2

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

More on unfold/fold transformations of normal
programs: preservation of fitting's semantics

A. Bossi, S. Etalle

Computer Science/Department of Software Technology

Report CS-R9447 August 1994

CWI is the National Research Institute for Mc
the Stichting Mathematisch Centrum {SMC], tt
and computer science and their applications.

SMC is sponsored by the Netherlands Organ
member of ERCIM, the European Research Co

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam {NL)
Kruislaan 413, 1098 S) Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

nce. CWl is part of
tion of mathematics

(NWO). CWl is a
athematics.

Unfold/Fold Transformations of Normal Programs: Preservation
of Fitting's Semantics

Annalisa Bossi!, Sandro Etalle!2

L Dipartimento di Matematica Pura ed Applicata, Universita di Padova,
Via Belzoni 7, 35131 Padova, Italy

2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

email: bossi@zenone.math.unipd.it, etalle@cwi.nl

Abstract

ld/fold transformation system defined by Tamaki and Sato was meant for definite programs. It
s a program into an equivalent one in the sense of both the least Herbrand model semantics and the
{ Answer Substitution semantics. Seki extended the method to normal programs and specialized it
' preserve also the finite failure set. The resulting system is correct wrt nearly all the declarative
: for normal programs. An exception is Fitting’s model semantics. In this paper we consider a slight
of Seki's method and we study its correctness wrt Fitting's semantics. We define an applicability
for the fold operation and we show that it ensures the preservation of the considered semantics

he transformation.

ibject Classification (1991): 68N17, 68Q55, 68T15.
iect Classification (1991): D.1.6, F.3.2, F.4.1,1.2.2,1.2.3.
{s and Phrases: Program's Transformation, Logic Programming, Semantics, Negation, Folding,

lent,

1is work has been partially supported by " Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”
under grant n. 89.00026.69. This paper will appear in: Proc. of META94 “Fifth Workshop on
sramming in Logic”, F. Turini (editor).

CTION

old transformation rules were introduced by Burstall and Darlington [BD77] for trans-
., simple functional programs into equivalent, more efficient ones. The rules were early
he field of logic programs both for program synthesis [CS77, Hog81] and for program
. and optimization [AAP78, Kom82]. Soon later, Tamaki and Sato [TS84] proposed an
swork for the transformation of logic programs based on unfold/fold rules.

requirement of a transformation system is its correctness: it should transform a program
alent one. Tamaki and Sato’s system was originally designed for definite programs and
xt a natural equivalence on programs is the one induced by the least Herbrand model
| [TS84] it was shown that the system preserves such a semantics. Afterward, the system
.0 be correct wrt many other semantics: the computed answer substitution semantics
Perfect model semantics [Sek91], the Well-Founded semantics [Sek93] and the Stable
tics [Sek90, AD93].

. Seki modified the method by restricting its applicability conditions. The system so
s all the semantic properties of Tamaki-Sato’s, moreover, it preserves the finite failure
ginal program [Sek89] and it is correct wrt Kunen’s semantics [Sat92].

447
18X

079, 1090 GB Amsterdam, The Netherlands

ither Tamaki-Sato’s, nor Seki’s system preserve the Fitting model semantics.

r we consider a transformation schema which is similar yet slightly more restrictive to
uced by Seki [Sek91] for normal programs. We study the effect of the transformation
s semantics [Fit85] and we individuate a sufficient condition for its preservation.

ce between the method we propose and the one of Seki consists in the fact that here
have to be performed in a precise order. We believe that this order corresponds to the
r in which the operations are usually carried out within a transformation sequence, and
the restriction we impose is actually rather mild.

e of the paper is the following. In Section 2 we recall the definition of Fitting’s operator.
1e transformation schema is defined and exemplified, and the applicability conditions
eration are presented and discussed. Finally, in Section 4, we prove the correctness of
| transformation wrt Fitting’s semantics.

RIES

it the reader is familiar with the basic concepts of logic programming; throughout the
he standard terminology of [L1087} and [Apt90]. We consider normal programs, that is
1s of normal rules, A« Ly,...,L,,. where A is an atom and L;,..., Ly, are literals.
2 Herbrand base and Ground(P) the set of ground instances of clauses of a program P.
-lause is definite if the body contains only positive literals (atoms); a definite program is
1 consisting only of definite clauses. Symbols with a ~ on top denote tuples of objects,
denotes a tuple of variables z1,...,2,, and # = § stands for z; = y1 A... AZp = Yn.
the usual logic programming notation that uses “,” instead of A, hence a conjunction
... A Ly, will be denoted by Ly, ..., Ly or by L.

emantics for normal programs. In this paper we refer to the usual Clark’s completion
wp(P), [Cla78] which consists of the completed definition of each predicate together with
Equality Theory, which is needed in order to interpret “=" correctly. It is well-known
isidering normal programs, the two valued completion Comp(P) of a program P might
. an consequently have no model; moreover, when Comp(P) is consistent, it usually has
10me of which can be considered the least (hence the preferred) one. Following [Fit85],
roblem by switching to a three-valued logic, where the truth tables of the connective are
by Kleene [Kle52]. When working with 3-valued logic, the same definition of completion
1e only difference that the connective « is replaced with & , Lucasiewicz’s operator of
me truth value”. In this context, we have that a three valued (or partial) interpretation,
tom the ground atoms of the language £ into the set {¢rue, false, undefined}.

