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A Limit Theorem for Scaled Vacancies
of the Boolean Model
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CWI
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Abstract

racancy of the high-intensity Boolean model (or mosaic process) is considered.
nain result gives a limit distribution of a scaled connected vacant component. It
wn that the limiting set is the polyhedron generated by (in general anisotropic)
sn network of hyperplanes driven by the expected surface measure of the grain.
ssociated zonoid of the network is equal to the projection body of the so-called
hke expectation of the typical grain. In difference to earlier results obtained by
I, few geometrical and no isotropy assumptions are imposed on the grain and
roofs are based on the translative integral geometric formula instead of direct
tical computations.

' Subject Classification (1991): Primary 60D05; Secondary 52A22, 60G55
yords & Phrases: Boolean model, coverage, hyperplane network, intensity,
ic, translative integral geometry, Poisson polyhedron, vacancy.

oduction

an model is the most famous random set model in stochastic geometry. Its
ationary Euclidean variant is defined as the union of independent identically
| random sets =3, =, .. . (grains) in the Euclidean space R shifted by points
} (germs) of the stationary Poisson point process ¥, in R%:

== U (.’Ei-i-Ei), (1.1)

T €V,

23, 39, 44]. The set = is called sometimes the mosaic process [11, 14].
ly, it is possible to define = to be the union set of the Poisson point process
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in the space K of compact sets in R? [23, 50]. The Boolean model is, thereupon, a
particular case of the so-called germ-grain model [15, 16].

The intensity A of the Poisson point process of germs is said to be the intensity of
the Boolean model. The random set =y which has the same distribution as the grains
Z1,Z2,... is called the typical grain. To get a non-trivial set = in (1.1), the typical
grain must be not “very large” [16, 44]. For instance, it is sufficient to assume that the
d-th moment of the circumscribed diameter of the typical grain is finite.

The Boolean model is used in the random sets theory and spatial statistics to model
stationary sets, see [6, 39, 44] and references therein. The corresponding problems there
are related to the estimation techniques and hypotheses testing.

At the same time, the Boolean model serves as the basic model in continuum
percolation theory, see [12, 14, 32, 24]. The main problem is the existence of unbounded
connected covered (or uncovered) sets.

Another application of the Boolean model is related to coverage problems, see
[9, 11, 13, 14, 20, 30, 43]. The principal aim is to find the probability of coverage of a
fixed set K by =. Due to some biological applications one considers often the coverage
problem for the Boolean model on the circle or sphere {19, 21, 25, 40, 41]. Another
family of coverage problems is related to the study of the time of total coverage for time-
dependent Boolean models and Johnson-Mehl tessellations [3, 5, 45]. The complement
to the Boolean model is of the most interest in the theory of coverage 1, 14]. Under
some conditions and the isotropy assumption Hall [11, 14] proved that the typical
uncovered region is distributed like the polyhedron bounded by the stationary and
isotropic Poisson net of hyperplanes. He also found the asymptotic probability of total
coverage for the Boolean model with high intensity and small grains. Further steps in
this direction were done by Chiu [3].

All possible limiting results for the Boolean model and its complement (vacant
region) are of two types. Global results deal with the limiting behaviour of the set
in the “whole”, e.g., with the number of connected vacant regions inside a fixed set
for the Boolean model with a high intensity. A typical example is Theorem 2 of [11],
which states that the number of connected uncovered regions is approximately Poisson,
or results of Zahle [52], who proved that, under some conditions, the complement of
unions of Boolean models (with open grains) can have a fractal limit. .

On the other hand, local limit theorems deal with the structure of the vacant
component in “small”, although such vacancies can be quite rare in the space. A
typical example is Theorem 1 of [11], which states that the scaled typical uncovered
region converges in distribution to the typical cell generated by a stationary isotropic
Poisson net of hyperplanes.

