e e

@
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A bottum-up semantics for constructive negation

A. Bossi, M. Fabris, M.C. Meo

“omputer Science/Department of Software Technology

Report CS-R9439 July 1994

CWI is the National Research Institute for Mc
the Stichting Mathematisch Centrum (SMC]), t#
and computer science and their applications.

SMC is sponsored by the Netherlands Organ
member of ERCIM, the European Research Co

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 S} Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

nce. CWI is part of
tion of mathematics

(NWO). CWl is a
\athematics.

A Bottom-up Semantics for Constructive
Negation

Annalisa Bossi
Dipartimento di Matematica Pura ed Applicata
Université di Padova, Via Belzoni 7, 35131 Padova, Italy
isa@zenone.unipd.it

Massimo Fabris
Dipartimento di Matematica Pura ed Applicata
Université. di Padova, Via Belzoni 7, 35131 Padova, Italy
massimo@hilbert.math.unipd.it

Maria Chiara Meo
Dipartimento di Informatica
Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy.
meo@di.unipi.it

Abstract

The constructive negation rule has been introduced by Chan [5, 6] to overcome the main draw-
backs of the negation-as-failure rule: the unsoundness of floundering programs and, conse-
quently, the inability of providing answers for non-ground negative queries. In this paper we
define a bottom-up semantics for constructive negation which we prove sound and complete
with respect to the three-valued completion of the program. The semantics describes answers
as well as undefined computations for both positive and negative queries. Its construction
closely follows the basic idea of constructive negation whereby answers to a negative query are
obtained by negating a frontier of the computation tree for the corresponding positive query.
Therefore, the proposed semantics can be considered as a natural base for reasoning on the
operational semantics for constructive negation defined in the literature. Moreover, we show
how the semantics can be effectively used to perform a bottom-up computation of the answers

of a normal query.

AMS Subject Classification (1991): 68N17, 68Q55.

CR Subject Classification (1991): D.1.6, D.3.1, F.3.2,F.4.1, 1.2.3.

Keywords and Phrases: logic programming, semantics.

Note: A preliminary short version of this paper appeared in [2]. Part of this work has been
carried out while the third author was visiting CWI, Amsterdam.

Report CSR9439

ISSN 0169-118X

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

1 Introduction

The standard rule for dealing with negation in logic programming is the “negation as failure”
rule. Its main drawback is that computing by negation as failure, actually means testing by
negation as failure, that is no answers are produced except for the yes/no ones.

To overcome this limitation Chan [5, 6] introduced the constructive negation rule which
subsumes negation as failure and extends it by allowing non-ground negative subgoals to bind
variables in the same way as positive ones. The basic idea which is formalized by SLD-CNF
resolution is that, to handle a negative subgoal, one first considers its positive version and then
negates all its answers. Answers to negative goals are described by first-order formulas which
are interpreted in CET, the equality theory defined by Clark.

Stuckey [25] pointed out how constraint logic programming provides a much more natural
setting for describing constructive negation and described a setting for constructive negation
for constraint logic programming over arbitrary structures. He gave a new operational schema
and proved its soundness and completeness with respect to the three-valued completion of the
program.

Recently, Drabent {11, 10] proposed a method for deriving (constrained) answers for (con-
strained) normal queries in normal programs called SLDFA-resolution, an extension of SLDNF-
resolution. The basic notions of SLDFA-resolution are SLDFA-refutation and finitely failed
SLDFA-tree; they are mutually defined as the corresponding notions of SLDNF-resolution.
Comparisons between Drabent’s method and those defined by Chan and Stuckey suggest that
the first may have practical advantages over the other two.

In this paper we follow a semantical approach to constructive negation. We develop a
semantics in the style of [13]: we construct a denotation which directly characterizes the pro-
gram behavior on all most general atomic queries (positive or negative) and contains enough
information to represent the program behavior on all queries.

We consider CLP normal programs as defined by [16]. Our denotations (uncertain interpre-
tations) extend both those defined in [8, 9, 1] for the semantics of definite programs, and those
in [14] for modeling answer constraints in CLP normal programs. They contain four kinds of
objects which represent the four different computational aspects of a program we are interested
in. Three of them have a logical reading in the three-valued completion of the program. They
are: positive constrained atoms, which represent success answers for positive general queries;
negative constrained atoms, which represent success answers for negative general queries or,
symmetrically, finite failures of positive general queries; uncertain negative atoms, which rep-
resent undefined answers on both negative and positive queries, they entail undefined values in
three-valued logic. Besides a fourth kind of object (uncertain positive atom) is used to represent
divergent computations of positive queries. Since a positive query may have both successful
and divergent computations, uncertain positive atoms do not necessary entail undefined values.

To illustrate this point consider the definite program {p(a)., p(X) « p(X).}. The success
constraint for the query p(X) is X =a, but its negation, (X #a), is not a success for the query
-p(X). Note that the three valued model is {p(a)}. Our semantic denotation will contain: the
positive constrained atom X =a0p(X), the uncertain negative atom X #a0 ?7p(X) and the
uncertain positive atom true dp(X). The last one models the divergent computation for the
query p(X).

Actually, the positive components in an uncertain interpretation are sufficient to determine
the negative ones. For instance, observe that the absence of success answers for negative general
queries in the above program can be derived by the fact that there is no way of negating both

t in the positive constrained atom (X =a) and that in the uncertain positive atom
1e other hand, the uncertain negative atom can be obtained by negating the success
¢ the divergence.
untics is obtained by iterating an operator ¥p which maps uncertain interpreta-
srtain interpretations. Our construction agrees with Fitting’s ®p operator [12] in
4 at each iteration step there is a one-to-one correspondence between the solutions
5y the uncertain interpretation and the three-valued interpretation constructed by
srator. There are obvious analogies between ¥p and @ﬁ, the non-ground (con-
:sion of ®p defined by Stuckey in [25]. The main difference is that instead of
yrmation on success and failure we derive information on success and divergent
s. Note that our information is richer than the former. In fact, by negating both
d failures we obtain only a subset of divergent computations, while by negating
es and divergent computations all failures can be obtained. Moreover the second
conforms much better with the basic idea of constructive negation whereby an
negative query is obtained by negating a frontier of the computation tree for the
|g positive query.
ot is organized as follows. In Section 2 we give the basic notations on CLP normal
n Section 3 we introduce our semantic domain and the notions of uncertain base
in interpretations. The bottom-up semantics is defined in Section 4. In Section
and compare some other approaches to constructive negation. We dedicate spe-
n to Drabent’s work and those properties of SLDFA-resolution captured by our
lome proofs are deferred to the appendix.

