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Abstract

An off-line electronic cash system is presented that offers appreciably greater security and better privacy than

currently considered electronic cash systems with similar functionality.

A tamper-resistant smart card, issued by the bank, controls a counter that represents the amount of electronic
cash carried by the user. The use of a counter ensures that the computation and communication complexity
for paying an amount are independent of the specific amount due, and that conversions between multiple
currencies can be made at payment time. Smart cards can transfer electronic cash to POS terminals that

need not be physically secured by the bank, without needing on-line verification.

To ensure privacy of payments, the user can insert his smart card into a user-controlled computer, such as a
palm top computer or a personal computer, which acts as an intermediary between the smart card and the
other party involved in the transaction. Cryptographic software in the user-controlled computer ensures that

payments are information-theoretically untraceable and unlinkable.

To pay any specified amount, only 125.5 bytes of data must be transferred, and no on-line computation is
required. The dynamic storage requirements per payment can be compressed to a mere 26.5 bytes for the
user-controlled computer, and virtually none for the smart card. The smart card can be a smart card capable
of performing the well-known Schnorr signature scheme; minor additions to the smart-card code suffice to suit
the cash system requirements. Moreover, a simple optimization allows efficient implementation even when

widely available smart cards with ordinary 8-bit micro-processors are used.

Assuming that the tamper-resistance of the smart cards cannot be broken, the system is provably as hard
to break as the Schnorr signature scheme. A build-in mechanism for traceability of double-spent transaction
data, which is as hard to break as the blinded Schnorr signature scheme, ensures that the cost of breaking a
smart card in practice will significantly exceed the expected financial profit that the attacker can make from
this.
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1 INTRODUCTION

From the point of view of security and privacy in privacy-protecting off-line electronic cash
systems, coin systems can offer the greatest conceivable level of security. In an appropriately
designed coin system, an attacker that manages to break the tamper-resistance of his personal
device (and extract its contents), still cannot make a profit out of this without being identified
after the fact by the bank. “New” money can be introduced by an attacker, without being
noticed, only if he can break the cryptographic security assumptions underlying the system.
If the cryptographic assumptions are sufficiently plausible, then it can be expected to be much
harder to break the system by a cryptographic attack than to break the tamper-resistance of
a personal device.

A practical disadvantage of coin systems is that payments can frequently only be made up
by multiple electronic coins. This is certainly a great concern for most of the off-line coin sys-
tem proposals in the literature, given the large computational resources these systems need to
process one electronic coin (due to cut-and-choose in the withdrawal protocol). Although the
efficiency of the privacy-protecting off-line coin system that I recently proposed [2] overcomes
this problem to a great extent, it might still be worthwhile to look for alternatives, even if
these cause a reduction in security.

The most widely applied technique in the design of electronic payment systems is to repre-
sent the amount of money carried by the user by a counter in a secured device that has been
issued to him. At withdrawal time, the device increases its counter by a specified withdrawal
amount, and at payment time it decreases its counter by a specified amount that is transferred
to the payee. This ensures that the computation and communication requirements of the par-
ties involved in a transaction are independent of the specific amount that is transferred. An
additional advantage is that conversion between multiple currencies becomes a trivial matter.
On the other hand, no ”counter-based” privacy-protecting off-line cash system can prevent
undetectable creation of new money in case a secured device is compromised. This clearly is
a significant loss in security in comparison to the security offered by today’s best off-line coin
systems. The best that can be done is to limit the practical damages due to the compromise
of a secured device.

In previously proposed counter-based off-line cash systems that protect privacy of pay-
ments, such as SmartCash [3] and Mondex [4], an attacker that manages to break the tamper-
resistance of a secured device can greatly accelerate the rate by which new money can be
introduced without detection into the system, by using accomplishes. Worse, anonymous
publication of a description of the contents of a broken smart card can lead to a total break
of the system. Without on-line verification, there is no practical way for the bank to limit
the financial damage that can be done.

In Section 2, a counter-based off-line electronic cash system is proposed that offers appre-
ciably greater security against the breaking of tamper-resistance than any other currently
known counter-based off-line cash system. The new system is based on techniques that are
applied in my off-line electronic coin system. The practicality of the system can be judged
from the performance evaluation given in Section 3. Section 4 discusses in detail why the
presented system is much more secure than any other counter-based privacy-protecting off-



line cash system proposed thus far. Several practical measures for the bank are proposed
as well, that should suffice in practice to guarantee that the cost of breaking a smart card
will significantly exceed the expected financial profit that can be made from this. Conversion
between multiple currencies is discussed in Section 5.

