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Abstract 

Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of 
elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions 
given earlier by F.W.J. Olver. Some of his results are modified to improve the asymptotic properties and to enlarge the 
intervals for using the expansions in numerical algorithms. Olver's results are obtained from the differential equation 
of the parabolic cylinder functions; we mention how modified expansions can be obtained from integral representations. 
Numerical tests are given for three expansions in terms of elementary functions. In this paper only real values of the 
parameters will be considered. © 2000 Elsevier Science B.V. All rights reserved . 
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1. Introduction 

The solutions of the differential equation 

d2 y ( 1 ) dz2 - 4z2 + a y = 0, ( 1.1) 

are associated with the parabolic cylinder in harmonic analysis; see (20]. The solutions are called 
parabolic cylinder functions and are entire functions of z. Many properties in connection with physical 
applications are given in [4]. 
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As in [l, Chapter 19] and [17, Chapter 7], we denote two standard solutions of ( 1.1) by U(a,z), 
V (a, z ). These solutions are given by the representations 

U (a, z) ~ Vii 2 < "" [ I'(23~~'~'g;; ia) -T( ~;;~~";;;)a) l · 
fi2-c 12 )" [ (1 1) 2- 14y1(a,z) 

V(a,z) = I'((l/2) - a) tan n 2a + 4 I'(3/4 + (1/2)a) 

(I 1) 2 14 y 2(a,z) l 
+cotn 2a+4 I'(l/4+(1/2)a)' 

where 

_I I 4 l :' ( 1 1 1 . 1 2) ( I 4 ) :' ( 1 1 1 . 1 _2) 
y 1(a,z) = e 1F1 - 2a + 4, l' -2z = e · 1F1 2a + 4' 2' 2"' , 

-(I 4 ):' ( 1 3 3 . 1 2) ( 14 ):' ( 1 3 3 . 1 _2) Yo(a 7 )=ze · 1F 1 -a+---z =ze· 1F1 --a+----,:, - ,~ 2 4'2'2 2 4'2' 2 

and the confluent hypergeometric function is defined by 

)C ( ) .,,11 

"""""' Q II~ 1F1(a,c;z) = L, -( ) I 
11=0 c n n. 

with (a) 11 =I'(a+n)/I'(a), n=O,l,2, .... 
Another notation found in the literature is 

D-(z) = U(-v - ±,z). 

There is a relation with the Hermite polynomials. We have 

U(-n - ±,z) = 2-n 2e-11 4 l='H11 (z/-J2), 

V(n + t,z) = r 112e' 14 '=2(-i)"H11 (iz/-J2). 

Other special cases are error functions and Fresnel integrals. 
The Wronskian relation between U(a,z) and V(a,z) reads 

U(a,z)V'(a,z) - U'(a,z)V(a,z) = {ife, 

(1.2) 

( 1.3) 

(1.4) 

( 1.5) 

( 1.6) 

which shows that U (a, z) and V (a, z) are independent solutions of ( 1.1) for all values of a. Other 
relations are 

U(a,z) = cos2 rraI'(~l/2 ) +a) [V(a, -z) - sin na V(a,z)], 

I'((l/2) +a) . 
V(a,z) = [sm naU(a,z) + U(a, -z)]. 

7t 

(1.7) 

The functions Yi (a, z) and y 2( a, z) are the simplest even and odd solutions of ( 1.1) and the Wronskian 
of this pair equals 1. From a numerical point of view, the pair {y1, y2} is not a satisfactory pair (see 
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[8]), because they have almost the same asymptotic behavior at infinity. The behavior of U(a,z) 
and V(a,z) is, for large positive z and z » ial 

U(a,z) = e-0/4l=2z-a-(t/2l[l + <D(z-2)], 

V(a,z) = ~e<I/4)=2za-(L'2l[l + <D(z-2)]. 
( 1.8) 

Clearly, numerical computations of U(a,z) that are based on the representations in (1.2) should be 
done with great care, because of the loss of accuracy if z becomes large. 

Eq. ( 1.1) has two turning points at ±2.j=a. For real parameters they become important if a is 
negative, and the asymptotic behavior of the solutions of ( 1.1) as a - -oo changes significantly if 
z crosses the turning points. At these points Airy functions are needed. By changing the parameters 
it is not difficult to verify that U(-tµ2,µt/2) and V(-tµ 2,µtv'2) satisfy the simple equation 

d2y 
dtl -µ4(t2-l)y=O (1.9) 

with turning points at t = ± 1. For physical applications, negative a-values are most important (with 
special case the real Hermite polynomials, see ( 1.5) ). For positive a we can use the notation 
U(tµ2,µt/2) and V(tµ2,µt/2), which satisfy the equation 

d2y 4 2 
dt2 - µ (t + l)y = 0. (1.10) 

The purpose of this paper is to give several asymptotic expansions of U(a,z) and V(a,z) that can 
be used for computing these functions for the case that at least one of the real parameters is large. In 
[l O] an extensive collection of asymptotic expansions for the parabolic cylinder functions as !al --+ oo 
has been derived from the differential equation ( 1.1 ). The expansions are valid for complex values 
of the parameters and are given in terms of elementary functions and Airy functions. In Section 
2 we mention several expansions in terms of elementary functions derived by Olver and modify 
some his results in order to improve the asymptotic properties of the expansions, to enlarge the 
intervals for using the expansions in numerical algorithms, and to get new recursion relations for 
the coefficients of the expansions. In Section 3 we give similar results for expansions in terms of 
Airy functions. In Section 4 we give information on how to obtain the modified results by using 
integral representations of the parabolic cylinder functions. Finally we give numerical tests for three 
expansions in terms of elementary functions, with a few number of terms in the expansions. Only 
real parameters are considered in this paper. 

1.1. Recent literature on numerical algorithms 

Recent papers on numerical algorithms for the parabolic cylinder functions are given in [14] 
(Fortran; U(n,x) for natural n and positive x) and [13] (Fortran; U(a,x), V(a,x), a integer and 
half-integer and x ~ O ). The methods are based on backward and forward recursion. 

Baker [2] gives programs in C for U(a,x), V(a,x), and uses representations in terms of the 
confluent hypergeometric functions and asymptotic expressions, including those involving Airy func­
tions. Zhang and Jin [23] gives Fortran programs for computing U(a,z), V(a,z) with real orders 
and real argument, and for half-integer order and complex argument. The methods are based on 
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recursions, Maclaurin series and asymptotic expansions. They refer also to [3] for the evalua­

tion of U(-ia,ze( 14 l~i) for real a and z (this function is a solution of the differential equation 

y" + (~z2 - a)y = 0). Thompson [19] uses series expansions and numerical quadrature; Fortran and 

C programs are given, and Mathematica cells to make graphical and numerical objects. 

Maple has algorithms for hypergeometric functions, which can be used in (1.2) and (1.3) (5]. 
Mathematica refers for the parabolic cylinder functions to their programs for the hypergeometric 

functions [21] and the same advice is given in [12]. For a survey on the numerical aspects of special 

functions we refer to [7]. 