liminaries

the reader is familiar with the basic concept of logic programming. We recall
LP concepts as defined in [16] and [20]. A first order language is defined on a
abols set denoted by ¥, a predicate symbols set denoted by II and a collection of
noted by V. The predicate symbols are partitioned into two sets: Iz which are
predicates and IIp which are the predicates to be defined by the program. We
IIc contains the predicate symbol =. 7(X U V) and 7(X) denote the set of terms
terms (i.e. terms without variables) built on ¥ and V. An atom is of the form
where p is an n-ary symbol in IIg and t; € H(ZUV), 1 € [1,n]. A literal is either
the negation of an atom. A constraint is a well formed formula over the alphabets
In the following, ¢, X will denote tuple of terms and distinct variables, while L
»ossibly empty) conjunction of literals. If o is a syntactic object, F'V (o) is the set
which are not explicitly quantified in o. Given a formula f, 3f and Vf denote
al and universal closure respectively. 3_xf denotes the existential closure of the
xcept for the variables X, which remain unquantified. Let F be a set of formulas,
notations \/ F and A\ F as shorthands for the formulas (V;cp f) and (Asep f)
, where, (\/ ;g f) = false and (A ;g f)=true.
nal powers f1% of 2 monotonic function f on a complete lattice are defined as usual,
(z) = =, f1*t1(2z) = f(f1*(=)) for any ordinal o and f17(z) = Ua<ry f1e(z) for v
1. We also use the standard notation f1® = f1*(L), where L is the bottom element
e.

2.1 (CLP normal programs) [16] A normal program is a finite set of clauses of

the form H «— cO L. where c is a constraint, H (the head) is an atom and L (the body) is a
(possibly empty) conjunction of literals. A normal goal is a program clause with no head and
with a non-empty body.

In the following we will consider clause heads of the form p(f(), where X is a sequence of
distinct variables and we will denote by P* the completed definitions of the predicates in a
normal program P.

Moreover we will often use normal queries instead of normal goals, where given a normal
goal « ¢ L the corresponding (normal) query is ¢O L.

Definition 2.2 A constrained atom is of the form ch(X), where c is a constraint, F'V(c) C
{X} and p(X) is an atom.

A structure D over the alphabets Iz and E, consists of a non empty set (D) and any interpreta-
tion of each function and predicate symbol according to its arity. The structures considered in
CLP are the “solution compact” ones as defined in [16, 15]. A domain theory T corresponding
to the structure D is a first-order consistent theory containing only predicate symbols from
I, such that for any constraint ¢ with FV(c) =0, D |= ¢ iff 7 |= c. Moreover we require
that for every constraint ¢ either 7 |= 3c or 7 = ~3c (namely, T is satisfaction complete [20]).
A domain theory axiomatizes the particular domain D on which we wish to compute. We do
not make any assumption on ¥. Rather we require that the domain theory 7 contains the
standard theory CET, given in [7] to axiomatize unification. Moreover if the set of function
symbols ¥ is finite we assume the (weak) domain closure axiom (DCA) be added to CET,
thus achieving the completeness of the theory CET in the case of a language with finite set of
function symbols. Informally the axiom DCA [19] ensures that in the interpretation domain
of any model of the theory, every object is a value of a non-variable term. A wvaluation is a
mapping from the variables to D. The notion of valuation is extended in the obvious way to
terms and constraints. A negation of an equation s = t (a disequation or inequality) will be
written as s # t. If £ = (t1,...,t,) and § = (51,...,5,) are two sequences of terms, £ = § will
denote the set of equations {t; = s1,...,tn = sn}.

A constraint ¢ is satisfiable in the theory 7 iff there exists a valuation @ such that 7 |= cf. 6
is called a solution of c. If C = \;c; ¢: is a possibly infinite conjunction of constraints, TECo
iff for any i € I, T |= c;f. Analogously, if C = V,;¢; is a possibly infinite disjunction of
constraints, 7 = C8 iff there exists ¢ € I, such that 7 |= ¢;6.

We also introduce the following [| operator on constrained atoms, which returns the set of

“domain instances”.

Definition 2.3 [16] The set of “domain instances” [cO p(X)] of a constrained atom ¢Op(X)
is defined as [cOp(X)] = {p(X)8 | 8 is a solution of c}.
Let S be a set of constrained atoms. Then [S] = |J 4[4l

Next we define a preorder < on constraints, a preorder T on sets of constraints and the
induced equivalence relations.

Definition 2.4 Let ¢; and cg be constraints and let C; and Cy be sets of constraints. Then

e c; %c iff T EV(cy — c2). We denote by = the equivalence relation induced by <.

o Ci T Cy iff for any c; € Cy such that ¢y # false there exists ca € Cy such that c; < ca.
We denote by = the equivalence relation induced by C.

Finally, if ~ is an equivalence relation defined on a set & and § € S, we denote by 5. the
equivalence class in S/~ which contains S.

:ertain interpretations

‘he notion of 7-interpretation as introduced in [14] in order to provide three-valued
he completion of a CLP normal program. First of all, a partial interpretation,
n [17], is any total function F' from the set of all ground atoms into {t,f,u},
u} are interpreted as true, false and undefined. According to our notation, we
nt such a function F' as a set of ground literals F* U F~, where F* = {p(f) |

und atom and F(p(f)) = t} and F~ = {-p(%) | p(t) is a ground atom and F(p(t)) =
ension of a partial interpretation to ground constraints and to ground formulas is

25], by the following rules.
be a ground constraint. c is true in F iff 7 |= c and c is false in F iff T E —e.

sume the usual strong three-valued interpretation of the symbols A, V, =, v, 3, —,
sllowing Kunen, we use Lukasiewicz’s truth table for the connective <. Moreover

mbols ‘01’ and °,” will be interpreted as A.

wing definitions are related to a given D (and therefore to a given (e, X)).

siving the definition of uncertain base we extend the preorder on constraints to
atoms. It represents the notion of “being more constrained”. The equivalence
such a preorder is used in the semantic domain in order to abstract from syntactical

among constrained atoms.

3.1 Let ¢, Op(X) and co Op(X) be constrained atoms. Then

p(X) j C2 DP(X) iﬁcl j Ca.

ence induced by < on the set of atoms is still denoted by =. The quotient set of all
‘ned atoms w.r-t. the equivalence relation = will be denoted by A.

sy to see that the above equivalence = on constrained atoms corresponds to set

domain instances.

2 Let c; Op(X) and c Op(X) be constrained atoms. Then
p(X) = ¢ Op(X) iff [Op(X)] = [e2 Tp(X)]-

sake of simplicity, we let the constrained atom c O p(X') denote the equivalence class
in A and, conversely, any B € A will be considered also as a constrained atom

r selecting any (arbitrary) representative element in B. It is easy to verify that all

ons are independent from the choice of such an element. The ordering induced by

1 still be denoted by <.

introduce the uncertain base.

. 3.3 (uncertain base) Let P be a normal program. The uncertain base of interpre-
s the union of the following sets.
A positive component
{cO-p(X)|cOp(X) € A} negative component
{cOp(X)|cO p(X) € A} uncertain positive component
{cO?(X)|cOp(X) € A} uncertain negative component.

wing, given J C B and o € {+, —,F,7} we shall use the notations J° for J N B°
{c| cOA € J}. Intuitively any subset I of B conveys both certain and uncertain

The certain information is contained in I * and I~ while the uncertain one is
the two other components I1 and I°.
iterested in particular subsets of B, called consistent. They have the property that
nts ~ and ? are completely determined by the two others: ~ is the complement of
ile ? is the difference between T and *. The following definition formalizes these

3.4 (consistent set) Let I C B. We say that I is consistent if

I~ = neg(I) and I' = unc(I),

= {/\{'“C'CEIMX)UI'@}D“‘P(X) |p€lp}

= {M-clc€lz)} AdO?(X) |pelly and dOp(X) € I}

y R the set of consistent subsets of B.