1 Let £ be a language. A three valued (or partial) L-interpretation, I, is a mapping
1d atoms of £ into the set {true, false, undefined}. O

terpretation I is represented by an ordered couple, (T, F), of disjoint sets of ground
oms in T (resp. F) are considered to be true (resp. false) in I. T is the positive part
oted by It; equivalently F is denoted by I~. Atoms which do not appear in either set
to be undefined.

e two partial L-interpretations, then I N J is the three valued L-interpretation given by
1 J7), I U J is the three valued L-interpretation given by (I* U J¥,I” U J~) and we say
[=INJ,thatis, iff IT CJ* and I~ C J~. The set of all L-interpretations is then a
e. In the sequel we refer to a fixed but unspecified language £ that we assume contains
as symbols and the predicate symbols of the programs that we consider, consequently
1e L prefix and speak of “interpretations” rather than of “L-interpretations”.

transformations 3

ve a definition of Fitting’s operator [Fit85]. We denote by Var(E) the set of all the
n expression E and we write 3y B as a shorthand for (3y B)#, that is, unless explicitly
1antification applies always before the substitution.

1.2 Let P be a normal program, and I a three valued interpretation. ®p(I) is the three
retation defined as follows:

1d atom A is true in @p(l)
, exists a clause ¢ : B« L.in P whose head unifies with A, § = mgu(A, B), and 3w 6 is

I, where 1 is the set of local variables of ¢, w = Var(L)\Var(B).

1d atom A is false in @p(1)
1l clauses ¢c: B« L in P for which there exists § = mgu(A, B) we have that 3w L8 is
I, where 0 is the set of local variables of ¢, W = Var(L)\Var(B). ul

. a Herbrand model is a model whose universe is given by the set of L-terms.

snotonic operator, that is I C J implies ®p(I) € ®p(J), and characterizes the three
tics of Comp(P), in fact Fitting, in [Fit85] shows that the three-valued Herbrand models
are exactly the fixpoints of ®p; it follows that any program has a least (wrt. C) three-
and model, which coincides with the least fixpoint of ®p. This model is usually referred
s model.

1.3 Let P be a program, Fitting’s model of P, F'it(P), is the least three valued Herbrand
np(P). w

:standard notation: @},0 is the interpretation that maps every ground atom into the value
2t — @ p(@}f‘), @L”‘ = U5<a@y, when « is a limit ordinal. From the monotonicity of
at its Kleene’s sequence is monotonically increasing and it converges to its least fixpoint.
always exists an ordinal « such that Ifp(®p) = @La. Since ®p is monotone but not
¢ could be greater than w.

4 [Fit85] Let P be a program, then, for some ordinal a,

— 3!
& ‘ O

FOLD TRANSFORMATIONS

‘ion

>ld are basic transformation rules but their definition may differ depending on the con-
ntics.

is the fundamental operation for partial evaluation [LS91] and consists in applying a
sp to the considered atom in all possible ways. Usually, it is applied only to positive
cception is [AD92]).

the inverse of unfolding when one single unfolding is possible. Syntactically, it consists
ig a literal L for an equivalent conjunction of literals K in the body of a clause c. This
used to simplify unfolded clauses and to detect implicit recursive definitions. In order
he declarative semantics of logic programs, its application must be restricted by some,
endent, conditions. Therefore, the various proposals mainly differ in the choice of such
‘hey can be either a constraint on how to sequentialize the operations while transforming

4

the program [TS84, Sek91], or they can be expressed only in terms of (semantic) properties of the
program, independently from its transformation history [BC93, Mah87]. For normal programs different
definitions for folding in a particular transformation sequence are given in [Sek91, Sek90, GS91].

3.2 A four step transformation schema
In this section we introduce the unfold/fold transformation schema. All definitions are given modulo
reordering of the bodies of the clauses and standardization apart is always assumed.

First we define the unfolding operation, which is basic to all the transformation systems.

Definition 3.1 (Unfold) Let cl : A+ L,H. be a clause of a normal program P, where H is an
atom. Let {H; « Bi,...,H, « By} be the set of clauses of P whose heads unify with H, by mgu’s

{01,...,0.}.
e unfolding an atom H in cl consists of substituting cl with {cll,...,clt}, where, for each %,
Clg = (A L L, Bi)gi.
unfold (P,cl, H) & P\{cl}uU {cll,...,cl"}. O

Let P be a normal program. A four step transformation schema starting in the program P consists
of the following steps:

Step 1. Introduction of new definitions. We add to the program P the set of clauses Dyer = {c; :
H; Bi}, where the predicate symbol of each H; is new, that is, it does not occur in P. On the other
hand, we require that the predicate symbols found in each B; are defined in P, and therefore are not
new. The result of this operation is then

® P; = P U Dger [}
Example 3.2 (min-max, part 1) Let P be the following program

P=/{ min([X], X).
min([X|Xs],Y) « min(Xs,2),inf(X,Z,Y).

maz([X], X).
maz([X|Xs],Y) « maz(Xs,Z),sup(X,2,Y).

inf(X,Y,X) - X<Y.
—

inf(X,Y,Y) (X <Y).
sup(X,Y,Y) — X<Y
sup(X,Y, X) «— (X <Y).

c1: med(Xs,Med) +« min(Xs,Min),

maz(Xs, Maz),
Med is (Min + Maz)/2. }

here med(X's, Med) reports in Med the average between the minimum and the maximum of the values
in the list Xs.

We may notice that the definition of med(X's, Med) traverses the list Xs twice. This is obviously
a source of inefficiency. In order to fix this problem via an unfold/fold transformation, we first have
to introduce a new predicate minmaz. Let us then add to program P the following new definition:

Dges = {cz : minmaz(Xs, Min, Maz) «— min(Xs, Min), maz(Xs, Maz). } a

ansformations

ding in Dges. We transform Dger into Duns by unfolding some of its clauses. The
re therefore used as unfolding clauses. This process can be iterated several times and
hen all the clauses that we want to fold have been obtained; the result of this operation

J Dunf (]

(min-max, part 2) We can now unfold the atom min(Xs, Min) in the body of ¢,

z([X], X, Mazx) — maz([X], Mazx).