2. Expansions in terms of elementary functions 

2.1. The case a~O, z > 2Fa,-a + z » 0 

Olver's expansions in terms of elementary functions are all based on the expansion 0-( 4.3) 1 

U(-.!. 2 tVl) r.... g(µ)e-1'2~ ~ ds(t) (2.1) 
2µ,µ (t2-l)l.i4L.. 2s 

s=O µ 

as µ ---+ oo, uniformly with respect to t E [l + 10, oo ); 10 is a small positive number and ~ is given by 

~ = ttvt2 - 1 - ~ln[t + vt2=1]. 
The expansion is valid for complex parameters in large domains of the µ- and t-planes; 
these domains are not given here. 

The coefficients ds(t) are given by the recursion relation 

1 1 dds(f) 1 11 3u 2 + 2 
ds+1U)=lJt2-1 dt +8 '"+'(u2-1)5/2ds(u)du, do(t)=l, 

(2.2) 

details on 

(2.3) 

where the constants Cs can be chosen in combination with the choice of g(µ ). Olver chose the 
constants such that 

d ( Us(t) 
s t) = (t2 _ 1 )3s/2 ' (2.4) 

where the us(f) are polynomials in t of degree 3s, (s odd), 3s- 2 (seven, s~2). The first few are 

Uo(t) = 1, U (t) = t(t2 - 6) U (t) = -9t4 + 249t2 + 145 
l 24 ' 2 1152 

and they satisfy the recurrence relation 

(t2 - l)u~(t) - 3stus(t) = rs-1(t), (2.5) 

where 

8rs(t) = (3t2 + 2)us(t) - 12(s + 1)trs-1(t)+4(t2 - l)r.'._1(t). 

The quantity g(µ) in (2.1) is only available in the form of an asymptotic expansion 

g(µ) ~ h(µ) (t, :~)-I' (2.6) 

1 We refer to Olver's equations by writing 0-(4.3), and so on. 
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where 

(2.7) 

go= 1, 
2021 

g3=- 207360 , g2s=O (s=l,2, ... ), 

and in general 

gs = lim ds(t). 
t~oc 

(2.8) 

2.1.1. Modified expansions 
We modify the expansion in (2.1) by writing 

I 2 h(µ)e-11\ oc c/> ('r) 
U(-2µ ,µtJl) = (t2 _ l)l/4 Fp(f), F1,(t) rv L ~' 

s=O µ 
(2.9) 

where h(µ) and ~ are as before, and 

T=~[~-1]. (2.10) 

The coefficients c/>s( T) are polynomials in T, c/>0( T) = 1, and are given by the recursion 

d 1 r 
</>s+l (T) = -4r2( T + 1 )2 dT c/>s( r) - 4 Jo (20T'2 + 20r' + 3 )c/>s( r') dr'. (2.11) 

This recursion follows from (2.3) by substituting t = ( r + ~ )/ JT( r + 1 ), which is the inverse of the 
relation in (2.10). Explicitly, 

</>o(T)= 1, 

T2 
</>2(r) = 288 (6160T4 + 18480r3 + 19404r2 + 8028r + 945), 

3 

<f>3(r) = - 51T840 (27 227 200T6 + 122 522400T5 + 220 540 320T4 

+ 200 166 120r3 + 94 064 328r2 + 20 545 650T + 1 403 325 ), (2.12) 

where T is given in (2.10). Observe that lim1-+= T(t)=O and that all shown coefficients cf>s(T) vanish 
at infinity for s > 0. These properties of cf>s( r) follow by taking different constants Cs than Olver did 
in (2.3 ). In fact we have the relation 

f gs ~ </>.1(r) ~ us(t) 
s=O µ2s ~ -µz;- '"" ~ (t2 _ 1 )(3/2)s µ2s' 

where the first series appears in (2.6). Explicitly, 
s 

Us(t) = (t2 - IY3/Z)s Lgs-;c/>;(T). 
j=O 

(2.13) 
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The relation (2.13) can easily be verified for the early coefficients, but it holds because of the unicity 
of Poincare-type asymptotic expansions. 

The expansion in (2.9) has several advantages compared with (2.1 ): 
(i) In the recursion relation (2.5), both Us and u~ occur in the left-hand side. By using computer 

algebra it is not difficult to compute any number of coefficients u.,, but the relation for the 
polynomials </Js('c) is simpler than (2.5), with this respect. 

(ii) The quantity h(µ) in (2.9) is defined as an exact relation, and not, as g(µ) in (2.1), by an 
asymptotic expansion (cf. (2.6)). 

(iii) Most important, the expansion in (2.9) has a double asymptotic property: it holds if one or 
both parameters t and µ are large, and not only if µ is large. 

For the function V(a,z) we have 

V(-4µ2,µtVl)= Jnh( ;;;:_ 1)014 /µ(t), P1,(t)'"" fc-1y<Ps~~), 
µ µ =O µ 

(2.14) 

where the </Js(-c) are the same as in (2.9 ). This expansion is a modification of 0-(11.19) (see also 
0-(2.12)). 

For the derivatives we can use the identities 

d e-µ 2
i; F (t) _ 2(t2 l )1/4 -112;:;,G ( ) 

dt(t2-1)1/4 µ --µ - e µ t' 

+µ2' 
~ e " p ( ) _ 2( 2 _ )1;4 +µ 2;:;,Q ( 
dt (t2 - 1 )1/4 µ t - +µ t 1 e µ t), 

The coefficients I/ls can be obtained from the relation 

s = 0, l, 2, . . . . The first few are 

lf!o(t) = 1, 

G (t)"" ~ t/J.kc) 
µ L..J ?, ' 

s=O µ-· 

Q (t)"" ~(-l}"t/!,.(r)_ 
µ ~ µ2s 

s=O 

'C2 

l/12(t) = - 288 (7280-c4 + 21840-c3 + 23 028r2 + 9684-c + 1215), 

'C3 

l/J3(t) = 51 840 (30430 400-c6 + 136 936 800-c5 + 246 708 OOO-c4 

+ 224494200-c3 + 106122312-c2 + 23 489190-c + 1658475). 

This gives the modifications (see 0-( 4.13)) 

G (t)"' ~ l/J.,(-c) 
µ ~ µ2s 

s=O 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

L 
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and 

I I 2 - (t2 - 1 )li4el'l~ 
V(-:;µ,µtv'2.)- J21t Qµ(t), 

~ 2rch(µ) 
Qµ(t)rv f (-1}'1/J,.~)· 

s=O µ 
(2.19) 

Remark 2.1. The functions F1i(t), Gµ(t),P1i(t) and Qµ(t) introduced in the asymptotic representations 
satisfy the following exact relation: 

(2.20) 

This follows from the Wronskian relation ( 1.6 ). The relation in (2.20) provides a convenient 
possibility for checking the accuracy in numerical algorithms that use the asymptotic expansions of 
Fµ(t), G1,(t),P1i(t) and Qµ(t). 

