipartite matching by developing a min-max relation for the
size of a maximum matching. Although 7(G) does not, as we have seen, provide a good
characterization for the size of a maximum matching in a non-bipartite graph G, there is a
min-max relation for v(G). An odd component of a graph G is a connected component of
G with an odd number of nodes. We let ¢,(G) denote the number of odd components of
G =(V,FE).

(22)  For each matching M and subset B C V, |exp(M)| > c,(G \ B) — |B|.

To see this, let M; be the set of the edges in M with both endpoints in G\ B. As M; leaves
at least one node exposed in each odd component of G \ B, |exp(M;)] > ¢,(G \ B) + |B|.
Since, lexp(M)| = |exp(M1)| — 2|M \ M1| > |exp(M1)| — 2|B|, (22) follows.

Theorem 10 (Berge [1958]) For each graph G = (V, E):
def(G) = max co(G \ B) — |B|,

U(6) = gin 3IV1 - (G \ B) + |BI).
Proof Clearly, it suffices to prove the formula for def(G). Let M be a maximum matching
in G. Apply the procedures GROW and SHRINK to G and M until we get a shrunken graph
G' with a Hungarian forest F’. Each odd node in F” is a node of the original graph G and
so is not contained in a pseudo-node. Each odd component of G \ odd(F') has been shrunk
into a different even node of F’ (or is equal to an even node). Moreover each even node
“arises in this way. Hence, co(G \ odd(F")) = |even(F")|. So, co(G \ odd(F")) — |odd(F')| =
|even(F")| — |odd(F")| = def(G') = def(G)). Combining this with (22), the theorem follows. O

Theorem 10 generalizes Tutte’s characterization of those graphs that contain a perfect
matching.

Theorem 11 (Tutte [1947, 1954]) The graph G = (V, E) has a perfect matching if and only

if
co(G\ B) <|B| for each BC V.

Tutte’s used matrix-techniques (‘Pfaffians’) to prove this. The first proof of his theorem that
uses alternating paths has been given by Gallai [1950].

Edmonds’ Odd set cover theorem is a version of Berge’s theorem that more explicitly
extends Ké&nig’s theorem to non-bipartite graphs. An odd set cover is a collection B of nodes
together with a collection {51, ..., Sk} of subsets of V, each with odd cardinality, such that
for each edge uv either {u,v} N B # 0, or {u,v} C S; for some ¢ =1,...,k.

Theorem 12 (Edmonds [1965¢c]) For each graph G,

k
v(G) = min{|B| + Z %(|SI| ~1)|B and Sy,...,Sk form an odd set cover of G}.

=1
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ng all B C V with 3(|V| — ¢o(G \ B) + |B]) = v(G), choose one with |B|
nd let Si,..., Sk denote the components of G\ B. Then all S; are odd (if |S;]
:n, then BU {v} with v € S; would contradict the choice of B). Hence B and
rm an odd set cover. It satisfies |B| + 1%, (Sl —-1) = |B|+3|V\B|- ik =
"\ B) + |Bl|) = v(G). As obviously the minimum is at least v(G) the theorem

O

g special case of Tutte’s theorem is over a hundred years old. If clearly demon-
ng and careful attention paid to perfect matchings. A cubic graph is one in which
1s degree three. An isthmus is an edge which, when deleted from G disconnects

3 (Petersen [1891]) Every connected, cubic graph with at most two isthmi con-
ct matching.

B C V and let Sy,...,Se denote the odd components of G\ B. As G is cubic,
1for alli = 1,...,k Hence, 3|B| > [6(B)] > 5., 16(S)| > 3(k—-2)+2 =
4. So, |B| 2 ¢o(G\ B) —-%. Which yields that |B| > ¢,(G\ B) (as |B| —¢,(G\ B)
by Theorem 11, we may conclude that G has a perfect matching. O

Edmonds-Gallai structure theorem

an have many different maximum matchings and applying GROW and SHRINK
m can lead to many different Hungarian forests. The ultimate shrunken graph,
wdependent of the choice of matching or the order in which we apply GROw and
is observation is one aspect of the Edmonds-Gallai structure theorem (Gallai
and Edmonds [1965¢c]). In this section we discuss the main features of the
Jlai structure, which plays a role in the development of algorithms for finding
sight matchings. In fact, every polynomial time maximum matching algorithm
es the Edmonds-Gallai structure can be embedded in a ‘primal-dual framework’
1e weighted matching problem in polynomial time (cf. Section 6.2).

we have applied GROW and SHRINK to a graph G and a maximum matching
a Hungarian forest F' in a shrunken graph G*. We use the notation OUTER[u]
in V(@)) and DEEP[u| (for nodes v in V(G*)) introduced in Section 2.2. The
llai structure of a graph G is the partition of V(G) into three sets, D(G),
(G), defined by D(G) := {u € V|v(G\u) = v(G)}, A(G) := {u € V(G) \
jacent to a node in D(G)} and C(@Q) == V(G) \ (D(G) U A(G@)).

set D(G) is the union of the sets DEEP[u] with v € even(F). In fact, the
rents of G|D(G) are ezactly the sets DEEP[u] with u € even(F). Moreover,
: odd(F). '

tained from G by shrinking the components of G|D(G). We call the shrunken
e Edmonds-Gallai graph of G. The result (23) follows from the definitions of
SHRINK. All statements of (23) follow easily from the the first one: if F' is a
rest in G*, D(G) is the union of the sets DEEP[u] with u € even(F'). To see this,
»de u in G. Construct a new graph H by adding a new node v to G adjacent
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sruct a new graph H* by adding a new node v* to G* adjacent to OUTER[u].
the following equivalences:

G) <= v(H)=v(G)+ 1= v(H*)=v(G*) +1
[u] € even(F) <= u € DEEP[w] for some w in even(F’).

ed to establish the equivalence of the third statement in (24) with the first
f OUTER[u] € even(F), consider the alternating forest F* in H* obtained by
v component to F. The nodes v* and OUTER[u] are both in even(F*) and in
onents of F'*. So, in that case GROW will find an augmenting path using the
1g these two nodes, implying that v(H*) = v(G*) + 1. On the other hand, if
en(F), then

) > co( H* \ 0dd(F)) — |odd(F)| = |even(F)| + 1 — |odd(F)| = def(G*) + 1.
2, v(H*) = v(G*). Thus (23) follows.

on between the Edmonds-Gallai structure and the Hungarian forest in the
ai graph provides insight into the structure of all maximum cardinality match-
e need a few definitions. A graph G is factor-critical if v(G \ v) = v(G) =
for each v € V(G). A matching is near-perfect if it has exactly one exposed
+(G) denote the number of components of G|D(G).

omponent of G|D(G) is factor-critical and def(G) = x(G) — |A(G)|. Moreover,
ing M in G is mazimum if and only if it consists of:

erfect matching in C(G),

ear-perfect matching in each component of G|D(G),

watching of each node u € A(G) to a node in a distinct component of G|D(G).
{monds-Gallai structure theorem. Note that it implies all the results on non-
hing duality stated earlier in this section. Every statement in (27) follows easily
ne: each component of G|D(G) is factor-critical. This follows inductively from

with the fact that each graph spanned by an odd circuit — like a blossom —
al, and the following;:

be a subset of nodes in a graph G such that G|S is factor-critical. If G x S is
tical then so is G.

1 turn immediate from:

be a subset of nodes in a graph G such that G|S is factor-critical. Let s be the
wode in G x S obtained by shrinking S. Then, for each matching M in G x S,
ists a mnear-perfect matching Mg in S such that M U Mg is a matching in G

(M U Mg) = exp(M) if s € exp(M),
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:p(M U Mg) = (ezp(M)\ {s}) U {s1} for some 51 € S, if s € exp(M).

and Mendelsohn [1958, 1959, 1967] derived the Edmonds-Gallai structure for
phs. The components of G|D(G) in a bipartite graph G each consist of a single
se, GROW can never HALT in a bipartite graph, or equivalently, because the only
1 bipartite graph consists of a single node and no edges).

ionds-Gallai structure describes the maximum matchings of a graph as unions
fect matchings in certain subgraphs and a matching in a bipartite subgraph
G) and D(G)). So, more detailed information on the structure of maximum
:quires structural knowledge about perfect and near-perfect matchings. Indeed,
ral results exist. In addition to the ‘Dulmage-Mendelsohn decomposition’ for
phs (Dulmage and Mendelsohn [1958]), we have the ‘ear-decomposition’ of bi-
18 developed by Brualdi and Gibson [1977]. Hetyei [1964], Lovasz and Plummer
sz [1983] extended the ‘ear-decomposition’ to, not necessarily bipartite, graphs
matchings and Lovasz [1972¢] developed the ‘ear-decomposition’ of factor-critical
lly, Kotzig [1959a, 1959b, 1960], Lovész [1972d] and Lovéasz and Plummer [1975]
e ‘brick decomposition’ of graphs with perfect matchings. See Lovész [1987] for
of some of these results and Chapters 3, 4, and 5 of the book by Lovész and
186] for an exhaustive treatment of the subject.

ude this section with some observations on how the Edmonds-Gallai structure
er certain changes of the graph. These observations facilitate our analysis of an
r weighted matching in Section 6.2.

each edge e = uwv € E(G), where u € A(G) and v € A(G)UC(G), G and G \ e

1e same FEdmonds-Gallai structure.
see that this is true. A bit more complicated is:

ach pair of nodes u € D(G) and v € C(G)UD(G) not both in the same component
(G), def(GUe) < def(G), where e = uv. Moreover, if def(G Ue) = def(G), then

e) 2 D(G).

first observe that def(G U e) < def(G). Further, if def(G Ue) = def(G), then
D(G). Now, assume that def(G Ue) = def(G) and D(G Ue) = D(G). Obviously,
‘hat £(GUe) < k(G) and |A(GUe)| > |A(G)|. By (27), this yields x(GUe) = &(G)
)| = |A(G)| (otherwise def(G Ue) < def(G)). But, this contradicts the definition

S C V(G) such that G|S is factor-critical and such that the pseudo-node s in

obtained by shrinking S, is contained in A(G x S). Then def(G) < def(G x S).
ver, if def(G) = def(GxS) then D(G) 2 D(GxS). Finally, if def(G) = def(G x S)
(G) = D(G x 8), then C(G) 2 C(G % S).

f (31) is similar to the proof of (31). By (29), def(G) < def(G x S). Further,
def(G x S), then D(G) 2 D(G x S). Now assume that def(G) = def(G x S)
- D(G x S). Then C(G) 2 C(G x S) and (G x S) = k(G). By (27), |A(G)| =
Combining all this with |[V(G)| > |V(G x S)| yields |C(G)| > |C(G x S)|.
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5 Matching and Integer and Linear Programming

In the next section we discuss the problem of finding a maximum weight matching. In this
section we show that the problem is a linear programming problem. We first observe that,
like many combinatorial optimization problems, the maximum weight matching problem is
an integer linear programming problem: :

(33) maximize Y .cp WeZe

subject to z(6(v)) < 1 (veV)
ze > 0 (e€kE)
ze € Z (e€kE).

In general, integer linear programming problems are hard to solve — they are NP-hard
(Cook [1971]). On the other hand, linear programming problems are easy to solve. There
are not only practically efficient (but non-polynomial) procedures like the simplex method
(Dantzig [1951]), but also polynomial time algorithms (Khachiyan [1979] and Karmarkar
[1984]) for solving linear programs. Moreover, we have a min-max relation for linear pro-
gramming, namely the famous LP-duality theorem (Von Neumann [1947], Gale, Kuhn and
Tucker [1951)):

(34) max{w'z|Az <b} = min{y blyTA=wT;y" >0}.

This min-max relation provides a good characterization for linear programming. In this
chapter one of problems in such a pair of linear programming problems will typically be a
maximum or minimum weight matching problem. In that case we will refer to the other
problem as the dual problem. Its feasible (optimal) solutions will be called the dual feasible
(optimal) solutions.

One consequence of the LP-duality theorem is that a pair of solutions, a feasible solution
z to the maximization problem and a feasible solution y to the minimization problem, are
both optimal if and only if they satisfy the complementary slackness conditions:

(35) y'(b—Az)=0.

The complementary slackness conditions, more than the linear programming algorithms,
guide the algorithms for maximum weight matching in Sections 6 and 8.1. An obvious first
attempt at a linear programming formulation of the weighted matching problem is the LP-
relazation:

(36) maximize D .cp WeZe
subject to r(6(v)) £ 1 (veV)
ze > 0 (e€kE).

If (36) admits an integral optimum solution, that solution also solves (33). Hence the
question arises: When does (36) admit an integral optimum solution for every weight function
w? This question is equivalent to: When is the polyhedron

(37)  Fract{G):= {z € RE| z(6(v)) < 1 (veV)}
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natching polytope:

(G) := convez hull {z € Z¥|z(6(v)) < 1(v € V)}
= convez hull {x™|M is a matching in G} ?

") # Match(G), can we find another system of inequalities Az < b such that
{z € REG)|Az < b} (and thus, write (33) as max{w'z|Az < b})? In this
swer these questions.

tite graphs — the assignment polytope
. Let G be an undirected graph. Then Match(G) = Fract(G) if and only if G is

consider a bipartite graph G and a vector z € Fract(G). Let F :={e € E[0 <
and select K C F as follows. If F is a forest, let K be a path in F between
degree 1 in F. If F is not a forest, let K be a circuit in F', which — since
, — is even. In either case K is the disjoint union of two matchings, M; and
7 to see that for some sufficiently small, positive € both z + e(xM* — xM2) and
M2) are in Fract(G). Moreover z is a convex combination of these two vectors.
treme point of Fract(G) is an integral vector. (A vector = in a set P is an
of P if it cannot be expressed as a convex combination of other vectors in P.)
s, each extreme point of Fract(G) is the characteristic vector of a matching and
. Match(G). The reverse inclusion holds trivially.

sider a non-bipartite graph G. Since G is not bipartite, it contains an odd circuit
:= 2xC is in Fract(G). If « is also in Match(G), then there are matchings M;

and non-negative numbers \; (i = 1,...,k), such that: z = 3%, \;x™: and
This implies that: 3|C| = z(C) = E M) < S oad(ol-1) =
contradiction. So, z € Match(G) and Fract(G) # Match(G). o

G is bipartite, (36) has an integral optimum solution (the characteristic vector
n weight matching).
proved the following strengthening of Theorem 14.

. (Egervéry [1931]) Let G = (ViU Vk, E) be a bipartite graph and w € ZE. Then
lHowing linear programming problems have integral optimum solutions.

recE WeTe = minimum 7(V4 U W)
z(6(v)) £ 1 (veV1uly) subject t0 Wy + Ty > Wy (uv € E)
ze > 0 (e€ E) T > 0 (veViuWy).

the maximization problem admits an integral optimum solution is Theorem 14.
er only the dual problem (i.e. the minimization problem).

a, not necessarily integral, dual optimal solution. We show that 7 € ZK‘UVz
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) i veWw
[l if veVs

ual optimal solution.
% is feasible, observe that for each uv € E

= ] + ] =+ [m]] 2 L+ ) 2 W] = W

R Ve = {u e W, — |n,] = a}; V& := {u € Va|[m,] —m, = a} and
e For each @ > 0, |V&| — |[V*| < 0. Indeed, for some sufficiently small
'~ e(x"F — x¥7) is a dual feasible solution. So 7'(Vi UV2) < n¢(Vi U V,) =

(JVg| — [V¥]). And thus we get:
Va) = (Vi UVa) + Xoso,vez a([VE] — [V?]) £ ' (1 U V3).

gral dual optimal solution. v |

he weight function w is integral, the linear programming dual of (36) has an
im solution.
‘linear inequalities Az < b with the property that — like (36) — min{y blyT A =
stained by an integral y for each integral objective function w for which the
s, is called totally dual integral. Edmonds and Giles [1977] (and Hoffman [1974]
case of pointed polyhedra, i.e., polyhedra with extreme points) proved that a
iegral system Az < b, with A and b integral, describes an integral polyhedron.
in R™is integral if it is the convex hull of vectors in Z™.) Thus, when G is
act that the minimization problem in Theorem 15 admits an integral optimal
s that Fract(G) = Match(G).
. matching polytope of a graph G is the convex hull Perfect(G) of the charac-
of perfect matchings in G. In the next section, when studying the weighted
lem, we concentrate on perfect matchings. In the context of bipartite graphs
tching polytope is often referred to as the assignment polytope. The following
n of the assignment polytope follows easily from Theorem 14.