2([X|Xs], Min, Maz) < min(Xs,Y),
inf(X,Y, Min),
maz([X|Xs], Mazx).

+f both clauses we can then unfold predicate maz. Each clause generates two clauses.

z([X], X, X).
z([X], X, Maz) — maz([},2),sup(Z, X, Maz).
z([X], Min, X) — min([],Y),inf(X,Y, Min).
z([X|Xs], Min, Maz) «« min(Xs,Y),
inf(X,Y, Min),
maz{Xs,Z),

sup(X,Z,Maz).

d ¢; can then be eliminated by unfolding respectively the atoms maz([|,Z) and
Juns consists then of the following clauses.

z([X], X, X).
w([X|Xs], Min, Maz) « min(Xs,Y),
inf(X,Y, Min),
maz(Xs,Z),
sup(X, Z, Max).
. traverses the list X's twice; but now we can apply a recursive folding operation. O

rsive folding. Let ¢; : H; — B; be one of the clauses of Dgyef, which was introduced
i1cl: A« B'S. be (a renaming of) a clause in Dyns. If there exists a substitution 8,
r(c;) such that

0;

10t bind the local variables of ¢;, that is for any z,y € Var(B;)\Var(H;) the following
nditions hold

is a variable;

does not appear in A, S, H;0;
r # y then z6 # yb;

s only clause of Dger whose head unifies with H;0;
literals of B’ are the result of a previous unfolding.

fold H;0 in cl, obtaining cl' : A« H;0, S. This operation can be performed on several
simultaneously, even on the same clause. The result is that Dyar is transformed into
1ce

Dioa O

(min-max, part 3) We can now fold min(Xs,Y), maz(Xs, Z) in the body of cg. The
am Dsggg consists of the following clauses

(I1X], X, X).

([X|Xs], Min,Maz) « minmaz(Xs,Y,Z),
inf(X,Y, Min),
sup(X, Z, Maz).

{in, M az) has now a recursive definition and needs to traverse the list X's only once. In

definition of med enjoy of this improvement, we need to propagate predicate minmaz
O

tation folding. Technically, the difference between this step and the previous one is
lded clause comes form the original program P. This allows us to drop condition (d)
peration.

- Bi be one of the clauses of Dyes, which was introduced in Step 7, and cl : A « B , S. be
+a clause in the original program P. If there exists a substitution 8, Dom(#) = Var(c;)

t

t bind the local variables of c;, that is for any z,y € Var(B;)\Var(H;) the following
ditions hold

i a variable;
oes not appear in 4, S, H;9;
y then z6 # y0;

mly clause of Dger whose head unifies with H;6;

1 H;0 in cl, obtaining cl' : A «— H;0, S. Also this operation can be performed on several
nultaneously, even on the same clause. The result is that P is transformed into P4

| U Dgaid |

(min-max, part 4) We can now fold min(Xs,Y), maz(Xs, Z) in the body of c;, in
gram P. The resulting program is

tU{cio : med(Xs) « minmaz(Xs, Min, Maz),
Med is (Min + Max)/2. '}

nal program is Py = Ppo1q U Dyolq =

inmaz([X], X, X).

inmaz([X|Xs], Min,Maz) «— minmaz(Xs,Y,Z),
inf(X,Y, Min),
sup(X, Z, Maz).

ed(X s) «— minmaz(Xs, Min, Maz),
Med is (Min + Maz)/2.

as for predicates min, maz,inf and sup.}

1at predicates min and maz are no longer used by the program. 0

3. Unfold/fold transformations ' 7

3.3 Semantic considerations
The schema (that is, the method we propose) is similar but more restrictive than the transformation
sequence with modified folding! proposed by Seki [Sek91]. The (only) limitation consists in the fact
that the schema requires the operations to be performed in fixed order: for instance it does not allow
a propagation folding to take place before a recursive folding. We believe that in practice this is not
a bothering restriction, as it corresponds to the “natural” procedure that is followed in the process of
transforming a program. In fact, in all the papers we cite, all the examples that can be reduced to a
transformation sequence as in [Sek91], can also be reduced to the given transformation schema.
Since the schema can be seen as a particular case of the transformation sequence, it enjoys all
its properties, among them, it preserves the following semantics of the initial program: the success
set [TS84], the computed answer substitution set [KK90], the finite failure set [Sek91], the Perfect
model semantics for stratified programs [Sek91], the Well-Founded semantics [Sek93], the Stable model
semantics [Sek90, AD93].

However, as it is, the schema suffers of the same problems of the sequence, i.e., Fitting’s Models is
not preserved. This is shown by the following example.

Example 3.3 Let P, = P U Dyef, where P and Dg.r are the following programs

Daes ={ p — g(X). }
P ={ q¢(s(X) < aX)H0).
t(0).
As we fix a language £ that contains the constant 0 and the function s/1, we have that 3X ¢(X) is

false in Fit(P,), consequently, p is also false in F it(P1). Now let us unfold g(X) in the body of the
clause in Dgef; the resulting program is the following. P, = PU Dyy,¢, where

Dynt ={ p A q(Y))t(O) }
P ={ qs(X)) « qX)0).
t(0).

