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Abstract

We provide new simple conditions which allow us to conclude that in case of several well-known Prolog programs
the unification algorithm can be replaced by iterated matching. As already noticed by other researchers, such
a replacement offers a possibility of improving the efficiency of program’s execution. The results we prove
improve on those in our previous paper ([AE93]) both because they allow to prove unification-freedom for a
larger class of programs and queries and because the conditions are, in many cases, checkable in a much more
efficient way.
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CR Categories: D.1.6, F.3.2,, F.4.1, H3.3,1.2.3.
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1. INTRODUCTION

Unification is the core of the resolution method employed by PROLOG, and its efficiency has great
influence on the overall performance of the interpreter. The best sequential unification algorithm
employs linear time (see for example Martelli-Montanari [MMS82]), and, most likely, this result cannot
be improved by the adoption of a parallel algorithm: Dwork et al. [DKM84] have shown that,
unless PTIME C NC (which is quite improbable) unification does not admit an algorithm that run
polilogarithmic time using a polynomially bounded number of processors.

On the other hand, fast parallel algorithms are available for term matching: a special case of
unification where one of the terms is always an instance of the other one [DKM84, DKS86]. This
motivates the research for sufficient conditions for the replacement of unification with term matching
(see, for instance [DM85b, MK85, AFZ88] and, more recently, [AE93, Mar94]).

In Deransart and Maluszynski [DM85b], Maluszynski and Komorowski [MK85] and Attali and
Franchi-Zannettacci [AFZ88], the problem was tackled by using modes. Intuitively, a mode is a
function that labels as input or output the positions of each relation in order to indicate how the
arguments of a relation should be used. A limit of this approach is that the input positions of the
queries are expected to be filled in by ground (i.e. variable-free) terms. Apt and Etalle [AE93]
improved upon the previous results by additionally using types, which allow to deal with non-ground
inputs. '

Here, we generalize the results of [AE93]. The main tools of our approach can be summarized as
follows:
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First, in addition to input and output positions, we introduce here U-positions. Here “U” can be
read as unknown, as the U-positions of a query can be filled in by any term. It turns out that for
many of the programs mentioned in [AE93] we could simply turn some positions into U positions, both
enlarging significantly the class of allowed queries and, when this process was applied to the nonground
input positions, simplifying dramatically the method for proving that the program is unification-free.

Second, we now allow also pure terms to fill in output positions of the queries, again this enlarges
the class of allowed queries.

Finally, by following Apt [Apt94], we adopt here a more flexible definition of well-typed program.

As in our previous paper, the conditions we provide can be statically checked without analyzing the
search trees for the queries.

This paper is organized as follows. In the next section we introduce the concepts of solvability by
sequential matching and of unification-free Prolog program. Section 3 contains the basic definitions of
modes and types, which are the main tools we need in the sequel. Both concept are used in order to
specify how the arguments of an atom should be used, and, ultimately, to restrict the set of allowed
queries. In section 4 we begin to tackle the problem of how to prove that a program is unification-free:
we introduce the definition of a Nicely Typed program and we show that, in some cases, this concept
alone is sufficient for our purposes. This section can be also seen as an intermediate step: in the
subsequent one we report the definition of Well-typed program. Programs which are both Well and
Nicely Typed are the ones that will enable us to prove, in Section 5, our most general theorem (5.18).
In Section 6 we give a more restrictive version of our Main Theorem. The relevance of this result
lies in the fact that its applicability conditions can be tested in a much more efficient way. Section
7 contains some practical examples, and in Section 8 we conclude by comparing this paper with our
previous one [AE93] and with another recent related paper [Mar94].

2. PRELIMINARIES

In what follows we study logic programs executed by means of the LD-resolution, which consists of the
SLD-resolution combined with the leftmost selection rule. An SLD-derivation in which the leftmost
selection rule is used is called an LD-derivation. We allow in programs various first-order built-in’s,
like =, #, >, etc, and assume that they are resolved in the way conforming to their interpretation.

We work here with queries, that is sequences of atoms, instead of goals, that is constructs of the
form « Q, where Q is a query. Apart from this we use the standard notation of Lloyd [L1087] and
Apt [Apt90]. In particular, given a syntactic construct E (so for example, a term, an atom or a set
of equations) we denote by Var(E) the set of the variables appearing in E. Given a substitution
0 = {z1/t1,..,zn/ts} we denote by Dom(6) the set of variables {z,,...,z,}, by Range(6) the set
of terms {t1,...,t,}, and by Ran() the set of variables appearing in {t1,...,tn}. Finally, we define
Var(0) = Dom(6) U Ran(6).

Recall that a substitution 6 is called grounding if Ran(6) is empty, and is called a renaming if it is
a permutation of the variables in Dom(6). Given a substitution @ and a set of variables V', we denote
by 0|V the substitution obtained from 6 by restricting its domain to V.

2.1 Unifiers

Given two sequences of terms s = sp,...,5, and t = t;,...,¢,, of the same length we abbreviate the
set of equations {s1 = t1,...,8, =1,} to {s =t} and the sequence s;6, ..., s,0 to sf. Two atoms can
unify only if they have the same relation symbol, and with two atoms p(s) and p(t) to be unified we
associate the set of equations {s = t}. In the applications we often refer to this set as p(s) = p(t). A
substitution § such that s6 = tf is called a unifier of the set of equations {s = t}. Thus the set of
equations {s = t} has the same unifiers as the atoms p(s) and p(t).
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A unifier 8 of a set of equations E is called a most general unifier (in short mgu) of E if it is more
general than all unifiers of E. An mgu 6 of a set of equations E is called relevant if Var(f) C Var(E).

The following Lemma was proved in Lassez, Marriot and Maher [LMM88].

LEMMA 2.1 Let 6; and 05 be mgu’s of a set of equations. Then for some renaming 7 we have 62 = 617.
g

Finally, the following well-known Lemma allows us to search for mgu’s in an iterative fashion.

LEMMA 2.2 Let E;, E; be two sets of equations. Suppose that ; is a relevant mgu of E; and 6, is a
relevant mgu of E20;. Then 616, is a relevant mgu of E; U E». Moreover, if E; U E5 is unifiable then
6 exists and for any such 6; an appropriate 6, exists, as well. (m]

2.2 Solvability by (sequential) Matching
Following the notation of Apt and Etalle, [AE93], we begin by recalling the following concepts.

DEFINITION 2.3 Consider a set of equations E = {s = t}.

e A substitution 8 such that either Dom(8) C Var(s) and s6 = t or Dom(6) C Var(t) and s = t0,
is called a match for E.

o E is called left-right disjoint if Var(s) N Var(t) = 0. O

Clearly, if E is left-right disjoint, then a match for E is also a relevant mgu of E. The sets of equa-

tions we consider in this paper will always satisfy this disjointness proviso due to the standardization
apart.

DEFINITION 2.4 Let E be a left-right disjoint set of equations. We say that E is solvable by matching

if E is unifiable implies that a match for E exists. O
Consider a selected atom p(ty,...,t,) and the head p(si,...,sn) of an input clause used to resolve
it. The unification mechanism tries then to find a mgu of the set of equations t; = s1,...,tn = sn.

Sometimes such a set is not solvable by matching as a whole, but it can be solved by a sequential
matching, that is, by considering the equations one at a time.

To formalize this idea we introduce the following notion.
DEFINITION 2.5 Let E = Ei, ..., E, be a left-right disjoint sequence of (sets of) equations.

e We say that E is solvable by sequential matching if E is unifiable implies that for some substi-
tutions 61, ...,0,, and for ¢ € [1,n]
- E;0; ...0;_1 is left-right disjoint,
- 0; is a match for E;6;...0;_1.

e We say that E is solvable by sequential matching wrt 7 if 7 is a permutation of 1,...,n, and
- Ex(1),- -+, Ex(n) is solvable by sequential matching. O

Note that when 6,...,6, satisfy the above two conditions, then by Lemma 2.2 6,6;...6, is a
relevant mgu of E.

This Definition corresponds to the one considered by Maluszynski and Komorowski [MK85], and
is slightly less general than the one of iterated matching given in [AE93], which makes no. explicit
reference to the order in which the equations are to be solved. Intuitively, E is solvable by iterated
matching iff there exists a 7 such that E is solvable by sequential matching wrt =.



2.8 Unification Free Programs
Recall that the aim of this paper is to clarify for what Prolog programs unification can be replaced
by sequential matching. The following Definition is then the key one. Here we denote by rel(A) the
relation symbol of the atom A.

DEFINITION 2.6

e Let £ be an LD-derivation. Let A be an atom selected in £ and H the head of the input clause
selected to resolve A in {. Suppose that A and H have the same relation symbol. Then we say
that the system A = H is considered in £.

e Suppose that each system of equations A = H considered in the LD-derivations of P U {Q} is
solvable by sequential matching wrt a permutation Trel(A); Where T, 4) is uniquely determined
by the relation symbol of A. Then we say that P U {Q} is unification free. 0O

A slightly more flexible definition of unification-free program was given in Apt-Etalle [AE93], where
the equation A = H may be solvable by iterated matching, i.e. the sequence 7 needs not to be
determinable from the relations symbol of A.

3. TYPES AND MODES
The main tools that we are going to use in this paper are types and modes. The following very general
definition of type is sufficient for our purposes.

DEFINITION 3.1

o A typeis a set of atoms with the same relation symbol;

e A typeis a type for a relation symbol p. O
Notice that, as opposed to [AE93], here we are also considering types which are not closed under
substitution.

For the purpose of this paper, types for relations are always built by suitably combining set of
terms.

DEFINITION 3.2

o A term_type is a set of terms. ]

Here, we sometimes overload the term type to denote either a type or a term_type; the actual meaning
will be clear from the context.
Certain term_types will be of special interest:

U — the set of all terms,

Var — the set of variables,

List — the set of lists,

BinTree — the set of binary trees,

Ground — the set of ground terms.

Of course, the use of the term_type List assumes the existence of the empty list [] and the list
constructor [.|.] in the language, and the use of the type Nat assumes the existence of the numeral
.0 and the successor function s(.), etc.
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The following notation will be used throughout the paper. Let p be an n-ary relation symbol, and
let T4, ..., T, be term_types. we denote by

p: Ty x...xT,
the type for p given by the following set of atoms.

