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Preconditioning and Multigrid for
Euler Flows with Low-Subsonic Regions

Barry Koren
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior
of multigrid-accelerated point Gauss-Seidel relaxation is investigated. Error decay by convection
over domain boundaries is also discussed. A fix to poor convergence rates at low Mach numbers is
sought in replacing the point relaxation applied to unconditioned Euler equations, by locally implicit
“time” stepping applied to preconditioned Euler equations. The locally implicit iteration step is
optimized for good damping of high-frequency errors. Numerical inaccuracy at low Mach numbers
is also addressed. Arguments are given why in the present case it is not a necessity to solve this
accuracy problem.

AMS Subject Classification (1991): 65N12, 65N15, 65N22, 65N55, 76G25, 76M25.

Keywords and Phrases: subsonic flows, Euler equations, multigrid methods, preconditioning matri-
ces, convergence and accuracy.
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R&D Programme of the European Communities (Contract No. AER2-CT92-0040).

1 Introduction

Mathematical theory of subsonic gas flows is relatively undeveloped in comparison with that of tran-
sonic, supersonic and hypersonic flows. An indication of this is the small amount of literature that
is available on subsonic gas dynamics. Whereas various text books exist, exclusively dealing with the
mathematics of either transonic, supersonic or hypersonic gas flows, for the subsonic case we only know
a few book chapters (e.g. Chapters 2 and 3 from [1], and Chapter 2 from [6]). At present, research in
the subsonic flow regime is at a rapid pace, particularly as far as it concerns numerical computations in
the incompressible limit. The present paper contributes to this development. In it, the flows of interest
are not flows with uniformly low Mach numbers (i.e. flows with M < 1 throughout almost the entire
computational domain), but flows with locally low Mach numbers (flows with small stagnation regions
and - particularly - for Navier-Stokes extensions: flows with thin boundary layers and wakes).

Since about a decade, various multigrid methods exist that give good convergence rates for steady
Euler-flow computations at high-subsonic inflow Mach numbers (see Chapter 9 from [14] for an overview).
For decreasing inflow Mach numbers, or enlarging low-subsonic flow regions, convergence rates are known
to become less good. This decrease is not specific for multigrid methods, but seems to hold for any
solution method. The cause has to be sought in the continuous Euler equations, in their increasing
stiffness (i.e. in their increasing disparity of wave speeds) at decreasing subsonic Mach numbers. With
the application of single-grid, explicit time stepping schemes in mind, various fixes have been proposed
already for this stiffness problem. See [11] for a review of this. An early research paper is [5]. In it, for
the Jacobian of the 1-D Euler equations, the preconditioning matrix is given which completely equalizes
the three wave speeds u — ¢, u and u + c. Further, the paper gives preconditioning matrices for the 2-D
and 3-D Euler equations. Besides convergence problems, for decreasing Mach numbers also accuracy
problems arise [12, 13]. Whereas the convergence problems are intrinsicly related to the continuous Euler
equations (to their stiffness), the accuracy problems hold for the discretized equations (independent of
whether the discretization is central or upwind).
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In the present paper, we will mainly focus on the stiffness problem. It is expected that solution
methods other than explicit time stepping schemes may also profit from preconditioning matrices such
as those proposed in [5]. Led by this expectation, we will optimize a multigrid accelerated, locally
implicit iteration method, applied to subsonic, preconditioned Euler equations. To start with, in Section
2, the continuous, unconditioned equations and their discretization are introduced. In Section 3, first
a smoothing analysis is given of point Gauss-Seidel relaxation for the discrete equations, and next a
discussion is made of error convection across domain boundaries. It is shown that for low Mach numbers,
the convergence properties are poor. In Section 4, it is made clear that for flows with uniformly low
Mach numbers, numerical accuracy may be poor as well. Since the latter flows are not our interest,
in Section 5 a 1-D preconditioning matrix is derived which is only meant for removing stiffness and
not for also improving low-Mach-number inaccuracy. In Section 6, a simple way of implementing the
preconditioning matrix is discussed. At the end of Section 6 we arrive at the discrete, preconditioned
system to be solved. The system contains a free parameter: a locally implicit iteration step, which is
optimized for smoothing. The optimization is done in Section 7, through local-mode analysis applied to
the upwind-discretized, linearized, preconditioned 1-D Euler equations. In Section 8, the error smoothing
and error convection of the locally implicit iteration are verified.