2 THE SYSTEM.

In the description of the system, the bank is denoted by B (multiple banks and clearing
centers can easily be taken care of, and are hence not considered here), a generic user by
U;, and a generic service provider by S;. U; has at his disposal a computer, C;, that can
be assumed to be under his own control: he can purchase it on the free market, or build
it himself. It is assumed to have at least display and keyboard entry means, and may take
the form of a palm top computer, a notebook, a Personal Computer, a TV remote control,
and the like. C; has a provision, such as a PCMCIA slot or a serial port, to interface with
a smart card, 7;, that will be issued to U; when he opens an account. In addition, C; may
contain a PIN system, or perhaps even a biometric identification system, such that only I,
or a party authorized by U;, can operate C;. It is assumed that the terminals of B and the
service providers have suitable interface means for communicating with C;.

Appropriate software for performing the transaction protocols (described hereafter) is in-
stalled on C; to ensure that payments are information-theoretically untraceable and unlink-
able. This software need not be trusted by B; I; may retrieve it as public domain software,
buy it on the free market, or write it himself. Preferably, it is part of user-friendly interface
software that provides a suitable metaphor for conducting electronic cash transactions.

In the following description, all random numbers will be assumed to be “genuinely” random;
Section 3 will address the use of pseudo-random generators to simulate these random numbers.

At several occasions, the terminology ”inflow” and ”outflow” in a protocol is used, referring
to the presence in the protocol of a subliminal channel from 7; to the other party involved in
the protocol (outflow) or vice versa (inflow). By interposing C; between 7; and the other party
involved in the protocol, such that 7; cannot directly communicate with the other party, U;
can prevent inflow and, more importantly, outflow.

The setup of the system. All arithmetic in the system is performed in a group G, of
prime order ¢ for which polynomial-time algorithms are known to multiply, determine equality
of elements, test membership, randomly select elements, and for which no feasible methods
are known to compute discrete logarithms.

B generates independently at random two numbers z,y € Z,, and a number gy € G\ {1}.
From now on, g§ will be denoted by h, and g§ by g1. B also determines a collision-free hash
function H(-) that maps its inputs to Zy, where k is an appropriate security parameter. The
function H is such that it is believed to make the Schnorr signature scheme [6] secure.

B also sets up an account database to store information about account holders, and a
deposit database to store relevant information from deposited payment transcripts.



Opening an account. When U; opens an account with B, the following procedure takes
place.

B generates independently at random a number z; € Z,;. B lists z + yx; mod ¢, hence-
forth denoted by I;, in its account database together with other account information of U;
(comprising a balance that keeps track of the amount of money ; has in its account with
B, and an accurate description of U;’s identity). I; will be referred to as the identification
number of U;. Suitable security measures must be taken by B to prevent attackers that gain
access to the account database from modifying the balance of I;, or reading out the value of
the identification number.

B issues to U; a tamper-resistant smart card, 7;, which has stored in non-volatile memory
at least the following items:

e the number g; and the descriptions of G, and H(-);
e code to perform the smart card’s role in the protocols;

e a counter, set to some appropriate initial value, that keeps track of the amount of money
that is held by ;. This counter will be denoted by balance; and

e the number z;.

B makes gi*, which will from now on be referred to as h;, known to U;. U; stores h; in his
computer C;, together with the numbers gg, g1, h and the descriptions of G, and H(-). C;
preferably also keeps track of a copy of balance, although this will not be explicitly mentioned
in the description of the protocols.

The withdrawal protocol. Because 7; keeps track of the balance of U; by means of a
counter, U; should only be allowed to pay an amount when the balance at payment time
exceeds the amount to be paid; otherwise, I; can pretend to have lost his smart card, once
the balance has become negative. As a result, the balance in the smart card will on regular
occasions have to be up-dated by means of a withdrawal protocol.

Various designs for a suitable withdrawal protocol are conceivable. Note that no public-key
cryptographic techniques are needed, since the contents of 7; are known to B; the withdrawal
protocol can hence be based on much more efficient conventional cryptographic techniques.

