
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A trying C++ experience (why compare dropped C++)

T.B. Dinesh

Computer Science/Department of Software Technology

CS-R9457 1994

A trying C�� experience
�Why Compare dropped C���

T�B� Dinesh

dinesh�cwi�nl

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

Compare is an acronym for �Compiler generation for parallel machines�� Its main objectives
are to build compiler components in such a manner that they can be mixed and matched to
develop compilers for new languages and new machines�

It was decided to use C�� in this project� in preference to C� for most of the major com�
ponents that are to be integrated together� This report summarizes the various opinions
for�and�against favoring C��� the technical problems� and the subsequent standardization
problems which eventually resulted in dropping C�� in favor of C� In order to make a reason�
ably coherent document� we concentrate on issues with respect to mapping the intermediate
representation language �f SDL� to C���

AMS Subject Classi�cation ������� 	
���� 	
N
�

CR Subject Classi�cation ������� D����� D�
��� D�
��� D�
�	� D����

Keywords � Phrases� C� C��� Large projects� Compiler generation� Intermediate represen�
tation� CoSy� Multiple inheritance�

Note� Support has been received from the European Communities� Esprit project �����
Compiler Generation for Parallel Machines �Compare�

Acknowledgements� This document is a consequence of input from members of the
Compare consortium who were directly or indirectly involved with the C�� issue� Special
thanks are due to� Jasper Kamperman and Pum Walters for developing the mapping from
f SDL to C�� classes� Helmut Emmelman� Martijn de Lange� Georg Sander and Laurent Voisin
for lots of input on their opinion on the merits of C or C��� Tamas Gaal and Georg Sander for
providing detailed information on the status of C�� compilers at their sites� Marcel Beemster
for investigating the e�ciency issue of virtual inheritance� other participants in the discussions
on the subject of C��� and for those who contributed by their e�orts� in development time
spent� using C���

�

Table of Contents

� Introduction �

 fSDL and DMCP �

�� The compiler �
� Choosing between C and C�� �

��� Arguments for C��� Technical issues �
��
 Arguments against C��� Managerial issues � 	
��� Arguments against C��� Technical issues �

� Technical issues ��
��� Multiple inheritance ��
��
 Problems with method over�loading �

� Implementation models �

��� Mapping fSDL to C�� classes �

��
 Sort and �eld hierarchies ��
��� Fixing sort and �eld hierarchies ��
��� Towards implementation of views ��
��� An expensive bug �

	 A typical C�� compiler requirement ��
� Calling of C �
�

 Conclusions �
�
References �
�
� fSDL� The full structure de�nition language �

�� Introduction �

�� Introduction
The Compare consortium consists of ACE� CWI� Harlequin� INRIA� Steria� UKA� USaar
and GMD �till end of ������ Compare is an acronym for �Compiler generation for parallel
machines�� Its main objectives are to build compiler components in such a manner that they
can be mixed and matched to develop compilers for new languages and new machines�

Initially� it was decided to use C�� in this project� in preference to C� for most of the
major components that are to be integrated together� This report summarizes the reasons
for favoring C��� the technical problems� and the subsequent standardization problems which
eventually resulted in dropping C�� in favor of C� This report documents

� a scenario in a large project where many partners� with various interests� have to work
together�

� a �recurring� situation of having to choose between C and C�� in the context of large
projects�

� use of C�� in practice requires a deep understanding of the various constructs in the
language�

In order to make a reasonably coherent document� we concentrate on issues with respect to
the development of the f SDL compiler�

�� fSDL and DMCP
f SDL is a language for describing the IR structures that are used in the Compare project
and is described in the documents �CWI��� WKD���� See Appendix � for an example f SDL
description�

f SDL is a language which allows �exible de�nitions and manipulations of data structures
in terms of a calculus of domains� The calculus provides constructive and restrictive oper�
ators over domains for their construction and re�nement� The process of construction and
re�nement of domains results in an implicit set of data structures� and domains serve as a
de�nition of a �ne grain view of these data structures� f SDL can thus be used to �exibly de�
�ne a group of data structures and various views of them� When compared to object oriented
languages� an f SDL domain could represent a group of classes� where arbitrary attributes of
them are hidden�

A higher level language like f SDL for de�ning data structures helps generate utilities� which
might be application speci�c� at a target language level� These may vary from type�checking
functionality to generic readers� writers� memory management and debugging routines� In
a multi user context� users can extend and�or restrict views of common data structures�
Incremental modi�cation of views or data structures by one user need not a�ect other users�
views�

f SDL is designed in the context of the CoSy �AAvS��� compiler model which provides a
framework for �exibly combining and embedding compiler phases to facilitate the construction
of parallelizing and optimizing compilers� The �at form� � SDL� can be used by analysis tools
in conjunction with engine descriptions and con�guration descriptions� A data manipulation
and control package �DMCP� speci�c to a target language is generated which can be used by
the engine writers for accessing the pool of data �Common data pool or CDP��

	� Choosing between C and C�� �

	
� The compiler
The f SDL compiler� f SDC �short for �full Structure De�nition Compiler��� consists of two
major phases� Flatten and Codegen� Flatten transforms the input speci�cation into so�called
�at form� a sub�language of f SDL that contains only constructive de�nitions� From the �at
form� Codegen produces the actual code for the DMCP�

The �at form provides an interface for the cooperation with other compiler�generation
tools� In a number of iterations� these tools may transform the �at f SDL speci�cation by
adding or deleting domains� operators or �elds� and inserting functor applications� Flatten is
used to produce a new �at form as result of every iteration�

From the �at form� code is generated to allow the actual use of the DMCP� The current
implementation of f SDC only generates C code� Earlier in the project� C�� was chosen as
the implementation language� From the point of view of f SDL� C�� has advantages as well
as disadvantages when compared to C�

�� Choosing between C and C��

Steria strongly favored C�� as the implementation language for the DMCP� GMD was ex�
plicitly in support� ACE liked the technical aspects of C��� but doubted C���s compliance
in practice� Most other partners were not very biased towards one or the other� The reasons
stated for certain biases are recorded in this section�

�
� Arguments for C��� Technical issues
�� Static type�checking For a hand�written engine� C�� is the good choice since one

wants to have strong static type�checking in order to gain productivity by detecting the
most likely errors at compile�time� instead of run�time�

For a generated engine� the generator has already done all the type�checking before
generation� and therefore need not do the type�checking at compile�time� Well� in fact
when testing the output of the generator� it can be useful to have strong type�checking�
this saves time for hand�written engines� But� once the generator has been stabilised
and tested� the type�checking of the implementation language is redundant�

� Naming conventions Using member functions and overloading name spaces become
smaller and hence names can become shorter� For example all the member functions of
an object have their own name space� In C the names must be globally unique within
the whole C program� When implementing with macros� they have to be unique within
one compilation unit�

�� Exploiting Type Information There are � major areas in the DMCP interface where
type checking is useful�

� During access of a �eld of a node it has to be checked if it is valid� This test has
to be done usually dynamically because the operator of a node� an engine variable
points to� is often statically not known� However there are many cases where it is
indeed statically known� but this is di�cult to express�

� During tree construction it has to be checked if the tree which is constructed is
well formed according to the f SDL description� e�g� the condition of a WHILE
tree node must be an Expression�

	� Choosing between C and C�� �

� When calling procedures� or other engines it should be checked that the right kinds
of trees are passed� e�g� a procedure calculating the type of an expression expects
a tree representing an Expression�

Static type information in the trees can be exploited in three ways�

� Only certain pointers� those of a certain type� in the tree are �virtual� pointers�
This makes the use of virtual pointers feasible� They naturally have a certain
overhead� but typing allows to restrict this overhead only to fewer pointers�

� Overloading can be exploited� This allows the compiler to decide statically which
procedure to call depending on the type of the operands� When carefully used the
naming scheme of procedures can be made much easier�

� Automatic type transformations can be speci�ed by the user� A procedure is
provided which performs this transformation� This feature can be exploited to
perform dynamic type checks in C��� by providing a procedure which does a type
cast which in�turn performs the type check�

In fact the C�� language provides some useful implicit type conversions e�g� if we have�

class A ������

class B� public A ������

then a pointer to an object of class B can be implicitly converted to a pointer to an
object of class A� But� on the other hand� if we want to consider a pointer to an object
of class A as a pointer to an object of class B� then we must use an explicit type cast �
as an object of class B is supposed to contain more information than an object of class
A�

�� Hiding the actual implementation The C�� language� as it is more or less object�
oriented� provides means to hide the implementation of a type� Therefore� it ensures
more than in the C language� that the code written in the engines will be independent
of the actual implementation of the CDP �common data pool� on the host machine�

�� Explicit or implicit pointers Explicit pointers mean that the user �the person who
writes an engine� knows that the type �Tree� is a pointer to a struct or an object and
thus uses the dereferencing operator�

Having explicit pointers makes it impossible to use �at some time in the future� virtual
pointers which� when dereferenced� get the object from another processor or from disk
or trigger the calculation of the object� A virtual pointer could be implemented e�g��
by a struct� so it should be possible to recompile the engines after rede�ning the type
Tree from a pointer into a struct�

	� Type conversions We have three options�

� Use the C language for implementation� in which case we do not do type conver�
sions �notion of types not very strong��

	� Choosing between C and C�� �

� Use C�� language with hidden pointers and then implement all the type conver�
sions that are provided by the language for pointers� Note that this approach has
two major drawbacks� increased compilation time and code�

� Use the C�� language as it was intended to� that is with explicit pointers�

Therefore� having pointers hidden or not is a strong commitment to make� if we want
to use the C�� language� It seems more appropriate to use the pointers as they are
provided by the implementation language� Note� This contradicts earlier item

�� Size of code When using the CDP� there are two approaches for each f SDL view �
independent of the implementation language�

� When debugging or experimenting� we would like to have a rapid compilation
process� explicit calls to functions and dynamic type�checking� therefore the code
will be large and the executable slow� The compilation can be speeded up by
providing only the classes and types of member functions in the �h �le� while their
actual implementation is hidden in the �C �le

� Once an engine has been tested and stabilised� we want e�cient code� and therefore
in�lining of functions �or macros in C�� so that almost everything is in the �h �le�

The DMCP generator should allow the compiler writer to choose� for each view� which
possibility should be followed� For instance� for the CLaX� demo� if we use in�line
functions� disable the dynamic type checking and use the 	O option of compiler� the
stripped code is only ���� Mb�

So the choice of C�� as the implementation language does not mean necessarily more
code�

�
	 Arguments against C��� Managerial issues
From a technical point of view C�� is likable� If one did not have the C�history� the followers
syndrome� the market�trends to watch� and some money to make� one would prefer a much
cleaner and rather more orthogonal and mature concept�

There are several considerations that keep marketing people busy and insecure about C���

�� There does not seem to be a buyers market for C��� The amount of requests is limited
and the type of prospects are the ones that�

want to receive your documentation up front

then� want to come to your o�ces for two days to do compilation try�outs

then� want to discuss special features they are used to and would like to see build in
�for free�

then� want to have a three month evaluation copy for free

then� want a single CPU license even though they have a network of �� workstations
�
���� ECU each� telling you that
���� ECU per CPU is extremely expensive

then� would like a discount on this copy

then� tell you that they will only have budget next year so could they have the copy
now and pay later

�CLaX� Compare language example� is a Pascal like language�

	� Choosing between C and C�� �

then� tell you they have decided to do their own port of GNU compilers because they
come for free�

This GNU�e�ect has killed such compiler manufacturers as Greenhills and is why one
should decide to stay away from these markets� such customers are simply too expen�
sive�

� C�� is neither frozen nor standardized� It is getting close to one speci�cation now but it
is not yet there� Therefore� it is not feasible to extend our C front�ends with a standard
C�� implementation�

� g�� is not of any commercial help or value

� cfront ��
 we have in source but is outdated and not royalty free

� cfront
�� is reasonable but should be purchased again and is not royalty free

� cfront ��� is close to what you want but should be purchased and is not royalty
free

�� From a commercial point of view the thing most attractive is to implement what appears
to emerge as the standard �almost cfront ���� and have a royalty�export free proprietary
product� provided there will be a buyers market �which we do expect to grow��

�� Marketing people expect a mature market as of mid ���� �following year�� so the topic
is commercially hot today�

Still C�� is a good choice for its engineering aspects and do endorse its usage in Compare�
but we have to have clear plans on which dialect to use and which compiler to rely on in
Compare� It might be the case that a C�� front�end engine needs to be developed for the
purpose of the Compare developments and in order to make the �nal Compare compilers a
complete and viable family� In a way we would encourage this development but unfortunately
we are afraid that we will not have the resources in the project to achieve this�

Some Questions regarding this�
Was a rough estimate ever made of the thousands �millions� of man�hours �ECUs� that are

spent world�wide on in�stable �GNU� compiler products� Imagine that these do�it�yourself
people would buy commercial products and do the work they really need to do This would
be a signi�cant �nancial injection for the systems software industry while developers would
make signi�cant progress and savings on their real work and for their organization�

What exactly could be used as a core de�nition of C��� so that one is sure to be independent
of actual compiler products and F ree Software Foundation features� Is there any writeup
on this topic from someone with experience in porting software in C�� from one �e�g� cfront�
to another �e�g� g�� older versions�� It is very important to achieve such C�� subset so we
keep our options open�

�
� Arguments against C��� Technical issues
For rapid prototyping� C is preferable as there are more tools and libraries for C than for
C��� Sometimes� using C�� results in a slow down of a factor � of the programming because
one has to reinvent the wheel a second time� C�� programming style is only a subset of full
C�� because of personal taste� Normally one should avoid overloading� because programs
which heavily use this feature are not readable nor understandable� Class objects are used
for event oriented programming� and normal C�style is used for �ow oriented programming�

	� Choosing between C and C�� �

because that is the way the C�� features are intended to be used� Normally only simple class
hierarchies are used for �ow oriented algorithms� because one cannot concentrate on large
complex classes� Type security of C�� is no important reason� If one wants to have more
security in C� one can use more checking tools� e�g� lint� ccheck� clash� printfck� or even hand
made tools� Think of C�� as a di�erent language� and not as a C with an advanced type
system�

� Explicit or implicit pointers In C� implicit pointers are implemented by a �h��le
like�

typedef struct bla
struct � int x� int y� � �bla�

�define BLA
X
p�

p�	�x�

�define BLA
Y
p�

p�	�y�

In the program text� always BLA
X and BLA
Y should be used� If this style of program�
ming is always used� there is no problem to change later to virtual pointers�

In C��� some pointers are more implicit than others �see Orwell�� For �explicit pointers��
the method above for C could be used� For the �most implicit pointers�� this looks like
the following�

struct bla
struct � int x� int y� ��

class bla �

private�

bla
struct �p�

public�

int BLA
X
��

int BLA
Y
��

int set
BLA
X
��

int set
BLA
Y
��

��

This implies that except from the viewpoint of type checking� there is no advantage or
disadvantage concerning C and C���

� Exploiting Type Information The functional language Miranda had a very obscure
mechanism to transform types automatically� These types were called �types with alge�
braic laws�� A type is declared together with laws that transform it into normal form�
These laws are automatically applied when possible�

E�g� rational numbers �not quite Miranda syntax��

type rational
number �
 int � int ��

law
��b� ��
����

law
a�b� �� let x � gcd
a�b� in
a�x� b�x�

	� Choosing between C and C�� �

Rational numbers are represented by tuples �a�b� and always reduced such that a and
b have no common factors�

This feature is now removed from Miranda because of type�theoretical problems� The
existence of a normal form cannot be checked statically and is totally unclear when the
transformation occurs�

This seems to be similar to the self�programmed type conversions of C��� If a complex
algorithm is needed to transform a value from one form into another form� this should
be explicit in the program� Otherwise one cannot check the correctness of the program
in a simple way� thus it is more a disadvantage than an advantage�

Two points for exploiting type information �in general��

A� Detecting of programming errors�

B� Increasing the e�ciency of parameter passing�

If C�� features are reasonably used� C�� is better with respect to A�� Reasonable
means� use friend classes very seldomly� construct your type hierarchy such that casts
are seldom� avoid everything which makes the program unreadable� e�g� overloading or
too many implicit algorithms� With respect to B�� there are no di�erences between C
and AT!T C��� The compiler simply ignores the additional type information during
code generation�

� Naming conventions Understandable names are usually not very short� Names need
to be unique for one compilation unit� and not just for too small a part� because then one
need not concentrate on the context where the name is used� when reading a program�
Okay� i�j�k are always the local induction variables of loops� and h� hh� hhh are always

the local help variables� That�s it�

If one uses overloading and the very small contexts of member functions to produce
a lot of identi�ers with the same name� then understanding the algorithm is seriously
hampered�

� Size of code There is a small di�erence between the type checking of f SDL and the
type checking of C��� Of course� C�� is fully type checked in C���

The type system of f SDL has two dimensions�

a� The type hierarchy of the objects and access functions� It is to check if an access
function is possible and that the parameters have the correct type�

b� The view concept� It is to check which nodes and access functions are visible�

The natural �view concept� of C and C�� is the use of header��les which specify which
functions are available� The disadvantage of member functions is� that they always have
to be included with class declarations� Thus� the �view concept� is orthogonal to the
�class concept�� In the class concept� it is not easily possible to specify which functions
of a class are visible and which are not�

If the �view concept� is implemented using the �class concept�� this yields duplication
of code� This duplication of code can be avoided if an additional layer is introduced
with its own naming scheme� i�e� classes are always included with all member functions�
but the names of member functions are �arti�cially� invisible and are made visible by
a preprocessor�

�� Technical issues 	

� Type checking This situation cannot be improved by selecting another language�
because of type�theoretical reasons� So far� C�� does what is possible� while C needs
dynamic type checking more often�

If the f SDL speci�cation is in a way that we have many levels of hierarchy� we also
need many dynamic checks �this happened in some engines of CLaX�� Then the level
of static type security is low�

Doing type checking by a separate type checker running on the C �les or running the
code through a preprocessor would be easily possible for C� if we knew the rules which
to check� i�e� the type calculus� The implementation is absolutely no problem� A
simple C�parser already exists� there is enough experience with implementing such type
systems� �Theoretically� it is also possible for C��� but currently no split C�� parser��
Thus� if someone is able to design a reasonable type calculus which can be applied to
C programs and is parameterized with a f SDL speci�cation� this solution would be
strongly preferred�

� Type casts It is well known that one can simulate dynamic type checking casts by
using cast�functions instead of cast�operators in C� This is not a problem� It is also
possible to use polymorphic�like functions in C� and this style is more often used �at
least in K!R C� than in C��� This is also no problem� But of course� in this case�
there is no static type checking anymore� However� the amount of code is reduced�

� Quotation

C�� makes it more di�cult to shoot yourself in the foot� but if you do it�
you�ll probably loose your whole leg�
� Bjarne Stroustrup �author of C���

�� Technical issues
In this section� we concentrate mainly on the multiple inheritance mechanism of C���

�
� Multiple inheritance
Before developing the C�� model of section ��
� the following multiple inheritance cases were
considered as alternatives for generating a C�� model of a given f SDL description of structure
relations� Each of these options turned out to be problematic or compromised e�ciency too
much�

Normal multiple inheritance Normal in the sense that it is not virtual inheritance �also see
section �����

This setting ��gure ��� �a�� makes it hard to cast a D to an A� since it is ambiguous as to
which A it should cast in C��� That is� casting up �or widening� is hard� Also� this setting
is not desirable since C�� keeps
 copies of A instance variables in a D object�

Virtual multiple inheritance This setting ��gure ��� �b�� makes it hard to cast an A to a
D since a virtual declaration of A� which makes this setting possible� has implementation
bearings that makes casting down �narrowing� hard� This provided the desired model for
f SDL to C�� mapping �Section ��
�� not without costing too many dereferences �Section ��
��

�� Technical issues 		

T
T
T

T
T
TT

�
�
��

C

D

B

A

�
�
�

�b�

�
�
�

T
T
T

A A

B C

D

�a�

Figure ���� �a� Normal inheritance� �b� Virtual inheritance

T
T
TT

�
�
��

T
T
TT

�
�
��

�
�
��

S
S
SS

CB

D D��D

A

�a� �b�

CB

A

D� D��D�

Figure ��
� �a� Single inheritance� �b� Views with single inheritance

Single inheritance In this setting ��gure ��
 �a�� D level is only operators while A is the
sort� The role of sort is that it contains all the shared �elds �in any sub domain� while the
operators contain only the operator speci�c �elds�

With this respect consider Figure ��
 �b��
It represents the various �views� of the same operator � D� and D�� are both potentially

the same operators but instead of D� multiply inheriting from B and C� D� and D�� now
separately inherit from B and C�

This means however that D� could be eventually be passed �by casting or proper conversion�
to where D�� is expected � a conversion which does this is not desirable for e�ciency reasons
and a cast� if it works� is desired� So for the casts to work the strategy used is that none
other than the operators and sorts �bottom layer and top layer � in a many layered tree� will
contain instance variables� The reasoning behind this is� The raw pointer casting provided by
C��� to move up and down an inheritance chain� is not just a char" �or void"� style conversion
but changes the pointer by a delta up or down respectively� If there are no instance variables
in a class then the delta is zero� So if a D� is casted up to B �a delta is lost� and when B is
casted to A �delta is zero� implying that when a B is cast to C� still the pointer to raw data

� Implementation models 	�

is valid� Now if a C is cast to D�� the same delta �that was lost� is recovered� since D�� and
D� have the same instance variables in the same order � However a casting of D� to D
 or
D
�� even indirectly is a runtime error which is checked by the conversion operators�

�
	 Problems with method over�loading
Di�erent classes having methods of the same name is not the problem� When the same name
is used for two di�erent methods� there are subtle �exibility issues that might come up as a
restriction someday�

Let us assume that class A has get ops�� and set ops�v� both represented by the same
name ops� Thus a�ops�� gets value and a�ops�v� sets the value to v�

If B inherits from A and B wants to hide the set ops�v��

Class B � public A � or class B � private A �

private� private� �� ���

ops
V�� public�

public� ����� ops
� �

� �

will do� But these require new de�nitions� One way to avoid new de�nitions is by using
A��op in public�private instead� This however will not distinguish the two ops� and thus
either hide both or show both but not hide only one�

This is also related� in more subtle� public�private making issues� Therefore� it is better to
avoid this�

�� Implementation models

Several implementation models were considered in order to optimize e�ciency� static type
checking and accurately re�ect the input hierarchy� As was envisaged� conversion to a �full�
C�� model proved to be a substantial e�ort�

Beginning of ����� the model was announced� The model presented in the section ��
� had
to be reworked to that of section ��� since it was potentially ine�cient �see ��
��

The reading of this section requires some knowledge of f SDL� to be able to understand the
details of the various models proposed� A reader without the necessary f SDL knowledge can
still get an idea of the time and e�ort spent in developing a suitable mapping of f SDL to
C���

� Mapping fSDL to C�� classes
Initially� a three level hierarchy with dmcp nodes� sorts and operators was considered� by
providing all domain coersions through implicit casts operations�

This was� in general� not received very well� Some wanted the C�� classes to correspond
analogously to f SDL domains� This way maximal static type checking would result and
the implementation model would correspond directly to domain descriptions� Also� it was
required that data �elds should be hidden from the user� Thus the access should be done
through a hidden pointer� It was agreed that time spent traversing this pointer is time well
spent� since the advantages of having this additional dereference included memory manage�
ment issues as well�

In response to this� the use of PTR class �smart pointer template� to hide the data de�
scription was suggested� The general idea was�

� Implementation models 	�

template�class N� class PTR �

N� rep�

�� GC stuff� RTTI stuff� Conversion stuff� etc ��

public�

PTR
� � rep � new N� � �

PTR
N� r� � rep
r� � � �

PTR
N r� � rep � �r� � �

�PTR
� �

N� operator	�
� � return rep� � �

� �

Although templates could not used for this idea� mostly due to available C�� compiler
de�ciencies� the general idea was utilized in the �nal model �Sections ��
 and �����

	 Sort and �eld hierarchies
An attractive C�� model allows static type checking where possible and inserts dynamic
checks where needed� There are no explicit casts needed as long as one stays with in the
realm of proper domain calculus� Code duplication is avoided as much as possible�

The model It has taken quite some time to �nd a satisfying mapping of domains to a C��

inheritance hierarchy� One of the reasons is the limited power of C��� For example� when
multiple inheritance is used� we want to use virtual base classes in order to prevent multiple
copies of the �same� instance variable� But then casting to a derived class becomes impossible
�see Section ����� A second problem is the impossibility to do selective hiding� That is� to
hide features at some place� but to have them visible elsewhere� is complicated and ugly�

But even when these problems are worked around� complications remain� The main prob�
lem lies in the di�erence in inheritance of operators and inheritance of �elds� Considering
shared �elds �instance variables of objects�� a domain expression
A� B � C

means that the domain A has the shared �elds of both B and C� Naturally� this leads to
an inheritance picture as in �gure ��� �a� �where super classes appear above subclasses��

�
�
��

T
T
TT

�
�
��

CB

T
T
TT

A

�a�

CB

A

�b�

Figure ���� Shared �eld versus Operator inheritance

But when considering operators� the same domain expression means that an operator of B
is also an operator of A� and that an operator of C is also an operator of A� Naturally� this
leads to an inheritance picture as in �gure ��� �b��

� Implementation models 	�

Note that the direction is reversed� Consequently� a simple inheritance hierarchy in C��

cannot directly model an f SDL speci�cation�
Therefore the following model�

� For every operator� there is a separate class with instance variables for all private �elds
of the operator� These classes are not directly accessible to the user�

� For every visible domain D� there is a class Df de�ning exactly the shared and private
�elds introduced in D� the latter being delegated to the operator class described above�
protected by a dynamic check on the operator� Other accessible �elds are inherited
from the class where they have been introduced� All these classes form an ordinary
C�� �multiple inheritance� hierarchy� At the top of the hierarchy� there is a class
Operator� containing the opcode and an indirection to an object containing the private
�elds� At the bottom are the classes corresponding to sorts� Figure ��� describes this
pictorially� These classes are also inaccessible to the user�

l
l
ll� � � � �

� � � � � � � � � � � � �

� � � � � � � � � �

� � �

�

�
�
�

HH
Sort�n�f

��

Operator

D�f Dnf

�Multiple inheritance hierarchy	

Sort���f Sort���f

Figure ���� Hierarchy diagram

� For every domain D� there is a class D of smart pointers �See section ����� The class D
is the only class that is known by the user� Every smart pointer is in fact a pointer to
an object of Sort�i�f� but the C�� dereference operator
	�
�� casts this pointer� to a
pointer to an object of Df�

Using a smart pointer with its dereference operator� a user exactly has access to the
�elds accessible in the domain D� Whenever two domains have operators in common
�this happens only within a sort�� an implicit conversion function is generated� When
needed� this function does a dynamic check on the opcode�

Design Remarks The private �elds of operators are in separate objects reached by an
indirection� Removing the indirection and introducing a union will produce faster code� but
also more memory consumption�

Life would be much easier if it were possible to maintain a pointer to an object of class
Operator in the hierarchy mentioned in �gure ���� and then cast this pointer down to a
pointer to an object of Df� But multiple inheritance forces us to use virtual base classes� and
C�� doesn�t allow casting down from a virtual base class�

� Implementation models 	�

When the operators in D� are a subset of the operators in D
� the implicit conversion
function can be forced into existence by adding an inheritance relation between D� and D
�
In the example� this is done in the relevant places� Using this� and view information� the
total number of conversion functions can be kept in check�

Throwing exceptions when a dynamic type check fails would be preferable� Regretfully� in
none of our C�� compilers� the exception mechanism is implemented�

Virtual inheritance is expensive The problem arises from the use of virtual classes� Virtual
classes cause sharing of inherited classes in a class hierarchy while normal �non�virtual� class
inheritance leads to duplication� The problem is that this does not come for free� For an
extensive discussion see �ES��� pages
���
���� The bottom line is that everywhere you write
�virtual�� a pointer is introduced�

Compiling an example� with AT!T
�� C��� indicates that the following code is generated
for the class Bf� which seems to be no more than a harmless type declaration�

class Bf� public virtual Operator�

public virtual B�f� public virtual Cf ���

But the code that is generated from it looks like this�

struct Bf � �� sizeof Bf �� �� ��

struct Cf �PCf�

struct B�f �PB�f�

struct Operator �POperator�

struct Cf OCf�

struct B�f OB�f�

��

The size of �� bytes is not alarming as it is caused mainly by the �elds OCf and OB�f�
However� the three pointers PCf� PB�f and POperator are alarming� They are introduced
by the C�� translator in order to make a type�cast possible from Bf to one of its virtual base
classes� Had the classes not be virtual� then a static o�set computation would su�ce� instead
of a dynamic pointer lookup as in this case� Note that the need for these pointers seems
unavoidable� It is unrealistic to hope that g�� or any other compiler can avoid them�

As a result� every instance of a Bf needs to have these pointers and initialise them� This
introduces both space and time overhead�

In order to avoid this unacceptable overhead� it was recommended to avoid the use of
virtual classes �in fact virtual anythings� virtual functions have the same problem� in the
generated C�� code�

� Fixing sort and �eld hierarchies
It has become clear that multiple inheritance is virtually unusable in C��� Even multiple
inheritance of classes that only de�ne functions� but no instance variables� leads to unexpected
overhead �because any class object must have non�zero size��

It should be pointed out that multiple �virtual� inheritance arises as a natural consequence
of the request of some partners for a C�� model which re�ects the f SDL hierarchy more
closely� All occurrences of �virtual� and all multiple inheritance is removed from the C��

implementation model �for accounting Section ��
�� Thus� meeting the �runtime� time and

� Implementation models 	�

space e�ciency requirements� Also� the indirection to the operator is removed� which has a
bene�cial e�ect on time e�ciency� However� the code size has increased and the complexity
of the generator has su�ered severely� This is due to the fact that in many places C��

inheritance has been removed� In the generator� the inheritance has to be mimicked�

The re�model In the new model� there are three kinds of classes� data classes� access classes
and user classes�

�� Data classes Data classes are classes where �elds are de�ned� In the inheritance
hierarchy for the data classes� there is a class Operator containing only an opcode� For
every sort S� class Ss de�nes all shared �elds in the sort� For every operator o there is a
class o� that inherits from the class corresponding to its sort �note that the indirection
to the operator has become super�uous�� Pictorial description is in �gure ����

�
��

� � � � �

�� �� 		 JJ

� � � � � � � � �

�
��

� � � � o�m � � �

Operator �contains opcode�

S�s Sns

o�� on� onk

Figure ���� Data Classes

� The access classes The access classes are classes used to control accessibility� There
is a class REP that contains a pointer to an Operator� and de�nes a function to obtain
the opcode� For each domain� it also de�nes functions to check if an operator belongs
to the domain� For every visible and invisible domain D� there is an �access� class Df�
and a smart pointer class D� An access class de�nes the access functions available in D�
Every access class inherits �directly or indirectly� from REP� The access functions �rst
dereference the pointer in REP� and then access the �elds in Ss or oij�

To reduce super�uous code� an access class may inherit from other access classes but
this is limited to single inheritance� For the f SDL example at the end of this text� a
possible picture of the access classes is given below� All inheritance relations indicated
with dotted lines� in �gure ��	� are implemented by �sharing� the code in the superclass
�that is� each function which the subclass should inherit is implemented by explicitly
calling the function in the superclass�� Note that �elds shared between more than one
sort �such as the �eld c introduced in domain C� are simply duplicated� See �gure ��	

It is unclear whether an algorithm can be found to produce an optimal inheritance
hierarchy�

�� The user classes

The user classes are the only classes available to the user �e�g� class D for the domain
D�� A user class inherits from the corresponding access class �e�g� Df�� and it de�nes
automatic conversion functions to all user classes that have operators in common� When

� Implementation models 	�

�
�

A
A

aaaaaa

aaa

c
cc

�
�
�
�

�
�

�
�

�

�
�
� �

�
�
�

Af �
�

�

REP

CfE CfG

A�f

Bf Gf

Df

Ef

Ff

B�f

Figure ��	� Access classes

needed� these functions are dynamically type checked �All dynamic type checking can
be turned o� in production versions��

In the new model� the automatic conversion functions between user classes are all de�ned
by the generator� and cannot be forced into existence by inheritance�

� Towards implementation of views
It is annoying that we cannot conform to the C�� rule that a class may only be de�ned in
one �h �le� Even if this rule is not stated very clearly �formal status of �les in C�� is not
impressive � �include means textual substitution and nothing more�� it must be granted
that it is bad to have several versions of the �same� class hanging around�

Due to the fact that our domain classes �with one �shadow� per view� de�ne only one data
member� the current scheme works� It is also hard to imagine why it shouldn�t work for
future C�� compilers �if linking doesn�t change signi�cantly compared to now�� However�
views whose restrictions necessitate a di�erent implementation of �fake inheritance� might
become quite di�cult to implement�

A better model for the implementation of views could be�

� A view is a class� which has local class de�nitions for all the domains that are visible
in the view� Because the domain classes are local to the view class� there is no C��

related objection to have several de�nitions of a class that implements a domain�

� In this model� an engine class is implemented as a C�� class� that inherits from it�s
view� The engine functionality must then be de�ned as member functions of the engine
class� These member functions will see the local class de�nitions for the domains in
their view�

This model is much better than the current implementation model� because it adheres to
the rules of C��� and it matches the terminology in the CoSy document �where the term
�engine class� is introduced� much more closely than the previous model�

The consequences of this model for the implementation plans of the CoSy group and
restrictions in C�� that might hinder implementation of this idea has to be studied�

� Implementation models 	�

Below� is a small example of what such views could look like� Please note that there are
more possibilities�

�include �stream�h�

��this is superclass of everything

class DMCP
node �public� int code� DMCP
node
� �code � ������

��A is supposed to be a domain that is in every view

��declaration imported in �h file for every view

class A� public DMCP
node �public� int a�� int a����

��domain B is going to be restricted in View��

��declaration not imported in �h file for View�

class B� public DMCP
node �public� int b�� int b����

��A view is a class with local class definition for domain B

class View� �

public�

��it is no problem to inherit from a class outside View�

class B� public DMCP
node

�public� int b�� B
� �b� � ������

int tryb�
� �B myb� return
myb�b�����

int tryb�
� �B myb� �� ��myb�b��� would give an error

return �� ��return a dummy value ��

��

��An engine class inherits from its view
s�

class Engine� public View� �

public� void dothething
� �

cout �� tryb�
� �� ��n��

cout �� tryb�
� �� ��n�� ��

Engine
� ��� ��constructor prevents warning

��

main
�

� Engine myengine�

myengine�dothething
��

�

 An expensive bug
Here is a small piece of code that exempli�es the nature of the bug in cfront �AT!T ������
that dodged successful compilation �a work around� for over � months�

class Parent �public� Parent
� ����

class Child� public Parent �

�� A typical C�� compiler requirement 	�

public� Child
const Child����

��

void f
Child aChild�

�Parent aParent � aChild��

main
���

�� A typical C�� compiler requirement

As the problems of having incompatible compilers tended to remain unsolvable� partners were
asked as to what their requirements would be� This section illustrates what a partner asked
oneself in order to provide a suitable requirement�

a� What do we expect from the work of partners wrt C���

� Anything which works in our environment is okay� Currently we have the following
compilers installed� gcc�## ���
�� gcc�##
�
�
 gcc�##
���� AT!T USL C�� �����
AT!T USL C�� �������

If it is C �
it should be ANSI C� For ANSI C� it is not important whether gcc ��xxx or gcc
�xxx or
what else is used� because both gcc are quiet stable �for C� and ANSI C is standardized�

If it is C���
g�� ���
�� is su�ciently stable� but implements a subset of C�� �e�g� no templates�
with a superset of additional features which is not documented anywhere�
g��
�xxx less than
�
 are not stable enough�
g��
�
�
 still has problems with templates� but everything else is stable� g��
�
�
 is
okay if templates are not used�
g��
���� is okay�
AT!T compilers depend on the underlying C compiler� Both of Our versions of AT!T
C�� are installed to use Sun cc which is a disadvantage because in�lined C code cannot
be ANSI C� We recognized� for AT!T C��� small problems with in�line functions and
templates� which are correctly handled by g��
����� AT!T C�� ����� has some
well�known serious bugs that are solved in ��������

We recommend �if it is C����
If AT!T
�� then it should compile with at least one other C�� compiler that is available
for us�
If g�� ���
�� or earlier� or AT!T C�� ����� then it should compile with at least one
other C�� compiler too� because these compilers may produce executable code �without
warning� that is not according to the language C���
g��
�
�
 is appropriate if no templates are used�
g��
���� or AT!T C�� ������� are okay in general� Both have small advantages and
disadvantages� �One general rule� never use templates and in�line together �
If AT!T C�� ����� or g�� �
������ then the implementor has to be careful to bypass
bugs in the compiler�

It is in principle possible to write portable C�� software� as you may see in the package
LEDA� This works with AT!T
���
�� AT!T ������ g�� ����� �����
���
�
�
�
�����
There exists a version using templates and a version without templates�

�� Calling of C �

b� What can be expected from our work wrt C���

� Our work is based on ANSI C and a very conservative view of C��� K!R C is not used
directly� but we can transfer ANSI C automatically to K!R C� Currently� the program
analyzer generator is the only tool that produces C��� This will compile with g��
����
and AT!T ����� �templates are used�� A switch to ANSI C is possible in principle� but
currently not done� The Cosy prototype implementation is in ANSI C completely� and
will compile with g��
����� too� If it is compiled for X��� it works with ANSI C� The
DDA tool� vectorizer� tree parser generator� type check generator� produce real ANSI
C that will compile with g��
����� too�

	� Calling of C
Several discussions start on various ways to overcome the problems with respect to C��

compilers� Suggestions are made for a task force to �nd a common Compare C�� subset�
An inventory is made of what e�ort is already spent on C�� that would be wasted� on the
e�ort that would be spent in future on the learning aspects of the language C�� and the
idiosyncrasy of C�� compilers�

A call is made for votes� on a decision� during a meeting of the technical managers� Porta�
bility�maintenance is an issue for the commercial partners� shaky tooling is a problem for
all� learning curve is an issue for the commercial partners� An additional consideration is the
very low level of inter�operability of C��� Where C functions can quite easily be accessed
from almost any other language �including C���� C�� functions have their names mangled
and are di�cult to access from other languages�

Scenarios formulated were�

�� C only

� migration

portability

well�known

� C�� engines can interface� but C�� classes cannot be taken as types of attributes�

� C�� only

� development�debugging

libraries� reuse

Type clashing

�� Map Layer in C��� Kernel in C �in addition to Item ��

� expensive now �long term option�

� feasibility has to be checked

mixed systems C and C�� engines

� loss of in�lining

�� First use C� later convert to C�� �long term option�

� � language only

�� Conclusions �	

� huge e�ort to convert

E�ort estimated for option � is an additional
 man months �when time debugging and
design aspects of C�� is deducted� for all the partners to whom this causes a rework to C�
For option �� 	 abstain� rest in favor
 Other options are not seriously considered �during

the voting�� Partners in favor of C�� request everyone to try to keep their C code compatible
with C���

� Conclusions
The most notable advantage of C�� is the stronger type system� Apart from stronger type�
checking� the type system of C�� permits overloading of functions� which leads to signi�cantly
shorter names� especially for functions generated by functor applications�

Another advantage of C�� is the use of inheritance to specify functionality common to all
or a large subset of all domains� In the C variant� this functionality has to be repeated many
times with only minor di�erences� �This is not a strong consideration for generators��

An important disadvantage of C�� is a lack of power in its concepts of inheritance� Es�
pecially the use of multiple inheritance� where a subclass inherits from several super classes�
can lead to many problems� A natural implementation of multiply inheriting f SDL domain
hierarchy requires the use of �virtual base classes�� However� this leads to implementations of
classes which are� unexpectedly� many times larger than what was intended�

Another weak point is the lack of possibilities to selectively hide functions from inheritance�
These problems led to an implementation that was e�ectively much more complicated than
an implementation in C�

The most important point� however� is the current state of C�� compiler technology with
respect to inter�operability� availability and reliability� The support for overloading seriously
hampers inter�operability� at the moment� it is very well possible to incorporate C functional�
ity into a C�� program� but the other way around is near impossible� The di�erences between
di�erent compilers for C�� �AT!T
��� gnu ������� gnu
�
�
� are rather shocking �even for
porting existing C�code�� Code is not automatically portable between these compilers �by
far�� Availability and reliability di�er from company to company� but are too low to warrant
a dependency of the Compare project� Therefore� Compare has abandoned C�� in favor of
ANSI C�

References

�AAvS��� Martin Alt� Uwe A$mann� and Hans van Someren� Cosy Compiler Phase Em�
bedding with the CoSy Compiler Model� In Peter A� Fritzson� editor� Compiler
construction�
th international conference� CC ���� number �
	 in Lecture notes in
Computer Science� pages
�
�
��� Edinburgh� U�K��� April ����� Springer�Verlag�

�CWI��� CWI� Amsterdam� The fSDL user manual� �����

�ES��� M� A� Ellis and B� Stroustrup� The Annotated C�� Reference Manual� Addison�
Wesley� �����

�WKD��� H�R� Walters� J� Th� Kamperman� and T�B� Dinesh� An extensible language for the
generation of parallel data manipulation and control packages� In Proceedings of the
Poster Session of Compiler Construction ���� April ����� Appeared as technical
report LiTH�IDA�R������� university of Link%oping�

�� fSDL� The full structure de�nition language ��

�� fSDL� The full structure de�nition language
The utility of f SDL and brief description of its purpose is given in Section
�

f SDL can be used to �exibly de�ne a group of data structures �domains� and various views
of them� The bare domain calculus is extended with opaque and functor domains� for the
purpose of making the calculus freely extensible to a particular target language� Opaques
free f SDL from language speci�c pre�de�ned types� whereas functors free f SDL from all pre�
de�ned abstract data types �e�g�� lists� graphs� sets� locks� as well as facilitate polymorphic
library functionality for a given target language�

An f SDL description of a tiny language Femto �WKD����

��Stat ��� asgn Id Exp � out Exp � while Exp Stat �

�� if Exp Stat Stat � begin StatList end

domain Stat � � seq �stats� LIST
Stat���

asgn � id� Id� exp� Exp ��

while � cond� Exp� body� Stat ��

ifst � cond� Exp� thenp� Stat� elsep� Stat ��

out � exp� Exp � ��

��Exp ��� Id � Int �

�� plus Exp Exp � minus Exp Exp � mul Exp Exp

domain Exp � Un �
BinOp	�����

��Various intermediate domains are defined for specific uses�

domain BinOp � � plus� minus� mul ��

domain BinFld � � right� Exp� left� Exp ��

domain Bin � BinOp � BinFld�

domain Un � � id � name� Id � �

� � const � val� Int � ��

��lexical syntax� Int ��� ��	 !�

�� Id ��� �a	zA	Z!�

opaque Int� h�� typedef int Int� ��� �!

opaque Id� h�� typedef char� Id� ��� �!

�� Functor description of the LIST data type used

functor LIST
S�

begin

domain LIST� �nil�cons�hd�S�tl�LIST
S���

� h�� ��� �!

end

domain Symtab � �nil�

varval�var�Id� val�Int� next�Symtab���

