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A Note on Bootstrapping the Local Time of the Empirical Process

R. Helmers
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

In this note we prove that Efron’s bootstrap is asymptotically consistent in estimating the distribution of the
local time of the empirical process, provided the underlying distribution of the observations is continuous. We
employ the classical method of moments. It appears that our result is not easy to obtain from the general
theory of bootstrapping (functionals of ) empirical processes.

RESUME

Dans cette note nous démontrons que le bootstrap d'Efron est convergent pour estimer la fonction de répartition
du temps local du processes empirique, pourvue que la fonction de répartition des observations est continue.
Nous utilisons la méthode des moments classique. |l appraraTt que notre résultat est difficile a partir de la
théorie générale du bootstrap pour des (fonctionnels de) processus empiriques.
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1. INTRODUCTION AND MAIN RESULT .
Let X;,Xa,... be independent random variables, defined on a single probability space (2, A, P),
with common distribution function (df)F on the real line. Let F;, denote the empirical df based on
X1,..., Xn; e, Fo(z) = n7'2%; I(X; < 2),—00 <z < 0. Conditionally given Xi,..., X5, let
X?,..., X denote a random sample of size n, drawn with replacement from F,,. Let F,; denote the
empirical df based on Xf,...,X,. Define the empirical process

Un(z) = 2 (Fu(z) — F(z)), —00 < < 00 (1.1)
and the bootstrapped empirical process
U (z) = ni (Fi(z) — Fu(z)), —00 <& < 00 (1.2)

Tt is well-known that U, 7 B(F) (cf. BILLINGSLEY (1968)) in the space (D,d), and, in addition,
that U} - B(F), with P-probability 1 (i.e., for almost all sequences X3,Xa,...) (cf. BICKEL &
FREEDMAN (1981)). Here B denotes the Brownian bridge process, and ?indica,tes convergence in
distribution. A beautiful and farreaching extension of this result was obtained by GINE & ZINN
(1990).

The local time of U,, at zero up to ‘time’ zy = sup{z : F(z) < 1} is given by

L2 (Ua) =n"% ) I (Ua()) (1.3)
z<zp
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Note that, if F is strictly increasing, then L2 _(U,) is nothing but n~% times the number of zero-
" crossings of the U,-process. If U,(z) happens to be zero for all z, which belong to a ‘flat part’ of F,
then we simply count this as 4 single zero crossing. It is well-known that LY (U,) is distributionfree
when F is continuous. In this case, we may as well take F equal to the uniform df on (0, 1) and write
LY(U,) for the local time of the uniform empirical process.

It is already known for more than 30 years (cf. Dwass (1961)) that,
lim P(LA(U,) <z)=1-e"%,2>0 (1.4)

i.e. the local time of the uniform empirical process possesses asymptotically (n — oo) a Raleigh
distribution. Dwass (1961) proved (1.4) by showing that all the moments of L}(U,) converges to
those of the Raleigh distribution. Because the Raleigh distribution is determined by its moments, this
of course yields (1.4). At this point one should note that the limiting df in (1.4) can be identified with
the df of the local time LI(B) of a Brownian bridge process B. In fact REVESz (1982) has shown
that, with P-probability 1, L$(B) is properly defined by:

LY(B) = lim Ms:0<s<1,|B(s)| < ¢}
1 e—0 2¢

(1.5)

where X denotes Lebesgue measure on (0,1). In addition, REVESZ (1982) also showed that, on a
suitable probability space (Q,.4, P), there exists a sequence of Brownian bridges {Bnp}n>1, and a
sequence of uniform empirical processes {Up}n>1, such that, for any € > 0,

\LY(0,) ~ LY(Bn)| = O(n~1+%) (1.6)

as n — 00, a.s. |P].
As a simple consequence of all this the assertion (1.4) can now be replaced by

LU 5 I3(B) (L7)

This fact was also recognized by KHOSHNEVISAN (1992), who gave ‘process versions’ of (1.6) and
(1.7). At the same time KHOSHNEVISAN (1992) was able to sharpen the a.s. order bound O(n~=1+<)
of REVESZ (cf. (1.6)) slightly to o(n~% logni+te), for any € > 0.

