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Abstract

An alternative definition of branching bisimulation as a strong equivalence is proposed. It permits taking
advantage of known efficient proof techniques for checking equivalence of finite labelled graphs and throws
light on the nature of branching bisimulation equivalence. Branching bisimilarity of two labelled graphs with
silent moves is established by considering their corresponding rigid (without silent moves) graphs with labels
on both arcs and nodes (these are labelled by families of rigid graphs) and proving their strong equivalence.
An adaptation of Paige and Tarjan partition algorithm leads to the lowest known time complexity algorithm for
checking branching bisimulation.
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1. INTRODUCTION

Behavioural equivalences play an important role in the description of the operational semantics of
concurrent systems. These equivalences are means for abstracting from the irrelevant details intro-
duced when describing systems as sets of states that evolve by performing actions, i.e. by means of
labelled transition systems. There are various opinions about which features of a system are relevant
for a given purpose, and hence various notions of equivalence for labelled transition systems have been
proposed: [4], [6] and [7] give comparative accounts.

One of the best known behavioural equivalence is observational equivalence [11]; it leads to considering
two systems as equivalent whenever they can perform the same sequence of actions to reach obser-
vationally equivalent states. Observational equivalence is called strong when all labels of transitions
are considered as visible and weak when some (internal, invisible) actions are ignored. Both these
equivalences rely on the existence of a bisimulation that contains equivalent processes. Bisimulations
are binary relations over dynamic systems that are closed under transitions, in the sense that they
contain only pairs of systems that can evolve to bisimilar pairs via equal transitions [13]. The notion of
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2. Basic Definitions 2

bisimulation has proved of fundamental importance for working with structures used to describe non-
deterministic systems. It leads to structural equivalences that naturally take the branching structure
of systems into account and, due to the associated proof techniques, can be efficiently verified.

Strong observational equivalence has been generalized to systems with silent moves also in other
ways. One of its most popular alternative generalizations is branching bisimulation egquivalence [8].
This considers two systems as equivalent only if every computation, i.e. every sequence of (visible and
silent) actions and states, of one system has a correspondent in the other; corresponding computations
have the same sequence of visible actions and are such that all their intermediate states have equivalent
potentials. Now, both weak and branching bisimulation equivalence ignore T-actions, but they treat
intermediate states accessed via 7 tramsitions differently: branching bisimulation requires that all
intermediate states be equivalent to either the start or the finish state of the weak visible transition,
whereas weak bisimulation does not constrain them. These two equivalences, then, lead to different
identifications, putting a different stress on the branching structure of processes; with branching
bisimulation being more demanding than weak observational equivalence.

If one wants to use process algebras as verification tools, proving efficiently (strong, weak, branching)
bisimulation equivalence of tramsition systems is of fundamental importance. Indeed, one can use
process algebras terms to provide different descriptions of a given system and establish correctness by
proving equivalence of the descriptions under certain observational assumptions. Efficient algorithms
have been proposed for checking strong bisimulation equivalence that are based on the partition re-
finement algorithm known as Relational Coarsest Partition (RCP), [10, 12]. The efficientest one is
of Paige and Tarjan and it has an O(m.logn) time complexity where m is the number of transitions
and n the number of states. The very same algorithm can be exploited to prove weak observational
equivalence by first using a transitive closure algorithm to compute a new transition relation that “by-
passes” silent transitions and then applying the RCP algorithm to the new transition system without
silent transition that we call rigid. The most efficient known algorithm for branching bisimulation is
that of [9], as an adaption of the Kanellakis and Smolka algorithm, and has a O(m.n) time complexity.

In this paper we propose an alternative definition of branching bisimulation as a strong observational
equivalence over rigid labelled transition systems whose states are decorated by additional information
(sets of rigid graphs). This characterization will enable us to use a variant of Paige and Tarjan
algorithm to check branching bisimulation and to offer lowest time complexity algorithm for this.
Branching bisimilarity of two labelled graphs is established by considering their corresponding rigid
graphs with labels on both arcs and nodes (these are labelled by families of rigid graphs) and proving
their strong equivalence.

The alternative characterization has also the effect of throwing additional light on the nature of
branching bisimulation and of showing how by varying the type of information associated to the states
and the requirements on it new equivalences tailored to the specific application can be obtained.