{p(t1,-..,ta) | forie[l,n],t; € Ti}

Given a program P, a typing for P is a function that associate to each relation symbol p in P a
type of the form p: Th x ... X Ty, consequently we also say that T; is the term_type associated to the
i-th position of p.

We need one final Definition.

DEFINITION 3.3 Let p: Tj X ... X T, be the type for p.

e We say that an atom p(t1,...,tn) is correctly typed in his i-th position if t; € T3;

e We say that an atom p(t1,...,tn) correctly typed if it is correctly type in all its positions. O

In the sequel we assume that each program has a (n often unspecified) typing associated to. The
typing specifies how the argument of a relation should be used: as a general rule, we expect that the
atoms selected in a LD-derivation are correctly typed (to make sure of this we’ll introduce appropriate
tools). Consider for instance the well-known program append:

app([X | Xs], ¥s, [X | Zs]l) « app(Xs, Ys, Zs).
app([], Ys, Ys).

append can be used for concatenating two lists, and this can be reflected by the adoption of the
following “natural” typing:
app : List x List x Var

This typing expresses the fact that each time an atom of the form :- append(s, t, u) is selected in
by the (leftmost) selection rule, we expect s and t to be lists, and u to be a variable. Multiple typings
can be obtained by simply renaming the relations.

Before introducing modes, we need a last definition.

DEFINITION 3.4

e We call an atom (resp. a term) a pure atom (resp. pure term) if it is of the form p(x) with x a
sequence of different variables.

e Two atoms (resp. terms) are called disjoint if they have no variables in common. O
To study solvability by matching, we keep in special consideration the following term_types.

e Var - the set of all variables;
e Pt - the set of variables and pure terms;

e U - the set of all terms.



Notice that Var C Pt C U. According to the typing used, we’ll make some distinctions among the
positions of an atom. Consider the case of a selected atom A and the head H of an input clause used
to resolve A. In presence of types, we expect A to be correctly typed. It is then natural to consider
the positions of A which are typed Var or Pt, which are filled in by variables or pure terms as output
positions, as they contain no information. On the other hand for those positions which are typed U,
since we really have no clue over the kind of parameter-passing that will take place in them, we use
the special name of U-positions. The remaining positions will then by convention be considered as
input. These considerations are at the base of the following Definition.

DEFINITION 3.5 Let p: T} X ... x T, be the type of the relation symbol p. We call the i-th position
of an atom p(ty,...,t,)

o A U-position if T; = U
® An output position if T; = Var or T; = Pt;

e An input position otherwise. mi

This classification is actually a moding. Modes for logic programs were first considered by Mellish
[Mel81] and then more extensively studied in Reddy [Red84] and in Dembinski and Maluszynski
[DM85a]. Here we are departing from the previous works by using also the mode U, which can
be seen as a way to avoid to commit ourselves to a specific mode when such a commitment is not
necessary.

4. AVOIDING UNIFICATION USING THE MODES “U” AND “OUTPUT”
In order to introduce the tools we need in a gradual manner, we begin by excluding the presence of
input positions.

Surprisingly, in many cases, this restriction does not represent a problem: in order to pass the infor-
mation from the selected atom to the head of the input clause we can still use the U-positions. Consider
for instance again the program append, as we mentioned before, when it is used for concatenating two
lists, the “natural” typing is

append: List X List x Var.
Now, if we want to avoid the presence of input positions, we can simply use the following typing.
append: U x U x Var

Notice that the first two positions are U-positions, while the third one is and output one. The only
practical difference between this and the “natural” typing is that in the query app(s, t, u) we now
allow s and t to be any term, rather than just list. This is obviously no restriction. In general,
using the U-positions for the parameter-passing task has the advantage of flexibility: since every term
belongs to U we are making here no a priori assumption on the structure of the data. Moreover, as
we’ll show in the rest of this Section, proving unification-freedom is in this context particularly simple.

Throughout this Section we assume that the atoms have only U- and output positions: by Definition
3.5 this is equivalent to considering typings built only with the following term_types: U, Var and Pt.

4.1 Sequential Matching via Pure Terms

We start with a simple test allowing us to determine whether a given set of equations is solvable by
matching,.
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LEMMA 4.1 (MATCHING 1) Consider two disjoint atoms A and H with the same relation symbol.
Suppose that

o one of them is ground or pure.

Then A = H is solvable by matching.

PROOF. Clear. O

Now let us go back to the example of the (correctly typed) selected atom A and the head H of
a clause used to resolve it. In order to apply the Matching 1 Lemma 4.1 to the part of A = H
corresponding to the U-positions, since we have no information about the shape of the terms filling in
the U-positions of A, we have to impose some restrictions on H. Here we call a family of terms linear
if every variable occurs at most once in it.

DEFINITION 4.2 (U-SAFE™) An atom H is called U-safe” if the family of terms filling in its U-
positions is linear and consists of only variables and pure terms. m}

The minus sign in U-safe” is motivated by the fact that in Section 5 we’ll introduce a more general
definition of U-safeness, which will also take into account the presence of input positions. We need
now one further notion.

DEFINITION 4.3 An atom A is called output independent if each term occurring in an output position
is disjoint from the rest of A. O

Now we prove a result allowing us to conclude that A = H is solvable by sequential matching.

LEMMA 4.4 (SEQUENTIAL MATCHING 1) Consider two disjoint atoms A and H with the same rela-
tion symbol p. Suppose that p has no input positions. If

e A is correctly typed and output independent,
e H is U-safe™,

then there exists a permutation 7 such that A = H is solvable by sequential matching wrt =.

In particular, A = H is solvable by sequential matching wrt any permutation 7 of 1,...,n such that,
according to the order given by m(1),...,m(n), we have that the U-positions of p come first and the
output positions come last.

PROOF. Suppose that A = H is unifiable, we can then assume that A is p(s1,...,sn) and that H is
equal to p(ty,...,tn), where s1,...,55,%1,...,tn have been reordered in such a way that U-positions
come first (on the left) and the output positions are the rightmost ones.

We now need to prove that s; = t1,...,5, = t, is solvable by sequential matching, that is we need
to find 6y, ...,0, such that each 6; is a match of (s; = t;)01 ...60;—1. For each ¢, we distinguish upon
the kind of position where the equation s; = t; is found.

If s; = t; is found in a U-position then, since H is U-safe™, we have that ¢; is a variable or a pure
term and Var(t;) N Var(6;...0:—1) = 0, so t;0;...6;_; is still a variable or a pure term and by the
Matching 1 Lemma 4.1 (s; = t;)601 ...6;_1 is solvable by matching.



Finally, if s; = t; is found in an output position then, from the assumptions we made on A, it
follows that s; is a variable or a pure term and that Var(s;) N Var(6y,...,0;_1) = 0. So s;6;,...,0;_1
is still a variable or a pure term, and by the Matching 1 Lemma 4.1 (s; = t;)6; ...6;_; is solvable by
matching. ]

When A and H satisfy the conditions of this Lemma, we can then solve A = H by sequentially
matching one position at a time. Still, we can improve on this result by showing that there exist some
subsets of A = H which correspond to more than one position and which can be solved by a single
matching. This issue will be discussed in the Appendix.

We need one further notion.

DEFINITION 4.5 We call an LD-derivation i/o0 driven if all atoms selected in it are correctly typed
and output independent. O

i/o driven derivations were introduced in [AE93], but the definition we give here is more general
than the previous one. This is due to the fact that now we consider also U-positions, and that we
allow Pt as a term_type for the output positions (in [AE93] the only term_type allowed for the output
positions is Var).

The Sequential Matching Lemma 4.4 allows us to combine the notions of U-safe atom and of i/o
driven derivation for concluding that P U {Q} is unification free.

THEOREM 4.6 Suppose that each predicate symbol occurring in P has no input positions. If

o the head of every clause of P is U-safe™,

e all LD-derivations of P U {Q} are i/o driven.

Then P U {Q} is unification free. a

4.2 Taking care of the output positions: Nicely Typed programs

In order to apply Theorem 4.6 we need to find conditions which imply that all considered LD-
derivations are i/o driven. Since here we exclude the existence of input positions, all we have to do is
to ensure that the selected atom A is correctly typed in its output position and output independent.
For this we’ll introduce the new concept of Nicely Typed program.

We start with the following notion which was introduced in Chadha and Plaisted [CP91]. Here we
use the notation of Apt and Pellegrini [AP92]: when writing an atom as p(rest, out), we now assume
that out is the sequence of terms filling in the output positions of p, while that rest is the sequence
of terms filling its remaining positions.

DEFINITION 4.7 (NICELY MODED)

e A query pi(ry,01),...,Pn(rn,0n) is called nicely moded if 071,...0n is a linear family of terms
and for j € [1,n]

Var(rj) n (U Var(oy)) = 0. (4.1)

k=j

e A clause
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pO(rOa 00) — D1 (1'1,01), .. -,Pn(l‘n, On)

is called nicely moded if p1(rq,01),-- -, Pn(rn,on) is nicely moded and

Var(rg) N ( U Var(oy)) = 0. (4.2)

k=1
In particular, every unit clause is nicely moded.

e A program is called nicely moded if every clause of it is. 0

Thus, assuming that in every atom the output positions are the rightmost ones, a query is nicely
moded if

e every variable occurring in an output position of an atom does not occur earlier in the query.
And a clause is nicely moded if

e every variable occurring in an output position of a body atom occurs neither earlier in the body
nor in a non-output position of the head.

So, intuitively, the concept of being nicely moded prevents a “speculative binding” of the variables
which occur in output positions — these variables are required to be “fresh”.

From the definition it follows that, if the query is nicely moded, then the selected atom is output
independent. In order to fulfill the requirements of i /o drivenness we also ask the output positions to
be correctly typed. For this reason we introduce a further Definition. Here and in the sequel, given an
atom A, we denote by VarOut(A) the set of variables occurring in the output positions of A. Similar
notation is used for sequences of atoms.

DEFINITION 4.8 (NICELY TYPED)

e A nicely moded query B is called nicely typed if it is correctly typed in its output positions.

e a nicely moded clause H « B is called nicely typed if B is nicely typed, and each term ¢ filling
in a position of H of type Pt sqtisﬁes the following

If t is a variable and t N VarOut(B) # 0 then ¢ fills in a position of B of type Pt. (4.3)

e A program is called nicely typed if every clause of it is. O

Nicely typed programs can be seen as a generalization of simply moded programs of [AE93]. The
additional condition (4.3) that we impose on the clauses is needed to ensure the persistence of the
notion of being nicely typed, which is proven in the following key Lemma.

LEMMA 4.9 An LD-resolvent of a nicely typed query and a disjoint with it nicely typed clause is
nicely typed. O

PROOF. Consider a nicely typed query A, A and a disjoint with it nicely typed clause H « B, such
that A and H unify. Take as Ey the subset of A = H corresponding to the non-output positions, and
as Ei, ..., E, the subsets of A = H each corresponding to an output position.

The proof is divided in steps.
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CLAIM 1 There exist 6y, ...,0, such that, for i € [0, 7],

(a) 6; is a relevant mgu of E;6,...0;_,,

(b) By, ...,8; is correctly typed in its output positions.

Proof. We proceed by induction.

Base case: i = 0.
Let 6y be any relevant mgu of Ey. Since H «— B is nicely moded, the variables in VarOut(B) do not
occur in the non-output positions of H, therefore the output positions of B are not affected by 6y.
Since by hypothesis B is correctly typed in its output positions, Bfy is correctly typed in its output
positions as well.

Induction step: z > 0.
Let E; = s = t, where s and t are the terms filling the i-th output position respectively of A and
H. First notice that since A is nicely moded, the variables of s do not occur anywhere else in
A. Moreover, from the disjointness hypothesis (and the relevance of each 0;) it follows then that
Var(s) N Var(6y ...0;—1) = 0. Therefore we have that

390...0,'_1 =38

Keep in mind that by the inductive hypothesis Bfy ...60;_; is correctly typed in its output positions,
and that s = s6...6;_;. Since A is nicely typed, s may only be a variable or a pure term. Let us
consider those two cases separately, and let us suppose that s is

a variable. Then we can take 6; to be exactly [s/t6; . . . 0;_1]. Therefore Dom(6;) = s,and Béy...0;_,
is not affected by 6;, and the result follows from the inductive hypothesis.

a pure term. Since 4 is nicely typed, the type of the the i-th output position of A (and H) must be
Pt. Let 6; be any relevant mgu of s, ...6;_; = t8; ...6;_; We have to distinguish three cases:

First we consider the case in which ty . . .6;_; is a variable and it occurs in VarOut(Bby . ..0;_1).
Obviously, in this case t itself is a variable as well. Now notice that if 7 is any term filling in an
output position of B then we have that

if Var(ré’o . 0,'_1) Nthy...0;_1 #0 then Var('r) Nnt# @ (44)

In other words, if r is disjoint from ¢ then also 76y ...6;_; is disjoint from tfy...60;_;. This is
due to the fact that, since H « B is nicely moded, the variables of = may not occur in the input
positions of H but only in the output ones, and, since A4 is output independent, the substitutions
0y ...0;—1 cannot bind them to other variables of H — B.

Since tfp . .. 6;1 occurs in VarOut(Bby ...6;_;), from (4.4) it follows that ¢ occurs in VarOut(B).
Furthermore, from (4.4) and the fact that H « B is nicely typed it follows that 6y . . .0;_1 fillsin
an output position of By ...6;_;, and (being H < B nicely moded) it does not occur anywhere
also in Beo e 91'_1.

Now, s ...60;_; is a pure term and t;...60;_; is a variable, therefore we have that 8 ...60;_6;
is a pure term, and, since tfg...6;_; fills in an output position of Bfy ...60;_; of type Pt, from
the inductive hypothesis it follows that Bfy . ..0;_16; is correctly typed in its output positions.

Secondly, if t0y...6;_; is a variable and it does not occur in VarOut(B)6y ...0;_;, then the
output positions of Bfy...6;_; are not affected by 6;, and the result follows by the inductive
hypothesis.
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Finally, if t6g ...60;_1 is not a variable, then, since s0p...0;_1(= s) is a pure term, and since
(s = t)bp...0;_1 is unifiable, we have that tfp...0;_1 is an instance of sfp...0;_;. We can
then take ; such that Dom(6;) = sfp...0;—1. It follows that i .. .0;_1 is not affected by 0;
Consequently, By . ..60;_1 is not affected by 6; as well and the result follows from the inductive
hypothesis.

This ends the proof of Claim 1. O

Now let § = 6 . ..0;. By Lemma 2.2 6 is a relevant mgu of A = H. So far we have established that
B is correctly typed in its output positions. (4.5)
In order to prove that also (B, A)f is nicely typed we have to go through a few more steps.

CLAIM 2 A6 is correctly typed in its output position.

Proof. A is nicely moded, therefore VarOut(A) N Var(4) = 0. Since 8 is relevant, from the disjointness
hypothesis it follows then that Var(f) N VarOut(A) = (. Since A is correctly typed in its output
position, also Af is. O

Finally we have that
CLAIM 3 (B, A)f is nicely moded.

Proof. This is due to the fact that the resolvent of a nicely moded query and a (disjoint with it) nicely
moded clause is nicely moded (Apt and Pellegrini in [AP92, Lemma 5.3]). O

From (4.5) and the last two Claims it follows that (B, A)# is nicely typed. Now 6 = 6; ...0, is just
one specific mgu of A = H. By Lemma 2.1 every other mgu of A = H is of the form 67 for a renaming
n. But a renaming of a nicely typed query is nicely typed, so we conclude that every LD-resolvent of
A, A and H « B is nicely typed. O

The following is an immediate consequence of Lemma 4.9 which will be soon needed.

COROLLARY 4.10 Let P and Q be nicely typed, and let { be an LD-derivation of P U {Q}. All atoms
selected in £ are correctly typed in their output positions and are output independent. O

4.8 Avoiding Unification with Nicely Typed Programs

Recall that in order to prove that P U {Q} is unification-free using Theorem 4.6 we are looking for
conditions which imply that all the LD-derivations starting in Q are i/o driven and that, since we
are excluding the presence of input positions, this reduces to requiring that the selected atom are
correctly typed in their output positions and output independent. By Corollary 4.10 the concept of
being nicely typed is the one we need. '

LEMMA 4.11 Suppose that each predicate symbol p occurring in P has no input positions. If
e P and Q are nicely typed.

Then all LD-derivations of P U {Q} are i/o driven.
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ProoOF. This follows directly form Corollary 4.10. O
We can now state the main result of this Section.

THEOREM 4.12 Suppose that each predicate symbol p occurring in P has no input positions. If

e P and @ are nicely typed,

e the head of every clause of P is U-safe™

Then P U {Q} is unification free.

PRrROOF. From Lemma 4.11 and Theorem 4.6 O

This result, though rather simple, can be applied to a large number of programs.

EXAMPLE 4.13
(i) Consider again the program append, together with the following typing:

app : UxUx Pt

First note that append is nicely typed and that the head of both clauses are U-safe~™. Now let t, s
be terms, and u be a variable (or a pure term), disjoint from t, s; append(t,s,u) is then a nicely
typed query, and, from Theorem 4.12, it follows that append U { app(s, t, u)} is unification free.

(ii) append can be used not only for concatenating two lists, but also for splitting a list in two. This
is reflected by the adoption of the following typing;:

app : PtxPtxU

Again, append is nicely typed, and the head of both clauses are U-safe~. Theorem 4.12 yields that,
for disjoint terms u, v ,t, where u and v are variables or pure terms, append U { app(u, v, t)}is
unification free.

(iil) Let us now consider the following permutation program:

perm(Xs, Ys) « Ys is a permutation of the list Xs.

perm(Xs, [X | Ys]) «
appl(X1s, [X | X2s], Xs),
app2(X1s, X2s, Zs),
perm(Zs, Ys).

perm([1, [1).

augmented by the appl and app2 programs.

Where both app1 and app2 are renamings of the append program; we use here two distinct renamings
in order to adopt two different types, namely

appl : Ptx PtxU
app2 : UxUx Pt

By the previous example we have that both appl and app2 are nicely typed. Let us consider the
following typing:



5. Avoiding Unification using also the mode “input” 13

perm : U X Pt

It is easy to check that perm is nicely typed, and that both clause’s heads are U-safe™. Hence, when
u a variable or a pure term disjoint from t, permutation U { perm(t, u)} is unification free. O

More examples of programs and typings that satisfy the hypothesis of Theorem 4.12 are provided
by the list in Section 7.1.

5. AVOIDING UNIFICATION USING ALSO THE MODE “INPUT”

In the previous Section we have been using only the modes U and output. Therefore the parameter
passing from the selected atom to the head of the input clause was always done via the U-positions.
As we remarked before, this has the advantage of flexibility, as there is no assumption on the data
structure used. However, in some cases, if we can be more precise about the kind of data structure
is being used, we’ll be able to broaden the range of of programs and queries that we can prove to be
unification-free. Consider for instance the well-known member program.

member (Element, List) <«
Element is an element of the list List.

member (X, [X | Xsl1).
member (X, [Y | Xs]) « member(X, Xs).

It is easy to check (see Example 6.7 for a formalization of this statement) when the typing is member :
Pt x U, member satisfies the conditions of Theorem 4.12, therefore if s is in Pt and t is disjoint from s,
then member U { member(s, t) } is unification-free. On the other hand, it is also easy to (manually)
check that if we know that t is ground, then we can drop the assumption that s is in Pt: member U
{ member (s, t) } is still unification-free. In order to capture this situation, we need an extension of
Theorem 4.12 that is applicable when the typing adopted is member : U X Ground. In this situation,
according to the convention of Definition 3.5, the second position is moded as input.

In this Section we provide the tools necessary to handle the presence of input positions. First notice
that by Definition 3.5, the input positions of an atom are exactly the ones that are not typed Var,
Pt or U. Consequently, considering also input positions tantamounts to considering also term_types
which are not in { Var, Pt, U}.

The new types we interested in are monotonic, that is, they are closed under substitution. This
property will simplify a lot the discussion.

DEFINITION 5.1 We call a term_type T monotonic iff, for each substitution 6
e tc T implies td € T O
From now on we make the following Assumption.

ASSUMPTION 5.2

e with the exception of term_types Var, Pt, all the term_types we refer to are monotonic. 0O

Notice that types Ground, U are by definition monotonic. Recall that we assume also that the
type associated to a relation symbol p is always of the form p : Ty % ... x Ty,. The basic implication
of Assumption 5.2 is then that the T;s corresponding to the input positions are always monotonic
term_types.
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5.1 Sequential Matching via Generic Exzpressions

Generic expressions were introduced by Apt-Etalle in [AE93], and can be used to obtain a new
interesting condition for solvability by matching. For example, assume the standard list notation and
consider a term t = [z, y|z] with z,y and z variables. Note that (despite the fact that t is not a pure
term), whenever a list I unifies with ¢, then [ is an instance of t,i.e [ =t is solvable by matching.

Thus solvability by matching can be sometimes deduced from the shape of the considered terms.
In this subsection we will follow closely Apt and Etalle [AE93], and we begin with the following
Definition.

DEFINITION 5.3 Let T be a term_type. A term t is a generic ezxpression for T if for every s € T
disjoint with ¢, if s unifies with ¢ then s is an instance of ¢. O

In other words, t is a generic expression for the term_type T iff all left-right disjoint equations s = t,
where s € T, are solvable by matching.

EXAMPLE 5.4
¢ 0, s(z), s(s(z)), ... are generic expressions for the term_type Nat,

* [}, [], [z]y], [z,y]2], ... are generic expressions for the term_type List. O

Note that a generic expression for T' needs not to be a member of 7.

Next, we provide some important examples of generic expressions which will be used in the sequel.
Here and in the following we call a (term_) type T ground if all its elements are ground, and non-
ground if some of its elements is non-ground; consequently the non-ground positions of an atom H
are those positions of H whose associated term_type is not a ground type.

LEMMA 5.5 Let T be a term_type. Then
e variables are generic expressions for T,
e the only generic expressions for the term_type U are variables,
e if T does not contain variables, then every pure term is a generic expression for T,

e if T is ground, then every term is a generic expression for 7.

PrROOF. Clear. . O

When the term_types are defined by structural induction (as for example in Bronsard, Lakshman
and Reddy [BLR92] or in Yardeni, T. Friihwirth and E. Shapiro [YFS92]), then it is easy to characterize
the generic expressions for each type by structural induction.

We can now provide another simple test for establishing solvability by matching.

LEMMA 5.6 (MATCHING 2, [AE93]) Consider two disjoint atoms A and H with the same relation
symbol. Suppose that

e A is correctly typed,

e the positions of H are filled in by mutually disjoint terms and each of them is a generic expression
for its positions type.



5. Avoiding Unification using also the mode “input” 15

Then A = H is solvable by matching. Moreover, if A and H are unifiable, then a substitution 8 with
Dom(0) C Var(H) exists such that A = H6.

PROOF. Clear. O

Consider again the case of a selected atom A and the head H of a clause used to resolve A. In
presence of arbitrary term_types, in order to apply the Matching 2 Lemma 5.6 to the subset of A = H
corresponding to the input positions, we have to impose some restrictions on H.

DEFINITION 5.7 An atom H is called input safe if each term ¢ filling in a non-ground input position
of H satisfies the following two conditions:
(i) t is a generic expression for this positions type,

(i) t is disjoint from all the other terms occurring in the non-ground input positions of H. O

We also need to upgrade the Definition of U-safe™ atom in order to take into account the presence
of input positions.

DEFINITION 5.8 (U-SAFE) An atom H is called U-safe if for each term ¢ filling in one of its U-positions
one of the following two conditions holds:

(i) t is a variable or a pure term and it is disjoint from the terms occurring in the input and the
other U-positions of H;

(ii) each variable occurring in ¢ appears also in an input position of H of ground type. O

Note that when there are no input positions this Definition coincides with the one of U-safe™ atom.

The above two conditions reflect two different way in which we can apply the Matching 1 Lemma
4.1 to the U-positions of A = H: the first conditions ensures that the term in the position we are
considering is a variable or a pure term, and that it is not affected by the matching of the input and
the other U-positions. On the other hand the second makes sure that after having matched the input
positions of A = H, the term will be ground, so that the Matching 1 Lemma will still be applicable.

The above Definitions allow us to generalize Lemma 4.4 to the case in which we have also input
positions.

LEMMA 5.9 (SEQUENTIAL MATCHING 2) Consider two disjoint atoms A and H with the same rela-
tion symbol. If

e A is correctly typed and output independent,

e H is input safe and U-safe,

Then there exists a permutation 7 such that A = H is solvable by sequential matching wrt 7.

In particular, A = H is solvable by sequential matching wrt any permutation of 1,...,n such that,
according to the order given by 7(1),..., n(n), we have that the non-ground input positions of p come
first, the ground input positions come next, the U-positions come after them and the output positions
come last.
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PROOF. Suppose that A = H is unifiable, we can then assume that A and H are equal respectively to
p(s1,...,8n) and p(ty,...,t,), where sy,...,sp, t1,...,t, have been reordered in such a way that non-
ground input positions come first (on the left), the ground (input) positions come next, the U-positions
come third and the output positions are the rightmost ones.

We now need to prove that s; =t;,...,s, = t, is solvable by sequential matching, that is we need
to find 6y,...,0, such that each 6; is a match of (s; = #;)8; ...60;_;.

Let T; be the term_type associated to the i-th position of p. Each equation s; = t; corresponds to
one position of A = H, we now distinguish four cases upon the kind of position the equation s; = ¢;
corresponds to.

First we consider the case when s; = t; corresponds to a non-ground input position. Since H is input
safe, ¢; is a generic expression for T; and Var(¢;) N Var(4; ... 0:_1) =0,s0t;0;...0;_; is still a generic
expression for T; and, since 6; ...0;_; are relevant, ¢;0; ...60;_; is disjoint from $;01 ...6;_1. Moreover,
A is correctly typed, thus s; belongs to T}, and, since by Assumption 5.2, T} is monotonic, s;6; ...60;_;
belongs to T; as well. From the Matching 2 Lemma 5.9 it follows then that (si = t)01...60;_1 is
solvable by matching.

Second, we consider the case when s; = ¢; corresponds to a ground input position. Since 4 is
correctly typed, s; is a ground term. From the Matching 1 Lemma 4.1 it follows then that (si =
t;)61 ...60;_ is solvable by matching. Moreover, if tj,...,tk are the terms found in the ground input
position of H, we also have that (¢;,...,%;)0; ...6; are ground terms.

Third, if s; = t; is found in a U-position then, depending on which of the two conditions of U-
safeness is satisfied we have that: (i) ¢; is a variable or a pure term and Var(t;) N Var(6; ... 0;-1) =10,
so t;01 ...60;_1 is still a variable or a pure term and by the Matching 1 Lemma 4.1 (si=1t:)01...6;_;
is solvable by matching; (ii) Var(¢;) C Var(tj,...,tx) and, by the order hypothesis, the equations
1,...,k have already been processed, from what noticed before it follows that ¢;0; ...6;_; is a ground
term, and again, by the Matching 1 Lemma 4.1, (s; = ¢;)8; ...6;_; is solvable by matching. '

Finally, if s; = t; is found in an output position then s; is a variable or a pure term and, since A
is output independent, Var(s;) N Var(6y,...,0;—1) = 0. So s;6y,...,60;_; is still a variable or a pure
term, and by the Matching 1 Lemma 4.1 (s; = ¢;)6; ...6;_, is solvable by matching. O

This allows us to generalize Theorem 4.6. Recall that an LD-derivation is called /o driven if all
atoms selected in it are correctly typed and output independent.

THEOREM 5.10 Suppose that

e the head of every clause of P is input safe and U-safe,

e all LD-derivations of P U {Q} are i/o driven.

Then P U {Q} is unification free. O

9.2 Taking care of the input positions: Well-Typed Programs

In order to apply Theorem 5.10, we need again to find some conditions sufficient to ensure that the
LD-derivations will be i/o-driven. As in the previous Section, the output positions will be taken care
of by the fact that the programs we consider are nicely typed. Consequently, our concern is now
to guarantee that the selected atoms will be correctly typed in their input positions. In presence of
arbitrary term_types, the task is not trivial.

Substantially, the approach that we follow here is originally due to Bossi and Cocco [BC89], where
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it was used for proving partial correctness. We use the concept of Well-Typed program, which was
introduced by Bronsard, Lakshman and Reddy [BLR92], and we adopt the notation of Apt [Apt94].

We begin with the following Definition, where we assume that the input positions of atom are

grouped on the left.

DEFINITION 5.11 Let rel(A) : Ty x ... x Ty, be the type associated to the relation symbol of the atom
A. Assume that the input positions of A are its leftmost m positions, then

e the pre-type for rel(A) is the type
Prérel(A) * T % oo X Ty X Ux...xU
and it is obtained by projecting rel(A4) : Ty x ... x T, onto its input positions. O
The pre-type of rel(A) is then uniquely determined by the type of rel(A); therefore from the
assumption that each relation symbol has always a type associated to it it follows that each relation

symbol has automatically also a pre-type associated to. The advantage of referring to the pre-type
instead of the type is that by Assumption 5.2 the pre-type is always monotonic.

To give the definition of Well-Typed program we need two more notions.

DEFINITION 5.12 Let Aj,..., Apy1 be atoms and 7y, .. ., To+1 be monotonic types

e By a type judgement we mean a statement of the form
EAETA..NARET, = Ant1 €T
which denotes that, for all substitutions 8, Dom() = Var(A,...,Axs):
if A10€TL A... N A0 €T, then Apy160 € Ty
]

Recall that in order to apply Theorem 5.10, we have to prove that each selected atom belongs to
its pre-type; to do this we use type judgements and associate to each relation symbol also a post-type.

DEFINITION 5.13 A post-type for a relation symbol p, is a monotonic type for p. ]

From now on we assume that each relations symbol has, together with the type, also a post-type
associated to it.

As opposed to the type, we want the post-type to contain information about the state of the
arguments of a query after the query itself has been successfully resolved. For example, consider
again the program append. A typical typing for it is app: List x List x Pt'. This formalizes the idea
that when and atom of the form app(s, t, u) is selected, we expect s and t to be variables and u
to be a variable, or, at most, a pure term. On the other hand, we require the post-type to hold some
knowledge over the situation of s, t and u after that the query app(s, t, u) has been successfully
resolved. In this situation a natural post-type would be postapp : List x List X List, indicating that,
after app(s, t, u) has succeeded, we also expect u to be a list. Notice also that when the type
adopted is the above one, the the pre-type is preapp : List X List X U.

In the following we write pre(A) (resp. post(A)) as shorthand for A € prerei(a) (resp. A € precei(a));
where pre,.i(4) and post () are the pre- and post-type of the relation symbol of A.