2 The equations

2.1 Continuous equations

Consider the 1-D Euler equations
0Q  0f(Q) _
e + 97 = 0, (1a)

with @ the conservative state vector
Q=1| pu |, (1b)

f(Q) the corresponding flux vector

Q=1 p+p |, (1c)
pu(e+2)

and e the internal energy, which for a perfect gas reads

_ 1 p 1,
6_7—1p+2u' (1d)

Linearization of (1a) with respect to the conservative variables yields

9Q , 4f 9Q _

Zx 9
ot ' dQ oz (22)
0 1 0
g_f e (3—)u -1, (2b)
Q 3;—211.3 — :1{—1-ch ﬁ————“‘:" u? + ;—i—;cz ~u

where ¢ = y/vp/p. To simplify the analysis, following Turkel [10], the transformation from conservative
variables ) to non-conservative (entropy) variables ¢ is made:

pedp
dg=| du . (3)
dp — c%dp



The corresponding transformation matrix

d s 0 -3
(4
1 1 1
8+ v —3

'a—t-i-A"a;:O, (5a)
0
dg df dQ woe
= =——= c u O . 5b
dQ dQ dg 0 0 u ( )

2.2 Discrete equations

We make a first-order upwind, cell-centered finite-volume discretization of the space operator in (5a).
Then, the semi-discrete equation in cell ; (with mesh size h) reads

2

ot + At (gi —gic1) + A7 (g1 — @) =0, (6)

with 4 running in positive z-direction, and with A* and A~ the matrices corresponding with the positive
and negative eigenvalues of matrix A:

At = R4AY RS, (7a)
A™ = RasA R, (7b)
With A4 = diag(u — ¢, u,u + ¢), it holds
1 01
Ra=| -1 01}, (8)
010

and, hence, for subsonic flow in positive z-direction, 0 < u < ¢:

u+c ut+c 0

A+:% v+c ut+c 0 |, (9a)
0 0 2u
1 [ v—¢c ¢ 0
A== ¢c—u u—c 0 |. (9b)
2

0 0 0

3 Convergence

3.1 Convergence through error smoothing

Applying point Gauss-Seidel relaxation to find the steady solution of (6), for successively a downstream
and upstream relaxation sweep the iteration formulae are

|A|(gP* — ) = —AY(¢F — 7)) — A7 (¢f1 — aF)s (10a)

|A|(qFF? — g7tY) = —AT (g — ) — A (g — YY), (10b)

7 7

with |A] = A* — A~ and n the relaxation sweep counter. To investigate the smoothing properties we
introduce the local solution error

1



and the Fourier form . T
6:,, — Dnel9l, Igl [ [E’ﬂ-] s (llb)

with g7 the exact local solution, D™ the amplitude vector (D}, DZ,D%) and €' the (scalar) mode.
Keeping the coefficient matrices in (10a) and (10b) frozen, with (11a) and (11b), it follows for the
amplification matrices Myownstream and M upstream:

Maownstream = — (—e P AT +]A]) T 4, (12a)

Mupstream = (%A +|A]) " e70 47 (12b)
Substituting A* and A~ we find the solution-independent matrices
e _eif

M downstream = L , (13a)
0 0 0

1 e—io e-—i9 0
e——xl) e—lB 0

Mupstream = 5 . ) (13b)
0 0 2e71f
with spectral radii
. ™
p(Mdownstream) = |e10| = 1, Vlel € {5171-] ) (148.)
—i6 il
p(Mupstream) = le l =1, Vlol € [5177] . (14b)

(Since the matrices (13a) and (13b) are symmetric, the spectral norms, which determine the smoothing
properties for n = 1, are identical to the spectral radii.) Note that in case of a symmetric sweep,
according to this Fourier analysis, one has perfect smoothing: M pstreamMdownstream = 0. However, in
case of subsonic flow with non-periodic boundary conditions, one generally has error reflections at the
outflow boundary when still iterating. Therefore this theoretical, perfect smoothing result is not realistic
and therefore we prefer to consider the downstream and upstream amplification matrices separately.
However, for the two separate sweeps, the smoothing factors (14a) and (14b) are surprising as well. They
are in contradiction with numerical findings; for e.g. standard, high-subsonic airfoil-flow computations,
one generally observes good multigrid convergence. A first explanation of this contradictory result is
that care has to be taken in interpreting (14a) and (14b); the frozen coefficients assumption generally
loses its validity for high-subsonic Mach numbers. As opposed to this, for low-subsonic Mach numbers
it seems a reasonable assumption (e.g., for limps}o, p becomes constant).