2. Basic DEFINITIONS
We start by setting standard definitions and notations for labelled transition systems and bisimulation
equivalences. We will mainly rely on the notational conventions of [5]-

2.1 Labelled Transitions Systems

We consider a set of labels A of visible actions ranged over by a,b,... We let 7 be the distinct internal
action not belonging to A and write A, for AU {r}, this will be ranged over by u,v,... Moreover we
write A for AU {€}, and use ¢, «, ... to range over it. For any set L, we use L* to indicate the set of
finite sequences over it; 1L denotes the empty string; L+ is the set L* without the empty string.

Definition 2.1 A (finite) labelled transition system (LTS) is a structure
§ =< @, Ar,q0,—>, where Q is a set of states, qo € Q is the initial state and —¢ (@ x A, xQ)



2. Basic Definitions 3

i3 a (finite) set of (labelled) transitions.

As usual we write ¢ —— ¢' for (g, 1, ¢') €E—. We define the following projections over transitions:
alg, 1, 9") = ¢,8(q, 1, ¢") = ¢', M, 1, ') = . We also use the following abbreviations:

out,(q) = {g' | ¢ = g'}out(q) = |J outu(a)sinu(e) ={¢' | ¢ > ahin(e) = | inu(a)
BEA, pEA,

An lts is called rigid if it has no T-transition. It is called T-clean if it has no T-cycle.
Notation 2.1 We note —> the relation defined as:

e p==¢qiff Ipo,..., P> 0,p=pPo — ... —> P =gq.
e Va€ A,p==>q iff 3p1,p2,p = p1 — P2 => q.

For s = 81...85 € A% (resp. AY), =5 =5 2% (resp. = == .. =5).

In the following, we work with a fixed lts S =< @, A, go, —+>, except when differently stated. We
shall often use the notion of runs that we formally define as:

Definition 2.2 A sequence (po, @o,p1)" - - (Pn—1,n—1,Pn) E—" is called a path from po. A run from
a state p € Q is a pair (p, 7) where 7 is a path from p. We write rung(p) as the set of runs in S starting
from p and rung the set of all runs in S, ranged over by p, o, ... We extend projections of definition
2.1 to runs and introduce two mew onmes, as: for p = (p,(Po,@0,P1) - (Prn—1,8n-1,Pn)) We write
a(p) = povﬁ(p) = Pn, and if n > 0, )\(P) =01 °"0Qn, begin(p) = (PO, G'Orpl)r end(P) = (p'n—l’ a'n—lypn)-
Also A(p) as the string obtained from A(p) where all the 7’s are removed, and A.(p) as the string
obtained from A(p) where each non-empty sequence of 7’s is replaced by a single e. Moreover, states(p)
denotes the set of states appearing in p. Concatenation of runs is obtained by juxtaposition: pp’ is
defined if and only if 5(p) = a(p’). We extend the transition relations defined on states to runs, where
s € A* as:

pr——ps <= I}, M) =sAp2=pip}
pr==p2 <= I}, A(p}) =sAp2=prp}

2.2 Bisimulation Equivalences over LTS
Definition 2.8 A binary relation R € Q x Q is a bisimulation if and only if the following holds:

if p £ p' then 3¢' : (¢ 5 ¢') A (P'RY)

if pPRq th
if pPRq then { iquq, then Elp’:(pibp')/\(P"qu')

We write ~ for the largest bisimulation relation satisfying the conditions above. We call this strong
bisimulation to distinguish it from its weak variant () that relies on relation —>.

Definition 2.4 A binary relation R € Q X Q i3 a branching bisimulation if and only if the following
holds:

either p = 7 Ap'Rgq

or 3g1,¢' : (¢ == @1 = ¢'),pPRa1 A (P'R¢’)

either p = 7 ApRq’

or Ip1,p' : (p == p1 —— P'), PR A (P'Rq’)

if p - p' then {
if PRq then
if g 25 ¢' then {

We write ~p for the largest branching bisimulation satisfying the conditions above.
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As usual, two lts S; =< @1, 4,,q1,—1>, 8, =< Q2, Ar, g2, —3> are strong (resp. weak, branch-
ing) bisimilar, noted S; ~ S, (resp. S; ~ 832, 81 ~p S,) if and only if there exists a strong (resp.
weak, branching) bisimulation over the lts obtained by the the disjoint union of the sets of states
@1, Q2 and the sets of transitions —+1, —2, relating ¢, g.

Now we will show that strong and branching bisimulation are closely related by defining the latter
strictly in terms of the former. This shall be achieved by studying the réle of 7 actions and capturing
it in the new structures. The basic idea is that of collecting together all those states that can be
reached from a node via 7-steps and use this information when deciding states equivalence. We shall
formalize this by first introducing a graph transformation that, on one hand, “forgets” the r’s, (rigidity
transformation), on the other, decorates states with the set of states connected with them via silent
transitions. We shall then define an equivalence over transformed-decorated graphs that only requires
strong bisimulation.

3. A STRONG CHARACTERIZATION OF BRANCHING BISIMULATION

3.1 The Internal Non Determinism

Branching bisimulation puts significant stress on the nondeterminism originated by the presence of
T-moves. Here, we set up a formal framework to collect the information about this internal nondeter-
minism. We only consider LTS that do not have -cycles ( 7-clean). This is not restrictive, because
any lts has a branching bisimulation equivalent one that is 7-clean.

Definition 8.1 We define two projections le ft,right on runs, as:

Pl = p1y such that p = pp', A(p)) = 1L A A(begin(p')) # T otherwise.

. _ J e ifA(p)=1
right(p) = { pry such that p = p'p,, A(p,) = LA A(end(p')) # T otherwise.

Definition 8.2 Let p € Q. For all sequence s € A7, we write w(s) for the string obtained from s
where all the € are dropped out. We define the following sets:

{p € run(p), A(p) = w(s)}
{p € obs(p, 5) | Aend(p)) # T}
maz(p,s) = {p € obs(p, s) |out.(B(p)) = 0}
Literally, min(p, s) is the set of runs from p labelled by s such that their last transition is not a -

transition. Dually, maz(p, ) is the set of runs from p labelled by s such that, from their last state a
T-transition can not be performed.

obs(p, s)
min(p, s)

We define here some sets that carry structural information on the branching structure of LTS especially
that in correspondence of internal moves.

Definition 8.3 Let s € A%,

after(p) = states(right(p))

before(p) = states(left(p))

Post(p,s) = {after(p) | p € maz(p, s)}
Pre(p,s) = {before(p) | p € maz(ps)}

An example should help us in clarifying these notions.
Example 3.1 Take graph G displayed on figure 0.1. We have the following:

Post(0,a) = {{1,4}} Post(1,a) =0
Pre(l,e) = {{1,4},{1}} Pre(0,¢) =0
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Notation 3.1 Let R C Q@ x Q be any equivaleence relation over Q. [q]r denotes the equivalence classe
of g in R. For T € 29 and © € 22°, we write

Tlr = {ldrlgeT}

©Olr = {[T]r|T €O}
Tz = UTe
Teo

The following definition permits relating sets of states and sets of sets of states up to some equivalence
relation R on them.

Definition 8.4 Let ©1,0; be sets of states of Q. Let R be any (binary) equivalence relation over
Q x Q. We define the ordering relation <gr up to R between these sets of states as

01 <r ©; <= Vg1 € O1,3q; € O2,q1Rq.
This order leads naturally to an equivalence relation that we denote by =g:
012 0; < 01<r0:A0.>r 0
This relation is extended to sets of sets of states as follow:

Definition 8.5 Let T1,T; be sets of sets of states. We define the relation =r up to R between sets
of sets of states as
TiCrT: <= V01 €7,30; € 73,01 = O,

The underlying equivalence denoted as =g s given by:

T1=rT: <= ThCrR AT, Ir T,

The sets of sets of states we shall consider are the Pre/Post sets that we have introduced before.
The comparison of Pre/Post sets is the conditions that branching bisimulation requires adding to
the weak bisimulation scheme. We want to stress that these conditions are somewhat related to the
backward conditions required in the weak back and forth variant of bisimulation introduced in [5].

3.2 From LTS to Rigid LTS

We now define a transformation that starting from any lts yields a decorated rigid lts abstracting the
transition relation, while forgetting the internal moves and adding Pre/Post sets information to each
state.

Definition 3.6 We call rigy(S) =< Q., 4,gr0, —r, Pre, Post > the rigid lts (up to isomorphism)
obtained from S such that:

e There exists a bijection ¥ : Q@ — Q, where:
- 1/’(‘11‘0) = qo,
- g5 ¢ <= (B9 = ¥7H¢))
e Pre,Post:Q x Ac — 22° are the Pre/Post sets defined above.

By abuse of notation rig(q),q € @ stands for the rigid lts corresponding to the lts whose initial state
8 4.
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Figure 0.1: Rigidity transformation

Example 8.2 Graphs displayed on figure 0.1 are ezamples of rigidity transformation. The two graphs
G1 and G, have the same rigid graph called R.

Here we propose a first result about the rigidity transformation and weak bisimulation equivalence.

Proposition 8.1 Let p, q be two states of Q and rigy(S) its rigid lts. We have:

P~ g =>p~q=19%(p) ~ ¥(q)

Proof: P~y ¢ = p~ qis well known. Let R, be the maximal weak bisimulation over S and
consider the following relation over Q, x Q,:

R = {(¥(p),¥(9)) | (»,q) € Ru}

We claim that R is a strong bisimulation. Indeed, let (p, g) € R, and let p —, p’ for some a € A and
some p’ € Q,; if we let 5 = ¥ ~1(p),§ = ¥~'(q),# = ¥~(p'). By defnition, we have then 5 == 7'.
Since (p, g) € R, then (5,3) € Ry. So, we have 3¢',§ == § A (7, ') € Ry,. Thus if we let ¢’ = %(¢'),
then ¢ —, ¢’ and (¢', d) €ER. ]

The converse is naturally false. A counterexample is displayed on figure 0.1, where the two graphs
are not branching bisimilar but they have the same rigid graph.

This property gives us a sufficient condition on branching bisimilar states; this as a direct consequence
on the performed visible action of two equivalent states. We need to relate all the silently visited rigid
sub-LTS before a visible action is performed. This shall be more clear in the following where we
introduce definitions and notations to help formalization.

We propose an equivalence over rigid LTS, based on strong bisimulation enriched with the extra
comparisons of Pre/Post sets and prove that it coincides with branching bisimulation. We call it
r-bisimulation (for rigid bisimulation).

3.8 The Rigid Bisimulation
Definition 3.7 A (binary) relation ¢ C Q x Q is an r-bisimulation if and only if:
If pdq then

1. Va € A, (Post(p,a) =4 Post(q,a) A Pre(p,a) =4 Pre(q,a))

2.Va€ A ((p==7")= (3, 0=> ¢ AP'$0")) A (0 = ¢') = (3P, p =2 P’ AP'9d")))
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As usual, we denote by =~ the largest r-bisimulation. Also, two LTS S, Sy are r-bisimilar, denoted
S1 & S; ezactly when there ezists an r-bisimulation relating their initial states.

Remark 3.1 We have Pre(p,¢) = Post(p, ), since for any run p such that A(p) = 1, before(p) =
after(p).

The rigid bisimulation is defined over decorated rigid LTS. The first condition relates Pre /Post sets,
and considers all action labels, € included. The second condition considers only visible actions when
comparing state behaviors. The following proposition relates ~ to weak bisimulation; the result is

somewhat expected because the new definition has additional requirements on the 7-connected states
(internal nondeterminism).

Proposition 3.2
(pxq)=>(p~q)

Proof: We just have to show that
P=7)= (3 a=>d AP =7)

Suppose 3p', p == p' such that Vg', g => ¢' we have p'% ¢'. This implies that Post(p,€) # Post(g,¢),
contradicting the hypothesis p = gq. ]

However, ~ and ~ are not equal, as shown by the example of figure 0.1, where G; ~ G but G1# Gs.

Lemma 3.1
P~ ¢ = (Ya € A, (Post(p,a) =~, Post(q,a) A Pre(p,a) =., Pre(g,a)))

Proof: We prove this property by construction, showing that when p ~4 ¢, then for any action a €
A, for any p € obs(p, a) there exists o € obs(q, a) such that f(p) =., f(0), for f € {before,after}.
As we shall prove at the same time the symmetric case because ~ is symmetric, then the property
shall be proved.