In the particular realization of a withdrawal protocol that is shown here, 7; is assumed to
have in common with B a secret key z. This secret key, and a sequence number, seq, (which
has been set to some initial value, such as zero), have been stored by B before issuing 7; to
U;. In addition, the description of a one-way function f(-) has been stored by B in 7;; this
function may take the form of a block cipher, such as DES in encipherment mode, taking the
secret key as the DES-key and the additional arguments as input. The function f(-) may even
be kept secret by B, for greater security. Of course, in practice f(-) may be deterministically
related to H, and z to z;, for reasons of storage efficiency in 7;.

To withdraw an amount, amount, 7; and B perform the following withdrawal protocol:



Bank

balance’ «+ balance’ — amount
v «— f(z,seq, amount)
seq «+ seq+1

v = f(z, seq, amount)
seq <« seq+1
balance < balance 4 amount

FiGUuRE 1. Withdrawal protocol.

Step 1. B decreases the balance, balance’, of /; by amount. It then increases seq by one,
and transfers v «— f(z, seq, amount) to 7;.

Step 2. 7; computes f(z,seq,amount), and compares it for equality with v. If equality
holds, it increases seq by one, and balance by amount.

Although another user cannot transfer money from the account of i; with B to his own
smart card, he can decrease the balance of U; with B in this manner. Hence, 7; should first
identify itself to B before the protocol is executed. Hereto, a similar protocol, with the roles
of 7; and B interchanged, can be used. Note that such a protocol can also be used to enable
U; to deposit money from his smart card to his account.

Remarks. 1. Alternatively, i; may interpose his computer C;, to prevent inflow and/or
outflow. To ensure that the number transferred by B in Step 1 does not contain inflow, C;
may require 7;, before passing v on to it, to provide a commit on f(z,seq, amount). After
C; has passed v on to 7;, 7; opens the commit to reveal that has been able to compute v all
along, thereby proving that there has been no inflow. The commitment function can be based
on a block-cipher, taking for instance f(z, seq,amount) and a random number as inputs.

2. The increase of the sequence number, seq, serves to prevent a replay attack by U;.
The increment by one has been chosen for explicitness; alternatively, B may specify the
new sequence number to be determined from the old sequence number according to a more
complicated relation, which may be kept secret.

3. Instead of letting B keep track of the value of seq for each smart card, C; or 7; can
inform B at withdrawal time of the current value of seq.

The certificate issuing protocol. Payment of an amount requires U; to provide the
payee with a signature on the amount (and additional data to prevent a replay attack).
This signature is made with respect to a public key that must have been certified by B.
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FIGURE 2. Pre-processing for the certificate issuing protocol.

A certificate of B on a public key may only be used once in a payment. Double-spending
a certificate requires U; to break the tamper-resistance of 7;, and enables B to afterwards
identify U;. Tt is this mechanism, inherited from privacy-protecting off-line coin systems, that
gives the presented system a much higher security level than other proposals for counter-based
systems.

To prepare for the withdrawal of a certificate, 7; and C; perform the following off-line
pre-processing:

Step 1. 7; generates independently at random a number w; € Z,, and sends a; < g7 to C;.
7; stores w; for later use in the payment protocol.

Step 2. C; generates independently at random a vector (ay, s, as, a4, a5) € (Z,)°. It then

computes hl — h;gy", ai — aigi?gg®, and temp «— gg*(hh;)*5. C; stores h}, ai and
(a1, ag, ag) for later use in the payment protocol, and temporarily stores temp, ay, and

as.

In practice, 7; and C; will prepare for withdrawal of a batch of certificates, by pipe-lining
many executions of this pre-processing phase.

The actual withdrawal of the certificate is done by means of the following on-line certificate
issuing protocol between C; and B:

Step 1. B generates at random a number w € Z,4, and sends a « g3 to C;.

Step 2. C; computes ¢ — H(h!,a!

! al,atemp). It stores ¢/, and sends ¢ «— ¢ + a5 mod ¢ to B.
Step 3. B sends r « cl; + w mod q to C;.

B can issue to C; k certificates in parallel. However, before issuing certificates to another user
(which is associated with a different I;), B must first complete the protocol with C;.
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FI1GURE 3. On-line part of the certificate issuing protocol.

Note that no participation whatsoever of 7; is needed in the on-line part of the certificate
issuing protocol.
C; can now go off-line again, and perform the following post-computation:

C; verifies that gj(hh;)™¢ = a. If the verification holds, it computes ' «— r +
a1 + a4 mod ¢, and stores 7'. The numbers temp, a4, and a5 can be erased;
they are no longer needed.