This paper deals with local limit theorems for the wacant region of the Boolean
model. The results presented here include as particular cases earlier local limit theorems
for scaled vacancies. In contrast to previous papers where proofs relied essentially on
analytical methods, here the integral geometric approach is used. This makes it possible




Figure 1.1: A clump and the corresponding elementary vacancy.

mit theorems without exploiting shape conditions on the typical grain, and
anisotropic case.

per is organized as follows. Section 2 recalls the notion of the weak conver-
wndom closed sets. In Section 3 some properties of the Boolean model are
. This section brings also necessary information on the translative integral
formula. Section 4 contains the central result of the paper, which gives the
ibution of the typical uncovered region. Then some corollaries and earlier
discussed.

otations will be used throughout the paper without comments. We denote
d-dimensional Euclidean space with the corresponding metric p(-,-), the
and the scalar product (u,z). Furthermore, S%~* is the unit sphere in R?,
e ball of radius 7 centered at z. For the sake of brevity we write B, = B,(0)
B;(0), where o is the origin. The Minkowski (or element-wise) sum of two
oted by
F]@F2:{$+y1 SCEFl, yng} .

t K we write
K =K&®B, ={z: p(z, K) <r}

eighborhood (or r-parallel set) of K.

rinsic volumes [35, 37, 38, 46] of a convex set K in R are denoted by V;(K),
Note that V(K) is exactly the d-dimensional Lebesgue measure, g, of K,
‘the surface area of K, V1(K) is equal up to a constant to the mean width of
10], and V5(K) = 1. We use the same notations for the additive extensions
insic volumes onto the convex ring (family of finite unions of convex sets),
i]. Extended onto the convex ring the functional Vo becomes equal to the
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Euler-Poincaré characteristic x of the corresponding set. The extended functionals
Vi-1 and V; are still the surface area and the volume of the corresponding set from the
convex ring.

We always write dz, where the integration with respect to the Lebesgue measure
pa is meant. Furthermore, for any set M C R* we denote by M, Int M, M, c(M)
and conv(M) respectively the closure, the interior, the boundary, the complement and
the convex hull of M. ‘

Some letter conventions are worth mentioning. As a rule we use the letter X (with or
without indices) to denote general random closed sets and reserve Greek = for Boolean
models and their grains. The letter Y is used for random open sets. Furthermore, F
and K stand for some closed and compact subsets of R9.

2. Weak Convergence of Random Sets

A random closed set X is a random element in the space F of all closed subsets of
R?. The measurability is ensured by the condition that {X N K # @} is a random
event for any compact set K, see [23]. The distribution of the random closed set X is
determined by the hitting probabilities

Tx(K) =P {X NK # 0} (2.1)

for K running through the family X of all compact sets. The functional T'x : K — [0, 1]
from (2.1) is said to be the capacity functional of X, see [6, 23, 44].

Random open sets were also introduced in {23]. Namely, a random element Y is
a random open set if it takes values in the family G of all open sets and {K C Y} is
measurable for each K € K. The distribution of Y is determined by the containment

functional
Iy(K)=P{KCY}, Kek.

The weak convergence (or the convergence in distribution) of random closed (open)
sets is a particular case of the weak convergence of general random elements. It can be
characterized through the pointwise convergence of the corresponding capacity func-
tionals. Namely, X, converges weakly to X if

Tx,(K) —Tx(K) as n— oo (2.2)
for all K from the family
Ty = {K eK: Tx(K) = Tx(IIltK)}

of the “continuity points” of the limiting capacity functional T, see [29, 31, 34]. An
important problem is to reduce the family of compact sets such that the pointwise
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e in (2.2) on this reduced family ensures the weak convergence of the corre-
andom sets [7, 29, 31, 34]. It is usual to take the class M of finite unions of
sitive radii as such a reduction.

other hand, it is sometimes natural to consider other functionals rather
apacity functional (2.1). For example, the probability P {K C X} (the
at functional of the random closed set X) is of interest. Unfortunately, it
wys possible to determine the distribution of X by such probabilities. For
f X is a singleton with an absolutely continuous distribution, then these
1t probabilities are identically equal to zero. To exclude such trivial cases
r an a.s. regular closed set X, which, by definition, almost surely coincides
osure of its interior, i.e., X = Int X a.s. The following result simply follows
sgular closedness property.