1This is a slight extension of the “natural” typing app: List X List X Var that we mentioned in Sections 3 and 4
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DEFINITION 5.14
e A query Ay,..., A, is called well-typed if, for j € [1,n],
= post(A1) A ... A post(Aj_1) = pre(4;).
e A clause H « By, ..., B, is called well-typed if, for j € 1,7+ 1],
k= pre(H) A post(B1) A ... A post(Bj_1) = pre(B;),
where pre(Bpn41) := post(H).

¢ A program is called well-typed if every clause of it is. O
Thus, a query is well-typed if

e the pre-type of an atom can be deduced from the post-types of previous atoms.
And a clause is well-typed if

e (7 € [1,n]) the pre-type a body atom can be deduced from the pre-type of the head and the
post-types of the previous body atoms,

¢ (j = n+ 1) the post-types of the head can be deduced from the pre-type of the head and the
post-types of the body atoms.

In particular a query A is well-typed iff |= pre(A), while a unit clause A « is well-typed iff |
pre(A) = post(A).

The following result states the persistence of the notion of being well-typed (see Bossi-Cocco [BC89]
or an account of it Apt-Marchiori [AM94]).

LEMMA 5.15 (PERSISTENCE) An LD-resolvent of a well-typed query and a well-typed clause that is
variable disjoint with it, is well-typed. o

This brings us to the following conclusion.

COROLLARY 5.16 Let P and @ be well-typed, and let ¢ be an LD-derivation of P U {Q}. Then every
atom selected in ¢ is correctly typed in its input positions.

PROOF. A variant of a well-typed clause is well-typed and for a well-typed query A,,..., A, we have
= pre(Ar). O

5.3 Avoiding Unification with Well+Nicely Typed Programs

Recall that in order to prove that P U {Q} is unification-free using Theorem 4.6 we are looking again
for conditions which imply that all the LD-derivations starting in @) are i/o driven: we want that the
selected atom is correctly typed and output independent.

The combination of the concepts of being well-typed and being nicely typed allows us to deal with
all the cases in which the types used satisfy Assumption 5.2: well-typedness takes care of the input
position, while nicely typedness takes care of the output ones.
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LEMMA 5.17 Suppose that
e P and Q are nicely typed and well-typed.

Then all LD-derivations of P U {Q} are i/o driven.

PROOF. It follows from Corollaries 5.16 and 4.10. O

This brings us to the main result of this paper.

THEOREM 5.18 (MAIN) Suppose that

e P and Q are nicely typed and well-typed,

o the head of every clause of P is input safe and U-safe

Then P U {Q} is unification free.

PROOF. From Lemma 5.17 and Theorem 5.10. ]

In particular, from the Sequential Matching 2 Lemma 5.9 it follows that each of the equations A = H
considered in the LD-derivations can be solved by sequentially matching (one by one) each of the atoms
positions, provided that we observe the following order: first the nonground input positions, then the
ground input positions, after that the U-positions and finally the output ones. In the Appendix we’ll
show how we can improve on this result by grouping some positions under the same match.

It is not difficult to check that this Theorem 5.18 generalizes our previous result, Theorem 4.12.
Indeed if the program P and the query Q satisfy the conditions of Theorem 4.12, then, since the
atoms have no input positions, we have that the heads of the clauses of P are trivially input-safe and,
by assigning to each predicate symbol p the trivial post-type p: U x ... x U, we have that P and Q
are well-typed. Therefore P and Q satisfy the hypothesis of Theorem 5.18 as well.

EXAMPLE 5.19 Consider now the program permutation sort which is often used as a benchmark
program.

ps(Xs, Ys) «— permutation(Xs, Ys), ordered(Ys).

permutation(Xs, [Y | ¥Ys]) «
select (Y, Xs, Zs),
permutation(Zs, Ys).

permutation([], [1).

select (X, [X | Xs], Xs).
select(X, [Z | Xs], [Z | Zs]) « select(X, Xs, Zs).

ordered([]).
ordered([X]).
ordered([X, Y | Xs]) «—X < Y, ordered([Y| Xs]).

Let us associate to it the following typing,
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type post-type
ps : Listx Pt List x List
permutation : List x Pt List x List
select : Pt x List x Pt U x List x List
ordered : List List

Now, permutation sort is well-typed and nicely typed. Moreover, the heads of all clauses are
input safe and U-safe?. By the Main Theorem 5.18 we get that for a list s and a disjoint with it
variable or pure term t, permutation sort U { ps(s, t)} is unification free.

Observe that the terms [X] and [X, Y | Xs], filling in the input positions of, respectively, the first
and the third clause defining the relation ordered, are generic expressions for List, but are not pure
terms. In a sense we could say that [X] and [X, Y | Xs] are nontrivial generic expressions. a

6. A SIMPLER SPECIAL CASE: GROUND INPUT POSITIONS

Sometimes, a lot of the machinery needed by Theorem 5.18 is actually superfluous. In particular,
this happens when the input positions are all of ground type. In this case, instead of requiring the
program to be well-typed, we can use the more restrictive concept of well-moded program. This has
two relevant advantages:

First, that we do not need to associate a post-type to each relation symbol.

Second, while checking that a program is well-typed is an algorithmically intractable problem,
testing well-modedness can be done in polynomial (quadratic) time. A discussion on the algorithmic
tractability of the concepts used in this paper is reported in Section 6.3.

In this Section we’ll assume that the only term_type used for the input positions in Ground. Infor-
mally, this means that the information we pass to the program consists always of ground terms. By
Definition 3.5 this is equivalent to assuming that we use types which are built using only the following
term_types: Ground, Pt, Var, U. '

6.1 Well-Moded programs

The concept of Well-Moded program is essentially due to Dembinski and Maluszynski [DM85a]; here
we make use of the elegant formulation of Rosenblueth [Ros91] and of the same notation of [AE93].
In particular, when writing an atom as p(u,v), we now assume that u is a sequence of terms filling
in the input positions of p and that v is a sequence of terms filling in the output and the U-positions
of p (notice that this shorthand is different from the one used for Definition 4.7).

DEFINITION 6.1

o A query pi(s1,tq1),...,Pn(sn, tn) is called well-moded if for 7 € [1,n]
i—1
Var(s;) C U Var(tj).
j=1

e A clause

pO(tO) Sn+1) — pl(sl7tl)) . -,Pn(sn, tll)

2The latter statement is trivial, as there are no U-positions: the fact that U appears in a post-type is of no relevance
here.
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is called well-moded if for i € [1,n + 1]

i—1

Var(s;) C U Var(tj).

i=0
e A program is called well-moded if every clause of it is. O
Thus, a query is well-moded if

e every variable occurring in an input position of an atom (¢ € [1,7]) occurs in a non-input position
of an earlier (j € [1,% — 1]) atom.

And a clause is well-moded if

e (i € [1,n]) every variable occurring in an input position of a body atom occurs either in an input
position of the head (j = 0), or in a non-input position of an earlier (j € [1,¢ — 1]) body atom,

e (i = n+ 1) every variable occurring in an non-input position of the head occurs in an input
position of the head (j = 0), or in an output position of a body atom (j € [1,n]).

It is important to notice that the concept of a well-moded program (resp. query) is a particular
case of that of a well-typed program. Indeed, if the only term_type used for the input positions is
Ground, and the post-type associated to each relation symbol p is p: Ground x ... x Ground, then
the notions of a well-typed program (resp. query) and a well-moded program (resp. query) coincide.

The following Lemma states the persistence of the notion of being well-moded. A proof of it can
be found in Apt and Marchiori [AE93].

LEMMA 6.2 An LD-resolvent of a well-moded query and a disjoint with it well-moded clause is well-
moded. O

The next result is originally due to Dembinski and Maluszynski and follows directly from the
definition of well-moded program.

COROLLARY 6.3 Let P and @ be well-moded, and let £ be an LD-derivation of P U {Q}. All atoms
selected in £ contain ground terms in their input positions. O

6.2 Avoiding Unification with Well-Moded Nicely Typed Programs
As we anticipated at the beginning of this Section, here we assume that the only term_type used for
the input position is Ground, this is equivalent to making the following

ASSUMPTION 6.4 In this subsection we each predicate symbol has a type associated to it of the form
p: T1 x ... x Ty, where for i € [1,n], T; € {Ground, Var, Pt,U}. O

Once again we are going to use Theorem 4.6 for proving that P U {Q} is unification-free. Therefore
we are looking again for conditions which imply that all the LD-derivations starting in @ are i/o
driven: the selected atoms in a LD-derivation need to be correctly typed and output independent. As
in the previous two Sections, the concept of being nicely typed will take care of the output positions.

Since we are assuming that the input positions are always of ground type, from Corollary 6.3 it
follows that well-modedness is what we need for taking care of the input positions.
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LEMMA 6.5 If Assumption 6.4 is satisfied and
e P and @ are nicely typed and well-moded.

Then all LD-derivations of P U {Q} are i/o driven.

PROOF. Let A be a selected atom in an LD-derivation of PU{Q}. By Corollary 6.3 the input positions
of A are correctly typed, and by Corollary 4.10, A is correctly typed in its output positions is output
independent. O

This, together with Theorem 4.6, brings us to the following conclusion.

THEOREM 6.6 If Assumption 6.4 is satisfied and

e P and Q are nicely typed and well-moded,

e the head of every clause of P is U-safe

Then P U {Q} is unification free.
PROOF. It follows directly from Lemma 6.5 and Theorem 4.6. O

It is easy to check that this is a special case of Theorem 5.18: if P and Q satisfy its hypothesis,
then P and @ are well-moded and, as we mentioned before, well-moded programs (and queries) are a
special case of well-typed programs in which the only term_type used for the input positions is Ground.
Therefore P and @ satisfy also the condition of being well-typed, moreover, we also have that the
heads of P are (trivially) input safe. Consequently P and Q satisfy the hypothesis of Theorem 5.18
as well.

EXAMPLE 6.7

(i) First, let us go back to what we stated at the beginning of Section 5, and let us consider again
the program member. With the typing member: U x Ground, member is well-moded and (trivially, as
there are no output positions) nicely typed; moreover, all clause’s heads are U-safe. By Theorem 6.6
if t is a ground term, then, for any s, member U { member (s, t)} is unification free.

Let us compare this with what we could have obtained by using the result (namely, Theorem 4.12)
given in the Section 4. Without using input positions we can prove that, when the following type is
used:

member : Ptx U

then member is nicely typed and all clause’s heads are U-safe. By Theorem 4.12 this implies that if s
is a variable or a pure term disjoint from t, then member U { member(s, t)} is unification free. In
this case, the advantage of Theorem 6.6 over Theorem 4.12 is that we can allow s to be any term. The
price we have to pay for this is that Theorem 6.6 requires t to be ground. Symmetrically, Theorem
4.12 imposes no conditions on t (which can be then a nonground list, or any other term) but requires
s to be a variable or a pure term.

Notice also that, when the above types are used, Theorem 6.6 is not applicable, as the program is
not well-moded. This shows that Theorem 6.6 is not more general that Theorem 4.12.

(ii) Consider now the MapColor program:
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color map(Map, Colors) «
Map is correctly typed using Colors.

colormap([Region | Regions], Colors) «
color region(Region, Colors),
color map(Regions, Colors),
colormap([], - ).

color region(Region, Colors) <«
Region and its neighbors are correctly colored using Colors.

color_region(region(Name, Color, Neighbors) , Colors) «
select(Color, Colors, ColorsLeft),
subset (Neighbors, ColorsLeft).

select(X, Xs, Zs) «+
Zs is the result of deleting one occurrence of X from the list Zs.

select(X, [X | Xs], Xs).
select(X, [Z | Xs], [Z | Zs]) « select(X, Xs, Zs).

subset(Xs, Ys) «
each element of the list Xs is also an element of the list Ys.

subset([X | Xs], ¥Ys) « member(X, Ys), subset(Xs, Ys).
subset([] , - ).

augmented by the member program.

Let us associate to it the following typing;:

colormap : U x Ground
colorregion : U X Ground
select : U x Ground x Pt
subset : U x Ground
member : U x Ground

It is straightforward to check that with the above typing, MapColor is well-moded and nicely typed.
Since the head of all clauses are U-safe, by Theorem 6.6 we have that, if t is a ground term, then, for
any s, color.map U { colormap(s, t)} is unification free. a

It is worth noticing that the U-positions have been used in (at least) two opposite ways: in Section
4 we they were actually used as “input” positions, in the sense that they were used to transfer
information from the selected atom to the head of the clause used to resolve it, while in Section 6
they were more used as “output”. This becomes noticeable in the moment that we compare Example
4.13 with Example 6.7. However, it should be mentioned that this distinction is not always so clear:
consider for instance the program select (which is a subprogram of the above MapColor): A query
select(s, t, u) can be used in two main ways: to delete the element s from the list t and report
the result in u, or as a generalized member program, to report in s an element of t, and in u the
remains of the list. In the first case the first position is used as “input”, in the second as “output”,
but for both cases we can simply use the typing select : U x Ground x Pt. In this case the mode
U takes care of the ambivalence of the first position. Notice also that when we adopt this typing the
hypothesis of Theorem 6.6 are satisfied, therefore if t is ground, u is in Pt and s is disjoint from s
then selectUselect(s, t, u) is unification-free.
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6.3 Comparing Theorems 4.12, 5.18 and 6.6: efficiency issues
Theorem 5.18 is a generalization of Theorems 4.12 and 6.6, but the latter two are much more suitable
for being used in an automatic way.

In fact, it is worth noticing that the applicability conditions of Theorems 4.12 and 6.6 can be
statically and efficiently tested: in order to check that a program is nicely typed, well-moded and
the head of its clauses are input safe, one can easily find some naive algorithms whose complexity is
quadratic in the size of the clauses and linear in the number of clauses in a program. Indeed, all three
concepts require procedures like the following one.

for each clause cl in P do
for each variable v occurring in cl do
begin
check that all the other occurrences of v in cl satisfy the
required conditions (this require re-scanning cl)
end

On the other hand, to test the hypothesis of Theorem 5.18 one needs to check if some type judgements
hold, and this is a much more complex problem, in fact, for artificially built types, it can even
be undecidable. Aiken and Lakshman in [AL93] have investigated the problem of checking type
judgements for monotonic types: they prove that it is EXPTIME-hard and they state that no upper
bound is known, moreover, they show that also in the case that we use only discriminative types®
then the problem has a a lower complexity bound of PSPACE, and a upper bound of NEXPTIME.
In other words, even in this more restrictive case, the problem remains highly untractable.

Thus, checking the conditions of Theorems 4.12 and 6.6 is much simpler than checking the ones of
Theorem 5.18, moreover, by checking the list in Section 7.1, one can easily realize that the practical
cases in which Theorem 5.18 is really useful are a minority: in most cases Theorems 4.12 and 6.6 are
sufficient for our purposes.

7. WHAT HAVE WE DONE AND WHAT HAVE WE NOT DONE

7.1 What have we done: the List

To apply the established results to a program and a query, one needs to find appropriate typings for
the considered relations such that the conditions of one of the Theorems 4.12, 5.18 or 6.6, are satisfied.
In the table below several programs taken from the book of Sterling and Shapiro [SS86] are listed.
For each program it is indicated for which typings these theorems are applicable.

In programs which use difference-lists we replace “\” by “”, thus splitting a position filled in by a
difference-list into two positions. Because of this change in some relations additional arguments are
introduced, and so certain clauses have to be modified in an obvious way. For example, in the parsing
program on page 258 each clause of the form p(X) < r(X) has to be replaced by p(X,Y) « r(X,Y).
Such changes are purely syntactic and they allow us to draw conclusions about the original program.

We also report between parenthesis typings which are “subsumed” by other typings in the list,
that is, typings for which there exists another typing which is more general. We report them here
because they provide further examples of typings wrt which these programs are (unification-free and)
well-typed (or well-moded).

program page Thm. Typing

3a discriminative type is a type built using to some specific rules which include a fixpoint set construction; according
to Aiken and Lakshman “The important restriction of discriminative set expressions are that no intersection operation
is allowed and all union are formed from expressions with distinct outermost constructor”. In any case, discriminative
types are descriptive enough to be able to handle all the examples presented here.
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member 45 412 PtxU
6.6 U x Ground
(5.18) (Pt x List)

prefix 45 412 PtxU
6.6  Ground x Ground
(6.6) (Pt x Ground)
(5.18) (Pt x List)

suffix 45 412 PtxU
6.6 Ground x Ground
(6.6) (Pt x Ground)
(5.18) (Pt x List)

naive reverse 48 412 U x Pt
6.6 Ground x U
(5.18) (List x Pt)

reverse-accum. 48 412 U x Pt, UxUx Pt
6.6 Ground x U, Ground x Ground x U
(5.18) (List x Pt, List x List x Pt)
delete 53 5.18 Ground x U x Pt

5.18 Ground x U x Ground
(6.6) (Ground x Ground x Pt)

select 53 412 PtxUx Pt
412 UxPtxU
6.6 U x Ground x Pt
6.6 Ground x Ground x Ground
(6.6) (Ground x Ground x Pt)
(5.18) (Pt x List x Pt)

insertion sort 55 412 s: U x Pt, 1: UxUx Pt
(6.6) (s: Ground x Pt, i : Ground x Ground x Pt)
(5.18) (s: List x Pt, i: U x List x Pt)
quicksort 56 4.12 g¢: U x Pt, p: UxUxVar x Var
(6.6) (g: Ground x Pt, p: Ground x Ground x Var x Var)
(5.18) (g : List x Pt, p: U x List x Pt)

tree-member 58 412 PtxU
6.6 U x Ground
6.6 Ground x Ground
(5.18) (Pt x BinT'ree)

isotree 58 412 U x Pt
412 PtxU
6.6 Ground X Ground
(6.6) (Ground x Pt)

25
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(6.6) (Pt x Ground)
(5.18) (BinTree x Pt)
(5.18) (Pt x BinT'ree)

substitute 60 518 U x U x Ground x Pt
5.18 U x U x Pt x Ground
5.18 U x U x Ground x Ground
(6.6) (Ground x Ground x Ground x Pt)
(6.6) (Ground x Ground x Pt x Ground)

pre-order 60 412 U x Pt
6.6 Ground x U
(5.18) (BinT'ree x Pt)

in-order 60 412 U x Pt
6.6 Ground x U
(5.18) (BinTree x Pt)

post-order 60 412 U x Pt
6.6 Ground x U
(5.18) (BinTree x Pt)
polynomial 62 6.6 Ground xU

derivative 63 6.6 Ground x U x Pt
6.6 Ground x U x Ground

hanoi 64 412 UxUxUxU x Pt
6.6 U x Ground x Ground x Ground x U

reverse.dl 244 412 «r: U x Pt, rdl: Ux PtxU
6.6 7: Ground x U, r.dl : Ground x U x Ground
(5.18) (r: List x Pt, r_dl: List x Pt x List)
dutch 246 4.12 dutch: U x Pt, di: U x Pt x Pt x Pt

6.6 dutch : Ground x U, di: Ground x Pt x Pt x Pt
dutch_d] 246 412 dutch: Ux Pt,  di: Ux Pt x Pt x Pt x U

parsing 258 6.6 all Ground xU

7.2 What have we not done
Still, there are some natural programs that when executed do not require unification, while they
cannot be proven unification-free using our method. We are aware of the following two examples:
quicksort._dl and flatten.dl [SS86, pag. 244, 241].

First, let us consider quicksort.dl.

gs(Xs, Ys) «qsdl(Xs, Ys, [1).
qsd1([X | Xs], Ys, Zs ) «
partition(X, Xs, Littles, Bigs),



7. What have we done and what have we not done 27

gs.dl(Littles, Ys, [X|Yisl),
qs_d1(Bigs, Yis, Zs).
gqs-d1([1, Xs, Xs).

partition(X, [Y | Xs], [Y | Ls], Bs) « X > Y, partition(X, Xs, Ls, Bs).
partition(X, [Y | Xs], Ls, [Y | Bs]) « X <Y, partition(X, Xs, Ls, Bs).
partition(X, [1, [0, [1).

By looking at the trace of the program, it is easy to see that, if t is a list and s is a variable disjoint
with t, then quicksort_dl1U{ gs(t, s) } is unification free. Indeed, if we use the following types:

qgs : ListxVar
gsdl : ListxVarxU
partition : U x List x Var x Var

then we have that the heads of all the clauses are input safe and U-safe, moreover, we can check
“by hand” that, if { qs(t, s) } is correctly typed and output independent, all LD-derivations of
quicksort.dl U { gs(t, s) } are i/o driven, therefore, by Theorem 5.10, quicksort.dl U {ags(t,
s) } is unification-free. The problem here is that the program is not nicely typed: Yis appears first
in the U-position of gs_.d1(Littles, Ys, [X|1Y1s]) and then in the output position of qs_d1(Bigs,
Yis, Zs), therefore, with the tools in our possession, we cannot prove that the derivations are i/o
driven, in particular we can’t show that each time that an atom of the form gqsd1(t, s, 1) is
selected, s will be a variable®.