The aim of this note is to investigate whether LI(U,,) can be bootstrapped. L.e. we want to know
whether Lg(U,’:);L? (B), with P-probability 1, as n — 0o? Our interest in this question comes from the

fact that LI(-) viewed as function of the uniform empirical process and of the Brownian bridge process
is not at all continuous. So it appears that our problem cannot be settled easily by an application of an
‘extended continuous mapping’ theorem. Neither finding a suitable ‘strong approximation’ argument,
like the one (cf. (1.6)) leading to (1.7), seems to be an easy task to perform. However, a direct
approach - quite in the spirit of Dwass’s 1961- paper - turns out to be feasible for the problem at
hand. We shall in fact apply the classical method of moments to prove the following result:

THEOREM 1. As n — oo, we have with P-probability 1, that

LY(Uy) 5 Li(B) (1.8)



IORACK & WELLNER (1986), p. 398-400 for a short introduction to local time for
sses and to WELLNER (1992) for an excellent recent survey on bootstrapping empirical

TuHEOREM 1. To establish (1.8) we employ the method of moments; i.e. we shall prove
robability 1,

TR =25T( +1) (2.1)

ysitive integer r. Here E* of course denotes conditional expectation w.r.t. the bootstrap
ste that the expression on the r.h.s. of (2.1) is precisely equal to the rth moment of
lowing simple identity (cf. TITCHMARSH (1960), p. 63, example 18) will facilitate our
Ha>0,6>0,then

“_l(z - m)ﬁ“ldz = ____P(a)I‘(ﬂ) (y— z)“+ﬁ_1 (2.2)

T{a+ B)
. < Xn.n denote the order statistics corresponding to Xi,...,Xn. Because F is the
(0,1) there are - with P— probability 1 - no ties among the Xg., and F,(Xgn) = ;’i—,
1. Set Xg.. = 0.

(2.1) for r = 1,2 and 3. Subsequently we shall treat (2.1) for general r. To begin with
we note that, with P— probability 1,
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used Stirling’s formula and the well-known fact that fol (z(1 — z))"*dz = 7 (a special

npute the second moment of L}(U};) in a similar fashion:
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x% / e 31 -z)bdo ~3-27%x2 (2.5)
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. applied (2.1) once more, now with a = %, B = g— Note that the asymptotic values
9~%7% obtained for lim E*(LY(UX))" for r = 1,2,3 respectively, indeed coincide with
n-—»o0

1).

» check (2.1) for r > 4. To do this, note that - similarly as in the case r = 3 - one easily
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s used the well-known ‘duplication formula’ for the I'-function (cf., e.g., TITCHMARSH
in the last line. O

NG REMARKS
ve have shown that Efron’s bootstrap is asymptotically consistent in estimating the
metion of the local time of the empirical process, provided the underlying distribution

tions is continuous.

ans if we take the resample size m different from n? The answer is given in Remark 3.1.

Theorem 1 remains valid if we allow the bootstrap resample size m to be different from
iin(m,n) — oo, we have with P-probability 1, that




) 3 Li(B)

Uz (cf. (1.2)) with F? replaced by F2, and LY(U%, ) =m™ 1Y _ L0} (U o(2))-
=<1

vn feature of Efron’s bootstrap is that the number of original observations left out in a
iple of the same size can be quite large, namely ~ ne~! on the average. i.e. there will be
»otstrap observations in the resampling, while the original data set contains no ties at all,
bility 1. Perhaps somewhat surprisingly, this doet not affect the asymptotic behaviour
ed ‘local time of the empirical process’. However, if one asks the question whether the
at at ‘time point’ X;., a zero-crossing occurs, can also be naively bootstrapped, one
the following negative result:

Suppose F is continuous. Since F,(X1:n) = L with P-probability 1, we have that

(Un(X1:0)) = 1)=0
rrobability 1,
YU (X1:n)) =1) = €7, asn — oo.

ability of a zero-crossing of the U,-process at ‘time’ X;., is zero, while - on the other
obability of a zero-crossing of the Uj- process at Xi., approaches el,asn — o0 A
menon occurs at ‘time’ Xg.,,, for any fixed k.
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