Let a € A, and p € obs(p, a) such that

p=((p=po— ... pn, —pp ... pl, )
As p ~4 g, we know that Jo € obs(g, a) such that:
Lp=(0(@=0—"... g, g ... gl ))
2. Do ~b 90y Pn, ~b Gn,, V5,0 < i <1y, 35,0 < J < ng,pi ~p gj
3. D0 ~b 901 Pin, ~b I,y Vi, 0 < 4 < myp, 35,0 < j < my, pl ~p g
We derive from these remarks,

before(p) {Po, ..., Pn,} =~, before(c) = {go,...,qn,} from 1 and 2
after(p) = {por-.-,Pm,} =~, after(s) = {40, - -1, } from 1 and 3

a

The following lemma is known as the stuttering lemma for branching bisimulation. We prove it for
the rigid bisimulation.

Lemma 3.2 Let p be a run such that A(p) = € and a(p) = B(p). Then Vp € states(p), a(p) = p.
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Proof: Let p € states(p). If a(p) == ¢', for some a € A, then p == B(p) == o' A’ = ¢, because
a(p) = B(p). We have, for all a € A,, and for f € {Post, Pre}:

f(p: a) C f(a(P),a), since a(p) = D
f(B(p),a) T f(p,a), since p == B(p)
flalp),a) = £(B(p),a), since a(p) ~ B(p)
So f(p,a) = f(e(p),a). Thus, a(p) ~ p. O

Another useful lemma is the so-called X-lemma enjoyed by branching bisimulation, when expressed
as a weak back and forth bisimulation over runs [5], that we prove in our settings.

Lemma 3.8 Let px g, a € A, p € 0bs(p,a) and o € obs(g,a) such that before(p) = before(c). Let
p' € before(p),q’ € before(o) such that p' = (B(0),q' =~ B(p). Then p’ ~ ¢’ and B(p) = B(o).

Proof: =~ We just have to prove that p’' ~ ¢’. B(p) x B(c) comes then from the fact that ~ is an
equivalence relation. ‘

For all a € A, if p' = p" then as p' = ((c), there exists ¢",q' == B(oc) = ¢" Ap" ~¢". The
symmetric case holds in the same way. Now we have by the hypothesis, where a € A, and f €
{Pre, Post}:

f(B(p)ya) T f(#',a), since p' => B(p) (3.1)
f(dya) = £(B(p),a), since ¢' = B(p) (3.2)
f(B(e),a) T f(d',a), since ¢' = A(o) (3.3)
f(¥',a) = f(B(0),a), since p’ ~ B(c) (3.4)

From which we derive:

f(q') a) C f(pl7a')1 from (1) and (2)
f(@',a) T f(d',a), from (3) and (4)

That is f(p',a) = f(¢',a), thus p' ~ ¢’ o

Lemma 3.4 If p~ g then Vp € 0bs(p, a),a € A, 3o € obs(q,a) such that:
(B(p) = B(0)) A (before(p) = before(a)) A (after(p) = after(c))

Proof: By construction. Given a run p € obs(p,a) we construct a run o € obs(g,a) verifying
the conditions above in the following way: First, as p ~ g, we have Post(p, a) = Post(g,a). So if
we call po = left(p), we know that there exists o9 = left(o’) for some o’ € obs(g,a) such that
states(po) = states(oo). By the X-lemma 3.3, B(po) 2 B(00). As B(po) — a(right(p)), we have that
B(oo) — ¢' and a(right(p)) = ¢'. Let o1 = 0o(B8(v0), (B(c0), a, q')). As we have a(right(p)) = S(o1),
then there exists o, € 0bs(B(01),€) such that states(right(p)) = states(c;). We just let the run
0 = 0103. a

We state now the equality between ~ and ~;.

Theorem 3.1
PRQG <= D~ ¢
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Proof:
PRI<EP~Mm G

Since any branching bisimulation is also a weak bisimulation, we have Va € A.:
(p=>7)=> (3,0 == ¢' AD' ~s ¢')(and vice-versa)

This covers the conditions (2) of definition 3.7. Lemma 3.1 covers the condition (1) of that
definition.

PRg=p~ ¢
Let’s see what happen whenever p —— p’, for some p'.