We can now fold ¢(Y) in the body of the clause of Dyxt, the resulting program is Py = PU Dga,
where

Diia =1{ p — p,t(0). }
P ={ g¢(s(X)) « q(X)0).

t(0).
Now we have that p is undefined in the Fitting model of Ps. 0

So, in order for the transformation to preserve Fitting’s model of the original program, we need
some further applicability conditions. Therefore the following.

Theorem 3.4 (Correctness) Let Py, ..., Py be a sequence of programs obtained applying the trans-
formation schema to program P. Let also Dger = {H; « Bi} be the set of clauses introduced in Step
1, and, for each 4, w; be the set of local variables of c;: w; = Va'r(E’i)\Var(Hi). If each ¢; in Dger
satisfies the following condition:

A each time that 3w; B;f is false in some @;[13 , then there exists a non-limit ordinal a < 8 such that
3w; Bif is false in B}
Then FZt(Pl) = F’I,t(Pz) = FZt(Pg) = FZt(P4)

Proof. The proof is given in the subsequent Section 4. O

lhere we are adopting Seki’s notation, and we call modified folding the one presented in [Sek89, Sek91}, which
preserves the finite failure set, as opposed to the one introduced by Tamaki and Sato in [TS84], which does not.

{. Condition A is in general undecidable, it is therefore important to provide some
> sufficient conditions. For this, in the rest of this Section, we adopt the following

: H; — B,} is the set of clauses introduced in Step 1,

3:)\Var(H;) is the set of local variables of c;.

8y to check that if ¢; has no local variables, then it satisfies A.
3.5 If w; = @ then c; satisfies A.

ws at once from the definition of Fitting’s operator.)

>n, though simple, is met by most of the examples found in the literature; if we are
rmal “statistics”, of all the papers cited in our bibliography, seven contain practical
ausal formn which can be assimilated to our method ([BCE92, KK90, PP91, Sek&9,
’S84]), and of them, only two contain examples where the “introduced” clause contains
([KK90, PP91})). Our Example 3.2 satisfies the condition as well.

Proposition 3.5 can easily be improved. First let us consider the following Example?.

Let P, = P U Dger, where P and Dgy.r are the following programs

br(X,Y) — reach(X,Z),reach(Y, Z). }
reach(X,Y) « arc(X,Y).
reach(X,Y) « are(X,Z),reach(Z,Y). }uDB

ny set of ground unit clauses defining predicate arc. reach(X,Y) holds iff there exists
; from node X and ending in node Y, while br(X,Y") holds iff there exists a node Z
ble both from node X and node Y. 0

iple the definition of predicate br can be specialized and made recursive via an un-
ormation. Despite the fact that clause ¢y contains the local variable Z, it is easy to see
ied. This is due to the fact that P is actually a DATALOG (function-free) program.

v that if (a part of) the original program P is function-free (or recursion-free) then A
ed.

ntroduce the following notation. Let p, g be predicates, we say that p refers to ¢ in
here is a clause of P with p in its head and ¢ in its body. The depends on relation is
d transitive closure of refers to. Let L be a conjunction of literals, by P|; we denote
es of P that define the predicates which the predicates in I depend on. We say that
scursion-free if there is no chain p1,...,ps of predicate symbols such that p; refers to
p1- With an abuse of notation, we also call a program function-free if the only terms
are either ground or variables.

state the following.

.7 For each index 1, and each w € ;, let us denote by L., the subset of B; formed by
here w occurs. If for every L., one of the following two conditions holds:

-ecursion-Iree, or
unction-free;

tisfies A.

is actually a modification of Example 2.1.1 in [Sek89]

f the transformation 9

ve need the following Observation.

.8 Let @ be a function-free or a recursion-free program, then for some integer k,

tforward |

lex 4, and let w; = wy,...,Wn, and let M be the subset of B; consisting of those literals
>ntain any of the variables in w;. It is immediate that, for any ordinal ¢, and for any

Jw; Bif iff @5 | Jwy Lo, A ... A Fwr Lo, 0 A MO (3.1)

that, for some ordinal a, and substitution 6, Jw; B, is false in QL‘:.

or (i) MO is false in Q},‘f, or (ii) there exists an i such that Jw; Ly, 8 is false in Q},‘:; we
cases separately.

alse in <I>},°1‘, then, by the definition of ®p,, there exists a non-limit ordinal 8 € a such

Ise in @},f, and, by (3.1), 3w; B,0 is false in @yj.

;0 is false in <I>I,°‘, since P;|; _ is function or recursion-free, by Observation 3.8 there
1 wy

ser k such that Jw; L,,,0 is false in @TP’:; again, by (3.1), 3w; B;f is false in Q},’:.

:ase, there exists a non-limit ordinal 8 < a such that Juw; B;0 is false in @}f . Since this

index i, the thesis follows. a

o posteriori”. We now show that condition A holds in Fy iff it holds in any program
part of the transformation sequence. This gives us the opportunity of providing further
litions.

restate A as follows:

substitution @ and non-limit ordinal 3, if H;8 is false in @}fj +1, then H;0 is false in @}f

! be a program which is obtained from Py by applying some unfolding transformation.
ee3 that H; satisfies A’ in P; iff H; satisfies A’ in Pj. So the advantage of A’ over A
be checked a posteriori at any time during the unfolding part of the transformation. So
.7 can be restated as follows.

3.9 Let P be a program obtained from P} by (repeatedly) applying the unfolding
t D!,_¢ be the subset of P’ corresponding to Dger in P. If for each clause c of D}, and
able y, local to the body of ¢

recursion-free or function-free,
:,y denotes the subset of the body of ¢ consisting of those literals where y occurs;

satisfies A in Pj.