Let G be a bipartite graph. Then
(G) = {z € RE | 2(5(v)) =1 (w € V)}.

ike Theorem 14, there exist non-bipartite graphs G for which (42) holds.

6 is probably best known in terms of doubly stochastic matrices and by the
>-inventors. A matrix A = (a;;) is doubly stochastic if all its entries are non-
11 its row and column sums are equal to one, i.e., 3, a;; = 1 for each row ¢ and
each column j.

(Birkhoff [1946], Von Neuman[1953]) Each doubly stochastic matriz s a convex
f permutation matrices.
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5.2 Intermezzo: stable matchings

Shapley and Shubik [1981] give the following economic interpretation of Theorem 15. Con-
sider the vertices in V; and V; as disjoint sets of players and each edge uv in G as a possible
coalition between u and v. If v and v form a coalition they may share out the worth wy,
of uv as payoffs m, and m, among themselves. Suppose that M is a matching of G (i.e.
a collection of coalitions) and that m,(u € V) is a corresponding collection of payoffs, i.e.
Ty + Ty = Wyy if uv € M. If there exists an edge uv € M such that 7y + 7y < Wyy, then the
payoffs are not stable for M: u and v could increase their profits by breaking their respective
coalitions and joining together. A matching is stable if there exists a collection of payoffs
for M without such instability. By Theorem 15 and the complementary slackness conditions
(35) stable matchings exist, they are exactly the maximum weight matchings. The optimal
dual solutions compress all the possible payoffs without any instability.

Gale and Shapley [1962] introduced another notion of stability for matchings, the stable
marriage problem. Suppose we have a marriage-market with » man and n women. Each
person u has linear order <, on the persons of opposite sex, where v <, w means that u
prefers to be married with w rather than with v. Modeling this on a bipartite graph, a
collection of monogamous marriages is a matching. A perfect matching M between the men
and women is stable, if for each uv ¢ M, with wu',vv' € M, either v <, v’ or u <, v'. In
other words, a perfect matching is stable if no unmarried couple would prefer to get divorced
and marry each other.

Gale and Shapley [1962] showed that a stable matching always exists. To see this, consider
the following procedure in which each man starts proposing to his most preferred woman. If
see rejects, he proposes to the next woman on his preference list and so on. Each woman keeps
her best received proposal under consideration, rejecting all the other ones. When all women
hold a proposal, the procedure stops, a stable matching has been obtained. Indeed, suppose
there is unmarried couple v and v. If u did not propose to v he prefers his partner above v.
If he did proposed to v, she rejected him, which means that she got a better proposal.

Instead of letting the above ‘propose and reject’ game decide on how the couples are
made, there also could be a match-maker that arranges the marriages. His arrangement has
to be stable, but additionally to the preferences he has a weight function on the possible pairs
and he wishes to arrange a stable matching with maximum weight. The following polyhedral
characterization of stable matchings, due to Vande Vate [1989], shows that this maximal
weight stable matching problem is a linear programming problem.

(43)  The convex hull of the characteristic vectors of stable matchings in a complete bipartite
graph G = (V1 UVy, E) is:

{z € Perfect(G)| Z Tyw + E Ty + Ty > 1(u € V1,0 € Vo) }.

VLW U=y W

In fact, it turned out that many of the properties of stable matchings can be derived form
this polyhedral result (cf. Roth, Rothblum and Vande Vate [1993]).

The stable matching problem can also be formulated for non-bipartite graphs. However,
in that case, no stable matching might exist — a 4-node example is easily constructed. On the
other hand, Irving [1985] derived a polynomial time algorithm that finds a stable matching
if it exists.
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5.3 Non-bipartite graphs — Edmonds’ matching polytope

So, when G is not bipartite, Fract{(G) # Match(G). In trying to formulate the weighted
matching problem in a non-bipartite graph G as a linear programming problem, we begin with
the inequalities defining Fract(G). Then, we search for inequalities that ‘cut off” the fractional
extreme points of Fract(G). The following lemma characterizes the fractional extreme points
of Fract(G). Its proof is similar to that of Theorem 14.

Lemma 18 (Balinski [1965]) A vector z € RF is an extreme point of Fract(G) if and only
if there exists a matching M and a collection of odd circuits Cy,...,Cy in the graph G, such
that the matching and the odd circuits are pairwise node-disjoint and

(44)  z=xM+ 5O+ +x%).

Let U C V(G), with {U| > 3 and odd. Add up all the inequalities 3 .c5(,) Ze < 1 with
v € U, and all inequalities —z, < 0 with e € §(U). Dividing the resulting inequality by 2
yields

(45)  2((U) = } (Soew 2(6(v) — Leeswy z) < 3UI.

Obviously, each = € Fract(G) satisfies (45). Rounding down the right hand side we get the
following blossom constraint

(46) z((U) < 3(UI-1).

The characteristic vectors of matchings in G satisfy all the blossom constraints. However,
the fractional extreme points of Fract(G) do not. Indeed, the fractional extreme point = of
Fract(G) violates the blossom constraint obtained when U is chosen to be the node set of one
of the odd circuits defining z. So, if we add all the blossom constraints to the constraints
defining Fract(G), we get a polyhedron Blossom(G), which contains Match(G), but is, for
non-bipartite graphs, properly contained in Fract(G). In particular, the blossom constraints
‘cut off” all the fractional extreme points of Fract(G). In the process, however, we might
have introduced new fractional extreme points. Edmonds showed that adding the blossom
constraints does not introduce any new fractional extreme points.

Theorem 19 (Edmonds [1965b]) For each graph G, Match(G) = Blossom(G).

Proof Edmonds [1965b)] originally proved this result via his weighted matching algorithm (cf.
Section 6.2). Since then, others including Balinski [1972], Hoffman and Oppenheim [1978],
Lovész [1979a], Seymour [1979], Ardoz, Cunningham, Edmonds and Green-Krétki [1983] and
Schrijver [1983b] have offered different proofs. We essentially follow the proof by Aréoz et al.
and Schrijver.

Suppose that for some graph G, Match{G) # Blossom(G). Among all such graphs,
suppose G = (V, E) has |V| + |E| as small as possible. So G is connected and non-bipartite.
Consider a fractional extreme point z of Blossom(G). Since no fractional extreme point of
Fract(G) is in Blossom(G), z is not an extreme point of Fract(G). Hence, there exists a
subset S of V with |S| > 3 and odd, such that

@7 =((8) =3(81-1)
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Among all such subsets, choose S so that |S| is as small as possible.

Claim 1 |S| < |V|.

Proof of Claim 1: If not, z(E) = £(]V] — 1) must be the only blossom constraint z satisfies
with equality. Further, since |V| + |E| is as small as possible, z > 0 for each e € F.
Otherwise, if z. = 0 for some e € F, G \ e would be a smaller counterexample. Finally, since
z is an extreme point of Blossom(G), = satisfies with equality at least |E| constraints from
the defining system. Hence there are at least |E| — 1 nodes u in V(G) with z(6(u)) = 1. On
the other hand, since z(6(u)) > 0 for each node u and

(48)  Toer(l—z(6(v)) = V] - 22(E) = 1,

there are at least two nodes u such that z(6(u)) < 1. Hence, |V| —1 > |E|. But connected
non-bipartite graphs have at least as many edges as nodes — contradiction!
End of Proof of Claim 1.

Partition z into = = [z!,2?], where z! is the restriction of z to edges in (S). Consider the
graph G x S obtained by shrinking S to the pseudo-node s.

Claim 2 z! € Blossom(G|S) and z? € Blossom(G x S).

Proof of Claim 2: Since z is in Blossom(G), z! satisfies z!(6(v)) < 1 for each v € S and
the blossom constraints for G|S. So, z! € Blossom(G|S). Likewise, z? satisfies z2(6(v)) < 1
for each v € V(G) \ S and the blossom constraint z2((U)) < 2(|U| — 1) for each subset
U C V\ S with |U| > 3 and odd. Further, since |S| > 3, c52(6(v)) = 2z({S)) + z(6(S)) and
2z((S)) = |S| — 1, 22(6(s)) = z(6(S)) < 1. Finally, for each U C V(G x S) containing s,

S2((UY) = (U \ {s}) U S)) — 2({S)) < (W \ {s}) US| = 1) = 21| = 1) = 5] - 1)
and so z2 € Blossom(G x S). End of Proof of Claim 2.

Since G is a smallest counterexample,
(49)  Match(G|S) = Blossom(G|S) and Match(G x S) = Blossom(G x S).

Hence, z! can be expressed as a convex combination of the characteristic vectors of matchings
in G|S and z® can be expressed as a convex combination of the characteristic vectors of
matchings in G x S. This implies that there is a non-negative integer k, matchings My,..., My
in G|S, and matchings Ny,..., Ng in G x S, such that

(50) 1= L10M ...+ xMr) and 2o = (M + ..+ xNE).
Note that the matchings M;, and similarly the matchings N;, need not all be distinct.

Claim 3 We can renumber the matchings N; (i =1,...,k), so that M; U N; is a matching
in G for each (i=1,...,k).

35




» 8: By (47) each M; has exactly one exposed node in G|S. Thus, we need only
each u € S: |{i || M;né(u)| = 0} > |{¢ | |NsN6(u)| = 1}|. To see this, observe

Né(w) =0} — HillN:né(w)| =1}
= k—[{i|IM:iné(u)l =1} - [{i |IN:n6(u)| = 1}|

k k
- k- (ZlMi N&Cw) N {S) + D IN; N 6(w) mS(S)|>

i=1 i=1
= k- k(2" (6w) N (S)) +2*(5(w) N &(S)))
= k- k.’E(é(’Ul)) Z 0.

End of Proof of Claim 3.

MUUNL 4+ xMeUNk) it is the convex combination of characteristic vectors of

1tradicting the assumption that it is a fractional extreme point of Blossom(G).
0

arpen this result in the sense that we can specify which of the non-negativity,
ossom constraints are necessary to describe the matching polytope of a given
, although we need all the non-negativity constraints, we do not need the degree
(v)) € 1 for a node v € V(G) if there is another node u with 6(v) & 6(u) or
se uw with §(v) C 6(uw) U 6(w). Moreover, we only need the blossom constraint
3] — 1) for S C V(G) such that |S| > 3 and odd, G|S is factor-critical and
it node. (A node wu is called a cut node of a connected graph G if G \ u is not
‘ulleyblank and Edmonds [1974] showed that these are exactly the constraints
-der to have a minimum system of linear inequalities defining the matching
geometric terms these constraints correspond to the ‘facets’ of the matching
Pulleyblank [1989]).

hat the dual problem in Theorem 15 has integral optimum solutions extends to
graphs: the non-negativity, degree and blossom constraints form a totally dual
n (Cunningham and Marsh [1978], Hoffman and Oppenheim [1978], Schrijver
[1977], and Schrijver [1983a, 1983Db}). In fact, this remains true if we restrict
ulleyblank and Edmonds’ minimal description of the matching polytope (Cun-
Marsh [1978]).

ring characterization of the perfect matching polytope follows easily from The-

) For each graph G = (V, E), Perfect(G) is the solution set of the system:

)) = 1 (veV)
M) < %(|U| —1) (U CV,|U| odd and at least 3)
Te = 0 (e € E),

1alent to the system
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1 (veV)
1 (U CV,|U| odd and at least 3)
0 (e€E).

(v))
U))

Te

VIV i

; (51) describes the perfect matching polytope is frivial. We need only prove

1 (52) are equivalent.
U C V, with |U] odd, and let = € RF be such that z(6(v)) = 1 for each v € V.

Ul —1) < z({U)) — L Toery z(6(v)) < 5(IU1 - 1) = 3{U]
= —12(5(V)) £ —3
— z(6(U)) > 1. o

we two descriptions of the perfect matching polytope. We call (51) the blossom
fthe perfect matching polytope and (52) the odd cut description. The inequalities
in (52) are called the odd cut constraints.

slossom description of the matching polytope, the blossom description of the per-
g polytope is totally dual integral (the ‘perfect matching case’ follows directly
wtching case’). This is not the case for the odd cut description — the complete
lodes, Ky, provides a counterexample. However, from the proof of Corollary 20
that (51) is totally dual integral, it can be shown that when the weight function
ae odd cut description admits half-integral dual optimal solutions.

fect) matching polytope is a geometric object: namely the convex hull of points
an space. There are many other interesting geometric objects related to match-
e cone generated by the characteristic vectors of perfect matchings, the linear
\aracteristic vectors of matchings, etc. Edmonds, Lovész and Pulleyblank [1982],
2], Naddef and Pulleyblank [1982] have obtained results in this vein. Structural
1atchings like those mentioned in Section 4.1 (‘ear-decomposition’ and ‘brick-
’m’) often play a crucial role in characterizing these geometric objects. An espe-
srthy example is Lovasz’s beautiful characterization of the matching lattice, i.e.,
rem A xMAu € Z(M € M)} where M denotes the set of perfect matchings
7). '

v [1992] derived a polynomial time algorithm for calculating the Euclidean dis-
he origin to the perfect matching polytope of a bipartite graph.

sction we have formulated matching problems as linear programming problems.
binatorial problems accessible to linear programming techniques in this way is
ain goals of polyhedral combinatorics. In general, this area could be described as
'methods for solving combinatorial problems using the theory of linear inequal-
the years, the results in this section have been among the principal paradigms
iedral approach. (However, even for matchings not all polyhedral questions have
d, c¢f. Cunningham and Green-Krotki [1986].) For surveys on polyhedral combi-
Pulleyblank [1983, 1989] and Schrijver [1983a, 1995]. The standard reference for
f integer and linear programming — the toolbox for polyhedral combinatorics —
5 book [1986].
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g Maximum and Minimum Weight Matchings

we give polynomial time algorithms for finding a (perfect) matching of max-
num weight. Actually we consider only the problem of finding a minimum
matching, but this is not really a restriction. Indeed, suppose we are given
weight function w € R® and want to find a maximum weight matching in a
.dding nodes and edges with zero weight, we can transform the problem into
a maximum weight matching in a complete graph with an even number of
! is bipartite, in a complete bipartite graph in which the two color classes have
ser of nodes. Since each matching in these graphs is contained in a perfect
nay find a maximum weight matching in the original graph by finding a max-
verfect matching in the complete graph. Replacing each weight we by —we,
sblem into a minimization problem and, if we prefer non-negative weights, we
.able constant to each weight.

matching problem is a linear programming problem, so the duality theorem
amming (34) provides a stopping criterion. In fact, using the complementary
itions, we reduce the weighted matching problem to a series of cardinality
lems.

ite graphs

is section G = (V; U Vy, E) is a bipartite graph and w € R_EP For convenience,
t G contains a perfect matching. From Corollary 16 and linear programming
e minimum weight of a perfect matching is equal to the maximum in

rize  w(ViUVR)
1 to Tu+ Ty < Wy (uv€E).

3) as the dual problem and to each feasible solution 7 to (53) as dual feasible.
feasible solution m we define the reduced cost function w™ € R¥ by: wl, :=
for each uwv € F, and the graph G, by V(G;) := V(G) and E(G,) = {uv €
)}. Thus, G, is the subgraph on the nodes of G that includes only those
dmissible, with zero reduced cost under m. The edges not in E(G;) are called

smentary slackness conditions (35) imply that:

| feasible solution w is optimal if and only if G, admits a perfect matching.
- if Gx admits a perfect matching, then the perfect matchings in G are exactly

mum weight perfect matchings in G.

. dual feasible 7, we check whether G, has a perfect matching M. If it does,
um weight perfect matching in G and we are done. If it does not, we change

i (in bipartite graphs): Let M be a maximum matching and F' a Hungarian
define 7’ by
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mu+€ if u€ V1N even(F)
7y — € if u € Vo N odd(F)
Ty otherwise,

in{w=, |u € even(F)NVy,v € Vo \ odd(F),uv € E}.
recause F' is Hungarian, 7’ is dual feasible. Moreover,
4 F' are contained in G,.

>ply GROW, starting with the matching M and the alternating forest F, to

laximum matching in G .
since uv € E(G) for each u € Vi Neven(F') and v € V2\ odd(F) with wy, = ¢,

ot Hungarian in Gp.

1ave the following algorithm for finding a minimum weight perfect matching in
ph. We begin with the dual feasible solution = with 7, = 0 for each v € V1U V5.
GRrow and AUGMENT until we find either a perfect matching M or a Hungarian
rest F in G,. If we find a perfect matching M in G, we are done: M is a
ght perfect matching in G. Otherwise, we apply DUAL CHANGE. Clearly this
led the weighted Hungarian method, runs in polynomial time. It was originally
- Kuhn [1955, 1956]. For variants of his method, see Flood [1956], Ford and
37], Motzkin [1956] and Munkres [1957]. Bertsekas [1979] proposed a so-called
>d (cf. Bertsekas [1991}).

gorithm is a ‘dual’ algorithm in the sense that at any stage it keeps a dual
on and a primal infeasible solution (namely a non-perfect matching) satisfying
'y slackness. Primal feasibility, i.e. the matching being perfect, acts as the stop-
. Another possible approach is the ‘primal’ algorithm of Balinski and Gomory
s at any stage a perfect matching which is changed until it becomes optimal.
criterion in their algorithm is dual feasibility.

although the weighted Hungarian method was motivated by Theorem 14, its
»es not rely on that result. In fact, the algorithm provides a separate proof of
s well as of Theorem 15 (the initial dual feasible solution is integral and, when
‘e integral, each dual change maintains integrality).

tion of the weighted Hungarian method

rmentations, the weighted Hungarian method finds a perfect matching M in
ne complementary slackness conditions (35), M is a minimum weight perfect
5. Thus, the running time of the algorithm depends on the computations
een consecutive augmentations, called a phase.

if an admissible edge becomes inadmissible after a dual change, it cannot be
ble again until after the next augmentation. This means that if we ignore
izired to make the dual changes, each phase of the algorithm is essentially an
"GROW. One could say that the ‘dual changer’ confounds the ‘grower’: any
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time the alternating forest becomes Hungarian, the ‘dual changer’ adjusts the graph so that
the forest is no longer Hungarian. Consequently, if we disregard the effort spent on dual
changes, each phase can be carried out in O(|E|) time. We sketch two implementations of
the dual changes; one for dense graphs and one for sparse graphs.

Dual changes in dense graphs: In dense graphs, where [V|?> = O(|E|), we maintain an array
CLOSE so that for each v € Vs, CLOSE[v] = u, where u € ViNeven(F) and w}, = min{w}, |u' €
Vi N even(F)}. Using CLOSE, we can make each dual change in O(|{V]) time and, each time
we add a node to Vi N even(F), we can update CLOSE in O(]V]) time. During a phase we
make at most |V;| dual changes and add at most |V;| nodes to V3 N even(F). So, with this
implementation we can carry out the dual changes for each phase in O(|V|?) time.

(59)  The weighted Hungarian method can be implemented to run in O(|V|3) time.

Dual changes in sparse graphs: In sparse graphs, where |E| is significantly smaller than V12,
we can improve the running time by implementing the dual changes more efficiently. First,
we concentrate on finding the value of e. For each node v in V3 \ odd(F'), we maintain the
value SLACK[v] := Wg, o, Fach time we add a node u to V3 N even(F'), we scan each of its
deg(u) neighbors v to update CLOSE and SLACK. So, during an entire phase we require only
O(|E|) time to maintain these two arrays.

Standard data structures such as ‘d-heaps’ or ‘priority queues’(cf. Tarjan [1983], or Aho,
Hopecroft and Ullman [1974]) for storing V2 \ odd(F") according to the entries in SLACK facilitate
quick determination of €. Using such a data structure we can not only find ¢, but also
update the data structure itself in O(log|V|) time whenever SLACK changes or a node leaves
Vo \ odd(F). So, it is possible to determine the values of € in O(|E|log |V|) time per phase.

Instead of making dual changes explicitly, which can take up to |V] steps each, we make
them implicitly. We maintain a variable e;,;,; and, for each node u € V, we keep two

variables: 79¢ and 70T, Together these represent the dual variable 7, according to the
following rule:

xold 4 (€total — ™0T) if u € V1N even(F)

0

ngd — (€total — 7%") if u € V2N odd(F)
0

T

(60) my:=

o otherwise

To make a dual change implicitly, we replace €;,44 bY €401q7 + € When a node u enters the
alternating forest, we set w07 = €totqr @0nd when an augmentation leads us to remove the

node u from the alternating forest we set
cold ._ x0ld 4 (€total— T°T)  if u € even(F)
b xold (€total — ™07 if u € odd(F).
Clearly, this ‘delayed’ revision can be carried out within GROW and AUGMENT.
Thus, we have the following result:

(61)  The weighted Hungarian method can be implemented to run in O(|E||V|log|V]) time.

Fredman and Tarjan [1987] improved this time bound to O(|V|(|E| + |V]|log|V])) using
‘Fibonacci-heaps’. Brezovec, Cornuéjols, and Glover [1988] obtained the same time bound
based on algorithm for a special case of matroid intersection.

40



bipartite graphs

m we consider the problem of finding a minimum weight perfect matching in a
> graph G. For convenience, we assume that G admits a perfect matching and
shts w € RP are non-negative.

llary 20, a minimum weight perfect matching solves the linear programming

mize D ecp Wele

st to z(6(v)) = 1 (veV)
z(6(5)) = 1 (SeG);|S|#1)
ze > 0 (e€ k),

:= {8 C V(G)||S] is odd}. Thus, by linear programming duality (34), the
ight of a perfect matching is equal to the maximum in

imize ESGQ(G) s
act to ZSEQ(G);&(S)BG Ury < We (6 € E)
s > 0 (SeQG);|S|#1).

'63) as the dual problem and to each feasible solution 7 to (63) as dual feasible.
al feasible solution 7 the reduced cost function w™ € RE is defined by: w7 :=
:5()3¢ s for each e € E, and the graph G on the node set V(Gy) := V(G) has
ned by E(G.) := {uv € E(G)|wL, = 0}. So, again, G is the subgraph on the
hat includes only those edges, called admissible, with zero reduced cost under .
lefine Q := Q:(G) := {S € QG)|rs > 0 and |S| # 1}.

plementary slackness conditions (35) imply the following characterization of min-
; perfect matchings:

wal feasible solution 7 is optimal if and only if Gr admits a perfect matching M
wat M N6(S) =1 for each S € Qx(G). If m is optimal, the collection of all such
matchings in G, is exactly the collection of minimum weight perfect matchings

wm weight perfect matchings are perfect matchings in G, — for some optimal
tisfy additional conditions. These additional conditions prevent us from finding
weight perfect matching in G by simply searching for a maximum cardinality
G, as we did in the case of bipartite graphs. To overcome this, we restrict
those dual feasible solutions =, called structured, that satisfy the following two

s nested,i.e., if S, T € Qr, then SCT, TC S or SNT =0.

€ Q, and S1,...,S; are the inclusion-wise mazimal members of Q. properly
ed in S, then (G X S1 X --- % S)|S is factor-critical.

7 (28), (66) implies that G.|S and G|S are also factor-critical.

structured dual feasible m we define G to be the graph obtained from G, by
e members of 2. The motivation for considering only structured dual solutions
rom the following consequence of (64) and (29):
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(67) A structured dual feasible solution m is optimal if and only if G, admits a perfect
matching.

This suggests the following algorithm, developed by Edmonds [1965b], for finding a min-
imum weight perfect matching in a non-bipartite graph G.

EDMONDS’ ALGORITHM: Given a structured dual feasible # — initially identical to 0 —
construct G.. If G, admits a perfect matching M, then the dual feasible solution
7 is optimal; extend M to a minimum weight perfect matching in G,. Otherwise,
determine the Edmonds-Gallai structure of G, and revise the dual solution according
to (68) below.

We rely on notation similar to that in Section 2.2 to describe the relation between G and G.
If $ € Q,(G) is shrunk into pseudo-node s € G, we define DEEP,[s] = S and OUTER[u] =

for each u € S. For each node u in G that is also a node in G, we define DEEP,[u] = {u}
and OUTER.[u] = u. For each T C V(Gy), DEEP[T] := U;eTDEEP[s].

DUAL CHANGE (in non-bipartite graphs): Given a structured dual feasible solution , define

Ts+¢€ if S = DEEP.[D] for some component D of D(@;)
(68) wg:=<{ wg—e€ if S = DEEP.[s] for some s € A(Gy)
g otherwise,

where

(69) €:= min{e1, 2€2,€3} and

1 := min{w? |OUTER.[u] € D(G,); OUTER.[v] € C(Gx)};
€2 = min{w?,|OUTER.[u] and OUTER.[v] in different components of D(G)};
€3 := min{ms|S = DEEP,[s] for some s € A(G), |DEEP,[s]] # 1}.

Determining whether or not G, has a perfect matching, computing the Edmonds-Gallai
structure of G, and extending a perfect matching in Grtoa perfect matching in G, can all
be accomplished via any maximum cardinality algorithm that determines the Edmonds-Gallai
structure, like the blossom algorithm or the algorithm in Section 8.4. A perfect matching in
G, obtained by extending a perfect matching in G satisfies the complementary slackness
conditions (64) and hence is a minimum weight perfect matching in G. If G does not
admit a perfect matching, DUAL CHANGE increases the dual objective function value by
e (k(Gy) — JA(G)]) = € def(G,) > 0. So Edmonds’ algorithm only stops, when a minimum
weight perfect matching has been obtained. That the algorithm does stop follows from the
following lemma.

Lemma 21 Given a structured dual feasible solution w, DUAL CHANGE yields a structured
dual feasible solution ©', such that:

~ def(Gr) < def(Gy);
- if def(G) = def(Gy,), then DEEP (D(Gpr)) 2 DEEP,(D(Gr));
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- if def(Gp) = def(G,,) and DEEP,(D(G)) = DEEP,(D(G,)), then
DEEP,(C(Gr)) 2 DEEP.(C(G.)).

Proof For each component D of D(G5), the sets in € are either disjoint from DEEP,T[D]
or contained in DEEP,[D]. So Q. is nested. Moreover, by (27) G»|D is factor-critical, so '
satisfies (66) and hence is structured.

To prove the remainder of the lemma, observe that G, can be obtained from G, 1n fwo
steps. First, shrink the node-sets S which are not in Q, but are in €, thls yields G, (i-e.
the Edmonds-Gallai graph of G,r). The nodes in D(G’,r ) and in O(G ) are contained in
V(é; ), Hence:

def(Gr’) = def(Gr);
DEEP,(D(G, ) = DEEP,(D(G,));

(70)

DEEP(C(Gr ")) = DEEP,(C(Gr))

—

G, can be obtained from G by applying the operation (31) if € = ¢ or %62, the
operation in (32) if € = €3 and the operation (30). So, by (30), (31) and (32):

(11) - def(Gr) < def(Gr )
- if def(Gr) = defiG") then D(Gw) 2 D(G7');

- if both def(G) = def(Gy") and D(G) = D(G,"), then C(G) 2 C(G, ).
From (71) and (70), the lemma follows. m]

As a consequence, there are at most O(]V(G)|*) dual changes. Since we can find a maximum
cardinality matching and the Edmonds-Gallai structure of G, in polynomial time,

(72)  Edmonds’ algorithm finds a minimum weight perfect matching in polynomial time.

Note that the algorithm provides a constructive proof of Corollary 20.

Implementing Edmonds’ algorithm

In implementing Edmonds’ algorithm for finding a minimum weight perfect matching in a
non-bipartite graph, we can exploit the efficient algorithms discussed in Section 2.2 for finding
a maximum cardinality matching. Note, however, that unlike the cardinality problem, in
solving the weighted problem we must be able to expand a pseudo-node without expanding
the pseudo-nodes contained in it. We can similarly exploit the efficient methods discussed
in Section 6.1 for revising the dual solution but the continual shrinking and expanding of
blossoms gives rise to certain complications (cf. Galil, Micali and Gabow [1986]).

Lawler [1976] developed an O(|V|?) implementation of Edmonds’ algorithm. Galil, Micali
and Gabow [1986] derived an O(|E||V|log|V|) algorithm. Gabow, Galil and Spencer [1989]
derived an implementation that runs in O(|V|(|E|log, log, 1ogmax{ 121 53 V| + |V]log|V])

time. This, in turn, has been improved by Gabow’s O(|V|(|E] + |V|log|V])) bound (Gabow
[1990]). Nice reviews of these implementations are Ball and Derigs [1983] and Galil [1986a).
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Gabow and Tarjan [1991] and Gabow [1985] have developed algorithms whose running
times depend on the edge weights. These algorithms require O(y/[V]e(|V],|E]) log [V]|E|
log(|V|N)) and O(|V|%|E] log N) time, respectively, where N is an upper bound on the edge
weights.

These running times can be further improved when we confine ourselves to restricted
classes of weighted matching problems. Lipton and Tarjan [1980] derived an O(IVI% log|V)
algorithm for matching in planar graphs. This algorithm is based on their Separator theorem
for planar graphs: If G = (V, E) is planar we can partition V' into three sets A, B and C
with |A|,|B| < £|V| and |C| < 24/2|V] such that no edge connects A with B (Lipton and
Tarjan [1979]). The separator C can be found in linear time and can be used to recursively
decompose a matching problem in a planar graph into matching problems in smaller graphs.

Vaidya [1989] showed that Euclidean matching problems in which the nodes are given as
points in the plane and the weight of an edge between the two points u and v is the distance
between the two points in the plane, can be solved in O(|V|2(log|V])*) time. When the
points lie on a convex polygon, a minimum weight matching can be found in O(|V]log|V])
time (Marcotte and Suri [1991]).

7 General Degree Constraints

Matching can be viewed as a ‘degree-constrained subgraph problem’: find a maximum car-
dinality, or maximum weight, subgraph in which each node has degree at most one. In this
section we consider more general degree constraints.

Let G = (V, E) be an undirected graph, possibly with loops. The collection of loops
incident to node v is denoted by A(v). The general matching problem is: Given edge weights
w € RE edge capacities ¢ € (RU{00})® and degree bounds a, b € (Ru{oo})V find a minimum
or maximum weight integral vector z satisfying:

(73) ay < z(8(v)) +2z(A(v)) £ b, (vEV)

0 < Ze < c (e€E).

We call an integral vector z satisfying (73) a general matching. We call a the degree
lower bounds, b the degree upper bounds and c the capacities. The corresponding constraints
are called the lower and upper degree constraints and the capacity constraints. We did not
impose more general lower bounds on the values of z. since this does not yield a more general
problem. Given a lower bound d # 0 on the edges, replace each degree lower bound a, by
ay —d(6(v)) —2d(A(v)), each degree upper bound by by b, —d(6(v)) — 2d(Mv)), each capacity
¢e by ce — de, and each edge variable z. by z. — de.

In addition to matching and perfect matching, the general matching problem includes: the
simple b-matching problem in which a = 0, b is arbitrary and ¢ = 1; the b-matching problem
in which @ = 0, b is arbitrary and ¢ = oo; the capacitated b-matching problem in which a =0
and b and c are arbitrary; and the edge cover problem in which a =1, b =00, and ¢ = 1. The
general matching problem also includes the perfect versions of the (capacitated) b-matching
problems in which @ = b and the simple perfect b-matching problem, also called the b-factor
problem.

We can use loops to express the degree constraints as parity conditions. For instance, to
force the degree of a node v to be an odd number between 3 and 11 we add a loop Ltowv
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the constraints: z(6(v)) + 2z, = 11; 0 < 2, < 4. We discuss parity conditions in

more general degree-constrained subgraph problem is the D-matching problem:
D, C Zf for each v € V, find a subgraph G’ of G with degy (v) € D, for each
457 [1972a] proved that finding a D-matching is NP-complete, even when D, is
be either {1} or {0,3}. When for each v € V, Z; \ D, contains no consequtive
D-matching problem is polynomially solvable (Lovasz [1973], Cornuéjols [1988]
)93]).
;0 the degree-constrained subgraph problem is the question: For which d € ZK(G)
integral solution z with z(6(v)) = d, for all v € V(G)? A polyhedral answer to
1 has been given by Cunningham and Green-Krétki [1991], generalizing results
d Pulleyblank {1983, 1989], who solved cases @ = 0, b = 1 and ¢ = 1, and by
]. Koren considered the special instances of the question that G is the complete
J, b = oo and ¢ = 1, in other words he derived a system of inequalities for the
of all the degree-sequences of simple graphs on V(G). The inequalities in this
xactly the well-known necessary and sufficient conditions derived by Erd6s and
| for a sequence of integers to be the sequence of degrees of a simple graph.
r generalizations of matchings see: Cornuéjols and Hartvigsen [1986], Cornuéjols,
and Pulleyblank [1982], Giles [1982a, 1982b, 1982c], and Lovész [1970b]. In this
-estrict attention to general matchings as defined in (73).

1cing the general matching problem

f the self-refining nature of matching theory is that the general matching problem
udes matching as a special case, but can also be reduced to the matching problem.
'0 main steps in the reduction of general matching to matching. First, one reduces
natching problem to a perfect b-matching problem in a new graph with no loops
city constraints. Second, one further reduces the perfect b-matching problem to
itching problem. The reductions are due to Tutte [1954].

>f these reductions it is reasonable to expect that results analogous to those dis-
or in this chapter extend to general matching. Indeed, this is the case. Tutte
generalized his perfect matching theorem (Theorem 11) to give necessary and
anditions for the existence of an f-factor (see also Tutte [1981] and, for an algo-
»f, Anstee [1985]). Lovéasz [1970a] further generalized this result to (f, g)-factors
1atchings with a, = deg(v) — g, (v € V), b= f and ¢ = 1. Lovéasz also general-
nonds-Gallai structure theorem to a structure theorem for (f, g)- factors (Lovész
ic, 1972a]) and f-factors (Lovész [1972€]). For a discussion of these latter results,
nd Plummer [1986].

vhedral results and polynomial-time solvability of matching also extend to the
ching problem. After explaining the reductions from general matching problems
:ct) matching problem, we first consider polyhedral results for general matchings
al with algorithmic issues. It is possible to derive general matching results via the
cf. Aréoz, Cunningham, Edmonds and Green-Krétki [1983]), but direct proofs
r simpler.

ining the reductions we only show how the new graphs should be constructed
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and what the new bounds on the degrees should be. We leave it to the reader to determine
appropriate weights on the edges and to prove that indeed the original problem can be solved
by solving the newly constructed problem.

Reduction to perfect b-matching

We first show how to transform the general matching problem in G = (V, E) to a perfect
b-matching problem in a graph with no loops and no capacity constraints.

Reduction to cy, < 00 for each edge uv and b, < oo for each node v:

First, replace for each edge uv the capacity cy, with min{cyy, bu, by} or, if this minimum is
infinite, with max{a,,a,}. With these new, finite, capacities, replace for each node v the
degree upper bound b, with min{b,,c(6(v)) + 2¢(A(v))}.

Reduction to a, = b, for each node v:

Next, construct a new graph G’ as follows. Make two copies G and G of G. For each node
v in G add an edge vyvy with capacity ¢y,v, = by — @, between the copies v in G and v in
G of v. A copy (in Gy or G3) of an edge e in G gets the same capacity as e. For each node
v in G the degree bounds of its two copies v and vs in G’ are: Gy, = by, 1= Qyy 1= by, = by,
Reduction to a loopless graph with ¢ = oo:

Finally, replace each edge e = uv in G’ with two new nodes, u. and v., and three new edges,
Ule, UeVe, and vev. The capacities of these new edges are infinite and the degree bounds of
the new nodes are: Qy, := Gy, := by, 1= by, = Cuyp-

Reduction to perfect matching

Now, we further reduce the perfect b-matching problem in the loopless graph G' to a perfect
matching problem in a graph G”. Replace each node v in G' with b, copies v1, vg, ..., ,-
Replace each edge wv in G’ with an edge u;v; between each copy u; of u and each copy v; of
v. The b-matching problem in G’ is now a perfect matching problem in the new graph G".

7.2 General matching polyhedra

As polyhedral results for bipartite graphs are easier, we consider them first.

Bipartite graphs

Theorem 22 The polyhedron described by (73) is integral for all integral vectors a,b and c
if and only if G is bipartite. (Note that bipartiteness excludes loops.)

Proof Rather than derive this result by combining Corollary 16 with the above reductions,
we present a proof based on the well-known result of Hoffman and Kruskal [1956] on totally
unimodular matrices. An mxn-matrix A is called totally unimodular if each square submatrix
of A has determinant equal to 0 or £1. The following is easy to prove:

(74) The node-edge incidence matriz of a graph G is totally unimodular if and only if G
is bipartite.

Hence, the theorem follows from:
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man and Kruskal [1956]) Given an m X n-matriz A, the polyhedron {z € R*|a <
h;0 < z < ¢} is integral for each a,b € Z™,c € Z™ if and only if A is totally
lular.

O

>ws and bidirected graphs
cted graph D = (V(D), A(D)), a,b € ZV®P and ¢ € ZAD) 3 general network

;or = satisfying:

< z(86(v) - 2(67(v))

Lo

b, (ve V(D))

<
< ¢ (a€A(D)).

IA

) defines an integral polyhedron follows from network flow theory as well as from
| Kruskal’s theorem (75). By a construction similar to that used in Section 3.1 to
tite matching problems to max-flow problems, this in turn implies Theorem 22.
ral network flow problem and the general matching problem are similar. Both
1t by a system of the form a < Az < b;0 < z < ¢, where each column of A
two non-zero coefficients. In the matching case both non-zero coefficients are
n the network flow case one is 1 and the other is —1. The other difference is
natching case we also allow columns with a single coefficient of 2 as the only
ty. Edmonds and Johnson [1970] proposed a common generalization of these two
general matching problem for bidirected graphs. A bidirected graph is a matrix
sach column either contains two non-zero entries both +1 or contains a single
ry equal to £1 or +2. A general matching in a bidirected graph A is an integral
sfying: a < Az < b;0 < z < ¢. The results in this section also hold for these
| objects (Edmonds and Johnson {1970]).

ite graphs

the matching polytope (45) and (46) of a non-bipartite graph from the degree
iy adding constraints obtained in the following manner. Add up degree and non-
mstraints so that the coefficients in the left hand side of the resulting inequality
vide the resulting inequality by 2 and round the right hand side down to the
er. Applying the same construction to (73) yields the inequalities:

1) = 2({18)) +2(Fy) = o(F3) < [§(6(V3) — a(Va) + (U )| for cach pair
of disjoint subsets of V', each Fy C 6(Vi) \ 6(V2), and each partition Fy, F3 of
5(VA).

inequalities, also called blossom inequalities, describe the convex hull of general

Chis can be derived from Theorem 19 or Corollary 20 via the above reductions
)83] and Schrijver [1983al).

3 (Edmonds [1965b], Edmonds and Johnson [1970]) For each graph G = (V, E),
dc € ZE, the convez hull of all integral solutions to (73) is the solution set of the
:qualities defined by (78) and (77). Moreover, this system is totally dual integral.
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Note that many of the inequalities (77) are redundant, e.g., when b(V1)—a(V2) +c(F1UF3)
is even (though this is not the only case!). Although restricting the formulation to the
inequalities (77) with (V1) — a(Va) + ¢(F1 U Fz) odd gives a description of the convex hull
of general matchings, we can no longer be assured that the system is totally dual integral.
So, unlike ordinary matchings, the systems which are non-redundant and those which are
minimally totally dual integral are distinct (cf. Cook and Pulleyblank [1987], Cook {1981,
1983] and Pulleyblank [1980, 1981]).

Below we list consequences of Theorem 23 for some of the more prominent special cases
of general matching.

The b-matching polytope

The convex hull of all b-matchings is given by:

(78) z(6(v)) < b, (veV)
(V) < |BW)] wev)
> 0 (e € E)

Le

(Edmonds [1965b], see Hoffman and Oppenheim [1978] and Schrijver and Seymour [1977] for
alternative proofs).

If we replace the constraints z(6(v)) < b, with the constraints z(6(v)) = by, we get
the convex hull of perfect b-matchings. In the case of perfect b-matchings, as with perfect
matchings, we can replace the blossom constraints with the odd cut constraints to get the
following description of the convex hull of perfect b-matchings:

(79) z(6(v)) = by, (vEV)
o(6(U)) > 1 (UCV with bU) odd)
z. > 0 (e€kE).

When all components of b are even, the b-matching polytope is described by the degree
and the non-negativity constraints, regardless of whether the graph is bipartite or not. In
fact, when b has only even components, we can reduce the b-matching problem in a non-
bipartite graph to one on a bipartite graph, or equivalently, to a general network flow problem.
Consider the perfect b-matching problem on a graph G' where all the components of b are
even. Construct a directed graph D := (V(D), A(D)) as follows: For each node v in G there
are two nodes, v~ and v*, in V(D), and for each edge uv in G there are two directed edges,
one from u~ to v and one from v~ to ut, in D. Now, solving the perfect b-matching problem
in @ is equivalent to solving a general network flow problem in D, subject to the following
constraints (note that, 6~ (v*) = 67 (v™) = @ for each v € V):

(80) (6T (vF)) —z(6~(vt)) = %bv (veV)
z(6T(v7))—z(6~(v7)) = ——%bu (veV)
o > 0 (a€A(D)).

Since the right-hand-side in the general network flow problem is integral, it admits an integral
optimum solution.
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r polyhedron

r simple perfect 2-matching, in G = (V, E) is a collection of node-disjoint circuits
Note the difference with perfect 2-matchings, in which we may use edges twice.
2-matching problem is a special case of the perfect b-matching problem with b
factor problem is not. Theorem 23 implies that the convex hull of 2-factors is

z(6(v)) = 2 (veV)
< e < 1 (e€ E)
z((U)) +z(F) < [Ul+35(F|-1) (UCV,FCé(U),|F| odd).

.ay replace the blossom constraints with the odd cut constraints:
2(6(U)\F)—(F) < 1—|F| (UCV,FC6(U)IF| odd).
and (82), one can derive a characterization of those graphs with simple perfect

(Belck {1950}, Tutte [1952]).

:over polyhedron

hull of edge covers is described by:

z(6(v)) > 1 (veV)
< Ze < 1 (e € E)
S6U)UUY) > HUI+1) (U CVIU| odd).

rithms for general matchings

»n we consider the polynomiality of the algorithms for general matching problems.
iction of a general matching problem to a perfect b-matching problem requires
) time and results in a graph with O(|V| + |E|) nodes and edges. So, given a
time algorithm for the perfect b-matching problem, we may solve the general
oblem in polynomial time. The reduction from the perfect b-matching problem
:t matching problem, on the other hand, requires O(b(V')) steps and results in a
‘hing problem in a graph with O(b(V)) nodes. Hence we get:

re exists an algorithm for the b-matching problem with running time bounded by
romial in |E(G)| and b(V)

1965b)], see also Edmonds, Johnson and Lockhart [1969] and Pulleyblank [1973]).
yund, however, is not very good. It grows polynomially with the values of b,’s and
entially with the space required to encode them. (Recall that the integer b, can
in log(]by] + 1) + 1 binary digits.) So, the given time bound is exponential in the
aput of the problem. (An algorithm like this, whose running time is polynomial
; of the numbers involved in the input, is called pseudo-polynomial.) If we restrict
those instances of the general matching problem in which the degree bounds and
re bounded by some fixed constant (or by a polynomial in |V(G)|), (84) yields
algorithms:

49




imple) (perfect) 2-matching problem and the edge cover problem can be solved
ounded by a polynomial in |V(G)|.

approach is required to solve the general b-matching problem in polynomial

olynomial algorithm for perfect b-matching

1 algorithm, due to Edmonds, that solves a b-matching problem by first solving
1 network flow problem and then a single perfect matching problem. It is based
1g ‘sensitivity’ result.

Let G = (V,E) be an undirected graph and b,b' € ZY. If =’ is a minimum
b'-matching with respect to a given weight function w € Zf, then there exists
2ight perfect b-matching = (with respect to w) such that

|ze — L] < D by — b, for each e € E.
veV

:= b — V. Clearly, it suffices to prove the theorem for the special case that
). In fact, we will additionally assume that b € {0,1}V. (In applying this
aly need that case anyway. Moreover, the other cases are proved similarly.) So
ug € V such that dy, = dy, =1 and dy, = 0 if u & {u1, us}.

» minimum weight perfect b'-matching, and z” be a minimum weight perfect
et B be the collection of all y € Z¥ such that:

y(6(v)) = dv (veV)
0 < Ye < 2l -z, (e € FE and ! > x)
. < gy < 0 (e € E and 2! < zl).

€ B, z" — y is a perfect b'-matching and z’ + y is a perfect b-matching. Hence
wT ', and thus w"(z' +y) < w'z". Which implies that for each y € B, 2’ +y
weight perfect b-matching. So it suffices to prove that B contains a vector y
oreache € F.

juence vg, €1, V1, €2,V2,...,€k, Uy Of edges and nodes such that the following
satisfied: vg = w; and vy = ug; €; = v;—1v; for i = 1,...,k; if ¢ is odd then
s even then z). < =, ; and, for each edge e at most |z — z.| edges e; are equal
difficult to see that, since z” — z’ € B, such a sequence exists. Assume that the
short as possible. This implies that we do not use an edge more than twice in
Let y € ZF be defined by y. := f=175i=e(—1)i+1. Then y € B and |y.| < 2, so
Jllows. O

- this theorem in solving perfect b-matching problems as follows: Let z' be

eight perfect b'-matching, where b, := 2|1b,| for each v € V. Next define
{0,1}V) and search for a minimum weight general matching T subject to the

) = d, (veV)
te > max{—|V|,~z.} (e€ E).
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Then, by Theorem 24, ' + T is a minimum weight perfect b-matching.

