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Abstract

We use general logic programs to formalize some classical problems in non-monotonic reasoning. More specifically,
this paper shows how some forms of temporal reasoning and of planning problems can be easily formalized by
using two restricted classes of programs, called acyclic and acceptable programs. Moreover, we show how for these
programs more queries can be answered when a form of constructive negation is incorporated into the proof theory.
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1. INTRODUCTION

Pure classical logic is inadequate to represent the common sense human reasoning, since the latter is in
general non-monotonic. To this end various proposals have been introduced to provide formal foundations
of non-monotonic reasoning, like circumscription ([17]), default theory ([22]), autoepsitemic logic ([19])
and the closed world assumption ([21]). Non-monotonic reasoning and logic programming are closely
related. The closed world assumption has provided a formal justification to a procedural form of negation,
known as negation as failure, which has been introduced in logic programming. This procedural form of
negation allows the efficient implementation of non-monotonic formalisms in Prolog or in other declarative
languages. Logic programming can also be used to provide formalizations for special forms of non-
monotonic reasoning ([2, 8]). For example, the Prolog negation as failure operator has been used to
formalize the temporal persistence problem in Al (see [15], [1]). However, in negation as failure a negative
literal containing some variables cannot be resolved. This situation is called floudering. As a consequence
a number of queries have no answers. This limits the applicability of the method: for instance, the general
logic program given in [1] which formalizes the well-known Yale Shooting Problem, gives no answer to
interesting questions like “which conditions on a generic event occurring in a generic situation guarantee
that the fact alive holds ?”. To overcome this problem of the negation as failure a new kind of procedural
form of negation called constructive negation has been proposed by Chan in [10]: informally, the answers
to a negative query —Q are obtained by negating the answers of Q. However, this procedure is not defined
when Q has an infinite derivation. This drawback has been solved by Marchiori in [16] where a top-down
definition of this constructive negation procedure has been introduced.

In this paper, we study how various problems in non-monotonic reasoning can be formalized by using
logic programs augmented with this form of negation. More specifically, we show that it is sufficient to
consider a restricted class of programs, called acyclic and acceptable, to describe interesting problems
dealing with some forms of temporal reasoning, taxonomy, and planning. Acyclic programs were intro-
duced by Apt and Bezem in [1]: they are defined by means of a syntactic condition, which guarantees
that for a class of queries, which includes the ground queries, all sldnf-derivations (i.e., sld-derivation
with negation as failure) are finite. Acceptable programs were introduced by Apt and Pedreschi in (6]
to provide analogous results when ldnf-derivations are considered, where the Prolog computation rule is

Report CS-R9466

ISSN 0169-118X

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands



2. sldcnf-resolution 2

always applied. Note that the acceptability condition is not anymore syntactic, because it employes also
a model of the program. The converse of these results, i.e. that if all ground queries of a program have
only finite sldnf-derivations (ldnf-derivations) then the program is acyclic (acceptable) do not hold due
to the problem of the floundering. However, this problem can be solved when the constructive negation
is used, where the definition of acyclic and acceptable programs is naturally extended according with
this new form of negation. This expected result was proven in [16]. The relevance of using constructive
negation and acyclic/acceptable programs relies on the possibility of formalizing in a neat and simple
way a number of problems in non-monotonic reasoning.

The aim of this paper is to substantiate this result by using a number of classical examples in non-
monotonic reasoning. These examples include some forms of temporal reasoning, problems dealing with
taxonomy, and the planning problem in the blocks world. First, a problem is described in the framework
of the situation calculus ([18]). Then it is translated into a general logic program, which is either shown
to be acyclic or to be acceptable. To prove that a program is acceptable is in general more difficult than
to prove that it is acyclic, because also a suitable model of the program has to be used. However, it
is often the case that a part of the program satisfies a stronger property, namely acyclicity, which can
be established without using any model. For this reason, we introduce here an equivalent new concept
of acceptability, called e-acceptability. Informally, to prove e-acceptability, the program is split into two
parts; then one part is shown to be acyclic and the other to be acceptable.

The remaining of this paper is organized as follows. Some preliminaries conclude this section. Section
2 contains the definition of sldcnf-resolution. In Section 3, the notion of acyclicity is given together
with some useful results. Section 4 contains analogous material, but this time for acceptable programs.
Moreover, the notion of e-acceptability is introduced. Finally, Section 5 contains four examples formalizing
various problems in non-monotonic reasoning, together with examples of interesting queries.