1. Either a = 7 and p' & ¢: then the branching bisimulation condition is fulfilled.

2. Or, let p = (p,(p,a,p')). By lemma 3.4, 3o € obs(q, a), (B(p) = B(c)) A (f(p) =

f(0)), f € {before,after}. Let o = (g,(g == ¢')). Two cases:

(a) a = 7: in this case, before(p) = {p, p'} and let before(c) = {g = go,---,qx = ¢'}-
We have then Vi,0 < i < n,p= ¢; Vp' = q;. By the stuttering lemma 3.2, there
exists k,,0< k<1< n,Vi,0<i<k,p=xqV,k << n,p = q. This proves
branching bisimulation of p and ¢ in this case.

(b) @ # 7: in this case, before(p) = {p}. We have then Vr € before(c),p ~ r. Also,
as after(p) = {p'}, we derive Vr € after(c),p~ r. This completely proves the
branching bisimulation conditions for this case.

4. AN ALGORITEM FOR RIGID BISIMULATION

We are now interested in providing an algorithm to decide =& . Its core will be the algorithm for
deciding strong bisimulation. The goal is to work only on the rigid lts obtained from the two lts that
have to be compared. Without loss of generality, we work only with lts that do not contain T-cycles.

4.1 The Algorithm

The Problem

Starting from a partition IIy of @), the problem is stated as follow:

Where ~q1 is the equivalence induced by a partition II, find the coarsest partition II s satisfying:

1. Iy refines I

2. if p~p, ¢ then
(a) Va € A, Pre(p,a) =n, Pre(g,a) A Post(p,a) =n, Post(g,a)
(b) Va€ A,p=>p' = (3¢",¢ == ¢’ AD' ~n, q') (and vice-versa)

For this problem, we propose an algorithm essentially based on the algorithm used to decide strong
bisimulation that works on a decorated rigid lts.

The General Algorithm

This algorithm starts with an initial partition IIo of @ and refines it until a stable partition II; is
found. Its scheme is displayed on figure 0.2 (where IIj is initialized as the universal relation, but it
can be any partition of Q).

The Stability Notion

Here we make it more precise the stability notions used in the algorithm above.
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Iy := Q X Q

o:= Ho

while IT not stable do {
Find B not stable
II := Ref(H, B)

Figure 0.2: Algorithm to compute the stable partition

Definition 4.1 LetII = Uien..n)Bi be a partition on Q x Q. We say that I is B-stable if and only if
1. Va € A,VB' € 1I,ing(B') N B = 0V iny(B')N B = B
2. Va € A,Vq1,92 € B, Prei(q1,a) =n Prex(q2,a) A Posty(q1,a) = Posty(g2,a)

II is stable ezactly when it is B-stable for each of its block B.

Iy := Q X Q
o:= Ho
do {
o’ := RCP(II)
I := cpp(Il’)
} while (II # II')

Figure 0.3: The two steps algorithm to compute the stable partition

The two levels stability notions leads to an algorithm where finding unstable blocks is achieved in two
steps:

e the first step consists of the classical search of unstable blocks by means of state behaviors, like
in the classical Relational Coarset Partition (RCP) algorithm. Indeed, the RCP algorithm is
applied until stability is reached.

e the second steps looks for blocks unstable with respect to the Pre/Post sets. If no such a block
is found the algorithm terminates. Otherwise, the partition is refined with respect to these
unstable blocks and the two steps are re-applied starting with the RCP. We call the second step
CPP (Coarsest Pre/Post Partition).

The two steps algorithm is displayed in figure 0.3.

The Refinement Steps

The first step of the algorithm applies the RCP refinement. It checks stability with respect to condi-
tion 1 of definition 4.1. When the partition II is not stable w.r.t a block B for an action a, then 3B’
such that § # B; = (in.(B') N B) # B. In this case, refining II is replacing B in II blocks B; and B,.
The second step checks the stability condition 2 of definition 4.1. When the partition II is not stable
w.r.t a block B for an action a in this sense, B is then split into as many blocks as needed to gather
states that have the same Pre/Post sets for the action a.
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Now we have to settle the question of the efficiency of the CPP refinement step, that for the RCP
one being well known. The second step performs the comparison of the Pre /Post sets between the
states that are in the same equivalence class after the first step. The naive approach would be that of
comparing these sets one by one manner; but this would obviously be too costly. However, by noticing
some properties of the configuration of the Pre/Post sets after the first step it is possible to devise
efficient strategies to efficiently compare these sets.

Comparing the Pre/Post sets

We state some properties about the configuration of the Pre/Post sets under weak bisimulation.