\ straightforward generalization of the proof of Proposition 3.7. O

NESS OF THE TRANSFORMATION
is section is to prove the correctness of the transformation schema wrt Fitting’s semantics,

rect consequence of Lemma 4.1, which is given in the next Section

of the unfold operation
er the unfold operation. To prove its correctness we need the following technical

st P' be the program obtained by unfolding an atom in a clause of program P. Then
¢ and limit ordinal 3,

and @Ipi, c @LZi;
cali(@lf) and oL (2}) C 2L (2.
of is given in [BCE93]. O
s to a preliminary conclusion.

(Correctness of the unfold operation) Let P’ be the result of unfolding an atom
. Then

Fit(P')]

mentioned that, because of the particular structure of the transformation sequence,
ise self-unfoldings (that is, unfoldings in which the same clause is both the unfolded
f the unfolding ones). Consequently the correctness of Step 2 follows also from a result
Shepherdson [GS91, Theorem 4.1] which states that if the program P’ is obtained
lding (but not self-unfolding), then Comp(P) and Comp(P') are logically equivalent

“is a second, technical result on the consequences of an unfolding operation which will
e sequel.

st P be a normal program, cl : A « K. be a definite, clause of P. Suppose also that
ause of P whose head unifies with A0. If P’ is the program obtained by unfolding at
e atoms in K, then, for each non-limit ordinal o

ue {resp. false) in @},”"’1 then A6 is true (resp. false) in QI,‘?

irst give a simplified proof by considering the case when K consists of two atoms H, J
a single unfolding on them; we will later consider the general case.

31.,..., Hn « Bp.} be the set of clauses of P whose head unify with H via mgu’s
let {J1 —Cruerry Jm — Cm} be the set of clauses of P whose head unify with J.
cl and then J in t~he resulting clauses, will lead to the following program:

J{di;: (A« B;,C;.) 11)}

vgu(J:, J;). Here some of the clauses d; ; may be missing due to the fact that J¢;
unify, but this is of no relevance in the proof.

: clauses d; ; are the only clauses of P’ whose head could possibly unify with A.
H,JY\Var(A) be the set of variables local to the body. We have to consider two cases.
in <I>TP°‘+1. By the definition of ®p, (3§ H,J)0 is true in @}a. There has to be an
8, Dom(c) = Dom(§)U§ = Var(A, H,J) such that (H,J)o is true in ®L*. Let
P - é’j be the clauses used to prove, respectively, Ho and Jo. Hence there exists a
T|pom(e) = 0, Ho = H8; 7, Jo = J;0;;7, and (B;, C;)0; ;7 is true in @L‘I_l. By
1 ¢ 17" hence (B;,C;)6;,;7 is true in 311 1t follows that A6; ;7 = Ao = Af

result is stated for the usual two-valued program’s completion. By looking at the proof it is straight-
hat it holds also for the three-valued case

f the transformation 11

ie in @TO‘H By the definition of ®p, (3§ H, J)0 is false in QT Hence for all extensions

1at Dom(a) Dom(0)U§ = Var(A, H, J), we have that (H, J)o is false in QT
1such o’s, and for all i, j and 7 such that 8; ;7| pom(s) = 0, Ho = H;b; ;, Jo = J;0; i7,

Bi,C;)0; ;7 is falsein ®5° . By Lemma 4.1, 31*~! C 817", hence (B;, C;)f; ;7 is false
-e the clauses d; ; are the only ones that define A in P', we have that A46; ;7 = Ao = A

iplete the proof, we have to observe two facts:

.if we perform some further unfoldings on the resulting clauses, then we can only “speed
ss of finding the truth value of A. In fact, by the same kind of reasoning used above, if
@},‘3‘, and P" is obtained from P’ by unfolding some atoms in the bodies of the clauses
some 3 < a, Af is truein 31 P

1at if ¢l contains just one atom, or more than two atoms, then the exact same reasoning
||

cement operation

-ove the correctness of the unfold/fold transformation schema we will use (a simplified
e results in [BCE92, BCE93] on the simultaneous replacement operation.

qment operation has been introduced by Tamaki and Sato in [TS84] for definite programs.
it consists in substituting a conjunction, C, of literals with another one, D, in the body

imultaneous replacement consists in substituting a set of conjunctions of literals {C’l, .
other corresponding set of conjunctions {Dl, n} in the bodies of the clauses -of
ere each C; represents a subset of the body of a cla.use of P and we assume that if ¢ # j
CJ do not overlap, that is, they are either found in different clauses or they represent
ts of the same clause.

he fact that each C; may occur in the body of only one clause of P is not restrictive, as
C; and C ; may actually represent identical literals.

ve a simplified version of the applicability conditions introduced in [BCE92, BCE93] in
‘e the preservation of the semantics through the transformation. Such conditions depend
tics we associate to the program. Our first requirement is the semantic equivalence of
and the replaced conjunctions of literals.

.4 (Equivalence of formulas) Let E, F be first order formulas and P be a normal

sivalent to E wrt Fit(P), F ~p E, if for each ground substitution 6
-ue (resp. false) in Fit(P) iff F0 is. a

F ~p Eiff Fit(P) E Y(F & E).