In practice, an occasional verification of r at randomly chosen executions of the post-
processing phase will be sufficient, since if the verification does not hold then the payee will
not accept in the payment protocol. Furthermore, it can be proven that B cannot send an r
such that 7; in the corresponding payment protocol can leak more than one bit of outflow.
Therefore, a scenario in which the payees cooperate with B to gather tracing information, by
also accepting incorrectly formed certificates, will definitely not be beneficial to B (it enables
users to create their own certificates, which can be spent without a corresponding decrease
of the counter in their smart cards).

The payment protocol. To pay to S; an amount, amount, 7; and C; perform the following
pre-processing:

Step 1. C; sends (h},a},specification) to 7;. Here, specification is a concatenation,
in a standardized format, of an amount field, a time of transaction field, a date of
transaction field, and a field for the account number of S; with B (or some other
information in a format determined by B and uniquely associated with S;). Additional

information fields may be included in specification.

Step 2. 7; verifies that w; is still in memory, and that balance exceeds amount. If this is

the case, it computes d < H(h}, a}, specification), and r;; « dz;+w; mod g. It then

decreases balance by amount, erases w; from memory, and sends r;; to C;.
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F1GURE 4. Pre-processing for the payment protocol.

Step 3. C; also computes d « H(h!,al,specification), and verifies that g}"' (h})~? = a;
(as in the certificate issuing protocol, this verification may be done only occasionally,
or at a later stage). If this is the case, then C; computes r}; < 7;1 + @2 mod ¢ and

Ti9 — daq + a3 mod gq.

Note that it has been assumed that U; (or C;) can determine specification without
assistance of S;. If the system is used for an application such as payments over a computer
network, this is very plausible; date and time can be looked up (they may even be entered
manually by U; by using the keyboard of C;, although typically C; will retrieve this information
locally), and the account number of S; may be stored on a local server, or stored on CD-ROM.

The actual payment is done by means of the following on-line payment protocol between
CZ' and Sj:

C; sends R}, (¢, "), (a}, 7}, 7i2) to Sj.

S; computes d «— H(h},a}, specification), and accepts the transferred information if and

only if ¢ = H(h}, al, gf (hh{)~) and g} g5 (h) ™ = al.

It is conceivable that S; expects another time field value to have been used by /;, since it
can be expected that the granularity of the time field in specification is such that small
disturbances in clock synchronization between U/; and S; result in different values. As will be
appreciated, this is not a problem: in the on-line part of the payment protocol, U; can send
the chosen value for the time field along. Given that in the deposit protocol B will accept
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F1GURE 5. On-line part of the payment protocol.

the payment transcript as long as it is not identical to one that S; deposited before, S; need
merely check that U; does not re-use the same certificate later on for the same suggested value
for the time field. To this end, S; can for example accept any suggested value for the time
field that lies within a certain time span, and at each payment check the involved payment
data for equality against the transcripts that have been received in this time span. A time
span of, say, 15 minutes should be more than sufficient for most practical applications.

In Section 3, optimizations are discussed that reduce the amount of data that must be
transferred from C; to S;.

If it desired that 7; communicate directly with S;, for instance because S; has no suitable
interface means for communicating with C;, then Uf; can provide the information computed
in Step 3 to 7Z;. 7; can then pass it on to S;. In practice, this amounts to I; first having to
insert his smart card into his computer, and then into the interface with S;. (Giving 7; the
abilities to perform the role of C; as well, puts to much computational burden on 7;, and U;
cannot verify that his privacy is protected.)

Alternatively, if B has also stored a certificate on h; in 7;, then 7; can transfer cash to
S; without any assistance of C;: it hereto transfers h;, the certificate on h;, and a Schnorr
signature on specification, made with respect to h;, to S;. Of course, all payments made
in this way are linkable and traceable to U;.

The deposit protocol. At a suitable time, preferably when network traffic is low, S; sends
the payment transcript, consisting of A%, (¢, '), (a},r},,7i2) and specification, to B.

