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n the Determination of the Stationary Distribution of

a Symmetric Clocked Buffered Switch
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Abstract

; of a symmetric clocked buffered switch leads to the study of a nearest neighbour random walk on
| the first quadrant. The bivariate generating function of the stationary distribution of this random
be obtdined as a solution of a functional equation of a type which frequently occurs in the analysis
nce models. In this study it is illustrated that the functional equation for the present model can be
simply by using elementary properties of meromorphic functions.
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ION
ies a stochastic model for the symmetric clocked buffered switch. The stochastic model

tually a special case of the symmetric random walk z, = (Xn,¥n), n =1,2,..., on the
oints with integral-valued, nonnegative coordinates and with structure described by:

.y

&G — 1T+ €,
(1.1)
in— 1T +n,;

n=0,1,2,..., is a sequence of i.i.d. stochastic vectors with state space {0,1,2,...} X
d with &,,,7,, exchangeable variables for every n.

=E{ptq™}, <1l <1, (1.2)
nmetry implies

=¢(g,p), IPI<1, gl <1, (1.3)

odel discussed in [1] ¢(p, q) is given by

1
=[l-a+a(p+ 9]}, 0<a<l, (1.4)
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2,m, =2} =0,
2,m,=1}=0 (1.5)

1,m,=2}=0.

idom walk z is a nearest neighbour random walk for which the one-step transition
> the North, to the North-East and the East are all zero.

tric random. walk 2, cf. (1.1), has been analysed extensively without specifying the
rating functions ¢(p1,p2) in {2] and, consequently, it requires a rather complicated
| it has been shown that a simpler analysis is available for the case that the z,-process
ighbour random walk with the property (1.5). However, the random walk z, defined
cial case of those studied in [3], and it will be shown in the present study that the
2 again simplified. We shall illustrate this for the random walk z,, described above, so
+ easily compared with that in [1], see also [4] where an analogous approach has been

ted here that our present analysis can be easily extended to asymmetric random walks
L) which are nearest neighbour random walks with the property (1.5); in particular this
model of the asymmetric clocked buffered switch as studied in [7].

we formulate the functional equation for the bivariate generating function ®(p,q) of
distribution of the inherent random walk z,,, n = 0,1,2,..., which is assumed to be
ent, cf. {2.3). From this functional equation we derive the equation for the functions
0,q), cf. (2.12). Theorem 2.1 formulates the explicit expression for these functions and
) can be readily obtained from (2.3). Section 3 provides the essential part of the proof

nt study we shall refrain from a further analysis of the bivariate generating function
ilysis can proceed along the same lines as in [1], [4] and [6], because our main purpose
elopment of a simple analysis of the functional equation (2.3) which is of a type that
ccurs in the study of nearest neighbour random-walks.

Jaffe analysis the functional equation (2.3) for ®(p,q) in [1] by using an automorphic
in [6] by applying the approach developed in [2]. In this analysis he implicitly assumes
rity of ¢(p,0)®(p,0) in |p| < 1 implies that of ®(p,0) in |p| < 1. In general this is not
e correctness of his results may be questioned. However, it may be shown directly from
esquation that indeed [®(p,0)| < co for p a zero of ¢(p,0), cf. (3.10). With the addition
nt it is readily seen that the derivation of the solution of the functional equation as
1 [6] is correct. O

‘TONAL EQUATION

alk z, defined in the preceding section possesses a unique stationary distribution be-

1, (2.1)

t the z,-process is positive recurrent.

:nt is readily proved by using the general ergodicity conditions as described in [5],

: a stochastic vector with distribution the stationary distribution of the random walk




=E{p"¢’}, <1 ol <1 (2:2)
follows, cf. [2], section I1.2.16, that for: |p| < 1, g £ 1,

p (e, = (1 (1 - [6(0,020,0) - 22 Da5,0) - L2000 23)

is of the functional equation (2.3) we need some properties of the zero tuples (3,4) of

usly well defined for all p and g, cf.(1.4).

shown by using Rouché’s theorem, cf. for a proof [3], Lemma A.2, that the kernel
is a biquadratic form in p and g has for fixed p two zeros g; and ga with the property

p| <lga] for [pl21,p#1, (2.5)

(), g = ¢2(p);

(q) and p2(g) are defined. It is also readily verified that the only branch points of ¢1(p),
s of go(p), are given by

2a
d = 1. .
an P=17a < (2.6)
f2—a 2
= 1: 112(1) = ( a ) > 11 (27)

1s only one zero p = py, this zero has multiplicity two,

—2a7Y, qi(po) =0, @a(po) = 8a~%(a—1) <0, (2.8)

2
(—o0,-1) for 0<a<§,

2
[-1,0) for 3 <a<l1.



4

Obviously, K(p,q) = 0 with p and g real is a hyperbola with center (p,, ¢.) and asymptotic directions
given by

_ _ a

pc“"]c—l_i_a;
. . ) (2.9)

f==2-ad®+2v1-a?=|-{1£V1-0a?}| ,
a? a

note that
1

6::—15[2—a2+2\/1—a2]>1, 0<a—2[2—a2—2 1-a?] <1 (2.10)

a

Note that the axis ¢ = 0 is a tangent of the hyperbola at p = py, similarly p =0 at ¢ = pg = 2— 2471,
so that the left branch of the hyperbola lies in the third quadrant.

From the definition of the bivariate generating function ®(p, q) of the stationary distribution of the
positive recurrent z,-process, cf. (2.1), it follows that

i. ®(p,q) is for fixed ¢ with |g| < 1, regular in [p| < 1, continuous in |p| < 1, analogously with p and
q interchanged, and its double series expansion in powers of p and ¢ has nonnegative coefficients,
(2.11)

i. |®(p,g) <1 for |p| <1, gl <1,
3(1,1) = 1.

Let ($, ) be a zero tuple of K(p,q), |p| <1, |g| < 1, that is K(p,§) = 0, then it follows from (2.3),
and (2.12) that

¢(p, 0) ¢(0 q)

‘1’( ,0) + <I’(0, q) = $(0,0)%(0,0), p#1, §# 1, (2.11)

ii. ®(p,0)is regular in |p| < 1, continuous in |p| < 1, similarly for ®(0, q),
iii. the coefficients in the series expansion of ®(p, 0) in powers of p, |p| < 1, are nonnegative, similarly
for ®(0,g). Note that the symmetry, cf. (1.3) implies

Q(p, 0) = @(O,p), ‘pI <1 . (2'13)’

Further we have

1—-a

(2.14)

if. 0<®(0,0)<1

To prove (2.14) take p = 1 in (2.3), divide the resulting relation by 1 — ¢ and let ¢ — 1, then (2.14)i
follows by using ®(1,1) = 1. Since the z,-process is positive recurrent (2.14)ii should hold.

The relations (2.12), (2.13) and (2.14) describe the conditions to be satisfied by ®(p,0). In the next




all describe the construction of the solution of the functional equation (2.12)i satisfying

sequences, see (2.15) and (2.18).

1ce

=0,1,2,... (2.15)
, cf. {2.5),

@ =1, ¢ =q@)=e1)=2-a0? (2.16)

Q2(p:-—1) :p: zpz(q;l;—-l)a n= 1v27-"a

gt ) =0, pf>qt,,

(2.17)
15) =0, ¢ >pi_;.
nce
=0,1,2,..., (2.18)
, cf. (2.8),
2—2a71, g7 =q(py) =8(a—1)a"3, (2.19)
P2(dn_1) =00 = @(Pry1)y =123,
'n=1,2,3,...,
9n-1) =0, |p7]>lgn_l;

(2.20)
182) =0, lg;|> |pn_al-
ly seen from (2.10), (2.16) and (2.19) that
<pf <pd <., (2.21)

0 >PL >Py >

+ —_
Prtl _ jim Pntl 551,

Pn no0 P

1. For 0 < a < 1 the function ®(p,0) is a meromorphic function of p and



-2 Ma-27

l1-a n=1 Pn’ p21

. 2.22
=2 fla-2) fla- 2 o
1 P’ p=i Pan

3(p, O) = @(O,p) =

n=

The essentlal part of the proof of this theorem is given in the next section. Here we show that the

From (2.21)ii it is readily seen that the infinite products in (2.22) all converge absolutely and that
the poles and zeros of the righthand side of (2.22) have no finite accumulation point. Consequently,
this righthand side is a meromorphic function, which is regular for |p| < 1 and continuous for |p| < 1,
because all its poles p} satisfy |p}| > 1, so (2.12)ii is satisfied. Further (2.12)iii is also satisfied since
the p;; are negative and the p; are positive. Further (2.14) is seen to hold (take p = 1 in the righthand
side of (2.22)).

3. PROOF OF THEOREM 2.1.
From the last paragraph of the previous section it is seen that for the proof of theorem 2.1 it remains
to-show that ®(p,0) as given by (2.22) satisfies (2.12)i. To do so take in (2.12), cf. (2.5),

q = ql(p)1 ﬁ =P with Ip! =1, p 75 1, (31)
so that
22.08(5,0) + §2L B 3(0,4,(0)) = #(0,0)2(0,0). (3:2)

The points p = 0 and p = 2a(l + a)7!, cf. (2.6), are the only branch points of g;(p), and so it is
readily seen that ¢(0,¢;(p)) and 1 — ¢;(p) are regular in {p: |p| < 1}\G with

G:={p: 0<|p| <2a(1+a)7'}. (3.3)

Because ¢(p), 1 —p and ®(p,0) are regular in |p| < 1, continuous in [p| < 1, it follows that the second
term in (3.2) can be continued analytically into {p : |p| < 1, p # 1}\G and that the principle of
permanence implies that for this analytic continuation (3.2) remains valid. Because of the continuity
of the first term in (3.2) it follows that (3.2) also holds for a point $ € intG, if p approaches p from
above, i.e. Imp > 0, or from below, i.e. Imp < 0; but then the second term in (3.2) takes in p = the
conjugate value. Hence, since

q1 (ﬁ) = lh(ﬁ),
and p is real it follows readily that: for p = p,

#e, )@( 0)+ 282040 1, 5)) = 4(0,008(0,0). (3.4)
—q2 (P)

The relation (3.3) can again be continued analytically out from point p € intG into |p| <1, p # 1,
and this leds to: for |p| <1, p # 1,




(0, 92(p))

———q;(i’ (;) ®(p,0) +

Analogously we have: for |[¢| =1, ¢ #1,

800 4(0,6) + 4220 Da(03(3),0) = 6(0,0)9(0,0), ®8)
qi((f ?1) ®(0,q) + ¢1(p—1 ;ql)(’q(;) ®(p1(9),0) = 4(0,0)%(0,0). (3-7)

Because |g2(p)|] > 1 for |p| = 1, it follows from the analytic continuation above, which has lead to
(3.4), that ®(0, g) is regular for, cf. (2.5),

lg] < 62 := lmllpl lg2(p)], (3.8)
p =

note that 6 > 1.

From this, from the fact that py(g) has no branch points in |g| > 1, and from |ga(p)| > 1 for [p| =1,
p # 1, it follows by using (3.6) that ®(p2(g),0) can be continued analytically for all those q satisfying
(3.8) except for those g for which pa(g) = 1; here ®(p2(g),0) then has a pole. Since pa(g) = 1, has
a simple zero, at gi, cf. (2.16), it is seen that pj = pa(g{) is a simple pole of ®(p,0). Hence,
since |p2(q)] > |q| for 1 < |g| < &2 it follows that ®(p,0) can be continued analytically into |p| > 62,
|p| # ps. For this continuation it is then seen that ®(0,q) should have a simple pole at that ¢ for
which ¢ = ga(py), i.e. ¢ =¢7 and so it follows from (3.6) and (3.7) that ®(p; (g),0) has a simple pole
at pf = pa(q3), cf. (2.16). By repeating the arguments used above and by using the symmetry, cf.
(2.13), we have:

®(p,0) has a unique analytic continuation in |p| > 1, except for p = pr, n=1,2,..., where it has
simple poles. (3.9)

Next we consider the zero p = pp of ¢(p,0), cf. (2.8), and we show that
0 # |®(pp,0)| < 0. (3.10)

Since p; = po is a zero of multiplicity two of K'(p,q) = 0, cf. (2.8), we have

dgi(p)

dp =0, qpo)=0. (3.11)

P=po

It follows that: for p ~ pg,

2
q(p) = %(P —Po)z {:—pzlh(P)}

"P=Po

+o((p — po)*); (3.12)

. 2
80,0 = 2= m { g500.0)) = —5(—m)e

P=PpPo




2): for g ~ 0,

0,q) — (1 - q)¢(0,0)%(0,0) = ‘ (3.13)

+ $(0,0)2(0,0)] + O(g*)-
g=0

d

d
0,0)—&(0,
+60,07:2(0,0

g=

2), (3.11), (3.12) and (3.13): for p1 — po,

&x9(p,0)

dp?

g=0

+ ¢(0a O)dil(ié(()? q)

P=po

2)iii, (2.14)ii and (3.14),

d2
>0 and a—p—qu(p) #0,

P=po

d
> Oa d_qQ(O’ q)

q=0

o and ¢(pg,0) = 0, it follows from (2.19) and (3.4) that ¢ = g; is a double zero of

=gy, i.e. pa(q) = p5, cf. (2.19), then (3.15) implies, since ¢2(p3,0) # 0, that:
\as a zero of multiplicity two at p = p; . (3.16)

19), (3.7) and (3.16), g5 is a zero of multiplicity two of

'(0,9) — $(0,0)2(0,0),

ollows that ps is a double zero of

>y noting that ®(p,q) is regular for p # p} and that p; # p}, for all n and m, that

has zeros of multiplicity twoat p=p,,,, n=12,..., (3.17)

'(p,0) — ¢(0,0)2(0,0) (3.18)




osatp=p5, ¢, n=12,...

it follows that ®(p,0) is a meromorphic function, since its poles pt,n=1,2,..., have
nulation point. Also its zeros ps,, have no such point. Consequently the function

Ho-& Ha-2r

_n=1

. 2= = C (3.19)
- -2

3

zero constant satisfies the relations (3.2) and (3.5), since a meromorphic function, for
| of the inverses of its poles p} and also that of the inverses of its zeros p,,, both converge
aniquely determined apart from a constant factor. Hence it is given by (3.19); note that
as multiplicity two. Because p} > 1 it is seen that w(p) is regular in |p| < 1, continuous
lecause the z,-process is assumed to be positive recurrent there is only one function
satisfies (2.3) and (2.11). Hence there is also one function ®(p,0), note (2.13), which
). Hence, there is only one function ®(p,0) = (0, p) which satisfies (3.2) and (3.5), or
3.6) and (3.7). Note that the principle of permanence implies that (2.12) is equivalent
3.5). Consequently, the proof of theorem 2.1 is complete.
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