2.1. If X is a.s. regular closed, then its distribution is determined uniquely
tainment functional

Ix(K)=P{KchtX}, KekK. (2.3)
yossible to replace K by the class M.

2.2), the weak convergence of regular closed random sets can be characterized
1twise convergence of their containment functionals. It is easy to give a proof
he classical line in [2, Theorem 2.2].

2.2. A sequence X,, n > 1, of regular closed sets converges weakly to the

sed set X if
Ix (K)— Ix(K) as n— o0 (2.4)

rom the class
Ix = {K € K. Ix(K) = Ix(IntK)} .

lar result is valid for a sequence of random open sets Y,, » > 1, and the
ling containment functionals.

interested sometimes in conditional distributions of random sets. We need
| in its simplest form, see also [17, 18, 23]. For any event A of positive pro-
e functional P {K N X # 0].A} is again the capacity functional of a random

The weak convergence of such conditional sets is characterized through
rise convergence of the corresponding conditional capacity or containment
; in the same way as in (2.2) and (2.4). Conditional random open sets are
ailarly.



Boolean Model and Its Distribution

model is defined in (1.1). We suppose that its grains are random closed
he complement of the Boolean model is a random open set. Sometimes
e supposed to be open. Then the Boolean model is also open, and it is
indle the complement as a random closed set, see [11, 52 and [3]. For us
important, as we work mostly with containment functionals and regular

1. Let =, be a random set from the convex ring. Then the Boolean model
rain Int =y has the a.s. regular closed complement.

e complement is not a.s. regular closed, then, with a positive probability,
. point z ¢ =’ such that B,(z) N Int (c(Z')) = @ for all sufficiently small
hermore, Int (c(Z')) D c(E) yields B,(z) C Z. Thus, with a positive
lies on the boundary of a grain, which is impossible due to assumptions.

solean model = given by (1.1) the capacity functional has a simple form:
T=(K) = 1 — exp{—AEp(5, ® K)} . (3.1)

Minkowski (element-wise) addition of sets, and K = {—z: z € K} is the
ant of K, i.e.,

So@0K={z—-yz€5,yecK}.

1 sequence of Boolean models =™, n > 1, with the corresponding inten-
typical grains =, that is
EW = J (z+EM). (3.2)
uL; €W,
at the typical grain E((,") takes values from the convex ring, i.e., E((,") is an
on of convex sets. Without loss of generality it is possible to assume that
the origin for all n. Otherwise the appropriately shifted grain must be

2cessary to impose a condition which ensures that the union set in (3.2)
see [16]. The latter is true if and only if

Epa(E{" @ B,) < o0
For this, it is sufficient to suppose that E||={”||¢ < oo, where

|1Fll = sup{[lz||: = € F}
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is th? ?orm of the set . On the other hand, the existence of the Boolean model yields
E|IZ5" || < oo. ~

The dilatation of Z() brings little new, since cEM = {ca:: T € E(n)} is the Boolean

model with the typical grain cu( ") and the intensity ¢'/?),. However, sometimes the
use of such a normalization is justified by the better form of results.

It follows from (3.1) that the Boolean model Z(™ has the capacity functional
Tow (K) = 1 — exp{—AEpa(EP @ K)} . (3.3)

It is easy to see that the weak limit of the set =) is always trivial for the case of
growing intensity. It follows from the fact that in the “worst” case when the grains are
singletons, the corresponding Poisson point process ¥y of germs converges weakly to
the whole plane. Namely,

Tew(K) > P{KNT,, #0}=1—exp{—Aapa(K)} =1 as n— o0

for any K from the class M (since pq(K) > 0). Therefore, the weak limit of =2 in
the space of closed sets is the whole plane.

The subsequent presentation will be based on the translative integral geometric
formula. Let us recall briefly a basic and simplified results of this kind, see [36, 48] for

detailed discussions.
Let K and K' be convex regular closed compact sets. The translative integral
geometric formula yields

[ (B0 (B4 0))ds = Vo(KOVE") + S VilK, ) 4 VaKIG(K) . (3:4)
Rd k=1

Here the functionals Vi (-, K’) and Vi(K,-) are additive; the first is homogeneous of
degree k, while the second is homogeneous of degree (d — k). For K and K’ being
polytopes it is possible to calculate the corresponding functionals explicitly [36].