B The set I={(X=a)0p(X), (X=b)0p(X), (X #a)A(X#b)D-p(X), (X=

is consistent.

t, for any consistent set I, [[*] U [I7] is a standard three-valued interpretation.
g lemma shows that [I’] are exactly the undefined elements in [ITTJU [I7].

. Let I be a consistent set. Then,

V owizy = = Vipz) Y L opx))

immediate by definition of neg(I) and unc(I). |

\gate and extend the information contained in a consistent set I through the normal
iy means of an unfolding operation. The result of such an unfold is a consistent set

3.7 (I-unfolding) Let P be a normal program and I € R a consistent set. More-
p(X) —coOaqi(t1), .. qnltn), 7 71(81),- - -, 7"m(3m). be a clause in P and
{ 3_gcOA]| for anyi € [1,n] and for any j € [1,m], there ezist

OQ; eIty I$, such that either Q; = qi(X;) or Q; = q,-(’)?,-) and

d; OR; € I" UI", such that either R; = —r;(Y;) or R; =r;(Y;),

renamed apart,

o= (co ANy (6 A K = B) AN, (05 AT = 57),]

A =p£)£) if fori € [1,n], j € [1,m], Qi = ¢i(X:) and R; = —r;(Y;)

A = p(X) otherwise }
ling of P is the cqzzsistent set p(I) whose positive components are

¥ = Ugepve (D).

:hat the previous unfolding operation returns certain information if the only infor-
ss is certain, otherwise it returns uncertain information.

1.8 Let P be the following normal program:

£,Y) « X =f(V)Oq(V). Cs: (X))« X =>500r(X).
(,Y) « Y = g(W)O-r(W). Cs: 7(X) «— X =cOr(X).
()e— X =a. Ce: (X))~ X=c

e consistent set Iy whose positive components are

It =0 and Ioi = {true Dp()/(,\Y), true 0l r(’)?), trueD q()?)}

ently,

Iy = {falseO-p(X,Y), falseD -7(X), false O-q(X)} and

II = {true0?p(X,Y),true0?r(X),true 0 7q(X)}
&) = @VX=1)0pEY)) vE (o) = {(X=p)0r(0)}
St (Io) = {3W.Y =g(W) Op(X,Y)} P& (Io) = {(X=c) Or(X)}
vt (Io) = {(X =a) Dg(X)} ¥ (o) = {(X =) Or(X)}

lo-unfolding of P is composed by:

oyt = {3V.X = (V) Op(X,Y), WY =g(W)Op(X,Y), _
(X =a)Og(X), (X=¢)Or(X), (X=)Tr(X), (X=b)Br(X) }

)~ = {(YWW. X£F(V) AY £g(W) O-p(X,Y),
(X #a)O—g(X), (X#£cAX#b)0-r(X) }

LY — ={3V.X=f(V)0?p(X,Y), IWY =g(W)DO7p(X,Y),

falseO?r(X), (X=0b)0(X) }
e introduce a preorder < on R. It is intended to represents the increasing of the
information relative to the two components *+ (which contains certain information)
ich contains uncertain information). The certain information should not decrease

ncertain should not increase. Our third requirement in the definition of < expresses
+ that the increase of certain information should result from the relaxation of previous

nformation.

13.9 LetI,J € R be two consistent sets. I < J iff for any predicate symbol p € Ilp,
ng conditions hold

) E Jim)-

—~ X\ —.
'(X)—V [p(X)

(%) 3 Vpz) Y Il@)-
dence relation induced by < will be denoted by ~.

llowing lemma shows how the preorder < is reflected to I~ and I®. This supports
uction which derives negative and uncertain information from positive and divergent

10 LetI,J € R. If I < J then for any predicate symbol p € Ilp,
) E ety

&) 3 V)

(%) 3 VUjpzy ULpeiy)-

3.11 Consider the consistent sets Iy and ¥p(ly) of Ezample 3.8. We have that
)

t proposition shows that the unfold operation ¥ p is monotonic wrt <.

m 3.12 (monotony of yp) Let I,J be consistent sets such that I < J. Then
(J).

> consistent sets I and J such that I ~ J. Then, from I < Jand J < I we derive that
Us, Ipex) Jipiy Ty ® Jimpity VI =V I 2550 Vi) = Vit
lent consistent sets conveys the same information (modulo ~). We identify them by

valence classes of consistent sets as elements of our semantic domain.

3.13 (uncertain interpretation) The set of uncertain interpretation is the quo-
R wrt the equivalence =.

I =R/~={I.|I€eR}
vg induced by < on T will still be denoted by <.

subsequent definitions, lemmas and propositions will be given by selecting any rep-

element in equivalence class I.

rtain interpretation I is just a denotation which conveys both certain and uncertain
present in every representative I. Definition 3.9 and Lemma 3.10 show how the

r < defined on 7 captures the increasing of the amount of information contained in

n interpretation.

consistent set, whose positive components are

IH% = {falseOp(X) | p € g} U {trueDp(X) | p € 5},

»see that T, = (I)~ is the the least uncertain interpretation wrt <.

tom-up semantics

1-up semantics of a normal program is the the set containing all the uncertain
ons obtained by finite iterations of an immediate consequence operator ¥p. Such
'is the natural extension to equivalence classes of the unfolding operator ¥p.

4.1 (immediate consequence operator) Let P be a normal program and I be
n interpretation. Then

p(lx) = (¥p(D))

1t, by Proposition 3.12, ¥p is well defined and monotonic wrt <.

Definition 4.2 (semantics) Let P be a normal program. The semantics [P]%V is defined as
[PI?V = {Tpt* | k> 0}.

Observe that, as in ([1]), this semantics is the fixpoint of the monotonic and continuous
operator CN : P(Z) + P(Z) on the complete lattice of sets of uncertain interpretations P(D),
defined as follows: CN(S) = {¥p(I~) | In € S}U{Z.}.

Example 4.3 Let P be the normal program of Example 3.8 and Iy the consistent set there
defined. Observe that T, = (lo)~. Therefore ¥p(ly) is a representative of ¥ pTt. Let us
calculate Upt2. For the sake of simplicity, we consider each predicate separately and let a set
of constraints C denote the equivalence class Cx. Observe that Wp1? projected on p(X,Y)

can be calculated using (¥p1')jqx) and (‘I’pTl)‘qT\X) on the first clause, (¥p1")|-r(x) and

(\I!pTl)l-_;,(x) on the second:

(@p1)pxyy = {X=F(a), IW.Y=g(W)AW#bAW #c},
(Tr1”) 3 {Y=g(b)}

Hence
e) ny) = IXAF@) AT =g(c) VYW, Y #g(W))},
(Tp1®)ppxy) = {X#f(a) NY =g(b)}.