B verifies that specification has been formed correctly by S;, and computes d «
H(h%,a},specification). B then searches its deposit database to find out if hash; (h},c, ")

has already been stored. Here, hash;(-) is a simple hash function, that need not be one-way
(it’s use is merely to speed up the search process). There are two possible situations:

1. hash;(h}, ¢, ') is not yet in the deposit database. B then verifies the payment transcript
by verifying that ¢/ = H(h%, a}, g5 (hh})=') and g} g2 (h})~% = al. Only if the verifica-
tion holds, B stores (hash;(h},c',r'),specification,d,r},) in its deposit database as



having been deposited by S;, and credits the account of S; by amount.

2. hash; (h,c,7") is already in the deposit database. In that case with overwhelming
probability a fraud has occurred. If the specification of the already stored informa-
tion is identical to that of the new payment transcript, then S; is trying to deposit the
same transcript twice.

Otherwise, B verifies the transcript as described in situation 1. If the verification
holds (the payment transcript is valid), the certificate (¢/,7') must have been double-
spent with overwhelming probability (if not, a very coincidental collision under hash; (-)
has occured, which will be detected with overwhelming probability by B after the
following computation). Since B now has at its disposal a pair (d,r};) from the new
transcript and a pair (d’,r};) from the already deposited information, it can compute
z+y(riy—r)/(d—d") mod q. B then searches its account database for this identification
number; in case the certificate was double-spent, the corresponding account holder can
be identified, and appropriate legal actions can be taken.

3 PERFORMANCE EVALUATION

For explicitness, it will be assumed that G, is the subgroup of Z,, for some prime p such that
q|(p—1) (although it is good to realize that an elliptic curve implementation can significantly
reduce the storage required for the public keys of B). Using the parameter lengths proposed
by Schnorr [6] for his signature scheme, it will be assumed that £ = 72, |¢| = 140, and
|p| = 512, where | - | denotes binary length. For greater security, one may want to increase
these values.

Three practical optimizations will be made. Firstly, in line with an earlier remark, it will be
assumed that C; in the certificate issuing protocol leaves out the post-processing verification
90(hhi)~¢ = a.

Secondly, it will be assumed that both C; and 7; simulate the generation of random num-
bers by pseudo-random numbers that are generated by iteratively applying some suitable
deterministic function. Since all the required random numbers are only 17.5 bytes in size, it
is reasonable to assume that the generation of each such number requires a computational
effort significantly less than a multiplication modulo a 64 byte prime number. For example
a linear congruential generator, or the exclusive-or of several thereof, might be used by C;,
and a DES-based one-way function by 7;. (Note that the randomness of C; only serves to
achieve privacy of payments, whereas that of 7; serves security of the system; by trading off
with efficiency, the bank may prefer to let 7; use a cryptographically strong pseudo-random
number generator.)

Thirdly, it will be assumed that d in the payment and deposit protocol is computed by all
parties involved as d < H(h},hashs(al), specification). Here, hashy(-) is a hash-function;
it need not be one-way, although this certainly cannot harm. For concreteness, it will be
assumed that its arguments are mapped to 17.5 byte numbers (although, say, 9 bytes might

suffice). The verification relation g;* g5 (k)¢ = a must correspondingly be replaced by

hashy (g, 952 (h})~%) = hashy(a’). A further optimization to reduce the size of the transmit-
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ted data in the payment and deposit protocol will be discussed below; it is not taken into
account in the following performance estimate, though.

As far as computational speedups is concerned, the performance estimate is fairly unsophis-
ticated: only the computation of products such as gfgg using straightforward simultaneous
repeated squaring is considered, since the goal of this section is merely to compare the perfor-
mance of the system with the requirements for a full RSA encryption with the same length of
the modulus!. The computational effort of generating the random numbers will be neglected,
in view of the second optimization. Likewise, the computational effort of computing images
of H(-) and f(-) is neglected, given that these functions can be implemented much more
efficiently than a modular multiplication of two 64 byte numbers.

The following list shows the estimated performance figures for each of the four types of
participants in the system:

* C; must permanently store (go, g1, h), (p, ), hi, the descriptions of H(-) and the pseudo-
random number generator, and an initial seed for the pseudo-random number generator.
C; also needs a software program to perform its role in the protocols.

In order to withdraw a certificate, the most demanding part of the system, C; must
perform about 700 multiplications modulo a 64 byte number, which is less than the
effort required to perform one full RSA exponentiation. Virtually all computations can
be done off-line in a precomputing phase; the on-line effort is comparable to only one
modular multiplication of two 64 byte numbers.