The functional of the order (d—1) is the most important for us. It can be represented
as

VarlK,K) = [ B(K',u)Saa (K du), (3.5)
gd-1
where
h(K', u) =sup {({u,z): z € K'}

is the support function of K’, and Sy_;(K;du) is the surface measure of K, see [35,
Section 4.2]. In the smooth case S;_1(K; ') can be defined to be the (d—1)-dimensional

surface measure of the set of all points on K such that the correspondmg unit outer
normal vectors lie in the set I' C S¢1.




The additivity of the functionals V;, and the surface measure makes it possible to
extend the translative integral geometric formula for K and K’ belonging to the convex
ring. Then the functional V5(K') becomes the Euler-Poincaré characteristic x(K), and
Va(K) = pa(K).

Furthermore, note that for convex K and K’ the integral in the left-hand side of
(3.4) is equal to the volume of the set K & K’. Indeed, :

x(K N (K'+ z)) = Lknk+o20}

for convex K and K’, whence
/ X(K 0 (K" +1))dz = / 1iknkrrezoyds = pa(K & K') . (3.6)

Unfortunately, for non-convex summands the integral in the left-hand side is not
always equal to the volume of the corresponding Minkowski sum, i.e., (3.6) is no longer
valid. However, exactly the right-hand side of (3.6) appears in the formula for the

capacity functional of the Boolean model with K replaced by E((,n) and K' by K.
Fortunately, sometimes Eud(Eg”) ® K) is asymptotically equal to the integral (3.4). In
the following we will use the condition

AnES /'X(E((;n) NOTK +1))ds — pa(EP @ A7'K)| -0 as n—ooo  (3.7)
Rd

for all compact sets K from the family which determines the weak convergence, for
example, for all finite unions of balls. Assumption (3.7) makes it possible to use the

translative integral formula to decompose ,ud(E(()n) ® K) in (3.3). Thus, (3.7) may be
thought as a Boolean model analogue of the “tightness” condition for random pro-
cesses. Another tightness condition for the Boolean model was used in [16] to study
the “global” convergence of Boolean models.

Some special cases where (3.7) is valid will be considered later on. Let us only note

that for convex = and K it holds automatically. Furthermore, (3.7) is valid if

ME [I/np.d ({x X(E((]“) NOIK + 1)) # I{Egn)n(;\;lKﬂ#@}})] —0 as n— o0,
(3.8)
where v, is the number of convex components of 5. The condition of type (3.7) (for
non-random and fixed E(()")) was first used by Rataj [33] to estimate the mixed area
measure of a planar set from the convex ring.

4. A Limit Theorem for the Normalized Uncovered
Region

The uncovered (or vacant) region is the complement c(=Z(™) to the Boolean model
Z(®), The whole uncovered region can be represented as the union of its connected
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components (vacancies). Considered as translated realizations of a random closed set,
these vacancies describe the distribution of the so-called “typical” uncovered region of
the Boolean model. »

Let us denote by Y, the conditional random open set which is equal to the uncovered
connected region containing the origin provided that the origin is not covered. The
normalized set A, Y, has the containment functional given by

I(K) = P{K CX\Ya}
= P{\'KNEM =0lo¢ =}
= exp{—M[EuaES) @ A, K) — Epa(E5V)]}

for K containing the origin. We are interested in the limiting behaviour of the set A,Yx
(or, equivalently, of the containment functional I, (K)) as n — oo.

The following general theorem includes some technical conditions. It will be shown
below that these technical conditions can be replaced in most cases by simpler condi-
tions of geometric nature.

Theorem 4.1. Suppose that )\, — oo and, for each finite-point set K,
An(K) = A (Epa(E5" @ X conv(K)) — Epg(E5Y ® \;'K)) =0 (41)

as n — oo. Furthermore, let (3.7) be valid for all convex compact sets K. If the ex-

pected surface measure ESd_l(Ef)"); -) converges weakly to the measure v(-) on the unit
sphere, then A,Y, (normalized conditional vacancy) converges weakly to the random
open convex set Y with the containment functional

f(k)=P{Kc¥}=exp{- / (K, u)|v(du) § . (4.2)
§d—1 .