Lemma 4.1 If p~ q and f € {Pre, Post}, then
Va € A,,V0O; € f(pr a’)’ 10, € f(‘L a')) 0; <z 0,

Proof: Suppose 30, € Post(p,a),¥®; € Post(q,a),01 £~ ©;. In another words, Ip €

obs(p, a), Vo € obs(q, a), after(p) # after(c). This clearly contradicts p ~ g. The same reasoning on
Pre sets leads to the same contradiction. O

Proposition 4.1 If p~ q and f € {Pre, Post}, then
Va € Aéavel € f(p’ a)’ 39{[ € f(P, (l), 91 Sz {U 3(")2 € f(q)a)1 91 g:ﬁ 02

Proof:  Let ©; € f(p,a). By lemma 4.1, 30, € f(g,a),0; <x ©;. As x is symmetric, 30} €
f(p,a),®; <y O}. By repeating the reasoning, we exhibit a maximal chain (because the Pre/Post
sets are finite) ©; = ©},0; = 0},..., 0%, 0 such that

1. ¥i,1<i<k,©j € f(p,a), 0} € f(g,a),
2. Vi,1<i<k,0% <y 0} <y 07! < O%F.
3. VO € f(p,a), 0% <~ 6 = 6 = 6%,
4. VO € f(p,a),0% <. 0 => 0 =0%
Still using lemma 4.1, we end at ©% = ©%. We just take ©) = @F. a

To compare the Pre/Post sets, we shall consider their projection into the equivalence classes of the
states they contain, i.e.,[Pre]x, [Post]x. Let C = {Ci,...,Ci} the equivalence classes of the largest
weak bisimulation partition. Let < be an ordering on C, such that C; < C; = G = C;. In the
case C; = C; ANC; #= C;, welet C; < Cj <= i< j. It is easy to check that < is a total ordering
over C. We also considere the underlying lexicographic ordering over the strings of C*. We first sort
each element of [Pre]y, [Post]x to get increasing sequences of classes, and sort [Pre]x, [Post]x with
the lexicographic order. We write [f/]:, f € {Pre, Post} for the sorted set obtained from [f]~. From
proposition 4.1, a string ¢ € [?]: is either a suffix of another string ¢’ € [_/f-]:_. or is said mazimal.
Still from the proposition, each of the Pre/Post sets of two weakly equivalent states have the same
maximal strings. Stability is enjoyed when the states of a given block have exactly the same strings
in their projected-sorted Pre/Post sets.

The basic idea here is that of finding the coarsest partition that corresponds to weak bisimilar states
after the first step. Then, simple list processing and string comparison can be used to check efficiently
the second stability step. The point is that we do not get actually the weak partition after the first
step, but rather an “almost” weak partition since the refinement is operated on all actions but €. This
is due to our definition of the rigid bisimulation and to the fact that we ignore the e-transitions in the
conditions relative to state behaviors. However, € is considered in the Pre/Post conditions and we
saw how it covers the behavior condition over € (see proposition 3.2).
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The following proposition gives us a way for finding the weak partition after the first step by adding
to RCP a test over the ¢ — Pre/Post sets.
Proposition 4.2 p = g if and only if

1. VaeAp=p = (3, ¢==¢,q~ q¢') (and vice versa)

2. [Post(p,€)]~ = [Post(g,€)]x

Proof: Direct from lemma 4.1. a

Thus, in the RCP step, we add the treatment of € by the Post sets equivalence classes comparison.
The second steps deals with a weak partition and can operate efficiently.

As usual the above algorithm can be used to minimize a lts with respect to the computed equivalence.
Indeed, after the computation of the equivalence partition, one can get the minimal equivalent lts to
the original one by shrinking the equivalence classes into one state and project the transition relation
over this one state per class selection. Also, it can be used to decide if two lts’ are rigid bisimilar (or
branching bisimilar) by just applying the algorithm on the disjoint union of the two lts’ to compare:
then the two systems are equivalents exactly when their respective initial states belong to the same
equivalence class in the final partition.

4.2 Correctness
The correctness of the previous algorithm is given by the following theorems, where ~m, is the
equivalence relation induced by the final partition II 7 obtained from the previous algorithm.