5 Let P be the program in Example 3.2. We have that
fed) ~p 3X,Y min(Xs, X) A maz(Xs,Y) A Med = (X +7Y)/2 O

r respects, and with some caution, two equivalent (conjunctions of) literals can be used
sly; for example, if g is a new predicate we want to give a definition to, and we know that
. defining ¢ by introducing the new clause g «— A is, from Fitting’s semantics viewpoint,
doing it by introducing g «+ B.

t the formula in Example 4.5 we had to specify X and Y as existentially quantified
hen we want to replace the conjunction C with D, in the clause ¢l the first requirement
licability conditions is the equivalence of 3z C a.nd 3% D, where % is a set of “local

R

is, variables which appear in c and/or D, but which do not occur anywhere else in
we are transforming. The equivalence is required as it would make no sense to replace
1g which has a different meaning. Unfortunately this is not enough, in fact we need the
old also after the transformation. The equivalence can be destroyed when D depends
case the operation may introduce an infinite loop.

rove that no fatal loops are introduced, we make use of a further concept. Here we
osed) formula G is defined in the interpretation I, if the truth value of G in I is not

(not-slower) Let P be a normal program, E and F be first order formulas. Suppose
Ve say that

lower that E if for each ordinal o and each ground substitution 8:

fined in 1%, then F0 is defined in ‘I‘}f‘ as well. O

ilower that E if, for each 8, computing the truth value of F'@ never requires more
:omputing the one of £f. In a way we could then say that the definition of F is at
as the one of E.

: Theorem shows that if the replacing conjunctions are equivalent to and not-slower
:d ones, then the replacement operation is correct.

Let P' be a program obtained by simultaneously replacing the conjunctions {C1,...,Cn}
1.} in the bodies of the clauses of P. If for each Cj, there exists a (possibly empty)
Z; such that the following three conditions hold:

f~the variab!es in &]. #; is a subset of the variables lo~cal to é’i and I~),-, that is,
(C:) UVar(D;) and the variables in #; don’t occur in {Ds,...,Di—1,Dit1,..., D0}
iere else in the clause where C; is found.

ce of the replacing and replaced parts]. 3z; D; ~p 3%,C;
wre not-slower than the C;’s]. 3%; D; is not-slower than 3%; C;.
Tit(P').

1 particular case of Corollary 3.16 in [BCE93]. o

e will need in the sequel is the following.

.8 Suppose thaf A« C, E is a clause of P and that P’ is obtained from P by replacing
:h a way that the conditions of Theorem 4.7 are satisfied (so that Fit(P) = Fit(P')).
that A is true (resp. false) in ®L then A is true (resp. false) in ol

. consequence of the fact that the replacing conjunction is not-slower than the replaced
| proof is omitted here, it can be inferred by analyzing the proof of Theorem 3.15 in
O

wide the proof of the correctness of the four step schema, we need to establish some
ary results. The first one states that the converse of A holds in any case.

9 Each time that 3% B0 is true in some @},f , then there exists a non-limit ordinal
Jw B is truein @L‘f.

f the transformation 13

>ws at once from the definition of Fitting’s operator. 0O

ag important transitive property holds:

4.10 Let P and P’ be normal programs, E and F' be first order formulas;

F and Fit(P) = Fit(P'), then E ~p' F. O
| provide the details of the proof.

ss of the four step schema

¢ the correctness of the four step schema. For the sake of simplicity we restrict our-
zase in which Step 1 introduces only one clause. The extension to the general case is
d.

P, be the sequence of programs obtained via the four step schema: P is the initial
the one that contains Dges. P2, P3 and Py, are the programs obtained by applying steps
h Step 4. In order to show that the Fitting’s models of programs Py, ... Py coincide, we
lows:

ectness of the unfolding operation, Corollary 4.2 we have that Fit(P;) = Fit(P;).

. some further unfolding on some atoms of Ps, obtaining a new program that we will call
Corollary 4.2 we have that Fit(P,) = Fit(Py,); then we produce a “parallel sequence” of
, P4, by applying the simultaneous replacement operation, miming, to some extent, the
‘ormation. By applying Theorem 4.7 we will show that Fit(P,,) = Fit(Ps.) = Fit(Py.).
show that programs Ps, and Py, are obtainable respectively from P; and Py by appro-
ing the unfold operation, and hence, by Corollary 4.2, that Fit(Ps) = F'it(P3,) and that
t(Py,). This will end the proof. Fig.1 illustrates both the original transformation and
juence.

Py = PU Dger
‘e Dges = {cp: H«—Bz}

P2=PUDunf PZu:PUDunf*
Dyns = {ci : A; « Ui, N;} where Dyngx = {c} ; : (Ai — Ui)¥i j» Di s}

P3:PUDfold > P3u=PUDfold*
Drola = {c} : Ai = U}, Ni} where Dyoigs = {¢} ; : (Ai — Uy j, Dij}

Py = Prola U Drola. — > Py = Prold U Dioldex
Dtoa = {c} : Ai « U}, N;} where Dotaes = {¢} ; : (Ai = U})vi 5, Di ;}

gram of the transformation (left) together with the “parallel sequence” (right).

Let us establish some notation: P;...P, are the programs obtained by applying
hema to program P, and ¢o : H « B. is the (only) clause added to program P in Step
ote by @ the set of the local variables of ¢;, @ = Var(B)\Var(H). For the moment,
: following restriction:

id of 4.3, we assume that B doesn’t contain negative literals.

ction 4.4, we will prove the general case.

quence of the fact that ¢p is the only clause defining the predicate symbol of H is the

11
EB; (]

P; is obtained by unfolding some of the atoms in B ,80 P, = PU{A; « ﬁi,Ni},
ns in N; are those that have not been unfolded during Step 1 (N stands for Not
: U for Unfolded), so]V,- is equal to a subset of an instance of B and each A; is an
We obtain Ps, from P by further unfolding all the atoms in each N;. We denote by
)7i5, Dij} the set of clauses of Py, obtained from clause ¢; by unfolding the atoms in

ctness of the unfolding operation, Corollary 4.2, we have that
= Fit(Py) = Fit(Py,) (4.2)
‘ollowing properties hold:

2
ho B;
slower than 3% B in Pa,.

bservation 4.11 we have that H ~p, 3w B. The first statement follows then from (4.2)
n 4.10. For the second, fix 8 and let B be the least ordinal such that Jdw Bf is true
,f .- The clauses defining the atoms in B are the same in Py, P; and Py, so 3% B is
e) in @;,‘f as well. From condition A and Proposition 4.9 we have that 3 is a non-limit
, by the definition of ®, Hf is true (resp. false) in (ﬂ,{: *+1 and, by Lemma 4.3 H6 is
e) in (ﬁ’f . ' O

P, is obtained from Ps, as follows.