PRrOOF. Clearly, (4.1) yields
I(K)— I,(conv(K)) =0 as n-—o00 (4.3)

for any finite-point set K. Therefore, (4.3) is valid for all K from the class of finite
unions of polyhedrons. Since this class determines the weak convergence of random
open sets, the set \,Y; is asymptotically convex, and (4.3) is valid for each compact
set K. Indeed, the limiting containment functionals of K and conv(K) coincides, i.e.,

P {K C 17} =P {conv(K) C 17} =P {conv(K) C conv(f’)} .

Since the limit is asymptotically convex and the sets Y, contain the origin, it
is sufficient to consider only convex compact sets K containing the origin. Then
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|h(K,w)| = h(K,u) and (3.7) yields

Jim 1,(K) = lim exp § ~2B | [ x(E 0 O K +2))ds — na(E()
R4

n—o0

d—2
= lim exp { S {vd-l(Eé"), AK) + X Vi(EY, A0K) + %(E&”)w()\;llf)} }
k=1

= lim exp {—EVd—I(E(()n)’ K )}

due to the homogeneity property of the functionals V.. Now the statement follows from
the representation (3.5). O

Remark. It is well-known (see, e.g., [22]) that

lim e~ (ualL @ eK) ~ palL)) = [ h(K,0)Ss1(Li dv)
§d~1

for convex K and L with o € K. For convex grains the proof of Theorem 4.1 can be
derived from this fact (it is no longer valid for general non-convex sets K and L).

The comparison of the formula (4.2) for the containment functional of ¥ with the
representation of the distribution function of the Poisson polyhedron (see [23, Sec-
tion 6.2]) shows that Y is the Poison polyhedron generated by the network of hyper-
planes driven by the measure v(-). Namely, ¥ is the open polyhedron bounded by the
planes from the network and containing the origin. This network is determined by the
Poisson point process on the space S~ x [0, c0) with the intensity measure v(-) X ;.
Each point of this point process determines the corresponding hyperplane from the
network in such a way that the first coordinate gives the normal vector to the plane,
while the second one is the distance between the plane and the origin.

Simple properties of Y and the corresponding network of hyperplanes follow directly
from those established in [23] for Poisson polyhedrons and networks of hyperplanes.
For example, if the measure v(-) is symmetric, then the corresponding network is
stationary. If v is rotation-invariant and, thereupon, is proportional to the (d — 1)-
dimensional Hausdorff measure H4_, (surface area measure) on S?-1. then Y is an
isotropic random polyhedron. Furthermore, the set ¥ is a.s. bounded if the linear hull
of the support of the measure v coincides with the whole space.

The measure v(-) determines the central symmetric convex set II, called the asso-
ciated zonoid (or Steiner compact) of the corresponding network, see [10, 23, 35, 46].
The set I, has the support function given by

M, u) =5 [ wo)lv(do),
gd-1
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I({u}) = exp{—2n(IL,,w)} .
5 a ball if v is rotation invariant.

jure v is obtained as the weak limit of the surface measures of the grains.
r hand, the mean surface measure of the grain Eg") coincides with the
ure of the so-called Blaschke mean of E{, see [47, 49]. This Blaschke
). is the convex set having the surface measure equal to ES;_;(E{”; ).

b

face measures are continuous with respect to the convergence of convex
ausdorff metric [35, Theorem 4.2.1], the associated zonoid is the projection
he weak limit of the sequence of Blaschke means of the grains, i.e.,

I, = lim Iy (Ep(E")).

