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Abstract

Recently, the so-called Adams-Bashforth-Radau (ABR) methods were proposed in [4]. An ABR method
is a high-order parallel predictor-corrector method for solving non-stiff initial value problems, based on a
combination of Adams-Bashforth and Radau formulas. Comparison of ABR with the famous sequential 8(7)
Runge-Kutta method of Dormand and Prince showed speed-up factors of about 2.7. In this paper we improve
the ABR methods by making them more accurate without any additional costs. This improved version increases
the speed-up factor on the average to 3.1.

CR Subject Classification (1991): G.1.7
Keywords & Phrases: numerical analysis, predictor-corrector iteration, Runge-Kutta methods, parallelism.
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1. INTRODUCTION
We shall consider predictor-corrector methods (PC methods) for solving on parallel computers
the (non-stiff) initial value problem

y'(t) = f(y(t) , y(to)=v0 , y f€ERL (1.1)

In [4] a class of parallel PC methods has been proposed, including the Adams-Bashforth-
Radau (ABR) methods. These methods showed a speed-up factor of about 2.7 compared
to DOPRI8. The DOPRI8 code by Hairer-Ngrsett-Wanner [2] is an implementation of the
13-stage, 8t*-order embedded Runge-Kutta method of Dormand and Prince, and is generally
accepted as one of the best sequential codes. In this paper we improve the ABR methods by
increasing the order by 1. The convergence and stability characteristics turn out to be even
slightly better than those of ABR, while the sequential costs and the number of processors
are (almost) the same.

The outline of the paper is as follows. In section 2 we specify a subclass of the large class of
General Linear Methods, introduced by Butcher in 1966, and describe how methods that fall
into this class can be compared by means of accuracy, stability and convergence. Section 3
briefly describes the ABR methods proposed in [4]. In section 4 we propose a more accurate
variant of ABR. How this variant can be implemented without any additional costs compared
to ABR is presented in section 5. Finally, in section 6, numerical experiments will show that
this new variant indeed performs better than ABR.

2. A SUBCLASS OF THE CLASS OF GENERAL LINEAR METHODS
In the following, the vector with unit entries is denoted by e, the i** canonical basis vector
by e;, and the d x d identity matrix by Iz4. Furthermore, O,,, is the m X n zero matrix and
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2. A subclass of the class of General Linear Methods 2

Epmn is the m x n matrix whose entries are zero, except for its n** column which equals e. If
v is a vector, v7 stands for the vector whose entries are the j** powers of the entries of v.
To solve (1.1) we use methods of the form

Y, = (A®Iua)Yn_1+ k(B ®I4q)F(Yn-1) +h(C® Ii3)F(Y,), (2.2)
Yn = Yn1+ h(ch @ I;9)F(Yy). (2.3)

This type of methods falls into the class of General Linear Methods introduced by Butcher
(see [1]).

Here the s x s matrices A, B, C and the s-dimensional vector ¢! contain the method
parameters, h denotes the step-size t, —t,_; and ® denotes the Kronecker product. Y}, is the
so called stage vector which represents numerical approximations to the exact solution vectors
y(etn—1 + ah), where the s-dimensional vector a denotes the abscissa vector. Hence Y, is an
sd-dimensional vector. In this paper we restrict ourselves to the case where the components of
a are the Radau IIA collocation points. For any vector V = (V;), F(V) contains the derivative
values (f(V;)).

The formulas (2.2) and (2.3) are respectively called the stage vector equation and the step
point formula.

Considering (2.2) as the correction equation we solve this equation by applying the PC
scheme

YO = (A0 ® I1a)Ya-1 + h(Bo ® Lsa)F(Yn_1), (2.4)
Y = (A®Iy)Ya 1+ h(B® I;)F(Ya_1)
+h(C ® L) F(Y,IY), j=L...,m, (2:5)
Y, = Y{m.

Next we describe how accuracy, stability and convergence of the PC scheme can be defined
in terms of A, B, C and c;.

2.1 Accuracy
The conditions for p*-order consistency of the stage vector equation (2.2) are given by (see,

e.g. [3])
Ae=e, AXgp + BWyy + CVyp = Uy, (2.6)
where the s X p matrices Uy, Vsp, Wyp and Vj, are defined by

Usp = (%aj) ’ Vsp = (aj_l)

. i forj=1,...,p.
W = (a-ep™) | Xy = (a-ep) O !

If (2.6) is satisfied, then p will be called the stage order.

Note that, for A = Eg;, B = Os,, and C fulfilling (2.6) with p = s, (2.2) reduces to the
s-stage Radau IIA method.