Assuming that C; regenerates oy, as, a3, and h., at payment time, the dynamic storage
for a certificate, consisting of (¢/,r') and hashy(a}), is merely 44 bytes, plus about one
byte to keep track of the state of the pseudo-random number generator (this should
be sufficient: it allows regeneration of the number k! for about 85 certificates without
needing to update the seed).

In the payment protocol, C; needs to send, amongst others, the number h.. Regenerating
this number requires about 210 multiplications modulo p, which is less than one third
of the cost for a full RSA exponentiation. At the cost of storing also h. at withdrawal
time, the computational requirements for If; in the payment protocol become virtually
zero. In any case, all computations can be pre-processed: no real-time computation is
required.

In total, U; needs to send only 143 bytes in order to pay. Below, it is shown how the

size of data transfer can be compressed further to a mere 125.5 bytes.

7; must permanently store g1, (p,q), x;, the descriptions of a pseudo-random number
generator, and an initial seed for the pseudo-random number generator.

LA full RSA encryption is the computation of X¢ mod n for a random X and unknown prime factorization
of n, such that the binary length of e is about equal to that of n. In an RSA-based encryption scheme, this
is the effort required to encrypt in case the decryption exponent is chosen small so as to be able to decrypt
very fast.

11



The requirements for 7; to assist in withdrawing and spending of a certificate are
exactly those of the signer in the Schnorr identification scheme. Specifically, to assist in
withdrawing a certificate 7; must generate one 17.5 byte number, and perform about 210
multiplications modulo p. To assist in spending the certificate, it must regenerate this
17.5 byte number from its pseudo-random number generator and compute one response
at virtually no computational cost. All these computations can be pre-processed off-line.

In the appendix it will be shown how to prevent 7; from having to perform the 210
multiplications for the exponentiation, in order to enable efficient implementation on
widely available smart cards with ordinary 8-bit micro-processors.

The computational effort of §; in the payment protocol is about 500 modular multipli-
cations of two 64 byte numbers. This is equal to about two thirds of the cost of one
full RSA exponentiation.

The computational effort of B in the certificate issuing protocol is the same as that
of the signer in the Schnorr signature protocol: less than two thirds of the cost of
one full RSA exponentiation. Storage of (hash;(h.,d,r’), specification,d,r};) for a
deposited payment transcript requires only 50 bytes, if it is assumed for concreteness
that the hash-function, hash; (-), maps its input to a 6 byte number and specification
is 17.5 bytes long.

Applying the verification relation for a certificate requires the same effort as that of S;
in the payment protocol: approximately 500 multiplications modulo p, which is about
two thirds of the cost of one full RSA exponentiation.

As mentioned, a further optimization is possible to reduce the size of the transferred data
in the payment and deposit protocol. Although I have not been able to reduce the resulting
security to a natural assumption, it is my conviction that this further optimization can be
applied without loss in security. The optimization is as follows: in order to prevent the sending
of al or hashy(a}) completely, d is determined as d «— H(h}, (c/,r'), specification) (caution
must be taken here: leaving out (¢/,7’) from the hash-value has the effect that valid payment
transcripts, with arbitrary specification, can be forged). S; in the payment protocol, and
B in the deposit protocol, must correspondingly verify the correctness of the payment data
by comparing ¢ for equality to H(h!, 971"21932 (R))=%, g5' (hh})~¢). As will be appreciated, this
optimization also has the effect of significantly reducing the dynamic storage requirements
for a certificate: since a, need no longer be stored by C; a certificate can be stored in merely
26.5 bytes. Moreover, only 125.5 bytes must be transferred in the payment protocol from C;
to S; to pay any specified amount.

4 PRACTICAL CONSIDERATIONS

In previously proposed counter-based privacy-protecting off-line cash systems, an attacker
that manages to break the tamper-resistance of a smart card can introduce new money
into the system without ever needing to visit the bank. The main cause for concern is
that such an attacker can greatly accelerate the rate of financial profit by cooperating with
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many accomplishes. The attacker can even screw up the entire system by, say, anonymously
publishing the contents of the broken smart card, since there is no way for the bank to ever
identify him. Without on-line verification, there is no practical way for the bank to limit the
damage that can be done. This clearly is a dramatic loss in security in comparison to the
security offered by the best coin systems currently known.