It is easy to see that the projections on g and r are the same in Upt! and Up12. At the third
level of iteration also the projections on p of ¥ P13 and ¥p1? are equal.

The next proposition shows soundness and completeness of the Fitting’s operator. Let (I~)
be the partial interpretation associated to I, namely (I) = [I*]U[I7], and ®p be the operator
defined by Fitting [12]. ®p is a monotonic operator on the set of partial interpretation, ordered
by set inclusion. We prove that, for any finite k, there is a one-to-one correspondence between

(Tp1*) and ®pT*.

Proposition 4.4 Let P be a normal program and ®p be Fitting’s operator [12]. Then
(Op1F) = dp1k, for any finite k.

Using our terminology, Theorem 6 of [24] (which is a generalization of Theorem 6.3 in [17] for
languages other than those with infinitely many function symbols of all arities) can be stated
for CLP as follows. The notation 7 A P* =3 S shows that the sentence S is a three-valued
logical consequence of the theory T A P*. In the following, given the structure D, we denote
by 7 the theory corresponding to D.

Theorem 4.5 (correctness and completeness of ®p) [24] Let P be a normal program over
the structure D and let S be a sentence. Then the following are equivalent: 1) TAP* =3 S; 2) S
has truth value true in ®p1*¥, for o finite k.

Corollary 4.6 (correctness and completeness of Up) Let P be a normal program over
the structure D and let S be a sentence. T A P* =3 S iff S has truth value true in (Up1k) for
a finite k.

4.1 Computing success and failure answers

The aim of this section is to show that our semantics can also be used to perform an effective
bottom-up computation of the answers of a normal query. Given a normal query, we can derive
both a success set and a failure set of constraints from every element of the chain ¥p1*.

First, we define the success set of a query G wrt a representative I of an uncertain inter-
pretation [~.

Definition 4.7 (success set) Let I € R be a representative of an uncertain interpretation,
and G be a query. Moreover, let ans be a new predicate symbol, ans ¢ g, and {X} = FV(G).
Then the success set of G wrt I, Sg(I), is defined as

Sa() = {c] cOans(X) €9}, o (D)

The next lemma shows that we may extend Definition 4.7 to interpretations.

Lemma 4.8 Let I and J be representatives of uncertain interpretations such that I < J and
let G be a query. Then, Sg(I) € Sg(J).

Proof.
Straightforward by Proposition 3.12. |

Then, by using the equivalence = on sets of constraints introduced in Section 2, we define:
Se(l~) = Sg(I)x, and, with the convention that a set of constraints C denotes the equivalence
class Cr,, we just write Sg(I).

Example 4.9 Consider the program of Ezample 3.8. The constraintVV. X # f(V)AY =c is
in the success set of the query true0-p(X,Y),r(Y) wrt the interpretation Up1l.

The failure set of a query G wrt a representative of an uncertain interpretation I~ contains
the conjunction of the constraint of the query with the constraints in the success set of the
negation of one of the literals in G. (Note that we simplify double negations).

Definition 4.10 Let I be a representative of an uncertain interpretation and G : c¢ O Ly,...,L,
be a query. The failure set of G wrt I, Fa(I) is defined as
Fe(I)={c|c=coAc; wherei € [1,n], and ¢; € S_1,(I)}

The next lemma shows that we may extend Definition 4.10 to interpretations.

Lemma 4.11 Let I and J be representatives of uncertain interpretations such that I < J and
let G be o query. Then, Fg(I) T Fa(J).

Proof.
Straightforward by Lemma 4.8.]

Then, we define, Fo(I~) = Fo(I)/~-

Example 4.12 Consider the program of Ezample 3.8. The constraint Y £c AY #b is in the
failure set of the query trueO-p(X,Y),r(Y) wrt the interpretation ¥pll.

The following proposition proves soundness and completeness of the previous definitions of
success and failure sets wrt the Fitting’s operator.

10

Proposition 4.13 Let P be a normal program, ®p be Fitting’s operator and G : cp O L bea
query. Then
o ifc € Sg(UpT*) (resp. c € Fa(¥pt*)) then for aﬁy G' € [cOL], ®pT*(G') = true (resp.
Dp1*(G') = false),
o if G' € [coO L] and ®p1*(G') = true (resp. ®p1*(G') = false) then there ezists ¢ €
Sa(¥p1*) (resp. ¢ € Fa(¥pl*)) such that G' € [cO L],

where [cO L] denotes the set of formulas {L¥ | 9 is a solution of c}.

The following theorems show the correctness and the completeness of ¥ p with respect to
the 3-valued logical consequences of 7 A P*. Similar theorems were proved for comstructive
negation in [25].

Theorem 4.14 (correctness) Let P be a normal program over the structure D and G :
coOLy,...,Lm be a query. If there exists a finite k such that c € Sg(¥pTk) then T A P* =3
Y(c— Ly A...ALp).

Theorem 4.15 (completeness) Let P be a normal program over the structure D, and G :
coOL1,...,Lm be a query. If T AP* =3 V(co — LiA...ALpy) then there exists a finite k such
that T = Y(co < V Se(¥p1F)).

After proving that our semantics captures all the correct success and failure constraints, we
show how this bottom-up computation can be made effective. The idea is that every element
of the chain conveys correct information that is refined by the next element of the chain. This
is proved by the next corollary of Lemmas 4.8 and 4.11:

Corollary 4.16 Let P be a normal program and G be a query. Then for any k > n,
Se(¥pt™) C Sg(¥p1*) and Fo(¥pt™) C Fo(¥pl*)

The last point is to show how we can recognize that we have reached full information and
hence stop. Let G be a query and let C be the clause ans(X) « G, where X are all the free
variables occurring in G and ans is a new predicate symbol. Then, for any uncertain interpre-
tation I, ¥1c}(In)ane() =8g(I~) and ¥ icy(In)|mans(%) =V Fe(l~). Therefore, by Lemma
3.6, the bottom-up computation stops as soon as: o} (1) 7ans(%) ={false}.

Let us apply the previous ideas to a couple of examples.

Example 4.17 Consider the program of Example 3.8 and the query
G: _'p(g(Z)’ f(Z))7 q(Z)

Then Sg(¥pT) = {Z=a}, F(¥p1') = {Z#a} and (‘I’{ans(z),_c}(‘I’pTI))”an,(Z) = {false}.
Hence the first step is completely informative and then Z=a is the only answer to the query G
while Z #a is the only answer to the query -G.

Example 4.18 Consider again the program of Example 3.8 and the query
G': p(S, g(T)), o(T).

The first steps gives Sgr(¥ptl) = {false} and (¥ians(s, T)«—G'}(‘I’PTI))]?ans(s, ry={IV.s§=
f(VYAT =a; T=a}. Then we exploit also the second step that gives us Se(Tp1?) = {S=
fla) AT =a; T=a} and (¥ ans(s, T)é—-G’}(\I'PTz))Wans(S, 1y = {false}. This terminates the
computation.