In this paper we use a step point formula that coincides with the formula for the st* stage
of the Radau ITA method: ¢ = eI'U,,V;!. We will refer to this formula as the Radau IIA
step point formula. It can be shown (see [4]) that for this case, the order of y, (the so called
step point order) equals min{2s — 1,p + 1}, where p again denotes the stage order.
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2.2 Stability
With respect to the scalar test equation ' = Ay, where A runs through the spectrum of the

Jacobian a—é(’il, we obtain for (2.2) the recursion

Yy
Yp = M(2)Yp_1, M(2) := (I = 2C) " (A+2B), z:= Ah.

We define the stability region and the real and imaginary stability intervals according to

S = {ze€C|p(M(2)) <1},
(=Pre;0) := {z€C|zeSAz<0}
(=Bim, Bim) = {z€C|z€eSARe(z) =0Az#0},

respectively, where p (-) denotes the spectral radius function. fr. and fim are called the real
and imaginary stability boundary, respectively.

For many methods that we consider in the next sections, it turns out that Bin = 0. To
circumvent the numerical uncertainty we also computed the practical tmaginary stability in-
terval defined by (=8%,85,) = {2 € C| p(M(z)) <1410 A Re(z) =0 A z#0}. In
practical computations, 3%, can be safely used as the imaginary stability boundary.

2.3 Convergence
For the convergence analysis of (2.5) we define the iteration error

) =YV —Y,.

Application to the scalar test equation 3’ = Ay and substitution in (2.5) yield
) .= 370 , z:=\h,

and consequently
€™ oo < 2™ 1C™ oo 1€ loo-

This leads us to defining the region of convergence by

1
Crm:={z €C| 2] <Vm}, Ym:= Mo
oo

where v,, may be considered as the convergence boundary.

3. ADAMS-BASHFORTH-RADAU METHODS
Let us write the matrix C in the form

(T T
(2 &)
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where C; and C, are square matrices of size ¢ X g and 7 x respectively (¢ + r = 3). From
now on, upper and under bars refer to the first ¢ and last r rows of an array.

Our first examination of methods of type (2.2) led to the observation that the convergence
factors <y, become larger as the order of consistency increases. In particular, we observed that
the entries of C, are relatively small. So ideally we would like to iterate solely with C, and
therefore we considered methods with C, = Ogq and C, = Ogr. Thus the first g stages become
explicit while the remaining r stages are solved by an iteration process that is determined
by a ’small’ matrix C,. The method can now be viewed as an r-processor method, since the
iteration process is only invoked on r implicit stages, which can be evaluated in parallel.

If we choose B = O,, and define the matrices B, C; and C; by order conditions, while A is
identified with the matrix E,,, we see that both the g explicit and the r implicit stages are
given order s. This method was called Adams-Bashforth-Radau (ABR) in [4].

In order to get reasonably large stability intervals, the number of implicit stages has to
exceed the number of explicit stages (r > ¢). The characteristics of a few ABR methods are
listed in Table 1.

For the predictor matrices Ay and By we can take Ao = Eg and By = U,,W_,!, ie. By
is defined by order conditions. In [4] we referred to this predictor as the Adams-Bashforth
(AB) predictor. Note that the first ¢ rows of By now coincide with B. Hence for the first ¢
stages we do not apply a corrector anymore after the prediction.

Here and in the following we assume that the costs of an algorithm are mainly determined
by the number of right hand side evaluations (denoted shortly by f-evaluations).

Since f-evaluations of different stage vector components can be done in parallel, the costs
of ABR on r processors per time step are m sequential f-evaluations for the corrector and,
provided that ¢ < r, 2 sequential f-evaluations for the predictor. If we apply an economization
by replacing F(Y,_1) in (2.4) and (2.5) by

(0
o [ FO)
n—1° (m-1)y |

Fy )

=—n-1

then the sequential costs are reduced to m + 1 f-evaluations per time step.

4. IMPROVED ADAMS-BASHFORTH-RADAU METHODS

For ABR methods in every row s + 1 elements in the matrices A, B and C are determined
by order conditions. Consequently, these methods have stage order s. In order to increase
the stage order by 1 we have to impose an additional condition on each row of the parameter
matrices. For the r implicit and ¢ explicit stages this could be done by filling the s** column
in B and the (s — 1)** column in 4, respectively. The drawback of this approach is that it
leads to large elements in A (for instance, if ¢ = 2, s = 6 and A = (ai;), then agg =~ 105).
However, it turns out that this problem does not arise in the first row. Therefore we only use
this strategy for the first stage. The order of the remaining g — 1 explicit stages will be raised
by 1 by using the first column of C. Remark that, strictly spoken, the last ¢ — 1 explicit stages
become implicit in this way. In the next paragraph we will see how to handle this aspect.
This approach does not lead to large coefficients and, provided that some constraints are put
on the size of ¢ and r, the sequential costs of the resulting scheme will be the same as for the
ABR methods. Since these methods are much alike ABR and have a higher stage order, we .
will refer to them as improved ABR.
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Table 1: Characteristics for selected ABR correctors