»n body II;_; (K) of a convex set K has the support function (14—, (K), u)
(d—1)-dimensional measure of the projection of K onto the linear subspace

> u, see [35, p.296]. In particular, if = ( ) = =, then I, = I1; 1 (EgZy).

wsure v is proportional to the surface area measure, then the corresponding
hedron is isotropic and the limiting functional in Theorem 4.1 is

F(K) = exp __% / ]h(K,u)!Hd_l(du)},
—15,1—1

A= lim EHy1(507), (4.4)

ty of the corresponding isotropic network of hyperplanes and wy_; is the
of S41. Note that

Ih(K7 ’U,)l = h(Ko,’U,) )

conv(K U {o}) is the convex hull of K and the origin. Since the mean
support function h(Kp,u) over the unit sphere is the half of the mean
of Ky, we get

I(K) = exp{—Ab(Ko)/2} = exp{~AV1(Ko)} .

an values of the set ¥ are well-known in the isotropic case [23, 26, 27, 42].
ral case, it was shown in [51] that the expected volume of the set YV
Poisson polyhedron) is given by

Epa(Y) = d127ua(I1}),



I = {x eR%: (z,y)<lforallye H,,}
reciprocal set to II,. Further results and inequalities can be found in [51].

nula (4.4) for the intensity of the Poisson network was obtained in [11, 14]
ssumption Egn) = 5, for special isotropic random compact sets = (balls,
arallelepipeds). Now it is clear that this formula has quite general nature
lerived without referring to the geometrical shape of the grain (cf. [11, 14]).
isotropy of the grain yields v(-) = AH4_1(-)/ws—1 (the rotation-invariance
the reverse statement is not true. Two disjoint deterministic balls provide a
iple of a set which have rotation invariant surface measure, but is, evidently,

c itself.

t of A\,Y, is the polyhedron containing the origin and bounded by the cor-
Poisson network of hyperplanes. This corresponds to the so-called volume
'oisson polyhedron (see the discussion in [23, p.168]). It is also possible to
polyhedrons formed by the network to be realizations of a certain random
which obeys the number law. This situation is actually a multidimensional
1e length-biased sampling. Hall [11] considered also an arbitrary vacancy
he mosaic processes. In the limit it yields the number law of the Poisson
while the weak limit of the vacancy containing the origin gives the volume
me holds also in the framework of Theorem 4.1.

it A\,Y, is the conditional vacancy of the Boolean model with the grain
the intensity A~1/¢. Thus, Theorem 4.1 can be reformulated for the non-
conditional vacancy (i.e., Y, instead of A,Y;) if A, — oo and the mean

sure of A7%/(@DE(™ has the weak limit v.

| 4.1 suggests using limit approximations to make inferences about mean
ad to anisotropic high intensity Boolean models. To perform the estimation
he grid of points and the Boolean model = must be superimposed. Let
e the connected components of ¢(=) containing the points zi, ..., z, of the
easure v can be estimated up to a constant from the integral equation

i{uh=exp{= [ lwo)u(dw) p, (45)

Sd-1

empirical containment functional
” 1>

I({u}) = = Z 1z tuep;
n =1

1 surface measure of the grain. Note that the estimator [({u}) of the
({u}) is uniformly strong consistent on the class of singletons, see [28].
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| can be used if other methods fail (for example if the intensity is very high
me fraction is large). However, it is not easy to solve the integral equation
7, see [10, Section 8. '

llaries and Earlier Results

m we will check the conditions of Theorem 4.1 for some special grains and
results with the earlier ones. Let us suppose that Eg") =Zg for alln > 1.
g result follows from Theorem 4.1.

.1. If the grain =, is convex, then the random open set \,Y, (the nor-
ditional vacancy) converges weakly to the random open set Y with the
functional given by

I(K) = exp {— / (K, w)ESs1(Zo; du)} . ocK. (5.1)
§d—1

e condition (3.7) is, evidently, valid. It is sufficient to check (4.1) for
, Tm }. First, note that, for the convex set F' and sufficiently small ¢,

o(F ®econv(K)) — pa(F & K) <
< T [hal P @ cconv(K) — a(F @ K]

m stretches over all (d — 1)-dimensional faces K; of conv(K).
s possible to assume (4.1) for sets K lying in (d— 1)-dimensional subspaces
= 2, then it is sufficient to check this for all two-point sets K = {o,z}, so

h= (5:2)
o (#aE @ [0,0772]) — 1a(E5” @ {0,17'2}))] =0 as n oo

ilid if the set 55") = I is convex and does not depend on n. Indeed,
1a(E5" @ [0,27%2]) — 1a(EE” @ {0, 17 z}) < 227" |l<l6, (5.3)