11

5 Comparison with other approaches

We comment the information present in our semantics by relating it to some other approaches
to constructive negation. We shall give the intuition that][P]]‘W captures and models com-
putational features (like termination properties or answer substitutions as in [8, 1]) of some
operational semantics for constructive negation recently proposed.

First we consider the operational semantics defined in [5, 22]. These semantics exploit a
generalization to normal programs of the following idea: in a definite program, if the atomic
query A has a finite set of answers 61,...,6, then A & 6 V...V 6, is a consequence of
Clark’s completion. Thus also —A « =6; A...A =8, is a consequence of Clark’s completion,
and if we “normalize” —8; A...A -6, into an equivalent disjunction o1 V...V 0oy, then each
o; is an answer for the query —A. This method is correct with respect to the completion of
the program, it is a natural generalization of negation as failure and its implementation is very
simple: every time a negated atom -4 is found, the complete tree for A is built and the answers
are negated. Unfortunately it is incomplete: if the tree is infinite then the program enters an
infinite loop and correct solutions are missed. To see that, consider the query truel -r(X)
in the program of Example 3.8. The SLD-tree of the query trueOr(X) is infinite with an
infinite set of answers X =¢. The answer X #b A X #c (which is captured by (¥ PT1)|_|.,.(x))
is a consequence of the program completion but is missed by the previous method. Notice
that ¥ pT3‘ = {X =c, X = b} captures the divergent computations of the predicate r:
a query oO7(Y) has an infinite derivation in every SLD-tree if and only if the constraint
o A(X=cVX=b) is satisfiable 2.

A second group of methods has been proposed to deal also with infinite trees and it can
be understood as using the completion of a program instead of the program itself. The basic
concept of [26, 18, 6, 25, 23, 21, 3, 4] is, roughly speaking, that in a derivation step for —p(t)
the completed definition of the predicate p is used: -p(t) can be replaced by the negated right
hand side of the completed definition of the predicate itself (with an appropriate mgu applied).
Another extension of [6, 25] is that not only literals can be selected but also some negated
formula. Both previous rules are defined in details and in fact Chan has already implemented
its rule in the Sepia Prolog compiler. Stuckey proves the completeness of his rule (in the more
general framework of constraint logic programming) wrt the three-valued consequences of the
completion of the program.

We sketch Stuckey’s method, so to explain it and to introduce some motivations to Drabent’s
subsequent work. Stuckey’s rule states that if a negative query —G is selected, then the
subsidiary tree for G is exploited till a fixed depth (depth 1 if the rule is the Depth Front
one). If FF = {01 Dél,...,anDBn} is the frontier of this tree then P* A7 |3 G «
3_g(or AB) V...V 3 _z(on A B,) , where X = FV(G) and hence P*AT =3 -G <
~3_% (61 AB1) A...A =3_g (0a A Bp). In order to simplify the right hand side of the pre-
vious formula into a normal disjunctive form while retaining completeness, Stuckey propose to
separate the constraints in the following way:

—3_z (oA B) & -3_zoV -3_z(oA B)
If we consider the formula obtained so far

G & (~d_zor V=3_z(oy /\Bl)) AL A (ﬂa_,-(anv—a_;{(an/\én))

2This property follows by the fact that if we deal with definite programs, the ¥ functional is equivalent to
the one proposed by Delzanno and Martelli in [8].

12

that computing the disjunctive form of the right hand side and adding every disjunct
f the query —G in its derivation tree is correct and complete. The problem pomted
wbent is that doing so we add (in general) 2" sons. Even worse, each =3_x (0i A B;)
m=1 of them, producing in general repeated computations. Moreover, subqueries can
ally very complex, and the method seem to produce a lot of redundant solutions. The
Chan shares the same problems.
jon to these drawbacks might be found in the approach recently proposed by Drabent
r arbitrary normal programs. It is based on the construction of failed trees. If
led trees are concerned then it is sound and complete wrt Clark completion in 3-
ic. His idea is a generalization of Chan’s first method: since correct answers for
are constraints o such that o OG has a finitely failed tree, Drabent proposes to
ch trees. Every time the selected literal is negative, ~A, a constraint is searched
~+OA has a (subsidiary) failed SLDFA-tree. Hence 7 is an answer for the query
. The (subsidiary) failed SLDFA-tree for yO A is a finitely failed tree built in this
s selected literal is positive, then the usual step of SLD-derivation is applied. If the
teral in the node §0-B,D is the negative literal =B, then this node has children
3 0m ab provided that there exist 6;,...,6n SLDFA-computed-answers for the
B,and CET =0 —&V...V, Va1 V...V 0n . The justification of this step is
ng; since our aim is to falmfy ¢0-B,D, then each §; is rejected because it implies
hence it already 1mp11es falsity of 6048, D . If we build a failed subtree for each
len each o; implies —D which implies falsity of 60-B, D . Drabent does not
fy how to find the constraint v, but he informally describes a method based on the
on of a pre-failed tree for A: a tree built using the two derivation steps of a failed
ee, but not necessarily failed or fully expanded. Thus vy is the constraint that cuts
ful and unexpanded branches at a finite depth. Let us give the intuition of his idea
SLDFA-resolution to the query true 0-p(X,Y). We start the subsidiary pre-failed
1e query true 0p(X,Y). After expanding every branch of one level, we obtain the
"depth one:

true Ap(X,Y)

— T

X = f(V)0g(V) Y = g(W)0Q-r(W)

negation of the disjunction of the constrains of the frontier is the satisfiable constraint
£ f(V)AY #£g(W)}, we can already build a failed SLDFA-tree and add a successful
eO0-p(X,Y):

true 0-p(X,Y)

1

YVW. X # fIVIAY # g(W)
1t the first frontier of the tree for the query true O p(X,Y) corresponds to (¥ PTl)lp X¥)
first answer to true J-p(X,Y) is in (¥pT!)|-p(x,v). Notice also that according to

wtics X # f(a) A (Y =g(c) VVW.Y # g(W)) is an answer for the query truel] -p(X,Y).

13

To find it, we must expand the subsidiary pre-failed tree to another level. The first branch finds
the success constraint X = f(a). In the second branch the negative atom —r(W) is selected and
hence we begin the tree for r(W) which is exploited till the first frontier:

true Or(W).
W=c W = cOr(W). W =b0r(W).