In the system proposed in this paper, a successful attacker that manages to break a smart
card cannot spend the same certificates over and over again without being identified after-
wards by the bank. The only way for a successful attacker of a smart card to introduce new
money into the presented system, without becoming traceable by the bank, is by withdrawing
new certificates. Since the bank can take appropriate actions that prevent withdrawal of an
“unlimited” number of certificates, the expected damage due to a compromised smart card
will be greatly reduced. It is this feature, that in effect excludes the use of accomplishes, that
makes the presented system much more secure than all other known counter-based privacy-
protecting off-line cash systems.

To further limit the expected financial damage due to a broken smart card, the bank can
take some or all of the following pre-cautionary measures:

e Certificates can be assigned a specific maximum spendable value to; payment amounts
that are in excess of this maximum amount must be paid using more than one certificate.

e In combination with the previous measure, the bank can charge the withdrawer for the
maximum spendable value of a withdrawn certificate. For the unspent part, a refund
can be requested by the smart card. (A protocol similar to the withdrawal protocol
can be used for this—mnote that the withdrawal protocol between 7; and B becomes
obsolete).

e In combination with the preceding measure, the bank can limit the amount for which
refunds may be requested, and limit the time period in which a refund for withdrawn
certificates can be requested. For instance, a certificate will only be refunded for up to
30 percent of its maximum value.

e The bank can use certificates in combination with coins. Certificates are assigned a
fairly low maximum value to, and so will in practice be used to pay with only if too
many coins would be needed otherwise. For instance, $16,39 might be paid using one
$10 coin, one $5 coin, and one certificate that has a maximum value of $2 and is spent
for $1,39.

Given that in my coin system the withdrawal of a certificate is technically exactly the
same as the withdrawal of a certificate, this combination is particularly appealing.

e The bank can limit the number of certificates that can be withdrawn per account in a
given period of time.

e The bank can physically scrutinize the smart card on a regular basis, perhaps specifically
concentrating on users that withdraw suspiciously many certificates.
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Note that automated physical verification at withdrawal time is very cumbersome in
practice, and can only be superficial. An attacker that can break and extract the
contents of a smart card can also be expected to be able to make an adequate copy
that will pass such physical verification.

5 CONVERSION BETWEEN MULTIPLE CURRENCIES.

As noted, an advantage of counter-based systems over coin systems is that conversion between
multiple currencies is a trivial matter. To transfer an amount that is specified in a different
currency than the local currency of a smart card, the amount is first multiplied by the smart
card by an appropriate conversion rate to convert it into the local currency, before subtracting
it from, or adding it to, its counter. There are several ways for the bank to ensure use of
valid conversion rates:

e A field is reserved in specification that indicates the two currencies involved in the
payment, and the conversion rate used for these two currencies. This field can be filled
in at payment time by the parties involved in the payment (in a practical situation, this
means that U; will have to inform C; of whether to accept the conversion rate or not).
Since specification also consists of time and date of the transaction, the bank can
verify at deposit time whether a correct conversion rate has been applied to the two
currencies specified in specification. If not, it rejects the payment transcript. (Of
course, the bank only has to see to it that the conversion rate that has been applied is
not to its disadvantage; if I/; at payment time is willing to accept a currency conversion
rate that is unfavourable to him, that’s his own business.)

This leaves open the possibility that /; and S; together decide at payment time on
time and date values which are favourable to them. This is not a problem if deposits
have to be made, say, at the end of the day. Alternatively, the bank ensures that the
terminal of S is secured, so it always generates the proper date.

e The bank can encode a list of currency rates into the certificates it issues. The number
h% is taken of the form g§'g7*g}, where [ is an encoding of the conversion rates list,
and gy is another publicly known generator of Gy that has been chosen by the bank.
The bank can encode [ into A} by using the technique used for encoding z; into hl.
At payment time, C; reveals [ to §;, from which the conversion rate between the two
currencies involved is selected. The parties then set h. to h./gb; the rest of the payment
protocol remains the same as before. As above, specification requires a field that
indicates the two currencies involved in the payment, and the conversion rate used for

these two currencies.

6 CONCLUDING REMARKS.

Assuming that the tamper-resistance of the smart cards cannot be broken, the system is
provably as hard to break as the Schnorr signature scheme. The build-in mechanism for
traceability of a double-spent certificate is as hard to break as the blinded Schnorr signature
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scheme [5]. The user-controlled computer ensures that payments are information-theoretically
untraceable and unlinkable. The proofs of this are omitted in this paper, since they are almost
the same as the proofs for my coin system [2].