By the remarks following (73) and the reductions in Section 7.1 we can transform the
general matching problem subject to (87) into perfect matching problem on a graph whose
size is a polynomial in the size of G. As b’ has only even components the perfect b'-matching
problem is a general network flow problem. So, we have:

(88) (Edmonds) A b-matching problem in a graph G can be solved by solving one polyno-
mially sized general network flow problem and one polynomially sized perfect matching
problem.

The general network flow problem with constraints (80) is essentially equivalent to the
min-cost circulation problem. The first polynomial algorithm for the min-cost circulation
problem was developed by Edmonds and Karp {1970, 1972] and has running time polynomial
in 3, cv(p) 10g(|bys|+1). This algorithm combines the pseudo-polynomial out-of-kilter method
(Yakovleva [1959], Minty [1960] and Fulkerson [1961]) with a scaling technique. Cunningham
and Marsh (cf. Marsh [1979]) and Gabow [1983] found algorithms for b-matching that are
polynomial in },cy(p)log(|bs| + 1), also using a scaling technique. The disadvantage of
these algorithms is that the number of arithmetic steps grows with 3, cy(p) log(|bs| + 1).
So, larger numbers in the input not only involve more work for each arithmetic operation,
but also require more arithmetic operations. This raised the question of whether there is
an algorithm such that the number of arithmetic operations it requires is bounded by a
polynomial in |V (D)| and the size of the numbers calculated during its execution is bounded
by a polynomial in },ey(p)10g(|by| +1) (this guarantees that no single arithmetic operation
requires exponential time). For a long time this issue remained unsettled, until Tardos [1985]
showed that, indeed, there exists such a, strongly polynomial, algorithm for the min-cost
circulation problem (see also Goldberg and Tarjan [1989]). Combining this with (88) we get:

Theorem 25 There exists a strongly polynomial algorithm for the general matching problem.

For a similar strongly polynomial algorithm for b-matching, see Anstee [1987)].

7.4 Parity constraints
The Chinese postman problem (Meigu Guan [1962], Edmonds [1965a])

Given a connected graph G = (V,E) and a length function £ € Z¥: find a closed walk
e1,...,er in the graph using each edge at least once — we call this a Chinese postman tour
— such that its length £(e;) + ...+ £(ex) is as small as possible.

If G is Eulerian, i.e., the degree of each node is even, then there exists an Eulerian walk,
that is a closed walk using each edge exactly once. This is Euler’s [1736] famous resolution
of the Kénigsberger bridge problem. So, for Eulerian graphs the Chinese postman problem
is trivial (actually finding the Eulerian walk takes O(|E|) time). On the other hand, if G
has nodes of odd degree, every Chinese postman tour must use some edges more than once.
We call a vector z € ZF such that z. > 1 for each edge e and 2 ecs(v) Te 18 even for each
node v, Eulerian. By Euler’s theorem it is clear that for each Eulerian vector z there is a
Chinese postman tour that uses each edge e exactly z. times. Thus, solving the Chinese
postman problem amounts to finding an Eulerian vector z of minimum length £7z. Clearly,
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gth Eulerian vector can be assumed to be {1, 2}-valued. Hence, searching for
rian vector z amounts to searching for a set F := {e € E|z. = 2} with {(F)
that duplicating the edges of F leads to an Eulerian graph. Duplicating the
s to an Eulerian graph exactly when each node v is incident to an odd number
f and only if the degree of v in G is odd. So, the Chinese postman problem is
em’ discussed below.

other versions of the Chinese postman problem. In a directed graph, the
eneral network flow problem. Other versions, including: the rural postman
lich we need only visit a subset of the edges; the mixed Chinese postman
ch some edges are directed and others are not; and the windy postman problem
sst of traversing an edge depends on the direction, are NP-hard.

>roblem

G = (V, E) and an even subset T of the node set V, a subset F' of edges such
odd for each node v in T and even for each v not in T is called a T-join. The
,is: Given a length function £ € ZF find a T-join F of minimum length £(F).
problem is the special case of the general matching problem with no upper
ints on the edges and no degree constraints other than the parity constraints.

or T-joins
vo algorithms for finding a shortest T-join with respect to a length function
> two algorithms rely on matchings in different ways.

Johnson [1978]: Let H be the complete graph with V(H) = T. Define the
nwe€ ZE(H) as follows. For each edge uv € E(H), wy, is the length, with
»f a shortest wv-path P, in G. Find a minimum weight perfect matching,
, Up—1 Uk 53y, in H. The symmetric difference of the edge sets of the shortest
ugugs - - - Pug_quy 18 @ shortest T-join.

hortest paths and a minimum weight perfect matching can be found in poly-
he algorithm runs in polynomial time. In fact, we can find shortest paths in
ne when some of the edges have negative length, as long as ¢ has no negative
‘see Section 9.2). But, when we allow negative length circuits, the shortest path
me NP-hard. Nevertheless, the T-join problem with a general length function
in polynomial time (which implies that we also can find a T-join of maximum

3a]: Construct a graph H as follows. For each node u in G and each edge e
ve have a node u,. For each node u in T with even degree or not in T with odd
re the node % and the edges tu. for each edge e incident to u. For each node u
pair e, f of edges in 6(u), we have an edge u.us. Finally, for each edge e = uv
i edge ucv, in H; we call these the G-edges of H. Each collection of G-edges is
H and it corresponds to a T-join in G if and only if it is contained in a perfect
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1. So, if we give each G-edge ucve weight £ and all other the edges in H weight
ransformed the minimum length T-join problem in G into a minimum weight
iing problem in H.

algorithm allows edges with negative weights. Another way to solve a T-join
negative weights is by the following transformation to a T '_join problem with
>n-negative. Let N := {e € E|w. < 0} and Ty := {v € V|degy(v) is odd}.
ine wt € RE be defined by w] := |we| for each e € E and T" := T ATy. Then
is a T-join} = w(N) + min{w*(F)|F is a T"-join}. F is a minimum weight 7-
sect to w if and only if then F A N is a minimum weight 7”'-join with respect

and Johnson [1973] derived a direct algorithm for the T-join problem, which, like
ighted matching algorithm, maintains a dual feasible solution and terminates
a feasible primal solution that satisfies the complementary slackness conditions.
80] and Barahona, Maynard, Rammal, and Uhry [1982] derived a ‘primal’ algo-
wual feasibility as a stopping criterion (similar to the primal matching algorithm
:m and Marsh (see Section 8.1)). Like the matching algorithm, these algorithms
mented to run in O(|V|®) and O(|E||V|log|V]) time, respectively. In planar
-join problem can be solved in O(IVI% log|V]) time (Matsumoto, Nishizeki and
Gabow [1985], Barahona [1990}).

slations for T-joins — the T-join polyhedron

- V(G) with UN T odd, we call 6(U) a T-cut. Clearly, the maximum number
irwise edge-disjoint T-cuts cannot exceed the smallest number 7(G, T) of edges
Equality need not hold. For example, ¥(K4, V(K4)) = 1 < 2 = 7(Ky, V(Ky))-
ved (Seymour {1981)):

bipartite graph G, v(G,T) = 7(G,T) for each even subset T' of nodes.

b8 and Tardos [1984] and Sebé [1987] derived short proofs of this result. In
raph, a maximum collection of pairwise edge-disjoint T-cuts can be found in
me. (Korach [1982] gives an O(|E||V|*) procedure and Barahona [1990] showed
ve mentioned O(|V|®) and O(|E||V|log|V]) T-join algorithms can be modified
maximum collection of disjoint T-cuts when the graph is bipartite.)

» length function £ is non-negative and integral, we have the following min-max
\ortest T-joins in arbitrary graphs (Edmonds and Johnson [1973], Lovasz [1975]):

ninimum length of a T-join with respect to a length function £ € ZE(G) is equal

the mazimum number of T-cuts such that each edge e is in at most 2£(e) of

be proved from (89). Let H be the bipartite graph obtained from G by replacing
3y a path of length 2¢(e). If £(e) is 0, contract e. A minimum length T-join in
Is t0 a minimum cardinality T-join in H. Applying (89) to H yields (90).
iequence, we obtain a linear inequality description of the T'-join polyhedron, i.e.,
ctors £ € REF such that there exists a convex combination y of characteristic
joins with z > y.
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Corollary 26 (Edmonds and Johnson [1973]) Let T' be an even subset of the node set of a
graph G = (V, E). Then the T-join polyhedron is the solution set of:

(91) z(8(U)) > 1 (UCV;[UNT]is odd)
z. > 0 (e€E).

Note that this result immediately yields Corollary 20. Conversely, Corollary 26 follows
from Corollary 20 via the reduction to perfect matchings used in Schrijver’s T-join algorithm.
Alternatively, we can prove Corollary 26 in a manner analogous to our proof of Theorem 19.

The system (91) is not totally dual integral. The complete graph on four nodes, K4, with
T = V(K4) again provides a counterexample. In a sense, this is the only counterexample.
One consequence of Seymour’s characterization of ‘binary clutters with the max-flow min-cut
property’ (Seymour [1977]) is:

(92) If G is connected and T is even, then (91) is totally dual integral if and only if
V(G) cannot be partitioned into four sets Vi,..., Vi such that V; N'T is odd and G|V;
is connected for each i = 1,...,4 and for each pair V; and V; among Vi,..., Va4, there
is an edge uwv with u € V; and v € V.

An immediate consequence of (92) is that, like bipartite graphs, series parallel graphs are
Seymour graphs, meaning that v(G,T) = 7(G,T) for each even subset T' of nodes. Other
classes of Seymour graphs have been derived by Gerards [1992] and Szigeti [1993]. It is
unknown whether recognizing Seymour graphs is in NP. Just recently, Ageev, Kostochka and
Szigeti [1994] showed that this problem is in co-NP by proving a conjecture of Sebd.

Sebé [1988] derived a (minimal) totally dual integral system for the T-join polyhedron
of a general graph. (For a short proof of this result and of (92) see A. Frank and Z. Szigeti
[1992].) Sebd [1986, 1990] also developed a structure theory for T-joins analogous to the
Edmonds-Gallai structure for matchings. The core of this structure theory concerns structural
properties of shortest paths in undirected graphs with respect to length functions that may
include negative length edges, but admit no negative length circuits. Frank [1993] derived a
good characterization for finding a node set T in G that maximizes 7(G, T).

8 Other Matching Algorithms

In this section we discuss other algorithms for both cardinality and weighted matchings.

8.1 A primal algorithm

Edmonds’ algorithm for finding a minimum weight perfect matching maintains a (structured)
dual feasible solution and a non-perfect, and so infeasible, matching that together satisfy the
complementary slackness conditions. At each iteration it revises the dual solution so that
the matching can be augmented. When the matching becomes perfect it is optimal. An
alternative approach is to maintain a perfect matching and a (structured) dual solution that
satisfy the complementary slackness conditions. At each iteration, revise the matching so
that dual solution approaches feasibility. Cunningham and Marsh [1978] developed such a
‘primal’ algorithm. In outlining their algorithm we return to the notation of Section 6.2.
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: an undirected graph and suppose w € RE(G). Moreover, let 7 € RUG) pe a
ual solution, i.e., 7 satisfies (65) and (66). We also assume that mg > 0 for
G) with |S| # 1 and that M is a perfect matching in G. If all the edges have
rreduced cost wl = We — X seq(i);6(5)3e 75» then m is dual feasible and, since M
ided to a minimum weight perfect matching in G, 7 is optimal. Otherwise, we
d M as follows:

; uv = e € E(GQ) with w] < 0 and suppose there exists an alternating path P in
m OUTER,[u] t0 OUTER,[v] starting and ending with a matching edge. We call
path a repairing path. Carry out the following repairs (R := DEEP, [OUTER,[u]}):

DING R: If rp < —w] and |R| # 1, revise the dual solution by changing wg to 0.
his means that we must expand R in G, and extend M accordingly. Moreover,
nce 7 satisfies (66), we can extend P to an alternating path from the new node
UTER,[u] to OUTER,[v], again starting and ending with a matching edge.

)eat EXPANDING R until mg > —w? or |R| = 1. Note that each EXPANSION of R
a matching edge, namely the starting edge of P, to receive positive reduced cost.
re have finished EXPANDING, we call REPAIRING e to find a new perfect matching
-evised dual solution that satisfy the complementary slackness conditions.

NG e: If |[R| = 1, or mg > —wT, replace M by MA(P U {e}) and change the
1al solution by adding w? to #g.

\at remains is the question of how to find a repairing path. Assume u is a node
n edge with negative reduce cost and let r := OUTER,,[ u]. We create an auxiliary
adding a new node u* to G and an edge from u* to u. Similarly, we construct
g the edge u*r to Gr. Consider the Edmonds-Gallai structure of H,. There are
ties:

is an edge between u and DEEP; [v] with negative reduced cost for some node
(H,). In this case, let Q be an M-alternating u*v-path (Q exists because v €
and u* is the only node in H exposed with respect to M). Clearly Q \ {u*r} is
ring path.

e is no such node v, we change the dual variables according to the definitions

and (69), but with the understanding that in (69) we ignore those edges with
re reduced cost. We also ignore a dual change in v* (note that u* is a singleton
nent of D(H,)). We repeat this operation until 1. applies or until all the edges
it to u receive a non-negative reduced cost.

to say, in implementing the algorithm we do not need to find the Edmonds-Gallai
slicitly, but instead use GROW and SHRINK. The algorithm can be implemented
) time.

test alternating paths and negative alternating circuits

ching M, a weight function w € RF(G) and a set of edges F', we define wy(F) :=
w(F N M). A negative circuit is an even alternating circuit C with wp(C) < 0.
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A matching M is called eztreme if it admits no negative circuit. In a manner similar to
the proof of Theorem 1, one can prove that a perfect matching is extreme if and only if it
is a minimum weight perfect matching. This suggests the following algorithm for finding a
minimum weight perfect matching:

NEGATIVE CIRCUIT CANCELLING: Given a perfect matching M, look for a negative circuit.
If none exists, M is extreme and hence optimal. If M admits a negative circuit C,
replace M with MAC and repeat the procedure.

Given a matching M and an exposed node u, an augmenting path P starting at u is called
a shortest augmenting path from w if it minimizes wy (P). It is easy to prove that if M is
extreme and P is an augmenting path starting at an exposed node u, then MAP is extreme
if and only if P is a shortest augmenting path from u. This also suggests an algorithm:

SHORTEST AUGMENTING PATHS: Given an extreme matching M, (initially M = ), look
for a shortest augmenting path. If none exists, M is a minimum weight maximum
cardinality matching. If M admits a shortest augmenting path P, replace M by MAP
and repeat the procedure.

So the question arises: How to find negative circuits or shortest augmenting paths? The
answer is not so obvious. We can hardly check all possible alternating circuits or augmenting
paths. In fact, the observations above are weighted analogues of the theorem of Berge and
Norman and Rabin (Theorem 1). However, Edmonds’ algorithm for minimum weight per-
fect matching can be viewed as a shortest augmenting path algorithm and Cunningham and
Marsh’s primal algorithm is a negative circuit cancelling method. Derigs [1981] (see also De-
rigs [1988b]) developed versions of these algorithms in which shortest augmenting path occur
more explicit. Not surprisingly, these algorithms also rely on alternating forests, shrinking
and the use of dual variables.