Since W =c is an answer to the query true Or(W) and CET | true - W =cV W #c then
the following is a pre-failed tree for the query true Op(X,Y):

true Op(X,Y)

X = f(V)Og(V) Y =g(W)O-r(W)

X = f(a) Y=gW)AW #£¢

The negation of the disjunction of the constrains of the frontier of this pre-failed tree is the
satisfiable constraint X # f(a)AVW.(Y # g(W)VW =c). Since it produces a failed SFDFA-tree,
it is added to the tree true O-p(X,Y) as a new successful son:

true 0-p(X,Y)

/\

YVW. X # f(V)AY # g(W) X # f(a) AYW.(Y # g(W) VW =c)

Now we continue to expand the tree true Jr(W) so to find new (pre-)failed tree for true Op(X,Y)

and hence new answers to the query true 0—p(X,Y), and we enter an infinite loop. Note that
this loop is captured by (¥p1?)jrpx,v) = {X # f(a) AY =g(b)}. In fact, ¥p1? is the least
fixpoint of ¥ p, hence all elements in [X # f(a) AY =g(b) Op(X, Y')] are undefined in the com-
pletion of the program. Then any sound computation rule should produce an infinite derivation
on all queries o —p(X,Y) such that ¢ A X # f(a) AY =g(b) is satisfiable.

We end up this section with a conjecture that is also our future work. This conjecture ex-
presses our belief about the existence of a strong relationship between this bottom-up semantics
and the SLDFA-derivation.

Conjecture 5.1 Let P be a normal program, G the query ¢y oL, and ch(X) an atomic
query. For any representative ¥pT™ of ¥p1", n 2 0,

1. {c| there ezists an SLDFA-refutation for P U {G}, with answer c}
& Upso Sc(¥p1™).

2. {c| ¢ X ¢ and there exists a finitely failed SLDFA-tree for P U {cDI:} }
& Upso Fa(¥pT™).

14

SRR

3. ch(X') has an infinite SLDFA-derivation under any computation rule iff for everyn > 0

there ezists ¢’ € ('t/)_pT")I/(-X\) such that c A ' is satisfiable.
P :

4. cO —-p(X') has an infinite SLDFA-derivation under any computation rule iff for everyn >0

there exists c' € (pr")l?p(%) such that c A ¢ is satisfiable.

References

(1]

2]

3]

(5]

(6}

[
(8]
9]

[14]

A. Bossi, M. Bugliesi, and M. Fabris. A New Fixpoint Semantics for Prolog. In D. Warren, editor,
Proceeding of the Tenth Int. Conf. on Logic Programming, ICLP’93, pages 374-389. The MIT
Press, 1993.

A. Bossi, M. Fabris, and M. C. Meo. A Bottom-up Semantics for Constructive Negation. In P. Van
Hentenryck, editor, Proceeding of the Eleventh Int. Conf. on Logic Programming, ICLP’94, pages
520-534. The MIT Press, 1994.

A. Bottoni, G. Levi. Computing in the Completion. In D. Saccs, editor, Proceeding of the Eight
Italian Conf. on Logic Programming, pages 375-389. Mediterranean Press, 1993.

A. Bottoni, G. Levi. The Inverse of Fitting’s Functional. In G. Gottlob, A. Leitsch and D. Mundici,
editors, Proceeding Third Kurt Gédel Colloguium, Computational and Proof Theory, KGC’93,
pages 132-143. Springer-Verlag, 1993.

D. Chan. Constructive Negation Based on the Completed Database. In R. A. Kowalski and K. A.
Bowen, editors, Proc. Fifth Int’l Conf. on Logic Programming, pages 111-125. The MIT Press,
Cambridge, Mass., 1988.

D. Chan. An Extension of Constructive Negation and its Application in Coroutining. In E. Lusk
and R. Overbeek, editors, Proc. North American Conf. on Logic Programming’89, pages 477-493.
The MIT Press, Cambridge, Mass., 1989.

K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases,
pages 293-322. Plenum Press, New York, 1978.

Q. Delzanno and M. Martelli. A bottom-up characterization of finite success. Technical Report,
Universitd di Genova, DISI, 1992.

G. Delzanno and M. Martelli. S-semantica per modellare insiemi di soluzioni. In S. Costantini,
editor, Proc. Seventh Italian Conference on Logic Programming, pages 191-205, 1992.

W. Drabent. SLS-resolution without floundering. In L. M. Pereira and A. Nerode, editors, Proc.
of the Workshop on Logic Programming and Non-monotonic reasoning, pages 82-98, 1993.

W. Drabent. What is Failure? An Approach to Constructive Negation. Acta Informatica, 1993.
To appear.

M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming, 2:295—
312, 1985.

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A new Declarative Semantics for Logic Lan-
guages. In R. A. Kowalski and K. A. Bowen, editors, Proc. Fifth Int’l Conf. on Logic Programming,
pages 993-1005. The MIT Press, Cambridge, Mass., 1988.

M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint Logic Programs. In
K. Furukawa, editor, Proc. Eighth Int’l Conf. on Logic Programming, pages 238— 252. The MIT
Press, Cambridge, Mass., 1991.

J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual ACM
Symp. on Principles of Programming Languages, pages 111-119. ACM, 1987.

J. Jaffar and J.-L. Lassez. Constraint Logic Programming. Technical Report, Department of
Computer Science, Monash University, June 1936.

15

. Negation in logic programming. Journal of Logic Programming, 4:289-308, 1987.

. A Deduction Procedure for First Order Programs. In Proc. of Sizth International Conf.
Programming, Lisbon, pages 585-599, MIT Press, 1989.

rella, S. Martini, and D. Pedreschi. Complete Logic Programs with Domain Closure
ournal of Logic Programming, 5(3):263-276, 1988.

er. Logic Semantics for a Class of Committed-Choice Programs. In Proc. of Fourth
mal Conf. on Logic Programming, pages 858-876, MIT Press, 1987.

sa. Pully Declarative Logic Programming. In Programming Language Implementation
Programming, Proceedings 1992, pages 415-427, Springer-Verlag, 1992, LNCS 631.

usinsky. On Constructive Negation in Logic Programming. In Proc. North American
e on Logic Programming, Addendum. MIT Press, 1989.

nd F. Motoyoshi. A Complete Top-down Interpreter for First Order Logic Programs. In
gramming, Proc. of the 1991 International Symposium, pages 35-53, MIT Press, 1991.

>herdson. Language and equality theory in logic programming. Technical Report PM-
100l of Mathematics, University of Bristol, 1991.

’key. Constructive Negation for Constraint Logic Programming. In Proc. Sizth IEEE
Logic In Computer Science, pages 328-339. IEEE Computer Society Press, 1991.

ce. Negation by Constraints: a Sound and Efficient Implementation of Negation in
. Databases. In Proc. 1987 Symposium on Logic Programming, San Francisco, pages
August 1987.

16

endix
Let I,J € R. If I < J then for any predicate symbol p € lip,
= Ji-p(X)
) 3V p)-
) 2 VUp(iy Y a)
id 3. of Definition 3.9 we obtain V/(J),z)UJ, —) =X V(I!p(;{) U IIR)?))’ hence by

[p(X)
n of consistent set and by negating the constraints we derive the thesis.

all, observe that given K € R, by Definition 3.4 and by standard first order logic

.es we have that

\/K|?p()_()5/\{_'CICEK‘p()'{)} /\VKI@. ()
ar, by reversing 1. of Definition 3.9,
2. of Definition 3.9

J— VI —.
VI9am 2V iE : (i)
re)
x) = (by (i)
Xy
inition 3.4, VJ_,x) = MN-elc€ JpxV lem}. Moreover, by reversing

efinition 3.9, A{-c | ¢ € Jx)} =2 A{-c | ¢ € I,(x)} and hence we obtain

v Definition 3.4, we have that A{-c|c€ I|p()?)} = V{|pxy Y Ij,(%)) and hence
ve the thesis. |

lowing, given a valuation ¥ and a set of variables W we denote by ¥ the restric-
-he variables in W, i.e. 9w is the mapping, whose domain is the set of variables
: 9w (X) = 9(X) for any X € W. Moreover we simplify the double negation.