3.2 Convergence through error convection

A second explanation of the contradictory convergence estimate for high-subsonic flows in the general
case of non-periodic boundary conditions is that for the downstream and upstream sweep separately,
local-mode analysis solely is just too pessimistic. For non-periodic high-subsonic flow computations,
additional error decay through advection over the domain boundaries may be of significant importance
and may therefore not be neglected. Note herewith that point Gauss-Seidel relaxation can be interpreted
as locally implicit time stepping at an infinitely large time step, which with non-zero wave propagation
speeds u — ¢, v and u + ¢, implies a significant beneficial influence on convergence. This phenomenon
of solution errors being expelled out of the computational domain by convection may next explain the
poor multigrid performance for low-subsonic flows. In spite of the infinitely large time step associated
with point Gauss-Seidel relaxation, for limso, the propagation of entropy errors and therefore their
expulsion, may well start to stagnate.



4 Accuracy

4.1 Well-posedness continuous equations

For limpz)o, exact solutions of the continuous Euler equations are assumed to converge to the corre-
sponding, exact, incompressible flow solutions. (Compressible flow in the incompressible limit is assumed
to be a regular perturbation of incompressible flow.) As a support for this, see e.g. the perturbation
theory analysis of slightly compressible flow past a circle in Chapter 2 of [2]. The singularity occurring
for lim sy is not known to cause general non-uniqueness problems; as opposed to for limp—1 [7], for
limps)o boundary-value problems are not known to become ill-posed.

4.2 Inaccuracy discrete equations

Accuracy problems for limpso do arise in the discrete case. The inaccuracy can be analyzed through
the modified equation corresponding with (5a)-(5b), discretized through e.g. a first-order accurate flux-
difference splitting scheme (such as Osher’s [8] or Roe’s [9]). The corresponding modified equation

reads a 5 5 s
q q q
—= — =h— —.
ot 45 "as ('A 31:) (15)
With
c u 0
|[Al=] » ¢ 0 |, (16)
0 0 u
the numerical diffusion term in the right-hand side of (15) can be written out as
& 1 0 &= 1.0
7] dq Oou [ M | 0 Mo Oq 8%q
2 (1a42) = = L 11 L = 211,
hc'):t: (lAlam) h Oz (1) 1(\)4 (1) +u8:c 0 A(’)I 2 Oz + |AI63:2 (17)

It appears that for limps)o and with h fixed and g—: and —gﬁ non-zero, the numerical diffusion term in
system (15) becomes infinitely large for the first two equations.

5 Preconditioning

5.1 Removing stiffness

For a detailed account of this topic we refer to [5]. For the condition K of A over the entire subsonic
flow regime, it holds

K(A)zmax(1+M 1+M), v lul

see also Figure 1. At M =0 and M = 1, A is singular. Preconditioning A (by premultiplying it) with
the 3 x 3-matrix P transforms equation (5a) into

9q 9q

Bt + PAam =0. (19)
For general P, the possibility of doing time-accurate calculations is lost. When solving steady problems,
this is of no concern. P should at least remove the static and sonic singularity. In the ideal case, P leads
to the situation: (i) that K(PA) = 1 over the entire subsonic Mach-number range, and (ii) that PA
yields two downstream waves and one upstream wave. Satisfaction of the second property, conservation
of the propagation directions of the three waves, avoids a change of numbers of boundary conditions to
be imposed at in- and outlet. This property is satisfied by taking P positive definite, which implies that
P must be symmetric.

A common choice for P is

— 1 -1
P=_l4, (20)



Figure 1: Condition of derivative matrix A as a function of the Mach number.

with w some propagation speed that can still be chosen. With (20) one has Apy = diag(—w,w,w).
In multi-D, perfect subsonic preconditioning is not possible. For 2-D subsonic Euler flows and for
dg = (pl—cdp, du, dv,dp — c®dp)T, the following preconditioning matrix is proposed in [5]:

M2 —M 0 0
A2 Vi-me
=M L 11 0 0
P=| Vi-Mz Vi-Mm® . (21)
0 0 1-M2 0
0 0 0 1

The 3-D subsonic preconditioning matrix proposed in [5] is very much the same as (21). Our practical
interest lies in doing 2-D and 3-D computations. However, since already in 2-D, local-mode analysis for
the full Euler equations is hard and does not lead to transparent results, we do the analysis for the 1-D
Euler equations, with as preconditioning matrix a 1-D version of 2-D P (21). We proceed by deriving
such a 1-D P.