2.2. The case a ~O, z < - 2y'=a, -a - z » 0 

For this case we mention the modification of 0-(11.16 ). That is, for t ';;!; 1 + e we have the 
representations 

U( I 2 ;;:;2) _ h(µ) [ · (I 2) -112 ~p ( ) 
-2µ ,-µtv.t. - (t2 - 1)1/4 sm 2nµ e I' t 

I'(l/2 + (l/2)µ 2 )cos((l/2)rcµ2 ) 1,i~p ( )] 
+ µy'rr,h2(µ) e I' t ' (2.21) 

where F 1,(t) and Pµ(t) have the expansions given in (2.9) and (2.14), respectively. An expansion 

f~r V(-~µ2, -µtv0.) follows from the second line in (1.7), (2.9) and (2.21). A few manipulations 
give 

I 2 v'2 _ h(µ) [ I 2 -112 ~ ( 
V(- 2µ, -µt 2)- (t2 _ 1 ) 114I'(l/2 + (l/2 )µ 2 ) cos( 2nµ )e F1, t) 

_ I'(l/2 + (l/2)µ 2)sin((l/2)rcµ2 ) e111~p ,(t)] . 
µfth2(µ) I 

(2.22) 

Expansions for the derivatives follow from the identities in (2.15). If a= - ~µ2 = - n - ~, n = 0, 1, 
2, ... , the cosine in (2.21) vanishes, and, hence, the dominant part vanishes. This is the Hermite 
case, cf. ( 1.5 ). 

2.3. The case a«O, -2Fa < z < 2Fa 

For negative a and -1 < t < 1 the expansions are essentially different, because now oscillations 
with respect to t occur. We have (0-(5.11) and 0-(5.23)) 

1 2 v'2 2g(µ) [ 2 1 ~ (-lYu2s(t) 
U(-2_µ ,µt 2)"' (1 - t2)1/4 cos(µ ry- 4n) ~ (1 - t2)3sµ4s 

. 2 1 ~ (-l}'u2s+1(t) ] 
- sm(µ 11 - 47t) ~ ( 1 _ 12 )3s+(3/2l µ4s+z ' (2.23) 
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(2.33) 
0-(11.10) 

(2.21) 
0-(11.16) 

(3.16) 
0-(9.7) 

(3.1) 
0-(8.11) 

(2.9) 
0-(4.3) 

Fig. 1. Regions for the modified asymptotic expansions of U(a,z) given in Section 2 and the Airy-type expansions of 
Section 3 (which are valid in much larger domains than those indicated by the arrows). 

This follows from the Wronskian relation 

I I v'21t 
U(a,z)U (a, -z) + U (a,z)U(a, -z) = - I'(a + (1/2)) 

See also Remark 2.1. 

Remark 2.4. The expansions of Sections 2.4 and 2.5 have the double asymptotic property: they are 
valid if the a+ lz I ---> oo. In Sections 2.4 and 2.5 we consider the cases z ~ 0 and ( ~ 0, respectively, 
as two separate cases. Olver's corresponding expansions 0-(11.10) and 0-(11.12) cover both cases 
and are valid for -oo < t < oo. As always, in Olver's expansions large values of µ are needed, 
whatever the size of t. 

In Fig. 1 we show the domains in the t,a-plane where the various expansions of U(a,z) of this 
section are valid. 

3. Expansions in terms of Airy functions 

The Airy-type expansions are needed if z runs through an interval containing one of the turning 
points ±2Fa, that is, t = ±1. 

3.1. The case a~O, z~O 

We summarize the basic results 0-(8.11), 0-(8.15) and 0-(11.22) (see also 0-(2.12)): 

U(-iµ2,µtv'2) = 2nli2µli3g(µ)cf>(0 [Ai(µ4/30A,,(0 + Ai1~~~3') Bio] . (3.1) 

U'(-!µ2 µt./2) = (2n)l/2µ2i3g(µ) [A;(µ4/30 C (Y) +A· ( 4/3r)D (Y)l (3.2) 
2 ' </>(0 µ4/3 11 \, 11 µ \, I' \, ' 
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V(-!µ2 µtVl)= 2n12µ13g(µ)</>(O [sc 4.3r)A (")+Bi,(µ430 B (")] 
2 ' I'(l/2+(1/2)µ2) I Jl ':, Jl \, µX3 Jl I, ' 

(3.3) 

(3.4) 

The coefficient functions Ap((),B11((),C1,(() and DI'(() have the following asymptotic expansions: 

A (r) rv ~ as(() 
I'':, ~ 4s' 

s=O µ 

c er)""'~ c./O 
I'':, ~ 4s' 

s=O µ 

(3.5) 

D (r) rv ~ d,(() 
I'':, ~ 14s ' 

s=O /-

(3.6) 

as µ --+ oo, uniformly with respect to t;;?: - 1 + 6, where (5 is a small fixed positive number. The 
quantity ( is defined by 

~(-()3 /2 =ry(t), -1 <t~l, ((~O), 

~(3/2 = ~(t), 1 ~t, ((;;?:O), 
(3.7) 

where ry, ~ follow from (2.26 ), (2.2 ), respectively, and 

( ( )1.4 
<PCO = t2 - 1 (3.8) 

The function ((t) is real for t > - 1 and analytic at t = 1. We can invert ((t) into t((), and obtain 

t = 1+2-ur _ J..2-2i3r2 + ..!.!_r3 + ... 
'> JO ':, 700 '> • 

The function g(µ) has the expansion given in (2.6) and the coefficients as((), bs( 0 are given by 

2s ls+ I 

as(()= L f3mC( 3 l)ms12s-111(t) J(,bs(() = - L exmC 13 l)"',CJ12s-m+1(t), 

m=O 

where d,(t) are used in (2.1), ex0 = 1 and 

(2m + 1 )(2m + 3) · · · ( 6m - 1) 
ex - -----------

m - m!(l44 )"' ' 

A recursion for ex,,, reads 

m=O 

6m + 1 
/3,,, = - 6m - 1 a,,,. 

( 6m + 5 )( 6m + 3 )( 6m + 1 ) 
ex 1 - ex m = 0, 1,. 2, . . . . 

m + - Ill 144 ( m + 1 )( 2m + 1 ) ' 

(3.9) 

(3.10) 

The numbers ex,,,, f3m occur in the asymptotic expansions of the Airy functions, and the relations 
in (3.9) follow from solving (3.1) and (3.3) for A11(0 and B1,((), expanding the Airy functions 
(assuming that ( is bounded away from 0) and by using (2.1) and a similar result for V(a,z) 
(0-(11.16) and 0-(2.12)). 
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For negative values of ( (i.e., -1 < t < 1) we can use (0-(13.4)) 

2s 

a,co = c-1r I: f3m<-o-(3 !
2 J"' .iz12s-m(t), 

m=O 
(3.11) 

2s+1 

vC("bs(()=(-l)s-I L O'.m(-()-<3iZlm.izl2s-m+1(t), 

m=O 

where 

-:- us(t) 
s#s(t) = (1 - t2 )<32l.1. 