\ 3.12 Let I and J be uncertain interpretations such that I < J. Then ¥p(I) <

yrove that for any predicate symbol p € IIp the following conditions hold

o(%) & TP(Dppx)-
atement follows by definition of ¥p, by 1. of Definition 3.9 and by 1. of Lemma

17

. V‘I’P(J)Ip/(;() = V‘I’P(I)hj(\-)-
We have to prove that for any valuation ¥, if ¢ is a solution of \/ ¥ p(J)I/(})’ then 9
P

is a solution of \/ ¥p(I) — . Let ¥ be a solution of \/ ¥p(J) —~ . Then there exists
Ip(X) I2(X)

cld p&) € Up(J), such that ¥ is a solution of c. By definition of ¥p, there exists a
clause, C : p(X) « coDqi(t1), ..., qn{tn), ~71(51),..., m(5m) € P, such that

for any 7 € [1,n], there exists ¢;0Q; € J* U Jq:,

for any j € [1, m], there exists d;0R; € J~ U J?,
renamed apart, as specified in Definition 4.1, such that

c=3_g(co A Niza(ei A X = &) A /\T:l(dj A 17] = §;)).
Since ¥ is a solution of ¢, there exists a valuation o, such that 0% = 191 %, 0 is a solution
of cg, for any i € {1,n], j € [1,m], ¢ is a solution of ¢; A X; = #; and of d; A 173 = §j.
By 2. and 3. of Definition 3.9, for any 7 € [1,n], thgsexist c0Ql eIt UI¥ such that o is
a solution of ¢} and either Q} = ¢;(X;) or Q} = ¢:(X;). Moreover by 2. and 3. of Lemma
3.10, for any j € [1,m], there exist d;OR; e I"UTI ?. such that o is a solution of d; and
either B} = r;(Y;) or R} =7r;(Yj).
Note that if there exists i € [1,n], such that ¢;O0Q; € J¢, then, by Definition 3.9, we can
choose ¢/0Q); € T *+, Analogously if there exists j € [1,m], such that d;0R; € J*. Then
o is a solution of d where d is equal to

A_gleo AN (G A K =) AN (d5 AY; = 55))
and, by previous observation, d € ¥p(I)| J}) . Since gz = 7.9; % Wwe have that ¥ is a

solution of d and this completes the proof.

oV 'I'P(J)Ip()?) = V(‘I’P(I)IP(X) v lI’P(I)llm)'

Analogous to the previous one.]

The Propositions A.1, A.2 and A.3 are all immediate consequence of the definition of uncer-
tain interpretation. Note that, given an uncertain interpretation I, the notation (I.) denotes
the partial interpretation associated to I, namely (I.) = [[+*]U[I~].

Proposition A.1 Let I.. be an uncertain interpretation.
p(D) € (I} implies ~p(f) ¢ (I} and ~p(E) € (L) implies p(F) & ().

Proposition A.2 Let I. be an uncertain interpretation. If p(t) ¢ (1) and —p(t) € (I.), then

i) there exists ch()?) € I and there ezists a solution 9 of ¢ such that p(X)d = p(f).
ii) there ezists d01?p(X) € I and there exists a solution o of d such that p(X)o = p(f).
Proposition A.3 Let I be an uncertain interpretation. Then

i) If there exists ch(}?() € I then for any solution 9 of ¢, ~p(X)d ¢ (I.).

ii) If there ezists dO7p(X) € I then for any solution ¥ of c, p(X)9 ¢ (I.).

Lemma A.4 Let P be a normal program and let I be an uncertain interpretation. (¥p(I)) =
®p((1))-

18

. that p(E) € (@p(D)) if p(h) € Bp((D)).
ve the following equivalences
(Tp(I))

iff (by definition of { }))
xists cOp(X) € p(I) and there exists a solution ¢ of ¢ such that p(X)9 = p(t)

iff (by definition of ¥p)
sxists a clause p(X) « coOqi(t1),.. rn(tn), 7 71(81),-- -, Tm(8m) € P and for
z [1,n], j € [1,m], there exists c; Og;(X;) € I and there exists d; O-r; (Y;) el

ed apart, such that ¢ = 3_g(co A Alm (e A X;=t)A /\J {di A Y; = §;)) and
wxists a solution 9 of ¢ such that p(X)¥ = p(f). Now note that

exists a solution ¥ of ¢

ince for any i € [1,n], j € [1,m], X; and Y; are all new distinct variables)

exists a valuation o such that o3 = 19‘ %, 0 is a solution of cy and for any ¢ €

Ln], 7 €1,m], o is a solution of ¢; A X; =; and of d; A Y; = §;

wy definition of ())

exists a valuation o such that o\ = 19‘ %, 0 is a solution of cg and for any ¢ €

L,n], § € [1,m], g;(&:)o € (I) and —r;(3;)0 € (I).

» previous observations and by definition of ®p, we have that p(t) € (¥p(I)) iff
= p(X)¥ = p(t) € 2p((I))-

(@ p(D)) iff -p(t) € 2p((I))-

p() € (¥ p(1) implies ~p(F) € Bp((D)).

\ssume that -1p(t) ¢ ®p({I)). Then by definition of ®p, there exists a clause
(X) « coOBi,...,Bn € P and there exists a valuation a such that p(X)a = p(t),
¢ is a solution of ¢g and for any i € [1,m], ~Bsa & (I).

Ve have the following possibilities

)forany i €1, m), Bia € (I).

n this case p(X)a € @p({I)). Then, by previous a), p(X)a € (Up(I)) and, by
>roposition A.1, this contradicts the hypothesis.

) there exists i € [1,m], such that Bia ¢ (I) and -B;a ¢ (I).

Nithout loss of generality we can suppose that i = 1, By = q:(f1) (or By = ﬁql(fl))
ind for any j € [2,m], Bja € (I). By Proposition A.2 there exists c; Dql(Xl) e (I)
or ¢; O07%q(X1) € (I)), where X, are new distinct variables, and there exists ¥
olution of ¢;, such that q;(X;)91 = = 1 (,)a. Now analogously to the previous a),
ve can prove that there exists cOp(X) € ¥p(I) such that « is a solution of c and
X)a = p(f). Therefore, by i) of Proposition A.3, (%) & (¥ p(I)).