»in Step 2 we performed a recursive folding on the clause c; : A; « BO,R;, N; of Py,
A; — HB, Ri,]\?i in P;. In the diagram we denote by ﬁ{ the conjunction of literals
the application of the recursive folding on the conjunction U; (so U; = B9,R; and

1en perform the following. In each of the clauses ¢; ; we transform (ji'yi, j into (foyi,j by
nctions of literals of the form Béry; ; with H6; ; wherever needed; we call the resulting
is easy to see that if we unfold all the atoms in N; in the body of clause c; in Ps,
ng clauses are exactly the ¢! . in Py, ; this is best shown by the diagram. Hence P;, is

1,]
1 P; by appropriately applying the unfolding operation. From Corollary 4.2 it follows

= Fit(Psy) (4.3)

"the transformation 15

v that Fit(Py,) = Fit(Ps,). First we need the following.

4.13 Let Q be a program, A, B be atoms and § be a set of variables, such that
1ippose also that 7 is a renaming over § and that for each variable z that occurs in A or
7, Var(zn) N Var(yn) = 0. Then :

(gm) Bn

itforward. a

lts from unfolding the atoms in N;, we have that Dom(v; ;) N Var(c;) C Var(NV;).
conditions on @ in Step 2, Dom(v; ;) N w0 = 0 and @hvy; ; = ©b; so Ov;,5 is a renaming
1e variables in w6vy; ; do not occur anywhere else in ¢; j. From Observation 4.12 and
13 we have that

Pru 3(@0%:,5) BOYj;
; not-slower than 3(@87; ;) BOv;; in Pau.

ined Ps, from Ps, by simultaneously replacing conjunctions (of the form) Bo»y,-,j with
eorem 4.7

he following properties hold:

14
Jw B;
~slower than 3% B in Ps,.

st statement follows from Observation 4.12, (4.4) and Proposition 4.10. For the second
. going from Py, to Ps, we have affected only clauses that define the predicate new,
sther predicates definition depends on these clauses, in particular the atoms in B are

rom them, hence, since H is not-slower than Jw B in P,,, the statement follows from
8. a

Pyis obtained from P by transforming some of the clauses of P of the form A «— BY,E
E.
at to obtain Py, from Ps, in such a way that Py, is obtainable also from P, by unfolding
the conjunctions N;.
«— B8, E be one of the clauses of P; that are transformed in Step 4. First note that
h to P; and Pi,, in fact d was already present it the original program P, and never
can then apply the same operations to the clauses of P3,. Observe that for the conditions
Step 4, and by Observation 4.14 we have that

L15
. I(wh) B
ot-slower than A(6) BO in Ps, o

iice that in case that d was used as unfolding clause for going from P to Py, then some
36 were propagated into P3,. Using the notation of the diagram, this is the case when
P,) is of the form A', F; where A and A’ are unifiable atoms, then one of the D, ; (in

: form ﬁi,j = (B,Fi)e’. However, if we unfold N; in Py, what we get is D:] = H¢', F;,

instead of B@'. By the same argument used for 87, ; in 4.3, we have that

'6

I(wo") BE' ,

-~slower than 3(w6') BE' in P, o
o obtain Py, from P;, we have then to do two things: First, replace BO, gvith the
HO in all the clauses d that are transformed in Step 4. Second, replace B#' with
so that Py, contains Dj ; instead of D; ;. This tantamounts to the application of a

placement.
ons 4.15 and 4.16, and Theorem 4.7 we have that

= Fit(Py,) (4.5)
. is obtainable from P, by unfolding all the atoms in the conjunctions N; in the clauses
ar. Hence
= Fit(Pyy)- (4.6)
se of (1), (2), (3), (4) and (5), we have the following
.17 If condition A holds and B does not contain negative literals, then
s Fit(Py) = Fit(P3) = Fit(Py) O

l case
prove Theorem 3.4. Let us state it again.

Let P1,..., Ps be a sequence of programs obtained applying the transformation schema
Let also Dger = {H; + B;} be the set of clauses introduced in Step 1, and, for each i,
'local variables of ¢;: W; = Var(B;)\Var(H;). If each ¢; in Dg,r satisfies the following

at Jw; B;6 is false in some @}f , then there exists a non-limit ordinal o < 8 such that
i false in @L‘:

- Fit(Py) = Fit(Py) = Fit(Py).

sider here the simplified case in which Step I introduces only one clause which in turn
1e negative literal in the body, i.e. Daes = {co : H « —l(§), B'}. The generalization to
siple clauses and multiple negative literals is straightforward and omitted here. Notice
vned no negative literals, then the result would following directly from Proposition

rm a double transformation on P : first, we enlarge it with the following new definition:
(§); then, we replace each instance —I(f) of I() that occurs in the body of a clause with
ng instance notl(f) of notl(§). This replacement operation clearly preserves Fitting’s
ograms, in fact it can be undone by unfolding. Let us call P| the program so obtained.