1.1 Preliminaries

The following notation will be used. We follow Prolog syntax and assume that a string starting with a
capital letter denotes a variable, while other strings denote constants, terms and relations. An equality
formula, indicated by E, is an assertion that does not contain any relation symbols other than the equality
symbol =. The empty conjunction of assertions and the empty disjunction of assertions are denoted by
true and false, respectively. The formula 3(c; A...A cn) is called simple equality formula, where n > 0,

the ¢;’s are equalities or inequalities and 3 quantifies over some (perhaps none) of the variables occurring
in the ¢;’s. :

Relation symbols are often denoted by p,q,7. The syntax of a general logic program is extended as
follows to contain equality formulas. An (eztended) literal, denoted by L, is either an atom p(s), or a
negative literal —p(s), or an equality s =¢, or an inequality V(s # t), where p is not an equality relation
and V quantifies over some (perhaps none) of the variables occurring in the inequality. Equalities and
inequalities are also called constraints, denoted by c. An (eztended ) general program, called for brevity
program and denoted by P, is a finite set of (universally quantified) clauses of the form H « Ly,...,L,,
where m > 0 and H is an atom. In the following, the letters A, B indicate atoms, while C and Q denote a
clause and a query, respectively. Moreover, comp(P) denotes the Clark’s completion of a program P. An
inequality V(s # t) is said to be primitive if it is satisfiable but not valid. For instance, X # a is primitive.
A query Q = L,,..., L, is called reduced if either n = 0 or L; is a primitive inequality for : € [1,n]. If Q
is reduced then Eg denotes the equality formula L; A ... A L. The query obtained removing L from Q
is denoted by @ — {L}. Finally, c.a.s. is used as shorthand for computed answer substitution.

2. sldcnf-RESOLUTION

In sld-resolution, for a program P and a query Q, if  is a c.a.s. for Q then it can be written in equational
form as 3(X; = X10A...AX, = X,0), where X,..., X, are the variables of Q@ and 3 quantifies over all
the other variables. Suppose that all s1d-derivations of Q are finite and do not involve the selection of any
negative literals. Let 61, ..., 0, k > 0, be all the c.a.s.’s for Q in P and let Fgy be the equality formula
3(Es, V...V Ep,), where 3 quantifies over the variables that do not occur in Q. Then the completion of
P logically implies V(Q < Fp), i.e.,

comp(P) |=V(Q < Fp).
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To resolve negative non-ground literals, Chan in [10] introduced a procedure called sldcnf-resolution,
where the answers for =@ are obtained from the negation of F. However, this procedure is not defined
when @ has an infinite derivation.

In [16] a definition of sldcnf-resolution is given, which overcomes the drawback of the original one,
by defining the subsidiary trees used to resolve negative literals in a top-down way, constructing their
branches in parallel. If this subsidiary construction diverges, then the main derivation is considered to
be infinite. In this section we describe the corresponding formalization.

Let Tree be the class of trees whose nodes are (possibly marked) queries of (possibly marked) literals,
with substitutions and input clauses associated to edges. We consider selected as marker for literals,
successful and failed as markers for nodes. A literal is called selected if it is marked as selected. Moreover
it is assumed that primitive literals cannot be selected.

A pre-sldcnf-tree T is a subset of Tree together with a partial function subs assigning to nodes
containing a selected negative literal —A a tree in 7 with root A. T contains one special element called
main tree.

Consider a tree T of a pre-sldcnf-tree. T is called successful if some of its leaves are marked as successful.
T is called finitely successful if it is finite, all its leaves are marked and there is at least one leaf marked
as successful. T is called finitely failed if it is finite and all its leaves are marked as failed.

We introduce now the concept of sldcnf-answer and full answer for a query @, which are used to give
an inductive definition of pre-sldcnf-tree.

Consider a branch in a successful tree T with root @ which ends with a reduced query, say Q'. Let
a1,...,0n be the consecutive mgu’s along this branch. Let 6 = (1 ...Qn)|vars(Q). Then the equality
formula 3(Eg A E¢y) is called sldcnf-answer for @, where 3 quantifies over all the variables that do not
occur in Q. If T is finitely successful, then we call full answer, denoted by Fg, the disjunction of all the
answers for Q.

Definition 2.1 (Inductive Definition of pre-sldcnf-tree)

(i) {T} is a pre-sldcnf-tree, called initial pre-sldcnf-tree, where T' contains only one node which has
a selected literal if it is not reduced; subs is undefined.

(ii) If 7 is a pre-sldcnf-tree, then any eztension of 7 is a pre-sldcnf-tree.

The extension of a pre-sldcnf-tree T is defined by the following sequence of steps.

1. Mark all reduced queries as successful.
2. For every unmarked leaf Q in some tree T' € T, let L be its selected literal. Then:

e if L = A is an atom then:

(a) if there is no resolvent of @ in P then mark Q as failed;

(b) otherwise, add all the resolvents of @ as sons of @ in T, associate to every edge the input
clause and the mgu used to compute the corresponding resolvent, and mark a literal in
every non-empty resolvent.

e if L = = A is a negative literal then:
(a) if subs(Q) is undefined then add the tree T' with the single node A to 7 and set subs(Q)
to be equal to T";
(b) if subs(Q) is defined then:
— if subs(Q) is finitely failed then add @ — {L} as son of Q in T', with one marked literal;