No symmetric P exists which yields a perfectly conditioned, diagonal matrix, such as diag(—w, w, w)
with w the equalized wave speed. Striving for the almost diagonal form

-w 0 0
PA = » w 0 |, (22)
0 0 w

which still satisfies K(PA) =1, VM € (0,1), a symmetric 1-D version of (21) can be found. For w = u,
it follows

M? -M 0
7 S

P=\ == = t1 0 (23)
0 0 1

(and, unimportant, % = 2c). Since entropy propagates with the flow speed, just as in (21), the entropy
equation is left unchanged. Note that P according to (23) is positive-definite; for M € (0, 1) its three

eigenvalues are all positive: A\; = 1 and Ay 3 = W > 0, VM € (0,1). Also still note the
freedom in the derivation of this preconditioning matrix. E.g., another w could have been chosen;
w = u + ¢ would have yielded

M -1

P=| =x ma-m 9 (24)
0 o



Moreover, instead of preconditioning, postconditioning could have been applied. The difference between
pre- and postconditioning can be clarified by considering the auxiliary equation A—l = r. Precondi-

tioning this equation (PAE% =) is identical to right-hand side transformation (Agg P~lr), whereas

postconditioning (AP %;1 =) can be interpreted as solution transformation. Postconditioning (5a) by
a symmetric P such that

-u 0 0
AP = w ouw 0 |, (25)
0 0 u /)
leads to
M2 -2 _ M 0
M?-1 M2-1
P= _MMfél MAZl-—l 0 ’ (26)
0 0 1
Interpreting this postconditioning matrix as a solution transformation matrix %Z, we get
M2
) _Mz lpcdp M- 1d“
dq: — = 1pcdp+M2 ld | . (27)

dp — c*dp

Physical interpretation of the first two components of dg is not trivial. In the remainder we consider
preconditioning according to (23).

5.2 Concerning inaccuracy

A partial fix to the discrete accuracy problem discussed in Section 4.2, is to make the discretization
second-order accurate. (In practical computations, the discretization will be at least second-order ac-
curate anyway.) Of course, as long as the two limits M | 0 and h | O are independent (and as long as
the discretization method is not exact), formally the accuracy problem remains to exist. A subsequent
partial fix would then be to take the mesh size appropriately dependent on the Mach number.

A real fix is to exploit the freedom still existing in the choice of the preconditioning matrices for
removing the stiffness problem. By first preconditioning:

99, paa _

ot oz 0, (28)

and next discretizing (with e.g. a first-order accurate flux-difference splitting scheme), one gets the
modified equation

Oq Oq dq
5t PAB = (|P m) , (29)
which is identical to 5 9q 5 5
-194 -19 o9
P 5t +A8 =P e ([PA] 6m> . (30)

For flow computations at uniformly low Mach numbers, the challenge is to get rid of both the stiffness
and the accuracy problem by a single preconditioning matrix P. Such double-edged preconditioning
matrices are expected to become available soon [12]. Discretization of (28) requires the incorporation
of a space discretization scheme which is modified for the preconditioning (both at the interior and
the boundary cell faces). Further, in multigrid contexts the residual transfer has to be reconsidered, in
order to maintain the Galerkin property and hence good multigrid convergence [4]. Since uniformly low-
Mach-number flows are not our present interest, we will not apply the preconditioning in the form (28).
(For computations in which the Mach number is not uniformly low, the accuracy problems occurring
for limpy) are local, and hence no reduction of global solution accuracy is expected to be found.)