-p(t) € ®p((I)) implies ~p(%) € (¥p(I))-
Assume that —p(t) € (¥p(I)). Then for any dO -p(X) € ©p(I) and for any valua-
ion 9 such that p(X)d® = p(f), we have that 9 is not a solution of d. By Definition

34, d = A\{-c|cOp(X) € Tp(D} AN{~| ¢ ap(X) € Tp(D}.

19

Therefore for any valuation ¥ such that p(X)d = p(f) there exists a constraint
c€¥p(I)x)Y \IIP(I)lT;), such that ¥ is a solution of ¢.
p

By definition of ¥ p, there exists a clause

p(X) —coOqi(E1),- .-, qnltn), = r1(51), .-, --1:,\,,(.?,,,) in P and

for any i € [1,n], there exists ¢; 0Q; € IT U T,

for any j € [1,m], there exists d; OR; € " UI’,
renamed apart, as specified in Definition 4.1, such that

c=3_z(co A /\?:1(01' AX; =) A /\;‘Z_-l(dj NYj = §j)).
Then there exists a valuation o such that 19l X=0%0 is a solution of ¢p and for
any i € [1,n), j € [1,m], o is a solution of ¢; A X; = ; and of d; A Y; = ;.
Then we have the following possibilities
1) For any ¢ € {1,n], j € [I,m], ¢;OQ; € IT and d;0R; € I~. Then, by the
previous a), p(f) € ®p((I}) and this contradicts the hypothesis.
2) There exists ¢ € [1,n] such that ¢; 0Q; € I+
Without loss of generality, we can assume that ¢ = 1 and for any k € [2,n], j € [1,m],
c,0Qp € I and d;OR; € I™. Then by definition of (), for any h € [2,n], j €
[1,m], gn(ir)o € (I) and —r;(3;)o € (I). Moreover, since c; 0Q; € I andoisa
solution of ¢, by i) of Proposition A.3, we have that —q; (f1)o & (I).
Therefore there exists a clause

p(X) —Co D‘h(ﬁ), oo ,qn(fn)s ! (53)3 sen ,ﬂ'fm(gm) in P
and there exists a valuation o such that p(X)o = p(t) and

(CO 0 q1(£1)) ce. ,Qn(in)’ _171(51)7 ERE) —ITm(ng)U
is not false in (I). Thus, by definition of ®p, —p(t) & ®p({I}) and this contradicts
the hypothesis.
3) There exists j € [1,m] such that ¢; 0Q; € I". ,
The proof is analogous to the previous one, by using i) of Proposition A.3. |

Proposition 4.4 Let P be a normal program. (¥p1*) = ®pt*, for any finite k

The proof is by induction on k.
Clearly for the base case, k =0, (¥p1%) = &p10 = 0.
Inductive case: assume that the thesis holds for k and consider k& + 1.

(U p1h+1) = by definition of T¥+!
(Tp(¥p1*)) = by Lemma A.4
®p({¥p1*)) = by inductive hypothesis
®p(®p1*) = by definition of TF+!
P PTk+1
and this completes the proof. E

Proposition 4.13 Let P be a normal program, ®p be Fitting’s operator and G : ¢oOL be a
query. Then
o ifc € Sg(¥pt*) (resp. c € Fo(¥pl*)) then for any G’ € [cO L], 8p1*(G') = true (resp.
®p1*(G") = false)

20

o if G € [coOL] and ®p1*(G') = true (resp. @p1*(G') = false) then there ezists ¢ €
Sc(¥pT*) (resp. c € Fa(¥p1*)) such that G' € [cOL]

where [cO L] denotes the set of formulas {L? | 9 is o solution of c}.
Proof.
In the following we assume that X=FV(G)and L =ILy,...,Ln.

e a) Let c € Sg(¥pT*) and let G' € e L.

By definition of Sg and of [], we have that cOans(X) € ‘I’ans(j)ha(‘I’PTk) and
there exists a solution 9 of ¢ such that G' = LY. Since 9 is a solution of ¢ and by
definition of (), we have that ans(X)d € (‘I'ana()?)«—G(QPTk))- Therefore, by Lemma
A.4 and Proposition 4.4, ans(X)9 € ‘Pam(}?).—c(’I’PTk)- Then, by definition of &p,
®p1H(G') = true.

b) Let c € Fa(¥TpT*).
By definition of Fg, there exists ¢ € [1,n] and there exists ¢; € S- L; (¥ p1¥), such
that ¢ = co A ¢;. Then, by a), for any solution ¥ of ¢ we have that =L;J is true in
& p1*. Therefore G' = L¥ is false in ®p1* and this completes the proof.

e In the following we assume that 9 is a solution of co and G' = L9.

c) Let @pT%(G") = true.
By definition of @, ans(X)9 € Qana()?)e—G(QPTk)' Then, by Lemma A.4 and Propo-
sition 4.4, ans(X)9 € (‘Ilam(k)‘_g(‘Ilka)). Therefore, by definition of (), there
exists cOans(X) € ¥ s)“().—G(‘I’ p1F) such that ¥ is a solution of c¢. By definition

of Sg and by previous observation we have that ¢ € Sc(¥p1*). Moreover, since ¥
is a solution of ¢ and by definition of [], G' = L9 € [cO L}.

d) Let ®pT*(G") = false.
By definition of ® and since ¥ is a solution of ¢g, there exists i € [1,n] such that
L;9 is false in ®pT* and therefore ~L;J is true in ®pt*. Then, by c), there exists
¢; € S-1,(¥p1F) such that ¢ is a solution of ¢;. By definition of F¢ and by definition
of [], we have that cp Ac; € Fe(Tptk)and G’ € [cp Ac oij. n

Theorem 4.14 Let P be a normal program over the structure D and G : cgOLy,..., Ly, bea
query. If there exists a finite k such that c € Sc(UptF) then TAP* =3 ¥(e— LiA... A L..).
Proof.
Assume that there exists a finite k such that ¢ € Sg(¥ p1¥). By Proposition 4.13, for any
solution ¥ of ¢, ®pT*((L1 A ... A Ly)¥) = true. Moreover, by Theorem 4.5, if there exists a
finite k such that ®p1*((L1 A...A Ly)9) = true then TAP* |3 (Li A ... A L,,)?. Therefore,
for any solution ¥ of ¢, TAP* |=3 (L1 A ... A L,,)0 and then TAP* =3 V(e — L1 A... ALp).
|

Theorem 4.15 Let P be a normal program over the structure D and G : ceOLx,. . ., L, bea
query. If T A P* |=3 ¥(co — Li A ... A L) then there exists a finite k such that T = Y(co «
V Sa(Zp1*)).

21

T A P* *=3 V(Cg — L1 A ... A Lp). Then, b
that @p1*(¥(cop — L1 A ... A Ly,)) is true. The
.. A Lp)¥) = true. By Proposition 4.13, for ax
’), such that ¥ is a solution of ¢. Then 7 = V(.
of Sg, for any ¢ € Sg(¥p1*) we have that T
") — ¢p) and this completes the proof.

22

there exists a
slution 4 of ¢y,
cp there exists
k)). Moreover,
Cherefore T =

|