Theorem 4.1 The algorithm of figure 0.2 terminates after at most n — |Io| refinement steps. It ends
with the coarsest stable partition refining Ilo. We call the ending partition II i

We do not discuss termination of the algorithm since it relies on the same conditions of the standard
algorithm to decide bisimulation. However, we show that ~p ; corresponds to = .

Theorem 4.2
pxgqg < p~m, ¢

Proof:
The proof follows the definition of ~ and the two stability condition exposed in definition 4.1.

4.3 Discussion on Complezity

Let m represent the number of transitions and n the number of states of the transition system over
which the time and space complexity of algorithms are analyzed.

We know that the best algorithm to decide strong bisimulation on finite transition systems is due to
Paige and Tarjan. Its complexity is @(m.logn), where m and n are the number of transitions and
states respectively. In the branching bisimulation case, the best complexity result is knows as O(m.n),
with the algorithm of Groote and Vaandrager.

We want, however, make two remarks on complexity.

e First the complexity evaluation has to be made on rigid graphs, obtained from a 7-clean graph,
after an extension of the transition relation and after ¢ moves removals. Thereafter, the number
of state/transitions may have changed. This is one difficult point in the sense that it makes
it hard to compare the complexity of our algorithm and those over the original graphs. The
problem is similar to the one we have when comparing weak observational equivalence with other
observational equivalences, for which we also compute 2 transitive closure after T-cleaning.
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e Nevertheless, we can apply Paige and Tarjan on our decorated-rigid structures. Then, it comes
downs to evaluate the space complexity of this decorating information on states and the time
complexity of their comparison.

The Time Compiexity
The first step has time complexity O(m.logn) if one uses Paige and Tarjan algorithm. The second
step is decomposed as follow:

The projection This is the step replacing each state by the equivalence class it belongs to. This can
be realized in O(m), by visiting all the Pre/Post sets.

The sorting In [12], an algorithm is described to perform lexicographic ordering having time com-
plexty O(m' + k), where k is the number of equivalence classes, and m' = n.log; n, where [ is
the number of transition labels.

Thus, the global time complexity is O(m.logn).

After the first step (RCP), if no block is split within the second step (CPP) then we have finished.
This corresponds to the cases where weak bisimulation and branching bisimulation coincide. It has
been pointed out in [9] that in practice this is the case for a large class of transition graph representing
parallel and communicating processes behaviors.

The Space Complexity

This is the weak theoretical point of our algorithm; we deal with an extended transition relation, com-
puted by a transitive closure of the -relation and composition of relations to get the weak transition
relation. However, we are not completely in the same situation of weak bisimulation since we remove
the 7-transitions, even though the € relation is represented via the Pre/Post sets. Morover, we can
avoid the computation of the whole weak transition relation by using techniques introduced in [2].
Doing so, analyzing the space complexity becomes complex. Putting in practice the algorithm should
tell us more.

5. CoNCLUSION AND FUTURE WORK

An alternative characterization of branching bisimulation relying on how branching bisimulation re-
lates two states and throws light on its differences with weak bisimulation. Another advantage of our
alternative definition is its possible parameterization. If one fixes the classical bisimulation scheme
then different equivalences can be obtained by varying the way Pre/Post sets are related. For obtain-
ing branching bisimulation we had to ask that the Pre/Post sets be bisimilar too. Obviously milder
alternative are possible. ,

The main result of the paper is an algorithm that compute efficiently branching bisimulation. It
is based on strong bisimulation checking, and we achieve a time complexity that improves the best
known one for by using the Paige and Tarjan techniques [12] adapted to strong bisimulation. This is
not possible for the original algorithm. However, we must say that our solution has a weak point in
its space complexity. We need additional spaces to support the extended transition relation and the
Pre/Post sets representation.

As future work, we shall study the spectrum of equivalences covered by our equivalence when modifying
the requirement on the node labels. Also, further work shall be done to improve of the space complexity
of the algorithm. Particularly, we shall study how to minimize this information and remove redundant
Pre/Post sets. We also plan an implementation using Binary Decision Diagrams, an efficient data
structure used to represent sets implicitly through their characteristic formula. This shall be done by
extending the symbolic bisimulation algorithms from [3].

Further work shall contain the implementation issues together with detailed complexity analysis. We
shall then compare our algorithm with the classical algorithm for branching bisimulation over practical
case studies.
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