6 Implementing the preconditioning

By implementing the preconditioning as

P~ A—= = 31
5 45, =0 (31a)
with P! the inverse of (23):
2;{1\;12 % 0 .
—1 —
pi= L 1 o], (31b)
0 0 1
the original space discretization scheme can still be applied (simply because the space operator is still

original). Steady-state solutions will therefore be identical to those belonging to the unconditioned
equations (5a) and (15). The conservative form corresponding with (31a) reads

4Q , 109 , 9£(Q)

dq ot Oz =0 (32)

Discretizing (32) by a first-order upwind finite-volume method, and denoting the numerical flux function
which approximates cell-face flux f(g; +%) by F(gi,gi+1), for cell 2; the semi-discrete equation reads

ﬂ -19¢ ‘ N
-/Qi dq atd Zz+ (F(q“q"*'l) F(q’l—laq’l)) =0. (33)

Given the good smoothing properties of point Gauss-Seidel relaxation in the multigrid computation of
high-subsonic, transonic and supersonic flows, in choosing the time discretization for (33) we deviate as
little as possible from this trusty smoother, by applying: locally implicit time stepping in a Gauss-Seidel
fashion. Hence, as fully discrete equation in cell ;, for a downstream and upstream sweep respectively,
it follows:

n o OF (g™t}
h dQ( .{,)P_l(Min) + BF(qz an+1) _ (qz—l » 43 )] (qn+1 ¢ )

At dg O oq
F(qzn+1l7q1 ) - F(q1 7q1+1) (348‘)
h dQ n+1 - n aF(qn+1’qz +2) aF(q:i’-ll’qz +1) n n
[At dq (q + )P l(Mi +1) + aqn+1 6qn+1 (qz +2 q’t +1)

F(gM, qith) = F(aft, o). (34b)

The time step At (which due to the preconditioning is not identical to physical time stepping) is still
amenable to optimization. In the next section it will be optimized for smoothing,.

7 Optimization locally implicit iteration step

For simplicity, smoothing optimization of At from (34a) and (34b) is done for the non-conservative,
frozen-coefficient variants of both equations, i.e. for:

h - n n —_— n n
(RoP™ +141) @7 =) = —A* (! = aE4) — 4 (gl — ), (354)

h n n n n n n
(P +14) @ - = - - g - A . (o)



7.1 Qualitative optimization

From (35a) and (35b), with (11a) and (11b), in the same way as in Section 3.1, we derive:

I LT (R —1 _ i g—
Madownstream = (AtP —e VAT + |A! AtP eA , (368.)
M = (lprieog- 4 |4 - hopo1 oyt (36b)
upstream At At .
We proceed by considering the two highest error frequencies: |f| = 7. For both frequencies, with
h
o= 31 (37)

02;{1‘2‘2+%+§M ok +i+3M 0
Mdownstream = i + % + %M o+ % + %M 0
0 0 o+2M
02;4"242 —l4ly ok +i-1M 0
o +i-iM  o-i+iM 0 |, (38a)
0 0 o
2-M? ;3 _ 1 11,3 -1
o +2—-:M o+:—5+5M 0
M = M_1hsir Sstir o
upstream Vi 3 5 (2 5 3
0 0 o+ M
—M? 1
. IRt Fo LIS P
0 0 oc—M
The corresponding eigenvalues are:
o . o+02—M?+/40%(1 — M?) + M*
A = A = , 39
( 1)Mdownstreum o + 2M, ( 2’3)Mdownstrenm 30- + 0-2 + 2M2 ( a)
o—M o +0%— M?+\/402(1 — M2?) + M*
(Al )Mupstrenm o+ M’ ( 2’3)Mupstrenm 30 + 0-2 + 2M2 (39 )

Note that (A2,3) g, . = (A23) Mapotream” We proceed by considering the eigenvalues for limpso.
With o a finite (positive) constant this yields

1 (4,285 sy r—comtons = (11 o ) (402)
1131% (A1, Az, )\3)Mupm,,m, o=constant (1’ L ;:T-'-:;) . (40b)
For 0 = aM with o a finite (positive) constant it yields
B (132, 39) My, o= = (aim 1, —%) : (41a)
B 32,00ttt = (b5 ) (41b)

So the choice o = constant yields two maximum eigenvalues equal to one, for both the downstream and
upstream sweep. For 0 = aM with a constant, this number is only one, which probably implies smaller
Frobenius matrix norms (see e.g. Chapter 2 from [3]) and hence better smoothing when applying two,
three, four, ... Gauss-Seidel sweeps. Note that no function ¢ = (M) exists which makes the moduli
of all three eigenvalues smaller than one for limas)o. We proceed with ¢ = oM. In the next section the
optimal value of « is derived.
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Figure 2: Integrated moduli of eigenvalues of amplification matrices, for highest error frequencies.