stage "
s = g+ ordir order B Bf, Y2 Y3 Y Mo - Yo
5 = 243 5 6 197 189 245 3.08 347 580 ... 7.03
6 = 244 6 7 335 286 204 261 315 5.80 ... 7.74
7 = 245 7 8 523 457 184 236 285 540 ... 8.39
8§ = 345 8 9 040 043 219 280 338 635 ... 10.33

Table 2: Characteristics for selected improved ABR correctors

stage *
s = qg+r ordir order S, 'Bim Y2 73 Y4 Y0 .- Yoo
5 = 243 6 7 260 327 247 .3.17 366 6.45 ... 7.85
6 = 2414 7 8 384 585 205 263 320 6.04 ... 8.73
7 = 245 8 9 524 808 185 238 289 566 ... 9.55
8 = 345 9 10 097 139 220 282 342 6.56 ... 11.34

As a consequence of the higher order of improved ABR, we expect the convergence char-
acteristics to improve. Furthermore, the stability regions should become larger than those of
ABR, since improved ABR is 'somewhat more implicit’ by the ¢ — 1 additional elements in
C). Comparing the Tables 1 and 2 confirm these expectations.

If we add the Radau IIA step point formula, the step point order equals min{2s—1,p+1} =
s + 2, provided that s > 3. For ABR this step point formula can be applied without any
additional work, since the s stage already coincides with the last stage of the Radau IIA
method. For improved ABR this is no longer true, since the last row of B contains a non-
zero element. However, this element turns out to be very small (for example, if s = 7 and
B = (bij), then b7 = —1.3 - 107!2). Therefore in practical applications, where s > 3, we
observe step point order s+2 without a step point formula (see section 6).

5. THE COMPUTATION SCHEME

In this section we show how improved ABR methods can be implemented on r processors
without any additional costs compared to ABR. The idea is to take advantage from the ob-
servation that the number of implicit stages has to exceed the number of explicit stages in
order to get reasonably large stability regions.

If the number of fixed point iterations is again denoted by m, the economized version of the
ABR algorithm requires m sequential f-evaluations for the r implicit stages, plus 1 sequential
f-evaluation for the ¢ explicit stages per step. Since r > ¢, r — ¢ processors are idle during the
evaluation of the explicit stages. In improved ABR we use these r — ¢ processors to improve
the last ¢ — 1 explicit stages. To see in more detail how this can be done we present the
following computation scheme.
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matrix-vector computation I f-evaluations | #proc.
7 = (A ® Lua)Ya1 + h(Bo ® Lua)Fr_,
YO = (4 ® 14)Yn 1 + h(By ® Lua)F2_,
FE?) g
y{®
F : r—gq
Y,
?(l) = (Z@Idd)Yn_l +h(§®ldd)F*._1+
(T, ® L) F(T)
(1)
Y2q—r+1
F T—¢q
\ 7
(0)
( Xr‘—q+l
F q
\ Y
Y = (A®I44)Yno1 + A(B® Lg)F:_+
h(C, ® L) F(T) + h(C, ® L) F(Y®)
F(y™) r
Y® = (A®Ly)Ya1 +h(B® Iu)F:_+
R(C; ® L) FT) + h(C, ® L) F(Y'™W)
F(Y?) r
YD = (A® I44)Yno1 + H(B® L)+
h(C, ® L)) FT™M) + h(C, ® Lug) F(Y™2))
F(y(m-1) r
Y™ = (A®I4)Yno1 + H(B® Iua)F:_ +
h(C, ® L) F(TV) + h(C, ® Lig) F(Y ™V
(1)
_ Y
F‘ _ F(—Y-(l))
n - (m-1)
FY )
Total number of f-evaluations on 7 processors m+1

The scheme shows which computations have to be done, categorized by matrix-vector com-
putations (column 1) and f-evaluations (column 2). The third column denotes the number
of processors that are involved in the corresponding f-evaluation.
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The several symbols have the following meaning:

e Aj and By are ¢ x s matrices defining a slightly modified AB predictor for the first ¢
stages: the last ¢ — 1 rows are the same as in AB, but the first stage is given order s +1
by filling the (s — 1)** element in the first row of Ay by order conditions as well.

e Ay and B, (both 7 x s matrices) are the lower parts of the AB predictor.

e A, B (g x s matrices) and C) (a ¢ x ¢ matrix) define a correction formula of order s+ 1
fgr the first ¢ stages: A = Ag, B and the last ¢ — 1 components of the first column of
C) are determined by order conditions. The remaining components in C; are 0.

e A, B (r x s matrices), C; and C, (an r x ¢ and r x 7 matrix, respectively) correspond
to a correction formula of order s + 1 by defining the last column of A and B and the
whole C; (i € {1,2}) by order conditions. The remaining parts of A and B are 0.