The functions Cµ(O and D1,(0 of (3.2) and (3.4) are given by 

C1/0 = x(()Aµ(() +A~(()+ (BI,((), Dµ(() =Ap(() + ~[x(OBiJO + e;,coJ. (3.12) 
µ 

The coefficients cs( O and ds( 0 in (3 .6) are given by 

(3.13) 

where 

(0 = 4>'(0 = 1 - 2t[c/>(0J6 
x c/>(0 4( 

(3.14) 

with c/>( O given in (3.8). Explicitly, 

1 2s+I 2s 

( r) _ "'""""'[3 r-(3/2)mf1lJ ( ) d (Y) _ "'""""' r-(3/2)m@ ( ) 
Jr,Cs <:, - - ~ mS ~2s-m+1 ! s S - - ~ am\, ~2s-m ! , (3.15) 

where PJ_,(r) = vs(t)/(t2 - l)l3'2 l", with vs(t) defined in (2.25). Other versions of (3.15) are needed 
for negative values of(, i.e., if-1<t<1; see (3.11). 

3.2. The case a«O,z~O 

Near the other turning point t = -1 we can use the representations (0-(9.7)) 

U(-~µ2,-µtJ2) = 2rt1' 2 µ 113 g(µ)c/>(0 [sin(~rrµ2 ) { Ai(µ4 3()A1,(() + Ai'~433 () B1,(()} 

( i z) {e ( 4/3r) ~A (Y) Bi'(µ4'30B r)}] (3.16J +cos 2rrµ ; µ ,, ~ 1, s + µ8:3 1,(,, 

as µ _, oo, uniformly with respect to t :;:::-; - 1 + 6, where () is a small fixed positive number. 
Expansions for V(a,z) follow from (3.1) and (3.16) and the second relation in (1.7). Results for 
the derivatives of U(a,z) and V(a,z) follow easily from the earlier results. 
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3.3. Modified forms of Diver's Airy-type expansions 

Modified versions of the Airy-type expansions (3.1)-(3.4) can also be given. In the case of the 
expansions in terms of elementary functions our main motivation for introducing modified expansions 
was the double asymptotic property of these expansions. In the case of the Airy-type expansions 
the interesting domains for the parameter t, from a numerical point of view, are finite domains that 
contain the turning points ±1. So, considering the expansions given so far, there is no need to have 
Airy-type expansions with the double asymptotic property; if µ remains finite and ltl ~ 1 we can 
use the expansions in terms of elementary functions. However, we have another interest in modified 
expansions in the case of Airy-type expansions. We explain this by first discussing a few properties 
of the coefficient functions Aµ((),Bµ(O, Cµ(O and Dµ((). 

By using the Wronskian relation (1.6) we can verify the relation 

A COD,(()- J_B (()C,(0 = I'(l/2 + (l/2 )µ2
)' (3.17) 

µ I µ4 µ I 2µ.jitg2(µ) 

where g(µ) is defined by means of an asymptotic expansion given in (2.6). By using the differential 
equation (0-(7.2)) 

d2 W 
d,2 = [µ4( + lf'(()]W, (3.18) 

where 

If'(!')= _5_ - (3t2 + 2)( = 2''3 [-_i_ _2_2-''3r - 1359 i-2/3r2 196 r3 •. • ] 
., 16(2 4(t2 - 1)3 280 + 150 ., 26950 ., + 8125" ' 

we can derive the following system of equations for the functions A1,((),Bµ((): 

A"+ 2(B' + B - lf'(()A = 0, 

B" + 2µ 4A' - lf'(()B = 0, 

(3.19) 

(3.20) 

where primes denote differentiation with respect to 
eliminating the terms with If'((). This gives 

(. A Wronskian for this system follows by 

2µ4A'A + AB" -A"B - 2(B'B -B2 = 0, 

which can be integrated as 

4 2 I / 2 4I'(l/2 + (1/2)µ 2 ) 
µ AiO +A1,(0Bp(0 -Ai()B1,(0- (BiO = µ 2µ.jitgz(µ) ' (3.21) 

where the quantity on the right-hand side follows from (3.17) and (3.12). It has the expansion 

4 [ 1 2021 ] 
µ 1 - 576µ4 + 2488 320µ8 + ... ' (3.22) 

as follows from 0-(2.22) and 0-(5.21). 
As mentioned before, the interesting domain of the Airy-type expansions given in this section is 

the domain that contains the turning point t = 1, or ( = 0. The representations of the coefficients 
of the expansions given in (3.9) cannot be used in numerical algorithms when 1(1 is small, unless 
we expand all relevant coefficients in powers of (. This is one way how to handle this problem 
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numerically; see [18]. In that paper we have discussed another method that is based on a system 
like (3.20), with applications to Bessel functions. In that method the functions A 1,(() and B1,(0 
are expanded in powers of C for sufficiently small values of 1(1, say 1(1::::; 1, and the Maclaurin 
coefficients are computed from (3.20) by recursion. A normalizing relation (the analogue of (3.21)) 
plays a crucial role in that algorithm. The method works quite well for relatively small values of a 
parameter (the order of the Bessel functions) that is the analogue of µ. 

When we want to use this algorithm for the present case only large values of µ are allowed 
because the function g(µ) that is used in (3.1)-(3.4) and (3.21) is only defined for large values 
ofµ. For this reason we give the modified versions of Olver's Airy-type expansions. The modified 
versions are more complicated than the Olver's expansions, because the analogues of the series 
in (3.5) and (3.6) are in powers of µ- 2, and not in powers of µ- 4. Hence, when we use these 
series for numerical computations we need more coefficients in the modified expansions, which is 
certainly not desirable from a numerical point of view, given the complexity of the coefficients in 
Airy-type expansions. However, in the algorithm based on Maclaurin expansions of the analogues 
of the coefficient functions A1,((),B1,((),C1,(() and Dp(() this point is of minor concern. 

The modified expansions are the following: 

U(-l z tVl) = f(l/2 + (1/2)µ2)</J(O [A( 4/3r)F (r) + Ai'(µ4 30 G (r)] 
2µ,µ µ2/3h(µ) ,µ \, /tS µs13 11\> ' 

V( 1 2 Vl) </>(0 [ 4,3r B;,(µ43 () ] 
-2µ , µt 2 = µ113h(µ) B;(µ. s)FiO + µs 3 G/1(0 . 