8.3 Matching, separation and linear programming

In Section 5 we formulated the weighted matching problem as a linear programming problem.
Can we solve it as a linear program? The main problem is the number of inequalities. There
are, in general, an exponential number of blossom constraints (viz. odd cut constraints). A
first approach to overcoming this is, in fact, the development of algorithms like Edmonds’
algorithm and the primal algorithm by Cunningham and Marsh that can be viewed as special
purpose versions of simplex methods in which only the constraints corresponding to non-zero
dual variables are explicitly considered. A second approach is to use the ellipsoid method,
the first polynomial time algorithm for linear programming (Khachiyan [1979]). Grétschel,
Lovész and Schrijver [1981], Karp and Papadimitriou [1982] and Padberg and Rao [1982]
observed that the polynomial time performance of this method is relatively insensitive to the
size of the system of linear constraints. The only information the ellipsoid method needs
about the constraint system is a polynomial time separation algorithm for the set of feasible
solutions. A separation algorithm for a polyhedron solves the following problem.

SEPARATION PROBLEM: Given a polyhedron P C R™ and a vector Z € R", decide whether
% € P and, if it is not, give a violated inequality, that is an inequality a'z < o satisfied
by each z € P, but such that a'Z > o
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1 Rao [1982] developed a separation algorithm for the perfect matching polytope.
» check whether a given z € RZ() satisfies the non-negativity and degree con-
the separation problem for the perfect matching polyhedron is essentially: Given
ive vector z € RF(G) | find an odd collection S of nodes such that z(6(S)) < 1 or
no such S exists. This problem can be solved by solving the following problem

(@))-

'APACITY T-CUT PROBLEM: Given an even collection T of nodes and z € Rf(G) ,
G V(G) with |[SNT)| odd and z(6(S)) as small as possible.

5 6(S) with SG V(G) a T-separator if SNT and S\T are not empty. A minimum
“cut 6(S) with z(6(S)) as small as possible. We define a minimum T-separator

to the solution of this problem is the following fact.

berg and Rao [1982]) Let §(W) be a minimum T-separator, then there ezists a
wm T-cut 6(S) with SCW or SCV(G)\W.

is, let §(W) be a minimum T-separator and 6(Z) be a minimum T-cut. If 6(W)
Z C Wor Z CV(G)\W, we are done. So, suppose none of these is the
erchanging W and V(G)\ W or Z and V(G) \ Z (or both) we may assume that
is odd and V(G) \ (W U Z) contains a node of T. Hence 6(W N Z) is a T-cut and
. a T-separator. So, z(6(W)) < z(6(W U Z)). Now, straightforward calculations
2(6(2)) — 2(6(W N 2)) = =(6(Z)) — z(6(W N 2)) + z(6(W)) — z(6(W U Z)) =
uew\Z Tuy 2 0, which completes the proof of (93).

gests the following recursive algorithm. Determine a minimum T-separator §(WW).
odd we are done, 6(W) is a minimum T-cut. Otherwise, we search for a minimum
;in G x W and a minimum (7'N W)-cut in G x (V(G) \ W). By (93), one of
elds a minimum T-cut in G. It is easy to see that this recursive method requires
— 1 searches for a minimum T-separator. Each search for a T-separator can be
by solving |T| — 1 max-flow problems. (Indeed, fix s € T and use a max-flow
y find a minimum st-cut for each £ € T'\ {s}.) So the minimum odd cut problem
aration problem for the perfect matching polytope can be solved in polynomial
'ing a series of O(|T|?) max-flow problems. Thus, the ellipsoid method provides a
mial time algorithm for the minimum weight perfect matching problem. (In fact,
m T-cut algorithm can be improved so that only |T]| — 1 max-flow problems are
- calculating a ‘Gomory-Hu’ tree (cf. Padberg and Rao [1982])).

thod is not practical because the ellipsoid method performs poorly in practice.
er hand, the separation algorithm can be used in a cutting plane approach for
ching problems via linear programming. Start by solving a linear program con-
ily the non-negativity and degree constraints. If the optimal solution z* to this
integral, it corresponds to a perfect matching and we are done. Otherwise, use
d Rao’s procedure to find an odd cut constraint violated by z*. Add this to the
raints and resolve the linear programming problem. Grétschel and Holland [1985]
ching code based on this idea. At that time, their code was competitive with
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natorial codes (based on Edmonds’ or Cunningham and Marsh’s algorithm).
;ed the general belief that the more fully a method exploits problem structure,
yuld be. This belief has been reconfirmed — at least for the matching problem
faster combinatorial matching codes. ‘

different approach to solving matching problems with linear programming is
polynomial size system Az + By < c such that {z € R¥(®|Az + By < ¢}
| matching polytope. We call such a system a compact system for the (per-
polytope. Although, perfect matching polytopes of planar graphs (Barahona
n fact, perfect matching polytopes of graphs embeddable on a fixed surface
]) have compact systems, no compact system is known for the matching prob-
graphs. It should be noted that compact systems for matching polytopes that
wiables do not exist, not even for planar graphs (Gamble [1989]). Yannakakis
hat there is no compact symmetric system for the matching polytope. (Here,
ers to an additional symmetry condition imposed on the systems.)

1993b] proposes yet a different approach. Given a matching M, one can find a
t with respect to M by searching for an even alternating circuit C' with mini-
veight wp(C)/]C|. When using these special negative circuits, O(|E|? log|V)
; cancellations suffice for finding a minimum weight perfect matching. An even
-uit of minimum average weight can be found by solving a polynomially sized
ming problem. Hence, we can find a minimum weight perfect matching by
log|V'|) compact linear programming problems.

orithm based on the Edmonds-Gallai structure

nt an algorithm, due to Lovdsz and Plummer [1986], for finding a largest
graph. Like the blossom algorithm, it searches for alternating paths, but in a
manner. For instance, it does not shrink blossoms. The algorithm is inspired
ds-Gallai structure theorem. The algorithm maintains a list £ of matchings
iven the list £, define: D(L) := Upecezp(M), A(L) :=T(D(L))\ D(£), and
\(D(£L)UA(L)). So, if k is v(G) and L is the list all maximum matchings, then
‘(L) is the Edmonds-Gallai structure of G. During the algorithm, however, &
to v(G) and £ never contains more than |V (G)| matchings. The clue to the
e following fact, which will serve as the stopping criterion.

' L is such that M N {D(L)) has ezactly one ezposed node in each component
’)} and no node in A(L) is matched to a node in A(L)U C(L), then M is a
n matching in G.

case each component of G|D(L) is odd and each node in A(L) is matched to a
onent of G|D(L). Hence, it is easy to see that |exp(M)| = co(A(L)) — |A(L);
{ is maximum (cf. (22)).

ng notions facilitate the exposition of the algorithm. For u € D(L) we define
|u € exp(M)}. For each M € £, and M' € L, we denote the maximal path in
g at u by P(u; M, M'") (if M' is also in L, this path consists of u only). An
path from a node in ezp(M) to a node in A(L) with an even number of edges
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thifting. If P is M-shifting for M € £, then M AP is a matching of size k£ with
ode v € D(L). So adding MAP to £ adds the node v to D(L). If Q is a path
are nodes on @ then Q,, denotes the uv-path contained in Q.

n works as follows:

C := {0}. Choose a matching M from L. If it satisfies the conditions in (94)
M is a maximum matching. Otherwise, apply the steps below to M to find

anting or an M'-shifting path P with respect to some matching M’. If we find

>nting path P, we AUGMENT by setting £ equal to {M'AP}. If we find an M'-
P, we sHIFT by adding M'AP to £. The algorithm continues until we find a

satisfying (94).

were is an edge uv € M, with u € A(L) and v & D(L), choose w € I'(u) N D(L)
Cw- If P(w;M,M,) has an odd number of edges it is M,-augmenting and
. If P(w; M, M,) has an even number of edges and uv ¢ P(w; M, M,,) then
' U {wu, uv} is M-shifting. Otherwise, either Py, (w; M, M) or Py,(w; M, M,)
tain uv and so is M,,-shifting. Select the appropriate path and SHIFT.

here is a component S of G|D(L) such that M N (S) is a perfect matching in
w € S and M, € L. Since S is even, Step 3 below applies to M,,. Replace M
;0 to Step 3.

were 45 a path Q in G|D(L), such that M N (D(L)) leaves the endpoints u and v
, then, if uv € E(G), go to Step 4. Otherwise, choose a node w in @, different
. If w € exp(M), apply Step 3 with w in place of v and Q. in place of Q. If
choose My, € L. If P(w; M, M,,) is odd, it is M,-augmenting, AUGMENT. If
| is even, then M' := MAP(w; M, M,,) is a matching of size k that leaves w and
» of u and v exposed. Assume u € exp(M’). Add M’ to £ and apply Step 3 with
f M, w in place of v and @, in place of Q.

iwch time we repeat STEP 3, the path @ gets shorter.)

‘here is an edge uwv € G|D(L) such that M N (D(L)) leaves u and v exposed,
following two cases:

u,v € exp(M), let M, € L. If P(u;M,M,) is odd, it is M,-augmenting.
efine M’ := MAP(u; M, M,). M' has size k and has v € ezp(M’') and v €
(£))). Add M’ to £ and go to Step 4” with M’ in place of M.

u € exp(M) or v € exp(M), we may assume that u € exp(M). If v € exp(M)
is M-augmenting. If v & ezp(M) and vw € M then {uv,vw} is M-shifting.

ctness of the algorithm follows from its description. It runs in O(|V(G)]*) time.
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8.5 Parallel and randomized algorithms — matrix methods

The invention of parallel computers raised the question which problems can be solved sub-
stantially quicker on a parallel machine than on a sequential one. For problems that are
polynomially solvable on a sequential machine a measure could be that the parallel running
time is ‘better than polynomial’. To make this explicit, Pippenger [1979] invented the class
NC of problems solvable by an NC-algorithm. A parallel algorithm is called NC-algorithm
if its running time is a polynomial in the logarithm of the input size and requires only a
polynomial number of processors. For more precise definitions see Karp and Ramachandran
“ [1990].

Many problems have been shown to be in NC (cf. Karp and Ramachandran [1990],
Bertsekas, Castafion, Eckstein and Zenion [1995, this volume]). But for matching the issue
is still open. Partial answers have been obtained: Goldberg, Plotkin, and Vaidya [1993]
proved that bipartite matching can be solved in sub-linear time using a polynomial number
of processors (see also Vaidya [1990], Goldberg, Plotkin, Shmoys and Tardos [1992], and
Grover [1992]). NC-algorithms for matching problems for special classes of graphs have been
derived by Kozen, Vazirani and Vazirani [1985], Dahlhaus and Karpinski [1988], Grigoriev
and Karpinski [1987], and Miller and Naor [1989]. But, whether or not: Has G a perfect
matching? is in NC remains open.

On the other hand, if we allow algorithms to take some random steps, and also allow
some uncertainty in the output, we can say more: there exist randomized NC-algorithms for
matching. They rely on matrix methods (for a survey, see Galil [1986D)).

In Section 3 (cf. (16)) we already saw a relation between matchings in bipartite graphs
and matrices. Tutte [1947] extended this to non-bipartite graphs.

(95)  Let G = (V(G), E(G)) be an undirected graph, and let G = (V(G), A(G)) be a directed
graph obtained by orienting the edges in G. For each edge e in G we have a variable
z.. Then the Tutte matrix of G (with respect to G) is the V(G) x V(G) matriz G(z)
defined by:
Tuw i UWUE A(@)
é(x)uv = —Lyuy ‘I,f E—JE A(é)
0 i uvg E(G)

Note that the Tutte matrix essentially just depends on G: reversing the orientation of and
edge e in G just amounts to substituting —z. for z. in G(z).

(96) (Tutte [1947]) G has a perfect matching if and only if the determinant of G(z) is a
non-vanishing polynomial in the variables z. (e € E(G)).

To see this, let F C {0,1,2}F(®) denote the collection of perfect 2-matchings. Then det(G(z))
= Y rer o llecr(@ zf=. Moreover, it is not hard to show that ay = 0 if and only if the 2-
matching f contains an odd circuit. On the other hand, perfect 2-matchings without odd
circuits contain a perfect matching.

By itself (95) is not that useful for deciding whether or not G has a perfect matching.
Determinants can be calculated in polynomial time if the matrix contains specific numbers
as entries, but evaluating a determinant of a matrix with variable entries takes exponential
time (in fact the resulting polynomial may have an exponential number of terms). However,
by the following lemma, we can still use the Tutte matrix computationally.
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(Schwartz [1980]) Let p(z1,-..,%m) be a non-vanishing polynomial of degree d.

. are chosen independently and uniformly at random from {1,...,n} then the
wt p(&1, - .. ,Em) =0 s at most %.
e p(z1,...,Tm) as Ef;‘o Pa—e(T1,- .-, Tm-—1)zt,, where each py is a polynomial in

of degree at most k.

tion to the number of variables, the probability that py_q, (£2,-..,%m) = 0 is
=, On the other hand, if pg_q, (Z2,--,%m) # O then p(&1...,Zm-1,Tm) is a
\g polynomial in z,, of degree dp,, so has at most d,, roots. In other words, if
.y &m—1) # 0, the probability that p(Z1,...,%m) = 0 is at most QL_:_ Hence the
hat p(£1,...,Zm) = 0 is at most %’—'ﬁ+d—r’f=%. o

semma 27 to p(z) = det G(z), which has degree |V (G)| if it is non-vanishing, and
/7(G)|, we get a randomized polynomial time algorithm with the property that
erfect matching the algorithm discovers this with probability at least % (Lovész
though this randomized algorithm is slower that the fastest deterministic ones,
vantage that it can be parallelized. The reason is that calculating a determinant
iansky [1976]). So we have:

4sz [1979b], Csénski [1976]) There exists a randomized NC algorithm that gives
V(@) = |V(Q)|’ with probability at least % if the input graph G has a perfect
ing.

y running this algorithm several times, we can improve the probability of success
ve want.)

rerally, we have a randomized NC-algorithm for deciding whether v(G) > k (just
- 2k mutually non-adjacent nodes to G, each of them adjacent to all nodes of G
cide whether the new graph has a perfect matching). If we, combine this with
rch on k, we get NC-algorithm that gives a number £ < v(G), that is equal to
igh probability.

ndomized algorithms have one big disadvantage: they are ‘Monte Carlo’ type
If G has no perfect matching the Lovasz-Csanski algorithm does not discover
lgorithm presented for v(G) always gives an output £ < v(G), but never tells
v(@) (unless by change £ = 3|V(G)|). Karlov [1986] resolved this problem by
andomized NC-algorithm that determines a set B C V(G) such that with high
20(G \ B) — |B| = def(G) (cf. Theorem 10). Combining this with the previously
onte Carlo algorithm for v(G) we get a randomized NC-algorithm that provides
d a lower bound for v(G), which are equal with high probability.

: v(G) does not provide us with a maximum matching. Of course, we can delete
7 one from G, making G smaller and smaller, and keep track what happens with
m size of a matching. If we store the edges whose deletion decreased the maximum
tching of the current graph, we get a maximum matching of our original graph.
this with a randomized algorithm for the size of a maximum matching we get a
algorithm for actually finding a maximum matching. However, this algorithm is
ntial. Moreover, it is not obvious at all how to parallelize it, how to make sure that
, processors are searching for the same matching. (See Rabin and Vazirani [1989]
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juential randomized algorithm for finding a maximum matching.) The first
T-algorithm that finds a perfect matching with high probability if it exists is
‘pfal and Widgerson [1986]. It runs in O(log*(|V(G)|)) time. Below we sketch
NGC-algorithm due to Mulmuley, Vazirani, and Vazirani [1987] that runs in
) time.

rick of this algorithm, besides using the Tutte matrix, is that it first implicitly
cal perfect matching; which than is explicitly found. Let U (G) denote the set of
uch that the minimum perfect matching, denoted by M., is unique. Mulmuley,
Vazirani proved the following fact: (If e = uv € E(G), then 27’ := 2% and
the submatrix of G(z) obtained by removing the row indexed by u and the
1 by v.)