. )751) and _Kz(-o) denote the i** components of 17(1) and Y(© respectively.

During the evaluation of the ¢ components of 7 we already evaluate the first » — ¢ compo-
nents of the prediction Y. Then we improve the last ¢ — 1 components of 7 by means of
the first column of Cj, which results in Y. Next we evaluate the remaining part of YO,
Now 7 — ¢q processors are available for the evaluation of Y. Since we only benefit from the
improvements in Y™ if we are able to evaluate all g — 1 improved stages in 7(1), we need to

put a constraint on the size of ¢ and r: ¢ — 1 < r — ¢. Remembering the first restriction for ¢
and r (that is, ¢ < 7), we conclude that for improved ABR ¢ and r have to satisfy

¢ < min{r — 1, %(r + 1)) (5.7)

Note that (5.7) holds for all the correctors in Table 2. The rest of the scheme is analogous to
the ABR case.

From the scheme it can be seen that the first q stages are solved in PEC-mode. Numerical
experiments show that just one single correction is indeed enough to solve these implicit
equations.

6. NUMERICAL EXPERIMENTS

The numerical experiments were performed using 15-digits arithmetic. The accuracies ob-
tained are given by the number of correct digits A, defined by writing the maximum norm of
the absolute error at the endpoint in the form 10~4.

We took for s = 7 and r = 5, the 5-processor methods ABR (of order 8) and improved ABR
(of order 9). We equipped both methods with the same dynamic iteration strategy (with a
slightly more stringent stopping criterion) as in [4].

Two well-known test problems were taken from [2], namely the the Euler problem

Y = v2y3 , v1(0) =0,
y,2 —Yi1y3s , y2(0) = 17 0 S t S 20) (6.8)

y3 = —0.51y1y2 , w3(0) =1,
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Euler problem
1 2 T T 1 T T T
§ 10F
©
>
é
3 8
6 1 1 1 1 1 1
1.2 1.3 14 15 16 1.7 1.8 1.9
log(number of steps)
Fehlberg problem
1 4 T T T T 1 T T T
121
(2]
S
- 10 N
>
@
s 8 slope = 8.94
o)
6 ~
4 1 1 1 1 1 1 1 1
1.5 1.6 1.7 1.8 1.9 2 21 22 23 24

log(number of steps)

Figure 1: Observed order of improved ABR (s = 2 + 5)

and the Fehlberg problem

i 2ty log(max{yz,1073}) , ;(0) =1,
0<t<5. 6.9
Y = —2tyslog(max{y;,107%}) , 3(0)=e¢, ~— = (6.9)

First we investigate to what extent the omission of the step point formula and the PEC-mode
for solving the first q stages affect the observed order of improved ABR. Therefore we plot
the A-values against the '°log(number of steps). These points should lie on a straight line
whose slope equals the step point order. Figure 1 shows that the expected value 9 is fairly
well approximated.

Next we compare the performance of improved ABR with that of ABR. For completeness,
we also listed the performance of the DOPRIS code with automatic step-size control by Hairer,
Ngrsett & Wanner [2]. Table 3 shows that improved ABR works about 20 % more efficiently
than ABR, while the averaged speed-up factor of improved ABR compared to DOPRIS (to
be considered as one of the best sequential codes) is about 3.1.

7. CONCLUDING REMARKS

The attempt to improve the parallel Adams-Bashforth-Radau (ABR) methods proposed in
[4] has resulted in a more efficient code. More particularly, on 5 processors, the speed-up
of the improved version compared to the fully automatic code DOPRIS is about 3.1. This
speed-up could be further improved by including a step-size strategy.
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Table 3: Comparison of improved ABR with ABR and DOPRIS

# f-evaluations for the Euler problem

A-values 6 7 8 9 10 11
DOPRIB 415 576 728 898 1133 1422
ABR(s=2+5) 1600 192 223 293 379 506

Improved ABR(s=2+5) 117 169 221 273 325 377

# f-evaluations for the Fehlberg problem

A-values 6 7 8 9 10 11
DOPRI8 759 963 1227 1574 1990 2503
ABR/(s=2+5) 335 430 532 689 846 1067

Improved ABR(s=2+5) 256 361 466 571 677 782
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