0 as n — oo. The latter follows from the monotone convergence theorem,
< 00. The same result holds also in higher dimensions provided the grain

convex. |

sults for the grain being ball or parallelepiped were considered in [11, 14].
Ul of radius £, then all conditions of Theorem 5.1 are valid so that the




Figure 5.1: Geometric meaning of the inequality (5.3).

il

lom set Y is the Poisson polyhedron generated by the isotropic Poisson
iyperplanes of intensity EHy_1(Zy) = wy_1E€4Y. This corresponds to
f[11].
in is a random parallelepiped with the facets parallel to coordinate axes,
n 5.1 is applicable with the measure ESy_;(Z¢;du) concentrated at the
..., eq} (the basis in R? containing unit vectors orthogonal to the facets
Furthermore, ES;_;(Z¢; ;) is equal to the surface area of the facet
o +e;. The corresponding Poisson network contains only hyperplanes
ordinate planes. The intensity of each network containing such parallel
is equal to ES4_1(Zo;e;). The Blaschke expectation of the grain is again
siped with the same orientations of the facets with the surface areas equal
surface areas of the facets of =.

ready seen that for convex random sets the conditions of Theorem 4.1 are
isfied. Let us check these conditions for one important and quite general
onvex grains. S that = = =, d

grains. Suppose that =y = =y does not depend on n, and

Bo=A1U---UApy (5.4)

onvex sets Ai,..., Ay and a positive integer random variable N. These
in be dependent.

2. Suppose that =g has the form (5.4) with N fixed. Then the conditions
[) are valid.

t, check the condition (4.1). It is easy to see that, for all fixed N,

AL (K) < g:)\nE [ud(A,- ® A tconv(K)) — pa(A; @ A;lK)] .
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Each of the terms in the sum tends to zero as n — oo by the same arguments used in
the proof of Theorem 5.1.

Let us check the condition (3.7). The following relies essentially on a result of Rataj
[33] who proved that (3.7) is valid for each fixed set from the convex ring. Thus, (3.7)
is valid for almost all realizations of Z;. To show the convergence of expectations we
bound the left-hand side of (3.7). Without loss of generality suppose that K C B.
Then

At <

J xEon (01K + 1))z — pa(So & X, K)
Rd

<At

Rfd (x(E0 N O K +2))dz — 1z,nnik4e)) 45

< N ua((0Z0)")

N

< N2 Y et )]
i=1

Since all means of the intrinsic volumes of A; are finite, (3.7) follows from the the

bounded convergence theorem. O

If N is fixed or bounded a.s. from above, then the statement of Theorem 4.1 is
valid. In this case the grain = can be represented as a union of no more than finitely
many convex components. The result is especially simple if the grain is fixed. Namely,
each fixed grain from the convex ring satisfies the conditions of Theorem 4.1. Then
EgZ, is the so-called convexification of the set Zy. Thus, the associated zonoid of the
limiting Poisson network is the projection body of the convexification of Z.

Hall [11] noticed that the same result is valid for the unions of a random number of
isotropic random polygons. We shall see that the same argumentation is appropriate
for the union of a random number of general convex set (5.4).

Theorem 5.3. Suppose that =y has the form (5.4) and

sup t'E [ud(Ef, \ 50)1N>m] -0 as m— 0. (5.5)
0<t<1

Then the normalized conditional vacancy converges weakly to the random open set
with the containment functional given by (4.2) for the measure v equal to the mean
surface measure of =.