— if subs(Q) is successful and the disjunction of its answers is equivalent to true then
mark @ as failed,
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— if subs(Q) is finitely successful then let NA; V...V NA, be the disjunction of the
simple equality formulae obtained by negating Fy: for every j € [1,n] add the query
obtained from @ by replacing L with the formula N A;, with one marked literal, as
son of @ in T.

e if L is an equality, say s = ¢ then:

(a) if s and ¢ are not unifiable then mark Q as failed;

(b) otherwise, add (@ — {L})# with one marked literal, as son of Q in T, where § = mgu(s, t).
e if L is an inequality, say V(s # t), then

(a) if it is valid then add @ — {L} with one marked literal as son of QinT;

(b) if it is unsatisfiable then mark Q as failed.
O

A pre-sldcnf-tree can be regarded as a special directed graph with two types of edges, those from
the tree structure and those connecting a node N with the root of subs(N). Therefore, the concepts of
inclusion between such trees and of limit of a growing sequence of trees are defined.

Definition 2.2 (sldcnf-tree) An sldcnf-tree is the limit of the sequence 7Ty, ... y Tny - .., such that 7g.is
an initial pre-sldcnf-tree, and 7741 is an eztension of T;. O

We say that 7 is an sldcnf-tree fo Q if Q is the root of the main tree of 7. Then an answer forQis
an answer for the root of the main tree.

A path in T is a sequence of nodes Ny, ..., N;, ..., s.t. for all 3, Ni41 is either an immediate descendent
of N; in some tree in 7, or is the root of the tree subs(N;). We say that an sldcnf-tree is finite if it does
not contain any infinite path.

Definition 2.3 (sldcnf-derivation) A (pre-)sldcnf-derivation for Q, denoted by &, is a branch in the
main tree, whose root is @, of a (pre-)sldcnf-tree 7 together with the set of all trees in 7 whose roots
can be reached from the nodes of this branch. ¢ is said to be finite if all paths of 7 fully contained in
this branch, and these trees, are finite. O

In the following two sections, generalizations to extended general programs of the concepts of acyclicity
([1]) and of acceptability ([6]) are given. These concepts are based on the notion of level mapping. A
level mapping is a function | | from ground literals to natural numbers s.t.:

o [~A]=14],
e |A| =0if A is a constraint,
o |A] > 0 otherwise.

3. AcycLic PROGRAMS
In this section we recall the definition of acyclic program, and some useful results from [16].

Definition 3.1 (Acyclic Program) A program P is acyclic w.r.t. a level mapping | | if for all ground
instances H « L,..., L, of clauses of P we have that

|H| > |Li|
holds for ¢ € [1,m)].

P is acyclic if there exists a level mapping | | s.t. P is acyclic w.r.t. | |. m}

If P is acyclic then all sldcnf-derivations of ground queries are finite. The following definition of
bounded query allows to extend this result to a bigger class of queries that contains all ground queries.
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Definition 3.2 (Bounded Query) A literal L is called bounded w.r.t. a level mapping | | if | | is bounded
on the set [L] of ground instances of L. If L is bounded then |[L]| denotes the maximum that | | takes
on [L]. Then we say that L is bounded by ! if I > |[L]|. A query @ = Ly, ..., Ly, is called bounded w.r.t.
| | if every L; is bounded w.r.t. | |, for i € [1,n]. If Q is bounded then |[Q]| denotes the (finite) multiset
(see [12]) consisting of the natural numbers |[L1]|,. .., |[La]|- O

The following theorem shows that acyclic programs terminate for bounded queries.

Theorem 3.8 Let P be an acyclic program and let @ be a bounded query. Then every sldcnf-tree for @
in P contains only bounded queries and is finite.

We say that the program P is terminating if all sldcnf-derivations of ground queries are finite. The
converse of Theorem 3.3 also holds.

Theorem 3.4 Let P be a terminating program. Then for some level mapping | |:

(i) P is acyclic w.r.t. | |,

(ii) for every query @, @ is bounded w.r.t. | | iff all its sldcnf-derivations are finite.

From Theorem 3.3 and Theorem 3.4 it follows that terminating programs coincide with acyclic programs
and that for acyclic programs a query has a finite sldcnf-tree if and only if it is bounded. Notice that
these results do not hold when negation as failure is assumed, because of the abnormal form of termination
caused by the selection of non-ground negative literals.

4. ACCEPTABLE PROGRAMS

In this section we consider a fixed selection rule, corresponding to the natural extension of the Prolog
selection rule to programs containing constraints. The notion of acceptable program ([6]) is based on the
same condition used to define acyclic programs, except that, for a ground instance H < L;,...,L, of a
clause, the test |H| > |L;| is performed only till the first literal Lz which fails. This is sufficient since,
due to the Prolog selection rule, literals after Ly will not be executed. To compute 7, the class of models
of P, whose restriction to the relations from Neg} are models of comp(P~), is considered, where P~ is
the set of clauses in P whose head contains a relation from Neg}p, and Negp is defined as follows. Let
Negp denote the set of relations in P which occur in a negative literal in the body of a clause from P.
Say that p refers to g if there is a clause in P that uses the relation p in its head and g in its body, and
say that p depends on q if (p, q) is in the reflexive, transitive closure of the relation refers to. Then N egp
denotes the set of relations in P on which the relations in Negp depend on.