7.2 Quantitative optimization

To optimize a from ¢ = aM, we continue to apply Fourier analysis for the highest error frequen-
cies |@| = m, where, as in Section 3.1, we look for spectral radii of the amplification matrices. To
avoid Mach-number dependence of «, we consider the moduli of the amplification matrices’ eigenval-
ues integrated over the entire subsonic Mach-number range. (Avoiding Mach-number dependence by
taking limps)o does not allow a-optimization; from (41a) and (41b) it appears that the corresponding
spectral radii of both Mgownstream and Mypstream €qual one, for any a.) In Figure 2 the distribu-
tions of the aforementioned eigenvalue integrals are depicted over the a-range [0,10]. (Note that since
(A2,3) Myowrseren = (A2,3) Maupstream” the corresponding integrals are the same.) From Figure 2 it can be

seen that the optimal value of a follows from fol | (A1) Mup;tmm |[dM = fol | (X2) Mapotream |4M (dashed

line in Figure 2b), i.e. (after some computer algebra) from:

—4+20-20% + 0%+ (5 - 20°) In ({52 ) - 3vI—da?mn (VEE2H)
+ =0

= 42
« (a2 +2)2 a+1l (42)
From (42), it follows by good approximation that o = %, and thus as (approximately) optimal o:
2
o=-M. (43)
5
8 Convergence for preconditioned equations
8.1 Error smoothing
Relation (43) implies as (approximately) optimal iteration step At:
5 h
At = ——
S (44)

ie. CFL = 2. We verify the smoothing behavior for this iteration step. This is done over the entire
subsonic Mach-number range (0,1), for the three error frequencies § = o 341 and 7. In Figure 3
the distributions of the corresponding spectral radii are depicted. Recalling from Section 3.1 that the
spectral radii of downstream and upstream point Gauss-Seidel relaxation equal one over the entire

subsonic Mach-number range, from Figure 3 it appears that the preconditioning does a good job.

10
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Figure 3: Spectral radii of amplification matrices, for downstream and upstream (approximately opti-
mal) point Gauss-Seidel time-stepping, and three error frequencies.

8.2 Error convection

The locally implicit iteration applied to preconditioned Euler equations may be interpreted as physical
time stepping. To do so, for simplicity we consider the common P according to (20) with w = |u|. Then,

with CFL = JihEE, the iteration formulae (35a) and (35b) become
(1+CFL)|A|(g]*" - gf) = =A™ (¢ — i) — A7 (¢ — 40), (452)

(1+ CFL)|A|(gf™* — gf*') = —AT (@ — i) - A7 — ™). (45b)

From (45a) and (45a) it appears that for this common P, the locally implicit time stepping can be
directly interpreted as point Gauss-Seidel relaxation with underrelaxation factor w = 1 + CFL. le.,
even with CFL = O(1), (45a) and (45a) can still be interpreted as locally implicit physical time stepping
at an infinitely large time step.

9 Conclusions

o Poor convergence of multigrid accelerated point Gauss-Seidel relaxation at low Mach numbers
is explained by the relaxation’s poor smoothing at low Mach numbers and by the likewise poor
entropy-error expulsion across domain boundaries.

e Poor solution accuracy known to occur at low Mach numbers can be explained by means of the
modified equation for the 1-D Euler equations, discretized by a first-order accurate flux-difference
splitting scheme. For flows with uniformly low Mach numbers, a fix to this inaccuracy is a necessity.
For flows of which the global solution error is not affected by the occurrence of low-subsonic flow
regions such a fix may not be necessary.

e For the latter flows, implementation of preconditioning in a locally implicit time stepping method
with the inverse of the preconditioning matrix working on the time operator, may be practical. It
allows the application of an off-the-shelf space discretization method.

e Local-mode analysis shows that optimal high-frequency damping for locally implicit “time” step-
ping in a Gauss-Seidel way, is obtained for CFL =~ % (When preconditioning with the 1-D matrix

11



P = |IT||A|_1, the locally implicit “time” stepping boils down to point Gauss-Seidel relaxation
with underrelaxation factor 1+ CFL.)

e Given the direct availability of the 2-D and 3-D extensions of the 1-D preconditioning matrix
analyzed, the present improved solution method is directly extendible to multi-D.
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