Remark. The condition (5.5) follows from

N
sup t'E {Z pa( AL\ A,—)] —0 as m— o00.
0<t<1 ;

1=

Furthermore, it is possible to replace 1 in (5.5) by an arbitrary € > 0.
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Remark. A similar condition to (5.5) was imposed in [11] for the case of random poly-
gons defined as follows. Let P, P, ... be a sequence of non-random sets obtained as
the unions of finite numbers of polyhedrons. Then the random set X = Py for a
random number N is said to be a random polygon. Hall [11] considered its isotropized
variant (after applying a random rotation) to be the grain of the Boolean model. Now
it is easy to see that the condition '

sup t'E [,ud(P}i, \ PN)1N>m] —0 as m— 00 (5.6)
0<t<1

imposed in [11] is equivalent to (5.5) for random polyhedral grains.

PRrOOF. The argumentation in [11] remains the same, since Step (i) of the proof of
Theorem 1 in [11] does not use the polygonal assumption. We give below a similar

proof using above introduced notations.
Let us write ¢(Z9) = m if 5g = 4, U---U A, for some m > 1. Furthermore,

= = Z'(m) U Z"(m), where

E'(m) = U (CL’Z + Ei) ,

z; €V ,g(Z;)<m

='(m) = U  (z+5)

z; €¥,,9(E:)>m
are two independent sets. Then
p(A,m) = P{Z'(m)n B, =0o¢E}
= P{o¢ Z(m)}P{Z"(m)N B, =0} /P{o ¢ E}
exp {-A T7 E [pa(E0)Iv=il} exp { A T2 i B [a(Er ) 1n=i] |
exp {—A 3321 E [1a(E0)1v=i]}
= exp { —,\.f; E [Ena(Z5 \ E0)1ni] }

= exp {—AE [ua(Ey \ Z0)1nsm] } -

In view of (5.5), given € > 0 we may choose mg so large that
E [Md(Ea \ EO)1N>mo] <er't
for all 0 < ¢t < 1. Therefore,
p(A,m)>e*>1—¢

for sufficiently large A. This result means that, in fact, the elementary vacancy is
bounded by grains with N < m with probability going to 1 as m — oo. Thus, the set
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] greater than m) adds nothing in the limit as m — oo, while the result
llows from Theorem 5.2. O

in depends on 7, then the conditions above must be uniform with respect
. . =) _ =

icular, all results remain the same for the case Zy° = r,Z for r, — 7¢ as
=, satisfying the above conditions.

luding Remarks

several open problem related to the contents of this paper.

been shown that the associated zonoid of the network is related to the
sction body of the Blaschke mean of the grain. It would be interesting
-malization such that the Steiner compact of the limiting set is the jth
»dy of Blaschke mean with j <d — 1.

oncept of the Boolean model can be easily reformulated for the maxima
nctions, see [39]. In this case the properties of cones determined by these
» of interest. The corresponding technique should involve the variations
ative integral formula which must give a possibility to compute quantities

,ud((Kl ) Ll) M (Kg @D Lz)) .

anslative integral geometric formula is very naturally applied to study the
1e Boolean model. It is interesting to find interpretations in the language
of the iterated translative integral formula developed in [48].

ntuitively clear (see the comments in [13]) that the limiting results will
for the coverage processes on spheres. However, on more general spaces of
. curvatures other interesting effects can appear.

:ondition (3.7) appear as well in the study of global limit theorems for
model. They are of interest if the intensity of the model tends to zero.
it is possible to get Poisson networks as limits of Boolean models with
es and not very large grains (e.g., for grains being very long and thin
Although this topic lays beyond the framework of this paper, the tightness
7) is still very natural to impose. Note again that the condition (3.7) is
1 the tightness condition in [16], since the main topic in [16] was to consider
nce of germ-grain models to the limit which is also a germ-grain model,
le limits are no longer germ-grain models.

germ process is not Poisson, then the capacity functional of the Boolean
» expressed through the probability generating functional Gy[-] of the germ

Te(K) =1 — Gyl — Te, (K — ()],



1en the capacity functional of the normalized conditional vacancy M, Y, is

L(K) = Gall = Ty (A" K — ())]/Gall = Teem ({0} — ()],

is the probability generating functional of the point process ¥, . Thus,
the conditional vacancy can be obtained if some differentiability properties
ability generating functional are imposed.
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