= Fit(P])|s,, (47)
Bp, denotes the restriction of F'it(P]) to the atoms in the Herbrand base of P;.
ains, instead of clause cp, the following: ¢ = H « notl(ﬁ),B’ . ‘which is a definite

hat, since the unfold operation is defined only for positive literals, then —(7) is never
transformation P ... Py. It follows that, by performing the same operations used for
o P4, we can obtain another “parallel sequence” P ... P, that starts with program Pj.
guments used to prove (4.7), we have that, for i € [1...4],

REFERENCES 17

Fit(Pi) = F"I:t(PiI)IBP1 (4.8)
Moreover, by Proposition 4.17,
Fit(P]) = Fit(Py) = Fit(P;) = Fit(Py) (4.9)
From (4.8) and (4.9) the thesis follows. |
REFERENCES

[AAP78] L. Aiello, G. Attardi, and G. Prini. Towards a more declarative programming style. In
E. J. Neuhold, editor, Proc. of the IFIP Conference on Formal Description of Programming
Concepts, pages 121-137. North-Holland, 1978.

[AD92] C. Aravidan and P. M. Dung. Partial deduction of logic programs w.r.t. well-founded se-
mantics. In H. Kirchner G. Levi, editor, Proceedings of the Third International Conference
on Algebraic and Logic Programming, pages 384-402. Springer-Verlag, 1992.

[AD93] C. Aravidan and P. M. Dung. On the correctness of Unfold/Fold transformation of normal
and extended logic programs. Technical report, Division of Computer Science, Asian Institute
of Technology, Bangkok, Thailand, April 1993.

[Apt90] K.R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B: Formal Models and Semantics. Elsevier, Amsterdam
and The MIT Press, Cambridge, 1990.

[BC93] A. Bossi and N. Cocco. Basic Transformation Operations which preserve Computed Answer
Substitutions of Logic Programs. Journal of Logic Programming, 16(1&2):47-87, 1993.

[BCE92] A. Bossi, N. Cocco, and S. Etalle. Transforming Normal Programs by Replacement. In
A. Pettorossi, editor, Meta Programming in Logic - Proceedings META 92, volume 649 of
Lecture Notes in Computer Science, pages 265-279. Springer-Verlag, Berlin, 1992.

[BCE93] A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal programs. Technical
Report CS-R9357, CWI, Centre for Mathematics and Computer Science, Amsterdam, The
Netherlands, August 1993. Available via anonymous ftp at ftp.cwi.nl, or via xmosaic at
http://www.cwi.nl/cwi/publications/index.html.

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs.
Journal of the ACM, 24(1):44-67, January 1977.

[Cla78] K. L. Clark. Negation as failure rule. In H. Gallaire and G. Minker, editors, Logic and Data
Bases, pages 293-322. Plenum Press, 1978.

[CS77] K.L. Clark and 8. Sickel. Predicate logic: a calculus for deriving programs. In Proceedings
of IJCAI’T7, pages 419-120, 1977.

[Fit85] M. Fitting. A Kripke-Kleene semantics for Logic Programs. Journal of Logic Programming,
2(4):295-312, 1985.

[GS91] P.A. Gardner and J.C. Shepherdson. Unfold/fold transformations of logic programs. In J-L
Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson.
MIT Press, 1991.

[Hog81] C.J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372-392, April 1981.

[KK90] T.Kawamura and T. Kanamori. Preservation of Stronger Equivalence in Unfold/Fold Logic
Programming Transformation. Theoretical Computer Science, 75(1&2):139-156, 1990.

[Kle52] S.C. Kleene. Introduction to Metamathematics. D. van Nostrand, Princeton, New Jersey,
1952.

[Kom82] H.J. Komorowski. Partial evaluation as a means for inferencing data structures in an applica-
tive language: A theory and implementation in the case of Prolog. In Ninth ACM Symposium

R,

A

REFERENCES

nciples of Progmmming Languages, Albugquerque, New Mezico, pages 255267, 1982.
Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second

Lloyd and J. C. Shepherdson. Partial Evaluation in Logic Programming. Journal of
’rogramming, 11:217-242, 1991.

[aher. Correctness of a logic program transformation system. IBM Research Report
96, T.J. Watson Research Center, 1987.

ietti and A. Pettorossi. Unfolding, definition, folding, in this order for avoiding un-
xy variables in logic programs. In Maluszynski and M. Wirsing, editors, PLILP 91,
, Germany (Lecture Notes in Computer Science, Vol.528), pages 347-358. Springer-
1991.

». Equivalence-preserving first-order unfold/fold transformation system. Theoretical
ter Science, 105(1):57-84, 1992.

i. Unfold/fold transformation of stratified programs. In G. Levi and M. Martelli,
, 6th International Conference on Logic Programming, pages 554-568. The MIT Press,

. A comparative study of the Well-Founded and Stable model semantics: Transfor- -
’s viewpoint. In D. Pedreschi W. Marek, A. Nerode and V.S. Subrahmanian, editors,
wp on Logic Programming and Non-Monotonic Logic, Austin, Texas, October 1990,
15-123. Association for Logic Programming and Mathematical Sciences Institute,
. University, 1990.

. Unfold/fold transformation of stratified programs. Theoretical Computer Science,
07-139, 1991.

. Unfold/fold transformation of general logic programs for the Well-Founded seman-
wrnal of Logic Programming, 16(1&2):5-23, 1993.

naki and T. Sato. Unfold/Fold Transformations of Logic Programs. In Sten-
rnlund, editor, Proc. Second Int’l Conf. on Logic Programming, pages 127-139, 1984.