U(G), then

v(Muw) det G(2%) is an odd integer,
= M, <= 22we—w(M) det G (£¥) is an odd integer.

we have found a w € U(G), we can find a perfect matching by calculating the
1 (98) which can be done in parallel by Csénski’s NC-algorithm. The following
. randomized algorithm for selecting a weight function in U (G).

viulmuley, Vazirani, and Vazirani [1987]) Let S = {z1,... ,Tn} be a finite set
stion of subsets of S. Assume that wy,...,wn are chosen uniformly and in-
random from {1,...,2n}. Then the probability that there is a unique F' € F
F) is at least §.

-obability p that the minimum weight set is not unique is at most n times the
that there exists a minimum weight set in F containing x; and a minimum
T not containing z;. For each fixed wy,...,w, this probability is either 0 or
5 .at most 2ln Sop_<_np1§%. O

re exists a randomized NC-algorithm for finding a perfect matching and thus
- 2 maximum matching. It requires O(|E|log|V|) random bits. Chari, Rohatgi
| [1993] found a very nice generalization of Lemma 28 that enables the design

NC-algorithms that require only O(|V| log(i%)) random bits.

ization can help us where determinism does not (seem to) work. The same
up when considering another computational task related to matchings: Count
" perfect matchings in G. Over the years this problem has received a lot of
sading to many beautiful results. For many of these, and many references,
1 Plummer [1986] and Minc [1978]. As the topic lies beyond the scope of this
1l only mention a few results relevant from a computational point of view.

79] proved that counting the perfect matchings in a graph is as hard as solving
n NP, even for bipartite graphs (it is ‘4#tP- complete’). So, assuming P#NP,
- polynomial time algorithm for calculating the number ¢(G) of perfect match-
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1 [1963, 1967], however, derived a polynomial algorithm for counting perfect
. a planar graph. The main idea behind this algorithm is as follows (for de-
4sz and Plummer [1986]). If G is an orientation of G we denote by p(G) the
of the matrix obtained by substituting 1 for each variable z. of the Tutte ma-
; can be shown that p(G) < ¢(G)2. G is called a Pfaffian orientation of G if
)2. Kasteleyn proved that a planar graph has a Pfaffian orientation which can
polynomial time. So counting perfect matchings in planar graphs reduces to
determinant. Not all graphs have Pfaffian orientations. For instance, K33 does
s Little [1974] extended Kasteleyn’s result by proving that if a graph has no
»f K33 as a subgraph it has Pfaffian orientation. Vazirani [1989] showed that
fect matchings in these graphs is in fact in NC (by deriving an NC-algorithm
1e Pfaffian orientation for these graphs).

r deterministic algorithms. Based on an idea of Broder [1986], Jerrum and
9] derived a polynomial time algorithm to approximate ¢(G) with high proba-
% has minimum degree 5|V (G)|. Their algorithm gives a number ¥ such that
. e¢(G) with probability at least 1 — 6. The algorithm is polynomial in |V(G)],
The existence of such an algorithm for general graphs is still open. The main
lgorithm of Jerrum and Sinclair is as follows. Let for each k, ¢4(G) denote the
of size k. Jerrum and Sinclair approximate ¢(G) by approximating the ratios
ad multiplying them. So the problem reduces to approximating ri. We restrict
THv(G)| and approximate it by choosing uniformly and independently almost

rings (i.e. matchings of size at least |V(G)| — 1) at random and counting how
e are perfect and how many not. Clearly, in this way we can get a good estimate
{emains the question how to select an almost perfect matching at random. The
hat are exponentially many of them. This problem is overcome by defining a
: on the set of almost perfect matchings. The steps in this random walk are
3iven an almost perfect matching M, with probability % choose e = uv € F
id independently at random. If M is perfect and e € M, we move from M
If M is not perfect, e ¢ M and |M N §({u,v})| < 1, we move from M to
) U {e}. In all other cases we stay at M. Thus we get a Markov chain. It has
ationary distribution and each random walk in the Markov chain converges to
ry distribution. So if we start the Markov process with some arbitrary matching
-ever’, the matching will become ‘more and more random’. The point is that we
to walk forever. This Markov chain is ‘rapidly mixing’, meaning that the prob-
oution after a polynomial number of steps is very close to uniform (irrespective
; we start off with). As we only need to approximate r Lv(G))» it suffices to select
erfect matching ‘almost uniformly at random’. Explaining all the technicalities
would go to far here, but we can sketch the main ideas.
some definitions. Let G = (V, £) be the undirected graph with the almost perfect
G as its nodes and with M'M € € if M A M is a path with at most two edges.
XV he defined by Ayryr = —1if MM € &, Apppr = 0 if M'M ¢ &, and
;(M) if M € V. Then the transition matrix of the above defined Markov chain
gllf[A: the probability to move to M’ being in M is Pppps. Finally we define
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= ‘% for each M € V, and zM € {0,1}Y by =¥, = 1 if and only if M' = M.

metric doubly stochastic matrix with only positive eigenvalues. The largest
e is 1 and has multiplicity 1 (as G is connected). The corresponding eigen-
the uniform distribution on V and the stationary distribution of the Markov
rt our Markov chain with an almost perfect matching M then the probability
er k steps is P*xM which tends to ¢ if k goes to co. The rate of convergence

ad in the second largest eigenvalue Ay of P: PhgMY, . — L | < X\ for each
Wi 2

everything is just standard matrix theory.
| Jerrum [1989] derived the following bound on the second largest eigenvalue

- 39(9)*

= gy min { B s c v, 18] < § v},

nce of G. Jerrum and Sinclair [1989)], in turn, derived the following bound on
e,

> |V|~°.
this we get:
7(€) := 2|V|*%(log |V| + log 1), then ’('P’“mM)M: - ﬁlﬂ‘ < eﬁlj—[.

©)] = O([V[**(|V|log|V] + logl)) steps in the Markov chain results in a
>n of an almost perfect matching from a probability distribution which is close

he main ideas of Jerrum and Sinclair’s algorithm for counting perfect matchings
| minimum degree 3|V|. The relation between the rate of convergence of a
and its conductance extends, under mild conditions, to other Markov chains,
matchings in graphs. Over the last decennium rapidly mixing Markov chains
jore and more important in the design of randomized counting or optimization

-ations of Matchings

. we discuss applications of matchings to other combinatorial optimization
aarticular, we discuss the traveling salesman problem, shortest path problems,
ydity flow problem in planar graphs, and the max-cut problem in planar graphs.

aveling salesman problem

esman tour, or Hamiltonian circuit in a graph G = (V, E) is the edge set of a
ans all the nodes, i.e., a closed walk through G that visits every node exactly
distance function d € R®, the traveling salesman problem is to find a traveling
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ir F' of minimum length d(F). The problem has many applications in many
s: routing trucks for pick-up and delivery services, drilling holes in manufacturing
it boards, scheduling machines, etc.. The traveling salesman problem is NP-
, simply finding a traveling salesman tour is NP-hard (Karp [1972]). The problem
re-eminently as an example of a hard problem. For example, Lawler, Lenstra,
1 and Schmoys [1985] chose it as the guide in their tour through combinatorial
. Their volume provides a wide overview of research on this problem. For an
1at has emerged since then, see Jiinger, Reinelt and Rinaldi [1995, this volume].
ction we discuss a heuristic for the traveling salesman problem that uses match-
o discuss the relation between matching and polyhedral approaches to the trav-
an problem. We assume from now on that G = (V, E) is complete.

s’ heuristic

1 is NP-hard and therefore is unlikely to be solvable in polynomial time. It
then to take a heuristic approach, i.e., to find a hopefully good, but probably
solution quickly. The heuristic we present here is due to Christofides [1976] and
the case in which the distance function d is non-negative and satisfies the triangle
wo + dow > duy for each three nodes u, v, and w in G.

> a minimum length spanning tree of G and let T be the set of nodes v in G
) odd (so F is a T-join). Find a minimum weight perfect matching M in G|T
function d. Consider the union of F and M in the sense that if an edge occurs
it is to be taken twice as a pair of parallel edges. This union forms an Eulerian
n Eulerian walk in this graph visits each node of G at least once. The length
is d(F) + d(M). Since G is complete, we may transform the Eulerian walk into
alesman tour by taking short cuts and, by the triangle inequality, the length of
it most d(F) + d(M). '

ristic runs in polynomial time. There are many polynomial time algorithms
» minimum weight spanning tree, e.g., Boruvka's algorithm (Boruvka [1926]),
gorithm (Kruskal [1956]), or Jarnik’s algorithm (Jarnik [1930], better known by
»f its re-inventors Prim [1957] and Dijkstra [1959]). Kruskal's algorithm, for
1s in O(|E|log|V|) time. Edmonds’ matching algorithm, described in Section 6,
mum weight matching in polynomial time. Once the tree and the matching are
lulerian walk and a traveling salesman tour can be found in linear time. Gabow
[1991] showed that the heuristic can be implemented in O(|V|*3(log |V])19).
» minimum weight matching, their version finds a matching with weight at most
s the minimum weight.)

ywing theorem shows that the heuristic produces a tour that is at most 50% longer
rtest traveling salesman tour.

19 (Christofides [1976]) Let G = (V, E) be a complete graph and d € RE be a
ction satisfying the triangle inequality. Then A\* < -‘;3/\, where X is the length of
raveling salesman tour, and \* is the length of the tour found by Christofides’

C be a shortest traveling salesman tour, and let F' and M be the tree and
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matching found by the heuristic. Let T be the nodes ¢1,. .., , with odd degree in F', where
the numbering corresponds to the order in which C visits these nodes. Let C be the circuit
with edges t1tg, tats, . .., txt1. By the triangle inequality, ( C is shorter than C. Let M be the
shorter of the two perfect , matchings on T contained in C. Then M is a perfect matching of

G|T. So, A = d(C) > d(C) > 2d(M) > 2d(M). On the other hand, C contains a spanning
tree — just delete an edge — so A = d(C) > d(F). Combining these inequalities, we see that
< d(F)+d(M) < 8 , o

A polyhedral approach to the traveling salesman problem

Traveling salesman tours are connected 2-factors. So, the characteristic vectors of traveling
salesman tours satisfy the following system of inequalities (compare with (81) and (82)):

(103) Te > 0 (e € E)
T, < 1 (e € E)
z(6(v)) = 2 (vevV)
z(§(\F)—=z(F) > 1-|F| (UCV,FCéU)
z(6(U)) = 2 (UCVi;0#£U#YV).

In fact, every integral solution to (103) is the characteristic vector of a traveling salesman
tour. Thus, the cutting plane approach described in Section 8.3 for solving the matching
problem can be applied to the system (103) to solve the traveling salesman problem. In this
case, however, the polyhedron defined by (103) has fractional extreme points and so success
is not guaranteed. (Note that without the last set of inequalities, the system describes an
integral polyhedron, namely the convex hull of 2-factors. The last set of inequalities, called the
subtour elimination constraints, are necessary to ‘cut-off” each 2-factor that is not a traveling
salesman tour. However, adding these constraints introduces new, fractional, extreme points.)
One could try to overcome this by adding more constraints to the system (cf. Grétschel and
Padberg [1985] and Jiinger, Reinelt and Rinaldi [1995]), but no complete description of the
traveling salesman polytope is known. In fact, unless NP=co-NP, no ‘tractable’ system
describing the traveling salesman polytope exists (cf. Karp and Papadimitriou [1982]).

‘Partial’ descriptions like (103), however, can be useful for solving traveling salesman
problems. Minimum cost solutions to such systems provide lower bounds for the length of
a shortest traveling salesman tour. These lower bounds can be used, for instance, to speed
up branch-and-bound procedures. In fact, over the last decennium much progress has been
made in this direction (see Jiinger, Reinelt and Rinaldi [1995]).

The cutting plane approach requires a separation algorithm, or at least good separation
heuristics, for the partial descriptions. We have separation algorithms for (103). Determin-
ing whether a given solution z satisfies the non-negativity, capacity and degree constraints
is trivial. We can use a max-flow algorithm to determine whether z satisfies the subtour
elimination constraints. So, all that remains is to find a polynomial time algorithm for the
problem:

(104) Given z € RE(G), find a subset U C V(G) and an odd subset F' of 6(U) such that
z(6(U)\ F) — z(F) < 1 — |F| or decide that no such subsets exist.

These constraints are the ‘odd cut constraints’ for the 2-factor problem and, in view of
the reductions of general matching to perfect matching, it should not be surprising that we
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is problem in much the same way as we solved the separation problem for the
straints for perfect matching. Construct an auxiliary graph as follows. Replace
= uv in G with two edges in series: e; := uw and ez := wv. Define 77, = z. and
.. Let T be the set of nodes in the resulting graph G* meeting an odd number
es. Consider the problem:

d U C V(G*), such that [UNT| is odd end z(6(U)) < 1, or show that no such U

so hard to see that if U in (105) exists, then we may choose U so that for each
. at most one of e; and ez is contained in §(U). Hence, (104) is equivalent to
e separation problem (105) amounts to finding a minimum weight T-cut.

e considered the traveling salesman problem as a matching problem with side
namely of finding shortest connected 2-factors. Other papers on matchings with
ints are: Ball, Derigs, Hilbrand and Metz [1990], Cornuéjols and Pulleyblank
b, 1982, 1983], and Derigs and Metz [1992].

test path problems

t path problem is: Given two nodes s and ¢ in G, find an st-path of shortest
with respect to a length function d € RE. In general, this problem is NP-hard
s the traveling salesman problem; but it is polynomially solvable when no circuit
negative length d(C). When all edge lengths are non-negative, the problem
1 by the labeling methods of Bellman[1958] and Ford [1956], Dijkstra [1959], and
, 1962b] and Warshall [1962]. The algorithms also find shortest paths in directed
when negative length edges are allowed (though some adaptations are required)
o directed circuit has negative length. The presence of negative length edges
roblem in undirected graphs more complicated. Simple labeling techniques no
In fact, the problem becomes a matching, or more precisely, a T-join problem.
*:= {s,t}. Since no circuit has negative length, a shortest T-join is a shortest st~
ly joined by circuits of length 0). So we can find a shortest path in an undirected
egative length edges but no negative length circuits, by solving a T-join problem.
y we can model the shortest path problem as a generalized matching problem.
de v € V(G) \ {s,t}, add a loop £(v), then the shortest path problem is the
natching problem subject to the constraints:

< Te < 1 e€E(G)
< Lo(v) < 1uvwve V(G) \\ {S, t}
z(6(v)) + 2240y = 2 v€V(G)\{s t}
z(6(v)) = 1 ve{st}

»ns described in Section 7.1 reduce this problem to a perfect matching problem
ry graph.