The functions F1,( O and G1,( O have the following asymptotic expansions: 

F (Y) r-.; ~ /,(() 

I'\, L...J 2s' 
s=O µ 

G (() ~ ~ g,(0. 
I' L...J 2s 

s=O µ 

(3.23) 

(3.24) 

(3.25) 

The quantity ( and the functions </>CO and h(µ) are as in Section 3.1. Comparing (3.23), (3.24) 
with (3 .1 ), (3.3) we conclude that 

F (Y) H( )A (r) G (r r H = 2.jnµg(µ)h(µ) 
I'"'= µpi,,, ps)=H(µ)B,,(i,,), (µ) f(l/2+(1/2)µ2)° 

The function H(µ) can be expanded (see 0-(2.22), 0-(2.27), 0-(6.2) and (2.6)) 

1 "° 
H(µ)"' 1 + - "°' (-1 Y-y,._ 

2 L...J (l 2)s' 
s=I 2µ 

where y, are the coefficients in the gamma function expansions 

The first few coefficients are 

Yo= 1, 
1 

Yi= -24' 
1003 

Y3 = 414 no· 

( 3.26) 

(3.27) 

(3.28) 
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The second expansion in (3.28) can be used in (3.26) to find relations between the coefficients 
1,(0 and bs(O of (3.5) and of J.,(0 and gs(O of (3.25). That is 

1 1 1 1003 
fo(O=l, /1(0= 24' /2(0=a1(0+ 576' /3(0= 24a1(0- 103680' 

92(0 = b1(0 + 5~6 bo(0, gJ(O = 2~ b1(0 - 1 ~~~~0 bo((). 
fhe coefficients fs( 0, gs( 0 can also be expressed in terms of the coefficients <f> 1.( t) that are intro­
:luced in (2.9) by deriving the analogues of (3.9). 

The system of equations (3.20) remains the same: 

F" + 2(G' + G - lfl(()F = 0, 

G" + 2µ4F' - 'l'(0G = O 
(3.29) 

and the Wronskian relation becomes 

µ4Fl:co +F1,(0G;,co - F;,(OGiO - (G~(O = µ4 I'(~/'{~~;;~;µ2) (3.30) 

The right-hand side has the expansion (see (3.28) and (2.7)) µ4 I:~0(-1 )5yJnµ2 y. Observe that 
(3.30) is an exact relation, whereas (3.21) contains the function g(µ ), of which -only an asymptotic 
expansion is available. 

3.4. Numerical aspects of the Airy-type expansions 

In [18, Section 4], we solved the system (3.29) (for the case of Bessel functions) by substituting 
Maclaurin series of F((), G(O and '!'((). That is, we wrote 

00 00 = 
F(O = L C11(µ)( 11 , G(() = L d11(µ)C, lfl(O = L t/111(11

, 

11=0 n=O n=O 

where the coefficients t/111 can be considered as known (see ( 3 .19) ), and we substituted the expansions 
in (3.29 ). This gives for n = 0, 1, 2, .. ., the recursion relations 

n 

(n + 2 )(n + 1 )Cn+2 + (2n + 1 )d11 =Pm Pn = L t/lkcn-k• 
k=O 

(3.31) 
II 

(n + 2)(n + 1 )d11+2 + 2µ 4(n + 1 )C11+1 = <l11, <Jn= L t/lkdn-k· 
k=O 

If µ is large, the recursion relations cannot be solved in forward direction, because of numerical 
instabilities. For the Bessel function case we have shown that we can solve the system by iteration 
and backward recursion. The relation in (3.30) can be used for normalization of the coefficients in 
the backward recursion scheme. 

For details we refer to [18]. The present case is identical to the case of the Bessel functions; 
only the function 'I' ( O is different, and instead of µ2 in ( 3 .31 ) we had the order v of the Bessel 
functions. 
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4. Expansions from integral representations 

The expansions developed by Olver, of which some are given in the previous sections, are all 
valid if lal is large. For several cases we gave modified expansions that hold if at least one of the 
two parameters a, z is large and we have indicated the relations between 0 lver' s expansions and the 
new expansions. The modified expansions have in fact a double asymptotic property. Initially, we 
derived these expansions by using integral representations of the parabolic cylinder functions, and 
later we found the relations with Olver's expansions. In this section we explain how some of the 
modified expansions can be obtained from the integrals that define U(a,z) and V(a,z). Again we 
only consider real values of the parameters. 

4.1. Expansions in terms of elementary functions by using integrals 

4.1.1. The case a~O, z~O; a+z»O 
We start with the well-known integral representation 

U(a z) = e . wa-(1/2ie-c1;2Jw'-zw dw a> - .!. 
-(I /4 ):2 1oc 

' I'(a + ~) 0 ' 2 

which we write in the form 

where 

za+(l/2)e-(l/4J=' 100 ! 2 

U(a z) = w- 112e-= </J(w) dw 
' I'(a+(l/2)) o ' 

</>(w) = w + ~w2 -A.In w, 
a 

A.=2· z 

The positive saddle point w0 of the integrand in ( 4.3) is computed from 

giving 

d<J>(w) 

dw 

w2 +w-A. 
----=0, 

w 

Wo = H vll + 4-1. - I]. 

( 4.1) 

(4.2) 

( 4.3) 

( 4.4) 

(4.5) 

We consider z as the large parameter. When A. is bounded away from O we can use Laplace's 
method (see [11] or [22]). When a and z are such that A.--+ 0 Laplace's method cannot be applied. 
However, we can use a method given in [15] that allows small values of A. 

To obtain a standard form for this Laplace-type integral, we transform w --+ t (see [ 16]) by writing 

<J>(w)=t-)dnt+A, (4.6) 

where A does not depend on t or w, and we prescribe that w = 0 should correspond with t = 0 and 
w = wo with t = A., the saddle point in the t-plane. 

This gives 

za+(l/2Je-(l/4)z2-Az2 rX! , 
U(a,z) = (1+4A,)114I'(a + 1/2) Jo ta-1;2e-nf(t)dt, (4.7) 
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where 

/(t) = (1+4,;l)I/4 !I dw = (1+4A_)l/4 Fi_ t - ). . 
V ; dt V t w1 + w - A. 

(4.8) 

By normalizing with the quantity (1+42)114 we obtain/().)= 1, as can be verified from (4.8) and 
a limiting process (using l 'Hopital' s rule). The quantity A is given by 

A = !w5 + wo - A. ln w0 - A. + 2 ln 2. 

A first uniform expansion can be obtained by writing 
oc 

J(t) = :L ane2)u - A.)". 
n=O 

Details on the computation of a 11 (A.) will be given in the appendix. 
By substituting ( 4.10) into ( 4. 7) we obtain 

where 

z2a+1n+ 1 t"° ' 
Pn(a) = I'(a + 1/2) Jo ta-1;2e-:-1(t - A.)" dt, n=0,1,2, .... 

The P11(a) are polynomials in a. They follow the recursion relation 

P 11+1(a) = (n + ! )P11 (a) + anP11 _ 1(a), n = 0, 1,2, ... 

with initial values 

Po(a) = 1, P 1(a) = !· 
We can obtain a second expansion 

e-(l/4)z2 -Az2 oo fk().) 
U(a,z),..., za+(ll2l(l + 4A.)';4 {; --;v:-

(4.9) 

(4.10) 

( 4.11) 

(4.12) 

( 4.13) 

with the property that in the series the parameters A. and z are separated, by introducing a sequence 
of functions {fk} with f 0(t) = f(t) and by defining 

h+i(t) = Jt :t [ Jtfk(t~ = {k(A.)]' k = 0, 1,2,. .. (4.14) 

The coefficients fk(A.) can be expressed in terms of the coefficients an(A.) defined in (4.10). To 
verify this, we write 

00 

fk(t) =I: a~k)(A_)(t - A.)" (4.15) 

and by substituting this in ( 4.14) it follows that 

a~k+I>(A) = A.(n + 1 )a~kJ2 (2) + (n + ! )a~~ 1 (A.), k ~O. n ~O. (4.16) 
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Hence, the coefficients fk(A.) of ( 4.13) are given by 

fk(,1.) = a~kl(A), k~O. 

We have 

fo(A) = 1, 

f1(A) = Ha1(A) + 2Aa2(A)], 

f2(A) = Hl2A2a4(A) + 14Aa3(A) + 3a2(A)], 

f3(A) = Hl20A3a6(A) + 220..l2a5(A) + l 16Aa4(A) + 15a3(A)]. 

Explicitly, 

fo(A) = 1, 

f1(A) = - ~ (20a2 - 100" - 1), 

2 

/2(A) = 1 i52 (61600"4 - 6160a3 + 9240"2 + 200" + 1 ), 

3 

f3(A) = 41: 720 (27 227 200u6 - 40 840 800a5 + 16 336320a4 

-1315 1600"3 - 81120.2 + 2874a + 1003), 

where 

O" = ! [l + z ] p = (2a - 1 )2 = 2z2 

2 v4a+z2 , a v4a+z2(z+v4a+z2 )° 

( 4.17) 

( 4.18) 

( 4.191 

(4.20) 

We observe that /k(A) is a polynomial of degree 2k in a multiplied with l. 
If a and z are positive then a E [O, l]. Furthermore, the sequence {l /z2k} is an asymptotic scale I 

when one or both parameters a and z are large. The expansion in ( 4.13) is valid for z -+ oo and 
holds uniformly for a~ 0. It has a double asymptotic property in the sense that it is also valid 
as a -+ oo, uniformly with respect to z ~ 0. As follows from the coefficients given in ( 4.19) and 
relations to be given later, we can indeed let z -+ 0 in the expansion. 

The expansion in ( 4.13) can be obtained by using an integration by parts procedure. We give a 
few steps in this method. Consider the integral 

(4.21) 

We have (with ,l = a/z2 ) 

F (z)= j(A) r= ta-(1:2Je-=i1 dt + 1 {co ta-(112Je-=21[j(t) - j(..l)]dt 
a I'(a + (1/2)) Jo I'(a + (1/2)) lo 

=z-2a-lf(A)- 1 {'"° t(l/2)[/(t) - f(A.)] de-=2<1-}.!nt) 

z2I'(a+(1/2))lo t-A. 

=z-2a-1j(A) + 1 r= ta-<112Je-=21f1(t)dt, 
z2I'(a + (1/2)) lo 
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where f 1 is given in ( 4.14) with fo =f. Repeating this procedure we obtain ( 4.13 ). More details on 
tbis method and proofs of the asymptotic nature of the expansions ( 4.11) and ( 4.13) can be found 
ill our earlier papers. We concentrate on expansion ( 4.13) because ( 4.11) cannot be compared with 
Olver's expansions. 

To compare (4.13) with Olver's expansion (2.16), we write 

a= ±µ2, z = µJ"it. (4.22) 

Then the parameters <J and p defined in ( 4.20) become 

(J = ~ [1+~]=i+1, 
2 1 + t2 

212 
p--------

- J1 +12u+ J1 +12 )' 
( 4.23) 

where i is given in (2.32). After a few manipulations we write (4.13) in the fonn (cf. (2.29)) 

( 4.24) 

where 

[ = ±[tvT+t2 + In(1 + J1 + t2 )J, ( 4.25) 

( 4.26) 

and 

- (-1 i 
c/>k(<J) = (2t2 )k fkU). ( 4.27) 

Explicitly, 

ef>o(<l) = 1, 

- 1-0" ) 
</J 1(a) = 12(20<J- - lOa - 1 ), ( 4.28) 

- (1 - (J )2 
cP2(<l) = 288 (6160<J4 - 6160<J3 + 924<J2 + 20<J + 1 ), 

( 1 (J )3 
ef>,(a)= - (27227200<J6 -40840800a5 + 163363200'4 

0 51840 
-1315 160<T3 - 8112<J2 + 2874a + 1003 ), 

where O" is given in (4.23). Comparing (4.24) with (2.29) we obtain ef>k(a) = cPk(i), k~O, because 
() = 1 +i. 

4.1.2. The case a~O, z~O; a -z » 0 
To derive the first expansion in (2.34) we use the contour integral 

V27Ce( i. 4 l=' 

U(a, -z) = I'(a + (l/2 ))Ha(z), 
H ( ) - I'(a + (1/2)) 1 :st(l.2)1·2 -u-(1 2) d 

a z - . e s s, 
2m ·r. 

(4.29) 
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where <e is a vertical line in the half-plane 9t s > 0. This integral can be transformed into a standard 
form that involves the same mapping as in the previous subsection. We first write (by transforming 
via s = zw) 

Ha(Z) = z( 112)-u I'(a ~ (1/2)) r ez2(w+(l/2)w'>w-a-(l/2) dw 
2m }'6 

= z(lil)-ar(a + (1/2)) r ez'</>(w) dw, 

2ni I. vw ( 4.30) 

where </>( w) is defined in ( 4.3 ). By using the transformation given in ( 4.6) it follows that 

Ha(z) = z a . ez'it-a-(1/2) f(t)dt. 
<1121-ar( + (1/2))eAz' 1 

2m '6 
( 4.31) 

The integration by parts method used for ( 4.21) gives the expansion (see [ 18]) 

zaeA=' :xJ k fk( A) 
Ha(z)"' (4 + 2)114 L(-l) -2k-, 

a Z k=O Z 

( 4.32) 

where the fk(.A) are the same as in (4.13); see also (4.18). This gives the first expansion of (2.34). 

Remark 2.5. The first result in (2.34) can also be obtained by using ( 4.1) with z < 0. The integral 
for U(a,-z) can be written as in (4.2), now with </>(w)=*w2 -w-ln.A, .A=a/z2• In this case the 
relevant saddle point at w0 = (1 +JI + 4A.)/2 is always in~ide the interval [1, CXJ) and the standard 
method of Laplace can be used. The same expansion will be obtained with the same structure and 
coefficients as in (2.34 ), because of the unicity of Poincare-type asymptotic expansions. See also 
Section 4 .1.4 where Laplace' s method will be used for an integral that defines V (a, z). 

4.1.3. Thecasea~O, z>2Fa, -a+z»O 
Olver's starting point (2.1) can also be obtained from an integral. Observe that ( 4.1) is not valid 

for a~ - !· We take as integral (see [l, p. 687, 19.5.l]) 

U(-a z) = I'( 1/2 +a) e-(t;4Jz' f es-(1/2)s' s-a-(1/2> ds 
' 2ni J~ ' ( 4.33) 

where a is a contour that encircles the negative s-axis in positive direction. Using a transformation 
we can write this in the form ( cf. ( 4 .2)) 

where 

U(-a z)= I'(l/2+a)z(1;2J-ae-<1/4)z' f e<l>(wJw-1;2dw 
' 2ni la ' 

a 
<f>(w)=w-!w2 -A.lnw, A=""""J· 

z-
The relevant saddle point is now given by 

wo = ![1 - JI - 4.A], 0 <A<~· 

(4.34) 

( 4.35) 

( 4.36) 

When .A --+ 0 the standard saddle point method is not applicable, and we can again use the methods 
of our earlier papers [15,16] and transform 

<f>(w) = t - .Alnt +A, (4.37) 
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where the points at -oo in the w- and t-plane should correspond, and w = w0 with t =A. We obtain 

U(-a z) = I'((l/2) +a) z(I12l-ae-(I/4l=2+=2A le=21t-a-(l/2lf(t) dt (4.38) 
' (1 - 4A)1i421ti 1 ' 

where rx is a contour that encircles the negative t-axis in positive direction and 

f(t) = (1_ 4A.)'14 ft dw = (l _ 4A) 114 ~ t - A . 
V ; dt V t w - w2 - A. 

(4.39) 

Expanding /(t) as in (4.10), and computing fk(A.) as in the procedure that yields the relations in 
( 4.18 ), we find that the same values fk( A) as in ( 4.19 ), up to a factor( -1 )k and a different value of 
-r and p. By using the integration by parts method for contour integrals [15], that earlier produced 
( 4.32 ), we obtain the result 

zu eA=2-(I/4lz' oo k fk(A) 
U(-a,z),...., ( 2_4 )I/4 L(-l) -2k-, 

Z a k=O Z 

where the first fk(A.) are given in ( 4.19) with 

1 [ z ] (2cr - 1 )2 2z2 
er = - 1 + p - - -;::::;====-:---r:::;:===::-

2 Jz2 - 4a ' - a - yz2 - 4a+(z + yz2 -4a) 

This expansion can be written in the form (2.9). 

4.1.4. The case a~O, z < - 2Fa, -a -z ~ 0 
We use the relation (see (1.7)) 

U(-a, -z) =sin na U(-a,z) + I'((l/;) _a) V(-a,z), 

(4.40) 

( 4.41) 

(4.42) 

and use the result of U(-a,z) given in (4.40) or the form (2.9). An expansion for V(-a,z) in 
( 4.42) can be obtained from the integral (see [9]) 

e-(l/4)z21 ' 
V(a,z) = e-(l/2Js-+zssa-(I/2) ds, (4.43) 

21t ;•1U)•2 

where y1 and y2 are two horizontal lines, y1 in the upper half plane 3s > 0 and y2 in the lower half 
plane 3s < O; the integration is from 9\ s = -oo to 9\ s = +oo. (Observe that when we integrate on 
1' 1 in the other direction (from 9\ s = +oo to 9\ s = oo) the contour y 1 U y2 can be deformed into rx of 
(4.33), and the integral defines U(a,z), up to a factor.) We can apply Laplace's method to obtain 
the expansion given in (2.14) (see Remark 4.1). 

4.2. The singular points of the mapping (4.6) 

The mapping defined in (4.6) is singular at the saddle point 

w _ = - t ( J 1 + 4..1. + 1 ). (4.44) 

If A= 0 then w_ = -1 and the corresponding t-value is -t. For large values of A we have the 
estimate: 

t(w_),..., A. [-0.2785 - 0.~6 ] . (4.45) 
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This estimate is obtained as follows. The value L = t( w _) is implicitly defined by Eq. ( 4.6) with 
w = w_. This gives 

42 
t_ - ). lnL - ). + ;Jn2 = -~v'l + 42 ± Arti + 2ln (1+JI+42)2 

= ±2ni - 2v'I [1 + 2!2 + (9(2-2)], ( 4.461 

as 2 --+ oo. The numerical solution of the equation s - ln s- 1 = ± rri is given by s ± = 0.2785 ... e:i:n;. 
This gives the leading tenn in ( 4.16). The other term follows by a further simple step. 

4.3. Expansions in terms of Airy functions 

All results for the modified Airy-type expansions given in Section 3.3 can be obtained by using 
certain loop integrals. The integrals in ( 4.33) and ( 4.43) can be used for obtaining ( 3 .23) and (3.24 i. 
respectively. The method is based on replacing </1( w) in ( 4.34) by a cubic polynomial, in order to 
take into account the influence of both saddle points of </1( w ). This method is first described in [6]: 
see also [11,22]. 

5. Numerical verifications 

We verify several asymptotic expansions by computing the error in the Wronskian relation for the 
series in the asymptotic expansions. Consider Olver's expansions of Section 2.3 for the oscillatory 
region -1 < t < l with negative a. We verify the relation in (2.28 ). Denote the left-hand side of 
the first line in (2.28) by W(µ,t). Then we define as the error in the expansions 

I W(µ,t) I 
LI(µ, t) := l - (1/576µ4 ) + (2021/2488 320µ 8 ) - l . (5.1) 

Taking three tenns in the series of (2.23), (2.24) and (2.27), we obtain for several values ofµ and 
t the results given in Table 1. We clearly see the loss of accuracy when t is close to 1. Exactly the 
same results are obtained for negative values of t in this interval. 

Next, we consider the modified expansions of Section 2.1. Denote the left-hand side of (2.20) by 
W(µ, t). Then we define as the error in the expansions 

Ll(11,t):=l~W(µ,t)-lJ. (5.2) 

When we use the series in (2.9), (2.14), (2.18) and (2.19) with five terms, we obtain the results 
given in Table 2. We observe that the accuracy improves as µ or t increase. This shows the double 
asymptotic poperty of the modified expansions of Section 2.1. 

Finally we consider the expansions of Sections 2.4 and 2.5. Let the left-hand side of (2.35) be 
denoted by W (µ, t ). Then we define as the error in the expansions 

Ll(µ,t):=l~W(µ,t)-11. (5.3) 

When we use the series in (2.29), (2.33) and (2.34) with five terms, we obtain the results of Table 3. 
We again observe that the accuracy improves as µ or t increase. This shows the double asymptotic 
property of the modified expansions of Sections 2.4 and 2.5. 
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Table 1 

Relative accuracy L1(µ, t) defined in (5.1) for the asymptotic series of Section 2.3 

µ 5 10 25 50 100 

0.00 0.32e - 09 0.78e - 13 0.13e - 17 0.32e - 21 0.78e - 25 
0.10 0.26e - 09 0.63e - 13 0.1 !e - 17 0.26e - 21 0.63e - 25 
0.20 O.Sle - 10 0.20e - 13 0.33e - 18 0.82e - 22 0.20e - 25 
0.30 0.16e-08 0.39e - 12 0.65e - 17 0.16e - 20 0.39e - 24 
0.40 0.88e - 08 0.22e - 11 0.36e - 16 0.89e - 20 0.22e - 23 
0.50 0.51e-07 0.!3e - 10 0.2le - 15 0.52e - 19 0.13e - 22 
0.60 0.40e - 06 0.99e - 10 0.17e - 14 0.40e-18 0.99e - 22 
0.70 0.53e - 05 0.13e-08 0.22e - 13 0.54e - 17 0.13e - 20 
0.80 0.20e - 03 0.50e - 07 0.84e - 12 0.20e-15 0.50e - 19 
0.90 0.35e - 00 0.24e - 04 0.4le - 09 O.lOe - 12 0.25e - 16 