Now, let us consider the program flatten dl.

flatten(Xs, Ys) « flattendl(Xs, Ys, [1).
flattendl([X | Xs], Ys, Zs ) «
flatten dl(X, Ys, Ysl),
flatten dl(Xs, Ysi, Zs).
flattendl(X, [X | Xs], Xs) «
constant(X), X # [ ].
flattendl1([1, Xs, Xs).

Incidentally, the reasons why we cannot flattendl to be unification-free are the same ones found
for the program quicksort.dl. If we associate to it the following types:

flatten : Ground x Var
flattendl : Ground x Var xU

We have that the heads of all the clauses are input safe and U-safe, and, in the case that t is a list and
s is a variable disjoint with t, all LD-derivations of flatten dl U { flatten(t, s) } arei/o driven,
therefore, by Theorem 5.10, flatten dl U { flatten(t, s) } is unification-free. Again, the problem
here is that the program is not nicely typed: Yis appears first in the U-position of flatten d1(X,
Ys, Ys1) and then in the output position of flattendl(Xs, Ysi, Zs); consequently, with our tools
we cannot guarantee the i/o drivenness of the derivations.

In the literature we do find tools that would enable us to prove these two programs to be unification-
free, namely asserted programs. Assertions can be viewed as extension of types, and provide a more
expressive formalism for proving run-time properties like groundness of terms and independence of
variables (see Apt-Marchiori [AM94]). Two are the reasons why we decided not to use assertions in
this paper: in the first place, the machinery involved is far more complicated and computationally
expensive than with types, and when we use types in full generality we already face the algorithmically

41t may be interesting to notice that, if we want to prove “by hand” that this program is unification-free, then the
key step is indeed represented by showing that each time that an atom of the form qs_.d1(t, s, r) is selected, s will
be a variable.
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intractable problem of checking type judgements. Secondly, the only two programs that we know of
that can be proven to be unification-free using assertions and not with types are precisely flatten.dl
and quicksort_dl. Summarizing, we strongly believe that the gain in generality is far not worth the
loss in clarity and efficiency.

Of course, the results of this paper allow us to can prove quicksort.dl and flatten.dl are
unification-free wrt the following types:

gs : Ground X Ground
gsdl : Ground X Ground x U
partition : Ground X Ground X Var x Var
flatten : Ground x Ground

flattendl : Ground X Ground x U

However this are not the natural typings for these programs: for instance they require that in the
queries gs(t, s) and flatten(t, s) both t and s are ground terms. In practice we have to know
the result of the computation in advance.

7.3 What cannot be done: when is unification needed
Considering the surprisingly large number of programs that could be proven to be unification-free,
in [AE93] we raised the question of whether unification was actually intrinsically needed in Prolog
programs: “A canonic example (of a program requiring unification) is the Prolog program curry
which computes a type assignment to a lambda term, if such an assignment exists (see e.g. Reddy
[Red86]). We are not aware of other natural examples, though it should be added that for complicated
queries which anticipate in their output positions the form of computed answers, almost any program
will necessitate the use of unification.”

In one year we have been running into a couple of interesting examples. The first one is the program
append_d1 [SS86, Pag. 241].

append d1(As, Bs, Cs) «
the difference-list Cs is the result concatenating the difference-lists As and Bs.
append d1(Xs \ Ys, Ys \ Zs, Xs \ Zs).

append d1 can concatenate the difference lists As and Bs in constant time, a relevant improvement
over the ordinary append, which takes linear time. However, it is easy to see that in most cases
append_dl does requires the use unification.

A second example is provided by the Prolog formalization of a problem from Coelho and Cotta
[CC88, pag. 193]: arrange three 1’s, three 2’s, ..., three 9’s in sequence so that for all 7 € [1,9] there
are exactly ¢ numbers between successive occurrences of i.

sublist(Xs, Ys) « Xs is a sublist of the list Ys.
sublist(Xs, Ys) « app(., Zs, Ys), app(Xs, _, Zs).

sequence(Xs) «— Xs is a list of 27 elements.
Sequence([-,-,—,-,-,—,—,~,—,-,—,—,—,—a-,-,—,—,—,—,~,-,—,—,—,-,-]) .

question(Ss) ¢« Ssis a list of 27 elements forming the desired sequence.
question(Ss) «
sequence(Ss),
sublist([1,_,1,_,1], Ss),
sublist([2,.,-,2,_,_,2], Ss),
sublist([3,_,_,_,3,_,_,-,3], Ss),
sublist([4,,_,-,-,4,_,_,_,-,4], Ss),
sublist([5,-,-,-,-,-,5,-,_,_,-,-,5], Ss),



8. Conclusions 29

sublist([6,_,_,_,_,_,_,6,_,_,-,_,-,_,6] ’ SS) ’

subliSt([7:—,—y—,—1—9~’-,7s—’—:—:-’—,—,—:7] ’ SS) )

subliSt([8’—9—’—’—,—’—’-’-:8)—9—1—3—:—’-—’—1—’8] ’ SS) s

sublist([9,_,-,_,_,_,_,_,-,_,9,_,_,_,_,_,_,_,_,_,9] 3 SS) .
augmented by the append program.

In this case Prolog provides a straightforward and elegant way of formalizing the problem, however
by looking at the trace of the execution it is easy to check that, in order to run properly, the program
fully uses unification.

8. CONCLUSIONS
8.1 Relations with [AE93]

This paper can be seen as an extension of Apt and Etalle [AE93]. Technically, the main differences
between this and the previous paper can be summarized as follows:

e In [AE93] only input and output positions are considered while here we introduce and use
U-positions as well.

e In [AE93] the only terms that are allowed to fill in the output positions of the queries are
variables. Here, by using the type Pt, we often allow the presence of pure terms, and this
broadens the class of programs and queries that we can prove to be unification-free.

o Like in here, in [AE93], the programs considered needed always to be well-typed®, however, the
definition of well-typed programs used in [AE93] is more restrictive than the present ones.

The practical consequence of these facts are manifold.

e The results can be applied to a larger class of programs.
Examples of programs that could not be handled with the tools of [AE93] and that can be
handled now are permutation and color map.

o The results can be applied to a larger class of queries.

In almost all cases, programs which could be handled in [AE93] can be now handled better,
i.e. the class of allowed queries is now broader. To give a simple example, let us consider the
program member. Using the tools of [AE93|, we can prove to be unification-free wrt the following

typings:

(1) member: Ground x Ground,

(2) member: Var x Ground,

(3) member: Var x List
On the other hand, using the tools given in this paper we can prove member to be unification-free
wrt the following typings:

(a) member: U x Ground

(b) member: PtxU

It is easy to see that the typing (a) is more general than both (1) and (2), while (b) is more
general than both (2) (again) and (3): the class of queries for which we can prove unification
freedom is now quite larger, and we can do this using a reduced number of different typings (two
instead of three), thus reducing the machinery involved in the proof.

Srecall that in the discussion after Theorem 5.18 we showed that, by appropriately choosing the type and the post-
type for a relation symbol, all the programs that satisfy the conditions of Theorem 4.12 or the ones of Theorem 6.6 are
well-typed.



30

e The hypothesis of the theorems are often checkable in a much more efficient way.

In order to provide an example, let us consider again the member program, together with the
typings given above. First recall that the typing (b) is more general that both typings (2) and
(3)- Now, an important advantage of (b) over (3) is the following: in order to use (3) we have to
use Theorem 30 of [AE93]® which requires to check some non-trivial type judgement, and this
is, as discussed before, an algorithmically intractable problem. On the other hand, in order to
prove unification freedom using typing (b), can use Theorem 4.12, our simplest result, whose
hypothesis can be simply and efficiently tested.

This situation is not incidental: by looking at the list of programs reported in [AE93, Section 8]”
and comparing it with the one in Section 7.1 of this paper, we see that in most of the cases in
which we had some nonground input positions, we could simply turn these positions into U-
positions, and prove unification freedom using Theorem 4.12 instead of Theorem 30 of [AE93],
both enlarging the class of allowed queries and simplifying dramatically the process of proving
that the program is unification-free.

8.2 Other related work
Other recent related works on unification-free programs are the ones of M. Marchiori [Mar94] and of
Krishna Rao and Shyamasundar [RS94].

[Mar94] concentrates on Well-Moded programs and studies mazimal localizations of the property of
being Unification-Free. In order to compare his paper with our we have to introduce a bit of notation.
Let us be brief and informal.

We say that a property P is local if for any two programs P and @, we have that the P and Q
satisfy P iff P U Q satisfies P as well. In other words, P is local if it can be checked clause by clause.
For instance the property “P is Well-Moded and Nicely typed wrt the typing T” is local, while the
property “there exists a typing 7 such that P is Well-Moded and Nicely typed wrt it” is not local, as
we need to traverse the program more than once to check it (eventually we have to try different 7).
We also say that a property Q is more general than P if each program that satisfies P satisfies Q as
well.

Now, the question addressed in [Mar94] is the following;:

¢ assume that to each relation symbol is already associated a typing of the form
p: T1 x ... x T,, where, for each i, T; € {Ground,U}. (8-6)

we want to find (if it exists) a local property P such that

— each program that satisfies P is Well-Moded (wrt the given typing (8.6));
— each program that satisfies P is Unification-Free;

— P is maximal, that is, there is no other local property Q which is more general than P and
that satisfies the above two conditions.

In [Mar94] it is proven that such properties exist, in particular two of them are defined in detail®. Of
course there exist other maximal properties that satisfy the above conditions.

SRoughly speaking, [AE93, Theorem 30] is a restricted version of Theorem 5.18, and it is the most general result of
[AE93].

"the reader who actually does so has to be warned that the notation is a bit different: for instance the type select (-
:U, +:List, —:List) of [AE93] corresponds to our type select : Var, List, Var together with the post-type select : U,
List, List.

8These two properties are named “(the property of being) Flatly-Well-Moded” and “coFlatly-Well-Moded”
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Summarizing, the goal of [Mar94] is quite different from our own: [Mar94] focuses more on the
theoretical aspects of local properties in the context of well-moded program, while here we want to
provide (possibly simple) tools for proving unification freedom for a (possibly) large class of programs
and queries. Indeed the class of programs and queries for which we can prove unification freedom is
substantially larger than in [Mar94]; this is mainly due to two reason: firstly, because restricting to
the class of Well-moded program already narrows sensibly the set of allowed queries (recall that of the
programs of the List, the ones that are Well-Moded are the ones which are proven to be Unification-
Free via Theorem 6.6); secondly, because local properties are, at least in this context, intrinsically
rather weak.

Finally, in [RS94] it is proposed to use the same tools of [AE93] together with a top-down algorithm
which, given the query we are interested in, searches (an abstraction of) its derivation tree in order to
find out all the output positions in the selected atoms which may be filled in by a non-variable term.
This allows to have terms other than variables in the output positions of the query. Their results
are devised for well-moded programs, but can also partially be applied to well-typed ones. The basic
difference between [RS94] and this paper lies in the fact that the method they propose is a top-down
one, and involves the search of the derivation tree of a query. Moreover, the results in [RS94] are
almost exclusively applicable to Well-Moded programs, and, as discussed before, this narrows sensibly
the class of allowed queries.
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10. APPENDIX: REDUCING THE NUMBER OF MATCHES

Let A = p(s) and H = p(t) be two atoms. We know that if the hypothesis of the Sequential Matching

2 Lemma 5.9 are satisfied, then the equations in s = t are solvable, one at a time, by matching.
Here we want to show that some subsets of s = t containing more than one equation can be solved

by a single matching. This reduces the total number of matchings needed to solve s = t, and results

in an efficiency gain: since there are parallel algorithms for term matching that run in polilogarithmic

time [DKM84, DKS86], matching more positions at once increases the execution speed.

LEMMA 10.1 Consider two disjoint atoms A = p(s) and H = p(t) with the same relation symbol.
Assume that A correctly typed and output independent, and that H is input safe and U-safe. Let us
now divide the set of equations s = t into the following subsets: let

e s; = t; be the subset of s = t corresponding to the nonground input positions.
e s; =ty be the subset of s = t corresponding to the ground input positions.

e s3 = t3 be the subset of s = t corresponding to the U-positions with respect to which H satisfies
condition (ii) of U-safeness (Definition 5.8).

e s, = t4 be the subset of s = t corresponding to those of the remaining U-positions of H which
are filled in by a variable.

e s5 =1s,...,5; = t be the subsets of s = t such that for 7 € [5, k], each s; = t; corresponds to
one of the remaining U-positions.

® Spy1 = tkt1,--.,51 = b be the subsets of s = t such that for: € [k+1,1], each s; = t; corresponds
to a position of type Pt.
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® s;43 = t;41 be the subset of s =t corresponding to the positions typed Var.

Then
81 = t1, g = ta, s3 =t3, 84 = t4, s5 =15,...,85c = L, Skt1 = tkt1,-..,51 = t1, Siy1 = ti1

is solvable by sequential matching.

Here notice that s; = t;, s = t3, s3 = t3, s4 = t4 and s;41 = t;41 are sets of equations, and these
are precisely the subsets of s =t whose content can be processed by a single matching.

PROOF. We proceed as in the proof of Lemma 5.9: we’ll find some substitutions 6, ..., 6; such that, for
i € [1,14+1], 0; is a match of (s; = ¢;)0; ...0;_1 (here, for the sake of precision, for i € {1,2,3,4,l+1},
we should have used bold letters, and written (s; = t;)). We have to consider seven distinct cases.

In s; = t;, since H is input safe, each term in t; is a generic expressions for the type of the positions
it corresponds to; moreover, the terms in t; are pairwise disjoint. Since A is correctly typed, from the
Matching 2 Lemma 5.6 it follows that s; = t; is solvable by matching. Let 6; be a match of s; = t;.

In (sg = t)61, since A is correctly typed, the terms in s, are all ground. By the Matching 1 Lemma
4.1 (sg = t2)0; is then solvable by matching. Let 6 be a match of it, and notice that t56;0; is a set
of ground terms.

In (s3 = t3)0102, because of the way s3 = t3 was defined, we have that Var(tz) C Var(tz), therefore
t36,60, is a set of ground terms. Again, by the Matching 1 Lemma 4.1 (s3 = t3)60;6; is then solvable
by matching. Let 83 be a match of it.

In (s4 = t4)6010203, by the way sq4 = t; was defined, t4 consists of distinct variables, moreover
Var(ts) N Var(ty,...,t3) = 0. By the relevance of ;1,605,603 (a match is always a relevant mgu)
we then have that t46,6,03 is a set of distinct variables. Again, by the Matching 1 Lemma 4.1
(s4 = t4)010205 is then solvable by matching. Let §, be a match of it.

The equations (s5 = t5,...,5¢ = tk, Sk+1 = tk41,-.-,81 = £1)01 ...04 are then solvable (one at a
time) by sequential matching. This follows at once from the proof of the Sequential Matching 2 Lemma
5.9. In particular we have that: for ¢ € [5, k], since H is U-safe, t;0; . ..60;_; is a variable or a pure term,
while for ¢ € [k + 1,1, since A is correctly typed and output independent, s;6; ...0;_; is a variable or
a pure term; here we (inductively) assume that for ¢ € [5,1], 6; is a match of (s; = ¢;)0; ...60;_;.

Finally, in (si+1 = ti41)61...0;, since A is correctly typed and output independent, from the
relevance of 64, ..., 6, it follows that the terms in s;,160; ...0; are all distinct variables. Therefore, by
the Matching 1 Lemma 4.1, (si41 = t;41)0; ... 0; is solvable by matching. This proves the Lemma. O

In practice, Lemma 10.1 states that we can solve by a single matching each of the following groups

of positions:

o the nonground input positions.

e the ground input positions.

o the U-positions with respect to which H satisfies condition (ii) of U-safeness (Definition 5.8).

¢ those of the remaining U-positions of H which are filled in by a variable.

o the positions typed Var.
While the remaining positions should be processed one by one. These are

o the remaining U-positions.

o the position of type Pt.

The following Example shows that these last positions actually need to be processed one at a time.
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ExAMPLE 10.2

(i) Consider A = p(z, f(z,z)) and H = p(g(v), f(z,w)), together with the typing p: U x U. We
have that A is correctly typed and that H is U-safe. Since here there are no input nor output
positions, it follows that the hypothesis of the Sequential matching 2 Lemma 5.9 are satisfied,
therefore A = H is solvable by sequential matching. However A = H is not solvable by matching,
as there is no 6 such that A9 = H or A = H. This shows that the U positions of H which are
filled in by pure terms and for which H satisfies condition (i) of U-safeness (Definition 5.8) need
to be processed one at a time.

(ii) A perfectly symmetric reasoning applies for the positions typed Pt: consider A = p(y, f(z,w))
and H = p(z,z), together with the typing p: Pt x Pt. A is correctly typed and output inde-
pendent, and since there are no input and U-positions, this is sufficient to satisfy the hypothesis
of the Sequential 2 Lemma 5.9. Therefore A = H is solvable by sequential matching, but not by
a simple matching. As before, this is confirmed by the fact that there is no 6 such that A0 = H
or A= H6. O

Lemma 10.1 is an improved version of the Sequential Matching 2 Lemma 5.9, which in turn was the
crucial step of Theorem 5.18. Therefore, its basic implication is that, when A and H are respectively
the selected atom and the head of the input clause used to resolve it, then some positions of A = H
can be grouped in the same match (while others may not).

For this reason, in some situations, we might find convenient to adopt a typing which is more
restrictive than another one, but which allows us to prove that we can solve the equations in the
LD-derivations with a smaller number of matchings.

Consider for instance once again the program append, suppose that we want to use it for splitting
a ground list in two. We might then want to adopt the following typing:

T, = app: Pt x U x Ground

Here the (only) input position in the third one. From Theorem 6.6 it follows that, if t is a ground
list, r is in Pt, then, for any term s disjoint from s, append U { app(r, s, t)} is unification free.

However, if the kind of queries we are interested in are the ones in which the first two positions of
append are filled in by variables (and this is a common situation), then we might find convenient to
use the following typing:

T, = app: Var x Var x Ground

Of course 73 is more restrictive than 77: every query that is correctly typed wrt 73 is also correctly
typed wrt 7; (and not vice-versa). However, when we adopt 7;, the best that we can prove is that all
the equations considered in the LD-derivations of append U { app(r, s, t)} are solvable by triple
matching: first we match the rightmost position, then we match the middle one, and finally we match
the leftmost one. On the other hand, if we adopt 73, from Lemma 10.1 it follows that all the equations
considered in the LD-derivations of append U { app(r, s, t)} are solvable by double (rather than
triple) matching: first we match the rightmost position, then with a single match we can take care of
the first two ones. Of course this holds provided that the queries satisfy the conditions of Theorem
5.18 wrt the adopted typing, and that is when they are correctly typed and output independent.

Finally, as a further example consider again the program select, which is reported in Example
6.7. As we mentioned in the discussion after Example 6.7, a query select(s, t, u) can be used in
two main ways: to delete the element s from the list t and report the result in u, or as a generalized
member program, to report in s an element of t, and in u the remains of the list. For both cases we
can use the typing

T, = select: U x Ground x Pt
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When we use this typing, (assuming that the query satisfies the hypothesis of Theorem 5.18), from
Lemma 10.1 it follows that all the equations considered in the LD derivations of select U { select(s,
t, u) } are solvable by triple matching.

However, when select is used in the first of the ways outlined above, then the first two arguments
of the query are possibly ground terms. This allows us to use the typing -

7> = select : Ground x Ground x Pt

in this case, by Lemma 10.1, the equations considered in LD-derivations of select U { select(s, t,
u) } are solvable by double matching: first we match simultaneously the first two positions, then we
match the third one.

A similar reasoning applies when we want to use select only as a generalized member program: we
can reduce the number of matching needed in the LD-derivations by restricting the range of allowed
queries, in particular by adopting the following typing:

T3 = select: Var x Ground x Var

In this case, from Lemma 10.1 it follows that the equations considered in the LD-derivations are
again solvable by double matching, but this time we (obviously) match first the second position (the
input one) and then, simultaneously, the first and third one (again, here we naturally assume that the
queries satisfy the conditions of Theorem 5.18).
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