The privacy offered by my coin system is better than that offered by the counter-based
system presented here: in the coin system, payments of a user cannot be traced even if the
bank can examine the contents of all smart cards that have been used by its account holders
to conduct transactions with (the bank cannot even learn the amounts that have been paid).
Since the security of my coin system also is significantly greater than that of the counter-
based system, and storage and computation capabilities of small computing devices rapidly
grow as technology progresses, coin systems may ultimately provide the most satisfactory
solution for off-line electronic cash systems.

Since the counter-based system is from a technical point of view almost the same as my
coin system, a well-known generally applicable method for transferability in off-line coin
systems, described by Van Antwerpen [1], can also be applied in the counter-based system.
The practicality of this method for smart card implementation is not clear, though: the
computational requirements for verifying a certificate that is transferred for the k-th time
are roughly equal to the effort of computing 2k/3 full RSA exponentiations (one actually has
to verify 2k certificates). Hence, in practice a fairly small bound will have to be imposed on
the number of times that cash can be transferred from smart card to smart card. Whether
building in this feature is really worthwhile will depend on the application in which the
payment system is put to use.

The axis of the construction presented in this paper is a new technique for constructing
certificate issuing and showing protocols, which is inherited from my coin system. As will be
appreciated, this technique can be applied to any known Fiat/Shamir type signature scheme
(see [2]). The explicit choice for the Schnorr signature scheme has merely been made because
it provides the most efficient realization.
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APPENDIX: IMPLEMENTATION IN SMART CARDS WITH ORDINARY 8-BIT MICRO-PROCESSORS.

An important practical benefit of the use of pseudo-random numbers by 7;, as assumed in the
performance evaluation of Section 3, is that Step 1 of the pre-processing for the certificate
withdrawal protocol can be performed entirely by B. This moves the computational burden of
computing g;"*, which is by far the most costly action performed by 7; in the protocols, from
7; to B. (Obviously, this technique can also be applied to the protocols that are presented
in [2]).

In the j-th withdrawal by C; of a certificate, B (instead of 7;) computes a; < gqlu’(]), where
wz(j) is the number produced by the pseudo-random number generator of 7; in the j-th
iteration. B then transfers a; to C;. Correspondingly, in its j-th execution of the payment
protocol, 7; uses the number ng ) produced in the j-th iteration of its pseudo-random number
generator, to compute r;; = dz; + ng ) mod g. Note that B does not need to store ¢g; and p
in 7;.

B can easily synchronize j with 7; by maintaining a counter. Alternatively, C; can inform
B of the current value of this counter at the start of the certificate withdrawal. Furthermore,
B can at once provide C; with a bunch of numbers a; that will be used in the succeeding
certificate withdrawals involving C;.

If 7; employs, say, a block-cipher based one-way function, or cascaded linear shift registers,
to generate its pseudo-random numbers, then it never needs to perform heavy public-key
cryptographic operations involving 512-bit numbers. In particular, its total computational
effort in the certificate withdrawal protocol is zero, and in the payment protocol is virtually
equal to the cost of performing one modular multiplication of a 9-byte number and a 17.5-
byte number. Using a smart card with an ordinary 8-bit micro-processor, this task can be
performed within a few milli-seconds.

A possible way to further reduce the computational task of the smart card is to use ¢ =
2127 — 1, which is known to be a (Mersenne) prime number: reduction modulo numbers of
the form 2% — 1 can be performed much faster than general modulo reduction. For a very
high security level, however, using 127-bit numbers may not be sufficient.

Due to the low storage and transmission requirements in the presented system, 256 bytes
of RAM and, say, 2 Kbyte EEPROM, on the smart card chip will be sufficient for a prac-
tical implementation. The computation of r;; by 7; can easily be performed completely in
RAM. Likewise, communication between C; and 7; can be through a simple 9600 baud serial
line, without causing annoying delays for transmission, since only 116.5 bytes need to be
transferred between C; and 7; to pre-process for an execution of the payment protocol.

In sum, the presented off-line electronic cash system can be implemented efficiently without
having to resort to sophisticated cryptographic co-processors. Smart cards with ordinary 8-bit
micro-processors are certainly sufficient to achieve a high performance level. Note, however,
that implementation of a transferability mechanism will not be feasible on such chips, in view

of the computational requirements needed for verifying a certificate.
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