Definition 4.1 (Acceptable Program) Let | | be a level mapping for P and let I be a model of P whose

restriction to the relations from Neg is a model of comp(P~). P is called acceptable w.r.t. || and I if
for all ground instances H « Ly,..., L, of clauses of P we have that
|H| > |Li|

holds for 7 € [1,7], where
: 7 =min({n} U {i € [1,n] | I | L;}).

P is called acceptable if it is acceptable w.r.t. some level mapping and a model of P whose restriction to

the relations from Neg} is a model of comp(P ™). o

The following definition of 1dcnf-resolution formalizes the fixed selection rule we consider.

Definition 4.2 (1dcnf-tree) A (pre-)ldcnf-tree is a (pre-)sldcnf-tree where the selection rule is such
that in every node the leftmost possible literal is marked, where a literal is called possible if it is not a
primitive inequality. O
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We refer to this selection rule as Prolog selection rule, due to its strong similarity with the one used
in Prolog. Intuitively, the selection of primitive inequalities is delayed until their free variables become
enough instantiated to render the inequality valid. 1ldcnf-resolution is used to define the concept of

left-terminating program. A program P is left-terminating if all 1dcnf-derivations of ground queries are
finite.

If P is acceptable then all 1dcnf-derivations of ground queries are finite. The following definition of
bounded query allows to prove this result for a bigger class of queries that contains all ground queries.
Let Q" = Ly,...,Ly be a ground query, let | | be a level mapping and let I be a model of P whose
restriction to the relations from Neg} is a model of comp(P~). Then we associate to Q' the multiset

IQIII = bag(lLllf ey |Li|)7
where 7 = min({n} U {i € [1,n] | I £ L;}). Then to a query Q is associated the set of multisets

I[Q]lr = {|Q'lr | Q" is a ground instance of Q}.

Definition 4.3 (Bounded Query) The query Q is bounded by k w.r.t. || and I if k > 1 for I € U|[Q]|r,
where U|[Q]| denotes the set-theoretic union of the elements of |[Q]|;. @ is called bounded w.r.t. | | and
I if for some k it is bounded by k w.r.t. | | and I. .0

Theorem 4.4 Let P be an acceptable program and let Q be a bounded query. Then every 1dcnf-tree for
Q in P contains only bounded queries and is finite.

Theorem 4.5 Let P be a left-terminating program. Then for some level mapping | | and for a model I of
comp(P)

(i) P is acceptable w.r.t. || and I,

(ii) for every query @, Q is bounded w.r.t. | | and I iff all its 1dcnf-derivations are finite.

So, to prove that a program is acceptable is in general more difficult than to prove that it is acyclic,
because of the use of a suitable model of the program. In the following, we introduce an equivalent
definition of acceptability, called e-acceptability, which is in general simpler to apply. The program is
split in two suitable parts: one part is shown to be an acyclic program, while the other one is shown to
satisfy the acceptability test. Formally, the following notion, originally introduced in [4], is used.

Definition 4.6 Let P and R be two programs. We say that P eztends R, written P > R, if:

(i) P and R define different relations;
(ii) no relation defined in P occurs in R. O
Informally, P extends R if P defines new relations possibly using the relations defined already in R. For

two programs P, R, let P\ R denote the program obtained from P by deleting all clauses of R and all
literals defined in R.

Definition 4.7 (e-acceptability) A program P is called e-acceptable wrt R if the following conditions
hold:

1. P= P; UR, for some P; which extends R;
2. R is acyclic wrt a level mapping, say | |o;
3. P\ R is acceptable, wrt a level mapping, say | |1, and a model, say I;

4. for every ground instance H « L;,..., L, of a clause of Py, for i € [1,n], if L; is defined in R then
|H|1 2 |Lils.
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A program is e-acceptable if there exists R s.t. P is e-acceptable wrt R. ]

Observe that for R equal to the empty set of clauses, we obtain the original definition of acceptability.
Now, the notion of e-bounded query can be given as follows. Suppose that P is e-acceptable w.r.t. R; let
| |1 and I be the corresponding level mapping and model for P\ R, and let | |2 be the corresponding level
mapping for R.

Consider a ground query Q' = Ly, ..., L,. We associate with @' the multiset

|Ql|I = bag(lLll’ ceey ILﬁD»
where 7 = min({n} U {i € [1,n]| L; defined in P, and I |~ L;}), and where

|Li|o if L; is defined in R
0 if L; is a constraint.

|L;|y if L; is defined in P\ R
|Li| =

Then, we associate with a query @ the following set of multisets:

I[Qllr = {|Q'|r | Q' is a ground instance of Q}.

We say that a query Q is e-bounded by k w.r.t. | | and I if k > I for | € U|[Q]|s, where U|[Q]|r denotes
the set-theoretic union of the elements of |[@]|;. Q is called e-bounded w.r.t. | | and I if for some k it is
e-bounded by k w.r.t. | | and I.

The following result holds.

Theorem 4.8 Suppose that P is e-acceptable wrt R. Let @ be an e-bounded query. Then every ldcnf-tree
for Q in P contains only e-bounded queries and is finite.

Proof. Let | |; and I, and | |, be respectively the level mapping and model for P\ R and the level mapping
for R s.t. P is e-acceptable w.r.t. R. Let | | be the corresponding level mapping used to prove that Q is
e-bounded. Let Q = L1,..., L, and suppose that L; is its selected literal. We distinguish the following
two cases.

- L; is defined in P\ R. Then the conclusion follows by condition 3 of Definition 4.7, by Theorem 4.4
and by the condition 4 of Definition 4.7.

- L; is defined in R. Then the conclusion follows by conditions 1 and 2 of Definition 4.7, and by Theorem
3.3. a

The following corollary establishes the equivalence of the notions of acceptability and e-acceptability.
It follows directly from by Theorem 4.8 and Theorem 4.5.

Corollary 4.9 Let P and R be extended general logic programs.

e If P is e-acceptable w.r.t. R then P is acceptable.
e If P is acceptable then it is e-acceptable w.r.t. (the empty program) 0.
5. SOME CLASSICAL PROBLEMS IN NON-MONOTONIC REASONING

In this section we show how various problems in non-monotonic reasoning can be formalized by means
of acyclic or acceptable programs.



5. Some Classical Problems in Non-monotonic Reasoning 8

5.1 Temporal Reasoning

It has been shown in [1] how various forms of temporal reasoning can be described using acyclic programs.
In particular, the following program Y SP is a formalization of the so-called Yale Shooting Problem in
terms of an acyclic program.

(a) holds(alive, [1) «.

(b) holds(loaded, [load|Xs]) «.

(c) holds(dead, [shoot|Xs]) « holds(loaded,Xs).

(d) ab(alive,shoot,Xs) « holds(loaded,Xs).

(e) holds(Xf,[Xe|Xs]) « - ab(Xf,Xe,Xs), holds(Xf,Xs).

Here X f, Xs and Xe denote variables, representing a generic fact, situation and event, respectively.
We recall the problem following [13]. Consider a person which is alive. The occurrence of the event
load implies the fact that the gun becomes loaded. The event shoot in the situation loaded implies
the fact that the person becomes dead. Moreover it is abnormal for a person to be alive when the event
shoot happens in the situation loaded. Finally facts persist under the occurrence of events which are
not abnormal. The interest on this problem is due to the fact that its formalization by means of theories
about non-monotonic reasoning yields weak conclusions.

Suppose we want to know which assumptions on X and Y are needed to explain the current state where
the person is alive in the situation resulting from the occurrence of a generic event in a generic situation.
This problem can be expressed by means of the query holds (alive, [X,Y]). This query is bounded, hence
every sldcnf-derivation is finite. The following is an sldcnf-tree for holds(alive, [X,Y]).

holds(alive,[X,Y])

(e)
—ab(alive,X,[Y]),holds(alive,[Y])
X#shoot, holds(alive,[Y]) X=shoot,Y #load, holds(alive,[Y])
{Y/Xe} | (e) {X/shoot}
X#shoot,—ab(alive,X.,[]),holds(alive,[]) Y;‘:loa;d,holda(aliwe,[}'])
{Y/Xe} | (e)
X#shoot,holds(alive,[]) Y#load,~ab(alive,X.,[]),holds(alive,[])
(a)
X+#shoot s Y #load,holds(alive,[ ])
(a)
Y #load s

where subs(—ab(alive, X, [Y]), holds(alive, [Y])) is the following tree.

ab(alive,X,[Y])
{X/shoot} | (d)

holds(loaded,[Y])

l (&)
{Y/load} | (b)

Os —ab(loaded,Y,[ ]),holds(loaded,[]) f
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Moreover, the two trees subs(Y # load,—ab(alive, X.,|]), holds(alive, |
shoot, ~ab(alive, X, [ ]), holds(alive, [ ])) coincide and are represented below.

ab(alive,X.,[])
{Xe/shoot} | (d)

holds(loaded,[ ])

l

—ab(loaded,X.,[ ]),holds(loaded,[]) f

])) and subs(X #

So, an explanation of the current state is that either X is not equal to shoot or Y is not equal to load.

Notice that by using sldnf-resolution holds(alive, [X,Y]) flounders.

5.2 Tazonomies

In this example we show how to represent taxonomies with general logic programs. The classical tweety
problem in non-monotonic reasoning can be formalized by the following program Tweety.

(a) fly(X) « — abnormal(X), bird(X).
(b) abnormal(X) «— pinguin(X).

(c) bird(X) « pinguin(X).

(d) bird(X) « eagle(X).

(e) pinguin(tweety) «.

(f) eagle(toto) «.

It is easy to check that Tweety is acyclic, by choosing the following level mapping.

|fly(z)| = 3, |abnormal(z)| = 2, |bird(z)| = 2, |pinguin(z)| = 1, |eagle(z)| = 1.

Suppose we want to know which assumption on a bird is needed to explain the current state in which it
flies. This can be expressed by the query £1y(X). This query is bounded and X # tweety is its answer,

as illustrated below by the sldcnf-tree for £1y(X),

fly(X)

lm

=abnormal(X),bird(X)

l

X#tweety,bird(X)

(d)
(e)
X#tweety,pinguin(X)

{X/tweety} l(e)

tweetyF#tweety f

|

Os

where subs(abnormal(X)) is the tree below:

{X/k’fv}l(f)

X#tweety,eagle(X)

tweety#toto
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abnormal(X)

l(b)

pinguin(X)
{X/tweety} l (e)
Os

So, the additional assumption on X is that it has not to be equal to tweety. Notice that by using
sldnf-resolution £1y(X) flounders.

5.3 Blocks World
The blocks world is a formulation of a simple problem in AI, where a robot is allowed to perform a

number of primitive actions in a simple world. In [20] this problem is extensively studied, and alternative
formalizations are presented.

In the following example a formalization of the simple “blocks world problem” ([23]) is given, by means
of an acyclic program. There are three blocks a, b, ¢ and three different places p, g and r of a table. A
block can lay either above another block or on one of these places. Blocks can be moved from one to
another location. The problem consists of specifying when a configuration in a blocks world is possible,
i.e., if it can be obtained from the_initial situation by performing a sequence of possible moves. For
instance, it is not possible to move a block if there is another block on its top. A clausal representation
of this problem is given in [14], where it is described in detail in terms of pre- and postconditions which
specify, respectively, when a move is possible, and the result of performing a move. Here we prefer to
use McCarthy and Hayes situation calculus ([18]) to present the problem, to keep the exposition uniform
w.r.t. the previous examples. Thus we distinguish facts, events and situations.

We consider three types of facts: loc(X, L) denotes the fact a block X is in the location L; on(X,Y)

denotes the fact a block X is on a block Y;and clear(L) denotes the fact there is no block in the location
L.

Next, only one type of event is given: move(X, L) denotes the event a block X is in a location L.

Finally, situations are denoted by lists: the initial situation is denoted by [ ], while [Xe| X s] denotes the
situation corresponding to the occurrence of the event Xe in the situation Xs.

So the blocks world can be described as follows. Let top(X) denote the top of the block X. In the
initial situation [ ] the blocks are assumed to be on specific locations.

- In the situation [move(X, L)|Xs], obtained from the situation Xs performing the event move(X, L),
the fact loc(X, L) holds if L is not equal to the top of X and if in Xs there was no block neither above
X nor in the location L.

- In the situation [Xe|Xs] the fact loc(X, L) holds if in the situation Xs, X was in the location L and
the event Xe was not abnormal w.r.t. X, i.e., if Xe was not of the form move(X, -).

- In the situation X's the fact on(X,Y) holds if:
- either the fact loc(X,top(Y')) holds,
- or there exists a block Z such that both the facts loc(X, top(Z)) and on(Z,Y) hold.

- In the situation X's the fact clear(L) holds if for every block X the fact loc(X, L) does not hold.

Moreover, we define the legal state for a situation X's to be the list [(a,pl), (8, p2), (¢, p3)] s.t. loc(a, pl),

loc(b, p2), and loc(c, p3) hold in X's. Legal states will be used in the following section, where we will deal
with plans in the blocks world. . ,

The above description can be easily translated into a general logic program, yielding the following program
blocks-world:
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(i11) holds(loc(a,p),[1) «.
(i2) holds(loc(b,q),[1) «.
(¢3) holds(loc(c,r),[1) «.

(b1) block(a) «.
(62) block(b) «.
(83) block(c) «.

(pl) place(p) «.
(p2) place(q) «.
(p3) place(r) «.
(p4) place(top(a)) «.
(p5) place(top(b)) «.
(p6) place(top(c)) «.

(h1) holds(loc(X,L), [move(X,L)|Xs]) « block(X), place(L),
holds(clear(top(X)),Xs), holds(clear(L),Xs), L # top(X).
(h2) holds(loc(X,L),[XelXs]) < block(X), place(L),
— abnormal(loc(X,L),Xe,Xs), holds(loc(X,L),Xs).
(h3) holds(on(X,Y),Xs) «— holds(loc(X,top(Y)),Xs).
(h4) holds(on(X,Y),Xs) « holds(loc(X,top(2)),Xs), holds(loc(Z,top(Y)),Xs).
(h5) holds(clear(L),Xs) « - busy(L,Xs).