1d and even paths

: odd path problem asks for a shortest path from s to ¢t with an odd number of
larly, the shortest even path problem asks for a shortest st-path with an even

67



zes. In general these problems are NP-hard. The special case in which no
rative length is, to my knowledge, still unsettled: the problems are not known
t neither do we know of any polynomial algorithm for them. If all edge lengths
ve, the problems are solvable in polynomial time: they are matching problems.
by a reduction due to Edmonds (cf. Grétschel and Pulleyblank [1981]). We
the case of odd paths. The shortest even path problem can be solved by an
| to the shortest odd path problem, or alternatively, by a similar reduction to
problem.
shortest odd path between s and ¢, construct an auxiliary graph H as follows.
spy @' of G with the nodes s and ¢ deleted (denote the copy in G’ of node u
copy of edge e by €'). For each u € V(G) \ {s,t} add an edge from u to its
The weight function w on H is defined by we := we := d. for each e € E(G)
) for each u € V(G)\ {s,t}. Let M be a perfect matching in H and define
E(G)le € MNE(G)ore € M N E(G)}. It is easy to see that Py is the
union of an odd st-path and a collection of circuits. If M has minimum length
o w, each of the circuits has length 0 and so minimum weight perfect matchings
nd to shortest odd st-paths in G.
Schrijver and Seymour [1992] characterized the odd st-path polyhedron, i.e., the
 the subsets of E(G) containing an odd st-path, thus proving a conjecture of
6. The inequalities describing the polyhedron are: 0 < z. < 1 for all e € E(G),

VI\ F)+z(6(W)) > 2 for each subgraph H = (W, F') of G such that both s and
W but no st-path in H 1is odd.

:ut and disjoint paths in planar graphs

this section with the application of T-joins and planar duality to the max-cut
a disjoint paths problem in planar graphs. A graph G is planar if it can be
the plane so that its edges do not cross. The planar dual G* of G with respect
ing is defined as follows. The graph G divides the plane into several connected
-orresponding to a node in V(G*). Each edge e in G separates at most two
plane in the sense that, if we removed e, these regions would combine into one.
. e € E(G) there is an edge e* in G* joining the nodes in G* corresponding to
parated by e. If e does not separate two regions, then it lies entirely in a single
is a loop at the corresponding node of V(G*). We identify each edge e in G
;sponding edge e* in G*.
. G* is planar and its definition suggests a natural embedding. If G is connected
yedded in the natural way, then (G*)* is again G. The most prominent property
lity is that C C E(G) (= E(G*)) is a cycle in G if and only if it is a cut in G*
cycle is a graph in which the degree of each node is even). The same relation
a cuts in G and cycles in G*.

problem is: Given a weight function w € RE(G) | find a cut §(U) in G with

imum. The problem is NP-hard in general (Karp [1972]), but polynomially
1 G is planar. To see this, consider a planar graph G and a planar dual G*.
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{v € V(G*)| degg+(v) is odd}. Clearly, F € E(G*) is a T-join if and only if
s a cycle in E(G*). So, T-joins in G* correspond to complements of cuts in G.
ax-cut problem in G is a T-join problem in G* (Hadlock [1975]).

slanar duality with Seymour’s theorem (89) for T-joins and T-cuts in bipartite
stain the following:

0 (Seymour [1981]) Let G be a graph and let H be a collection pairs {s1,t1}, .- -,
odes. If the graph G + H, obtained from G by adding as extra edges the pairs in
~and Eulerian, then the following are equivalent:

exist edge-disjoint paths Py, ..., P, in G such that each P; goes from s; to t;;
ch U C V(G),l6c(U)] 2 61 (U)-

rly, (ii) is necessary for (i), we show that it is also sufficient. Assume that (ii)
; (G + H)* be the planar dual with respect to some embedding of G + H. Since
lerian, E(G + H) is a cycle in G + H. In other words, E((G + H)*) is a cut in
d so (G + H)* is bipartite.

the set of nodes in V((G + H)*) that meet an odd number of edges in H. Then
nin (G + H)*. In fact, H is a minimum cardinality T-join in (G + H)*. To
erve that for any other T-join F the symmetric difference FAH is a cycle in
d so a cut in G. By (ii), FAH contains at least as many edges from F' as from
{|F| and H is a minimum cardinality T-join in (G + H)*.

slying (89) to (G + H)* and T, we see that there must be |H| =: k disjoint odd
‘U1),...,Ck = 6(Ug) in (G + H)*. Clearly, each of these cuts has at least one
mon with H and so each edge in H must be in exactly one of them. Assume

for i = 1,...,k. Without loss of generality, we may assume that the cuts are
;e minimal and so circuits in G + H. Then, P, := Cy \ s1t1,..., Py := Ci \ sitk
ed paths. O

sto, Nishizeki, and Saito [1986] showed that the paths can be found in O(|V(G )|5
ime. When G + H is not Eulerian the problem becomes NP-hard (Mittendorf
[1990]). For a general overview of the theory of disjoint paths, see Frank [1990].

nputer Implementations and Heuristics

aputer implementations

urs several computer implementations for solving matching problems have been
. Pulleyblank [1973], Cunningham and Marsh [1978], Burkhard and Derigs [1980],
, 1986a, 1986b, 1988b], Derigs and Metz [1986, 1991], Lessard, Rousseau and
9] and Applegate and Cook [1993]. Grétschel and Holland [1985] used a cutting
ach and Crocker [1993] and Mattingly and Ritchey [1993] implemented Micali
’s O(+/]V]|E]) algorithm for finding a maximum cardinality matching.

s efficient matching codes, especially those intended for solving large problems,
1y issues. Strategic decisions must be made, e.g.,, what algorithm and data
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1se. Moreover, tactical decisions must be made, e.g., how to select the next
ternating forest and when to shrink blossoms. Finally, of course, numerous
jetails affect the efficiency of the code. We restrict our attention to a few key
large problems two paradigms appear to be important. The first of these is
starting solution quickly (the ‘jump-start’)’ and the second is ‘Avoid dense
iscuss the second paradigm first.
e of Grétschel and Holland’s code [1985] (see Section 8.3) that competed sur-
with the existing combinatorial codes (based on Edmonds algorithm for in-
hat it first solved a matching problem in a sparse subgraph and then tuned
» find a matching in the original graph. Incorporating this approach sped up
natorial codes significantly (Derigs and Metz [1991]). The idea is to solve a
tht perfect matching problem on a (dense) graph G by first selecting a sparse
arse of G. A matching code, e.g., Edmonds’ algorithm, can find a minimum
matching M and an optimal (structured) solution 7 in G sparse quickly. The
not be of minimum weight and the dual solution may not be feasible in G.
:ase of the procedure corrects this. A primal algorithm, e.g., Cunningham and
thm described in Section8.1, is ideal for this phase. Weber [1981], Ball and
and Applegate and Cook [1993] have developed alternative methods for this.
1 choice of Gsparse is the k-nearest neighbor graph of G, which is constructed
sach node u the k shortest edges incident to u. Typical choices for k run from
ive an impression of how few edges Gsparse can have: Applegate and Cook
eir code to solve an Euclidean problem on 101230 nodes (i.e., the nodes lie
an plane and the weight of an edge is given by the Lo, distance between its
), G is complete and has 0.5 - 10%0 edges. When k is 10, G sparse has 10% edges
05% of the all the edges in G. In fact, Applegate and Cook solved this 101230
— a world record. For more moderately sized problems (upto twenty thousand
>de seems dramatically faster than previously existing matching codes.
ching codes incorporate a jump-start to find a good matching and a good
quickly before executing the full matching algorithm. Originally these initial
. typically produced in a greedy manner. Derigs and Metz [1986] suggested a
m the fractional matching problem (or equivalently the 2-matching problem).
e 2-matching problem: max{w'z|z > 0; z(6(v)) =2 (v € V)}. Let z* and 7*
dual optimal solutions to this linear programming problem (which can, in fact,
bipartite matching problem or a network flow problem). The set {e € E|z; > 0}
joint union of a matching M’ := {e € E|z} = 2} and a collection of odd circuits.
ith the matching M obtained from M’ and a maximum matching in each of
its and the dual solution 7* (setting the dual variables corresponding to the
il to zero). Since z* and 7* are primal and dual optimal solutions to the 2-
slem, they satisfy the complementary slackness conditions. If G is dense, the
.oblem is first solved on a sparse subgraph. In fact, Applegate and Cook use
se graphs for finding the jump-start and for solving the actual problem (the
-nearest neighbor graph using the reduced costs with respect to the jump-start
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10.2 Heuristics

When solving large matching problems, searching for a good jump-start, or applying match-
ings in a heuristic for some other problem (e.g., Christofides’ heuristic for the traveling
salesman problem described in Section 9.1) it is often useful to use a heuristic to find a
good matching quickly. A straightforward approach, called the greedy heuristic, attempts
to construct a minimum weight perfect matching by starting with the empty matching and
iteratively adding a minimum weight edge between two exposed nodes. The greedy heuris-
tic runs in O(]V|2log|V|) time and finds a solution with weight at most 2 ]V|l°g 2 times the
minimum weight of a perfect matching (Reingold and Tarjan [1981]). The version of the
greedy heuristic designed to find a maximum weight matching, finds a solution with at least
half the weight of a maximum weight matching. Results on greedy heuristics appear in Avis
[1978, 1981], Avis, Davis and Steele [1988], Reingold and Tarjan [1981], Frieze, McDiarmid
and Reed [1990] and Grigoriadis, Kalantari and Lai [1988].

Several heuristics have been developed for Euclidean matching problems where the set
of points which have to be matched lie in the unit square. Many of these heuristics find
the heuristic matching by dividing the unit square into subregions, finding a matching in
each subregion and combining these matchings to a perfect matching between all the points.
Other heuristics match the points in the order in which they lie on a space-filling curve. For
detailed description and the analysis of such heuristics see: Bartholdi and Platzman [1983],
Imai [1986], Imai, Sanae, and Iri [1984]. Iri, Murota, and Matsui [1981, 1982], Papadimitriou
[1977], Reingold and Supowit [1983], Steele [1981], Supowit and Plaisted and Reingold [1980],
Supowit and Reingold [1983], Supowit and Reingold and Plaisted [1983].

For a good overview on matching heuristics, see the survey of Avis [1983]. Here we
mention some recent heuristics in more detail.

When the weight function w satisfies the triangle inequality, each minimum weight V-join
is a perfect matching (or, when some edges have weight 0, can be transformed easily into a
perfect matching with the same weight). So, when w satisfies the triangle inequality, we can
use T-join heuristics as matching heuristics. Plaisted [1984] developed a T-join heuristic that
runs in O(|V|?log|V|) time and produces a T-join with weight at most 2logs(1.5|V]) times
the weight of an optimal solution.

Plaisted’s T-join heuristic: Given a graph G = (V,E) an even subset T of V and w € RZ,
construct a T-join J as follows. (Note that w need not satisfy the triangle inequality — it
would not survive the recursion anyway.)

AUXILIARY GRAPH: If T = {), then set J := 0. Otherwise, construct the weighted complete
graph H on the node set T. The weight w!, of each edge uv in H is the length of a
shortest uv-path P, in G (with respect to w).

SHRINK: For each u € T, define n, := min{w,,|v € T}. Construct a forest F' in H as
follows. Scan each node in order of increasing n,. If the node u is not yet covered by
F, add to F an edge uv with w!, = n,. Let F1,..., Fy denote the trees of F' and let
G := HxV(F))x...xV(Fg). (If parallel edges occur select one of minimum weight to
be in @’.) The pseudo-node corresponding to V(F;) is in 7" if and only if |V (F;)] is odd.

71




s procedure recursively to G', w’ and T" (starting with AUXILIARY GRAPH) and
the resulting 7"- join.

* denote the set of edges in H corresponding to the edges of J "in G. Choose
t J* is a T*-join. Then T} := (T AT*) NV (F;) is even for each i=1, ..., k.
the unique T3;*-join in each tree F;. Then Jg :=J'UJ1U...UJ is a T-join

se the symmetric difference of the shortest paths {Puy : uv € Jr}-

ach tree F; contains at least 2 nodes. So, if |V(F})| is odd it is at least three.
th of the recursion is bounded by logs |T|.

ad Williamson [1992] proposed a heuristic that not only yields a T-join F but
solution 7 of

nize Y5en TS
0 Yseas(s)e ™S S We (e€ E)
s > 0 (S € Q),

C V||SNT| odd}. (108) is the dual linear programming problem of the T-join
1)). The weight of the heuristic 7-join will be at most (2— ‘—727') Y 5€0:6(5)3e TS
]—12—,—{ times the minimum weight of a T-join.

procedure we will keep a forest F (initially V (F' "} := V(G) and E(F") :=0).
7(G), F! denotes the component of F’ containing v. We also keep a feasible
108) (initially, = = 0).

ttep of the heuristic is as follows: among all edges e = uv in G with F) # F)
lect one, e* say, that minimizes the quantity:

p(E?) (’U)m, - 2369;5(5)31“; WS);

1if S € 2 and p(S) := 0if S & Q. Let € be the value of (109) when uv = e*.
r each component S of F' which is in Q and replace F' by F' Ue*. This basic
d until no component of F’ is in Q. Then F' contains a unique 7T-join, which
f the heuristic.

sic can be implemented O(|V|? log|V|) time. Note that when |T| = 2, so when
slem is a shortest path problem, the heuristic 7-join is in fact a shortest path.
Iso applies to other minimum weight forest problems with side constraints (cf.
Williamson [1992]).

;and Kalantari [1988] developed an O(|V|?) heuristic which constructs a match-
t at most 2(|V|1°8s %) times the optimum weight. Given a matching M, let G
earest neighbor graph of G|(ezp(M)). Begin with the empty matching M. In
1t G; of G choose a tour visiting each edge twice. Shortcut the tour to obtain
esman tour T; of G;. Greedily select a matching M; of small weight from T;
|T;|) and add it to M. Repeat the procedure until M is perfect.

natching heuristic we describe is due to Jiinger and Pulleyblank [1991]. It
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"llog |V|) on Euclidean problems. Given a set of points in the plane, construct
raph G with a node for each point and let the length of each edge be the Eu-
nce between the corresponding points. So each node u has two coordinates u;
:ach edge uv has weight (or length) wy, = /(u1 — v1)? + (u2 — v2)?. Construct
n G as follows:

'on using spanning tree’ heuristic: Let F' be a minimum weight spanning tree in
<imum degree of a node in T is five (cf. Jlinger and Pulleyblank [1991]).)

. If |V| < 6, find a minimum weight matching in G. Otherwise, T has a non-
it edge (i.e., an edge not incident to a node of degree 1). Let uv be a maximum
non-pendant edge in T, then T'\ {uv} consists of two trees: T, containing v and
taining v. We consider two cases:

', and T, contain an even number of nodes: Apply DECOMPOSE, recursively, to
|V (Ty) and Ty, and to G|V (T,) and T,. Note that T, is 2 minimum spanning tree
'G|V(T,) and Ty, is a minimum spanning tree in G|V (T,). Return M, UM, where
[, is the matching constructed in G|V(T,) and M, is the matching constructed
GV (Ty).

', and T, contain an odd number of nodes: Apply DECOMPOSE to G|(V(T,)u{v})
d Ty, U {uv} (which is again a minimum spanning tree) to construct a match-
g M,. Let z be the node matched to u in M, and choose y € V(T;) with
zy minimum. Then T, U {zy} is a minimum spanning tree in G|(V(Ty) U {z}).
pplying DECOMPOSE again yields a matching M, in G|(V(T,) U {z}). Return
W\ {uz}) U M,.

> heuristic computes only one minimum spanning tree and the minimum spanning
decomposed problems are easily obtained from it. Jiinger and Pulleyblank [1991]
euristic for finding a dual feasible solution, again based on minimum spanning
ions.

lude with a result of Grigoriadis and Kalantari [1986]: The running time of a
the Euclidean matching problem that finds a matching of weight at most f(|V])
inimum weight, can be bounded from below by a constant times |V|log|V]. If
. yields a matching of weight at most f(|V]) times the minimum weight for all
sblems, its running time is at least a constant times |V|2.
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