Table 2 

Relative accuracy L1(µ, t) defined in (5.2) for the asymptotic series of Section 2.1 

µ 5 10 25 50 100 

1.1 0.5le-01 0.48e - 05 0.72e - 10 0.!8e - 13 0.43e - 17 
1.2 0.39e - 04 0.79e - 08 0.13e-12 0.32e - 16 0.78e - 20 
1.3 0.83e - 06 0.19e - 09 0.32e - 14 0.78e - 18 0.19e - 21 
1.4 0.56e - 07 0.13e - 10 0.23e - 15 0.55e - 19 0.13e-22 
1.5 0.7le - 08 0.17e-ll 0.29e - 16 0.70e - 20 0.17e - 23 
2.0 O.lOe - 10 0.25e - 14 0.43e - 19 O.lOe - 22 0.25e - 26 
2.5 0.2le - 12 0.52e - 16 0.87e - 21 0.2le-24 0.52e - 28 
5.0 0.12e - 16 0.28e - 20 0.48e - 25 0.12e-28 0.28e - 32 

10.0 0.20e - 20 0.48e - 24 O.Sle-29 0.20e - 32 0.48e - 36 
25.0 0.30e - 25 0.73e - 29 0.12e-33 0.30e - 37 0.73e - 41 

Table 3 
Relative accuracy L1(p, t) defined in (5.3) for the asymptotic series of Sections 2.4 and 2.5 

fl 5 10 25 50 100 

0.00 0.32e - 09 0.78e - 13 O.l3e - 17 0.32e - 21 0.78e - 25 
0.25 0.12e-09 0.28e - 13 0.47e - 18 0.12e - 21 0.28e - 25 

0.50 0.45e - 11 0.lle - 14 0.19e - 19 0.46e - 23 0.1 le - 26 
0.75 0.57e - 11 0.14e - 14 0.24e - 19 0.58e - 23 0.14e - 26 

1.0 0.27e - 11 0.65e - 15 O.lle-19 0.27e - 23 0.65e - 27 

1.5 0.29e - 13 0.70e - 17 0.12e-21 0.29e - 25 0.70e - 29 

2.0 0.20e - 13 0.48e - 17 0.8le-22 0.20e - 25 0.48e - 29 

2.5 0.43e - 14 0.1 le - 17 0.18e - 22 0.43e - 26 0.lle-29 

5.0 0.45e - 17 0.1 le - 20 0.18e-25 0.45e - 29 O.lle-32 

10.0 0.16e - 20 0.38e - 24 0.64e - 29 0.16e-32 0.38e - 36 
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6. Concluding remarks 

As mentioned in Section 1.1, several sources for numerical algorithms for evaluating parabolic 
cylinder functions are available in the literature, but not so many algorithms make use of asymptotic 
expansions. The paper [1 O] is a rich source for asymptotic expansions, for all combinations of real 
and complex parameters, where always lal has to be large. There are no published algorithms that 
make use of Olver's expansions, although very efficient algorithms can be designed by using the 
variety of these expansions; [3] is the only reference we found in which Olver's expansions are used 
for numerical computations. 

We started our efforts in making algorithms for the case of real parameters. We selected appropriate 
expansions from Olver's paper and for some cases we modified Olver's expansions in order to get 
expansions having a double asymptotic property. A serious point is making efficient use of the 
powerful Airy-type expansions that are valid near the turning points of the differential equation (and 
in much larger intervals and domains of the complex plane). In particular, constructing reliable 
software for all possible combinations of the complex parameters a and z is a challenging problem. 

A point of research interest is also the construction of error bounds for Olver's expansions and 
the modified expansions. Olver's paper is written before he developed the construction of bounds 
for the remainders, which he based on methods for differential equations, and which are available 
now in his book [ 11]. 

Appendix. Computing the coefficients Jk(l) of (4.13) 

We give the details on the computation of the coefficients fk( A.) that are used in ( 4.13 ). The first 
step is to obtain coefficients dk in the expansion 

(A.l) 

where do = w0 • From ( 4.6) we obtain 

dw w t-A. 
= 

dt t w2 + w- ,r (A.2) 

Substituting (A.1) we obtain 

2 Wo 

di = A.(1+2wo)' (A.3) 

where the saddle point w0 is defined in ( 4.5). From the conditions on the mapping ( 4.6) it follows 
that di > 0. Higher order coefficients dk can be obtained from the first ones by recursion. 

When we have determined the coefficients in (A.1) we can use ( 4.8) to obtain the coefficients 
an(A.) of (4.10). 

For computing in this way a set of coefficients fk(A.), say / 0(}..), ••• , / 15(A.), we need more than 
35 coefficients dk in (A.1). Just taking the square root in (A.3) gives for higher coefficients dk very 
complicated expressions, and even by using computer algebra programs, as Maple, we need suitable 
methods in computing the coefficients. 
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The computation of the coefficients dk,an(A) and fk(A) is done with a new parameter 8 E [O, !n) 
which is defined by 

4A = tan2 8. 

We also write 

a= cos2 !8, 

which is introduced earlier in ( 4.20) and ( 4.23 ). Then 

1 - a , _ a( 1 - a) 2a - 1 
Wo--- A d1=--. 

- 2a - 1 ' - (2a - 1 )2 ' a 

(A.4) 

(A.5) 

(A.6) 

In particular the expressions for w0 and d 1 are quite convenient, because we can proceed without 
square roots in the computations. Higher coefficients dk can be obtained by using (A.2). 

The first relation fo(A) = a~0 lO.) = 1 easily follows from (4.3), (4.8), (A.7) and (A.6): 

fo(A) = (1+4A) 114 (T d1 = 1. y-;;; 
Then using ( 4.8) we obtain 

ao(A.) = 1, (A)= - cos2 8(1+2c)2 
a 1 6( c + 1 )c2 ' 

A)_ cos4 8(20c4 + 40c3 + 30c2 + 12c + 3) 
az( - 24(c + 1 )2c4 ' 

where c = .j(i =cos !8. Using the scheme leading to ( 4.17) one obtains the coefficients fk(J...). The 
first few coefficients are given in ( 4.19 ). 

We observe that fk(A) is a polynomial of degree 2k in a multiplied with pk. If a and z are 
positive then a E [O, I]. It follows that the sequence {l /z2k} is an asymptotic scale when one or 
both parameters a and z are large, and, hence, that {/k(A)/z2k} of (4.13) is an asymptotic scale 
when one or both parameters a and z are large. 

Because of the relation in (4.27) and ~k(a)=cf>k(i), higher coefficients /k(A) can also be obtained 
from the recursion relation (2.11 ), which is obtained by using the differential equation of the parabolic 
cylinder functions. 
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