(ab) abnormal(loc(X,L), move(X,L’),Xs) «.
(bu) busy(L,Xs)«— holds(loc(X,L),Xs).

(st) legal-s([(a,L1),(b,L2),(c,L3)],Xs) «
holds(loc(a,L1),Xs), holds(loc(b,L2),Xs), holds(loc(c,L3),Xs).

It is easy to check that blocks-world is acyclic wrt the following level mapping | |, where if y is a list
then |y| is set to be its length, otherwise |y| is set to be equal to 0.

3x|y|+1 if z is of the form loc(r, 3),
3x|y|+3 if z is of the form clear(r, s),
3x|y|+4 if z is of the form on(r, s),

0 otherwise.

|holds(z,y)| =

lbusy(z,y)| = 3 x|y + 2,

|block(z)| = 0,

|place(z)| = 0,

|abnormal(z,y, z)| = 0,

|legal — s(z,y)| = 3 * |y| + 2.
Suppose that we would like to know when the block a is above some other block in a situation obtained
by performing an event starting from the initial situation. This can be expressed by means of the query

holds(on(a,Y),[Xs]). This query is bounded, hence every its sldcnf-derivation is finite. The two
answers Y = b and Y = ¢ are obtained: below, a derivation yielding the first answer is drawn.
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(h3)

holds(loc(a,top(Y)),[X s])

{Xs/move(a,top(Y))} | (R1)

block(a),place(top(Y)),holda(clear(top(a)),[]),holds(clear(top(Y)),[ ]),top(Y)#top(a)

(b1)
4 -
place(top(Y)),holds(clear(top(a)),[ 1) holds(clear(top(Y)),[ ]),top(Y)#top(a)

{Y/b} | (p5)
holds(clear(top(a)),[]),holda(clear(top(b)),[ 1), top(b)#top(a)
(h5)

~busy(top(a),[1),holds(clear(top(b)),[]),top(b)#top(a)
holds(clear(top(d)),[]),top(b)#top(a)
* (h5)

—busy(top(b).[]),top(b)#top(a)

top(b)#top(a)

Os

Here both the sldcnf-trees subs(-busy(top(a),[]),holds(clear(top(b)),[ ]),top(b) # top(a)) and
subs(—busy(top(b), [ ]), top(b) # top(a)) are of finite failure. The latter is illustrated below:

busy(top(b),[])

l(bu)

holds(loc(X,top(b)),[]) f

Suppose now that we would like to know when the block a remains in its initial position p after
the occurrence of an action. This can be expressed by means of the query holds(loc(a,p), [A]).
This query is bounded, hence every its sldcnf-derivation is finite. The following is an sldcnf-tree for
holds(loc(a,p), [A]), where all the derivations yielding a failure have been omitted.

holds(loc(a,p),[A])
(h2)

—~abnormal(loc(a,p),A,[ ]),holds(loc(a,p),[])

VL(A#move(a,L)),holds(loc(a,p),[])

(i1)

VL(A#move(a,L)) &

The sldcnf-tree subs(—abnormal(loc(a,p), A, [ ]), holds(loc(a, p), [ ])) is given below:
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abnormal(loc(a,p),A,[])

{A/maue(a,L)}l(ub)
Os

Notice that using sldnf-resolution this query does flounder.

5.4 Planning in the Blocks World

The following example illustrates how acceptable programs can be used to formalize problems in non-
monotonic reasoning. More specifically, we consider here plan-formations in the blocks world. This
problem consists of finding a plan in the blocks world, i.e., to specify a sequence of possible moves to
obtain a particular configuration by restacking blocks. The initial configuration is here specified by a
situation which can be reached from the initialization described by the three clauses (i1), (i2), (i3) of
the program blocks-world given previously. Alternatively, one can let unspecified the initialization,
which has then to be provided every time the program is tested. This latter choice is taken in Sterling
and Shapiro [24]. The problem of finding a plan in the blocks world can be solved by means of a
nondeterministic algorithm, informally explained as follows ([24]): while the desired state is not reached,
find a legal action, update the current state, check that it has not been visited before. The following
program planning follows this approach, where the clauses of blocks-world which define the predicate
legal-s are supposed to be included in the program.

(t) transform(Xs,St,Plan) «
state(St0), legal-s(St0,Xs), trans(Xs,St,[St0],Plan).

(t1) trans(Xs,St,Vis,[ ]) < legal-s(St,Xs).
(t2) +trans(Xs,St,Vis, [Act|Acts]) « state(St1),
- member(St1,Vis), legal-s(St1,[Act|Xs]), trans([Act|Xs],St,[St1|Vis],Acts).

(s) state([(a,L1),(b,L2),(c,L3)]) « P=[p,q,r,top(a),top(b);top(c)],
member (L1,P), member(L2,P), member(L3,P).

(ml) member (X, [XIY]) «.
(m2) member(X,[Y|Z]) «— member(X,Z).

We prove that planning is e-acceptable w.r.t. the program r-blocks-world, which is obtained from
blocks-world by deleting the clauses (h3), (h4). Let T be the program planning\r-blocks-world.
Then T is the following program:

(t') transform(Xs,St,Plan) « state(St0), trans(Xs,St,[St0],Plan).

(t1') trans(Xs,St,Vis,[ 1) «.
(t2') trans(Xs,St,Vis, [Act|Acts]) «
state(St1), — member(St1,Vis), trans([Act|Xs],St,[St1|Vis],Acts).

(s) state( [(a,L1),(b,L2),(c,L3)]) « P=[p,q,r,top(a),top(b),top(c)],
member (L1,P), member(L2,P), member(L3,P).

(m1l) member(X, [X1Y]) .
(m2) member(X,[Y|Z]) « member(X,Z).

It is easy to check that condition 1 of the definition of e-acceptability is satisfied. Concerning the other
three requirements, we proceed as follows.
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First we define a suitable model of T. Consider the following interpretations, where [L] denotes the set
of ground instances of L, set(y) denotes the set of elements of the list y, S & {[(a,p1), (b, p2), (c, p3)] |

for i € [1, 3], pi € {p, q, 7, top(a), top(b), top(c)}} and N denotes the cardinality of S:
Liransform = [transform(X,Y, Z)],
Lirans = [trans(X,Y, Z,W)],
Imember = {member(z,y) | y list s.t. z € set(y)},
Lytate = {state(z) | z € S}.

Let I = Liransform U Itrans U Imember U Istate. Then it is easy to prove that I is a model of T'. Moreover,

T~ is equal to the program{(m1),(m2)}, and I,;cmper is a model of comp(T ™).

Next, we define a level mapping | |; for T' as follows. Let el(z) denote set(z) if z is a list, the empty
set otherwise. Let card(el(z) N S) be the cardinality of the set el(z) N S. Then | |; is defined as follows,

where |z| is defined in the previous example:

A [transform(z,y,z)|i = N +3x(|z| + 1) + 2+ 3 + 1;
[trans(z,y, 2z,w)|y = N — card(el(2) N S) + 3 * (|| + 1) + 2 + 3 + |2];
|state(z)|; = T;

|member(z,y)|1 = |y|.
Note that (N — card(el(z) N S) is greater or equal than 0. Then | |; is well defined. Moreov-er,
[transform(z,y, 2)|; > 8,
[trans(z,y, z, w)|; > 8,
and
trans(z,y, z, w)|1 > |z|.

We prove that T is acceptable w.r.t. | |; and I.

Consider -a ground instance:
transform(zs, zt, plan) — state(st0), trans(zxs, st, [st0], plan)
of (t'). Then from (5.1) we have that:

|trans form(zs, xt, plan)|; > |state(st0)); .

Now, suppose that I |= state(st0). Then st0 € S, so card(el(S N el([st0])) = 1; hence:

~ |trans form(zs, xt, plan)|; > |trans(zs, st, [st0], plan)|;.

Consider a ground instance:
trans(zs, st, vis, [act|acts]) «— state(stl), ~member(stl, vis), trans([act|xzs], st, [st1|vis], acts)
of (t2'). Then from (5.2) we have that:

|trans(zs, st, vis, [act|acts])|; > |state(st1)|,,

and from (5.3) we have that

(5.1)

(5.2)

(5.3)
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[trans(zs, st, vis, [act|acts])|1 > |-member(stl,vis)|;.

Now, suppose that I |= state(st1), ~member(stl,vis). Then st1 € S, but stl ¢ set(vis); so card(S N
el([st1|vis])) = card(S N el(vis)) + 1; hence N — card(S N el([stl|vis])) < N — card(S N el(vis)). So,

[trans(zs, st, vis, [act|acts])|y > |trans([act|zs], st, [st1|vis], acts)|.
It is easy to check that also the remaining clauses of T satisfy the test of acceptability.

Now, clearly r-blocks-world is acyclic w.r.t. the level mapping | |, defined as in the previous example.
Moreover, condition 4 of the definition of e-acceptability follows by construction of | |;. This concludes
the proof that planning is e-acceptable w.r.t. r-blocks-world.

Suppose that we would like to find a plan of actions which lead from the initial situation to a given
state, say st. This can be expressed by means of the query transform([ 1,st,Plan). This query is
e-bounded, hence by Theorem 4.8 every its 1dcnf-derivation is finite. Notice that using sldcnf-resolution
this query has an infinite derivation.

6. CONCLUSION

In this paper we showed how to formalize some classical problems in non-monotonic reasoning by means
of acyclic and acceptable programs. Moreover, we showed that more queries can be answered when a
form of constructive negation, based on the constructive negation procedure by Chan, is used. Thus, we
demonstrated that a simple class of general logic programs augmented with a simple form of constructive
negation is sufficient for the treatment of interesting problems in non-monotonic reasoning.
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