: Centrum voor Wiskunde en Infom

REPORTRAPPORT

Explicit parallel block Cholesky algorithms on the
CRAY APP

M. Nool

Department of Numerical Mathematics

Report NM-R9425 December 1994

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part of
the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathematics
and computer science and their applications.

SMC is sponsored by the Netherlands Organization for Scientific Research (NWQ). CWI is a
member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Explicit Parallel Block Cholesky Algorithms on the CRAY APP

Margreet Nool <greta@cwi.nl>

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

In this paper we consider the CRAY APP, the Attached Parallel Processor of the CRAY S-MP, which consists of
seven buses with each bus supporting up to 12 processing elements. Processing elements on different buses can
communicate simultaneously with the shared main memory, but processing elements sharing the same bus can
not, since only one processing element per bus can access memory at a given time. Applications with a high
level of data reuse, or, with a high compute intensity, and applications being highly parallel are very suitable to
run on the APP. An example of such an algorithm is matrix-matrix multiplication. We illustrate how the data
traffic’s restriction influences the performance and we discuss the scalability of the CRAY APP.

Furthermore, two different algorithms for Cholesky factorization are discussed: a block left-looking algorithm
and a block right-looking algorithm. The maximum achievable speed on the CRAY APP is mainly determined
by the performance of the matrix-matrix multiplication. Parallelism is applied explicitly over the blocks, which
makes it possible to concatenate different block operations in cache. The results obtained on CWI's APP (a
machine having twenty-eight processing elements) indicate how block algorithms can be parallelized on machines
with hundreds or thousands of processors.

AMS Subject Classification (1991): Primary: 65-04. Secondary: 65M20, 65M55, 65Y99.
CR Subject Classification (1991): G.1.8
Keywords € Phrases: software, parallelization, vectorization.

1. INTRODUCTION

The Attached Parallel Processor APP of the CRAY S-MP is a system of one up to seven buses, each
consisting of several processing elements. In the case of one processing element per bus, it is possible
to obtain a speed-up which is close to the number of buses involved. However, in the case of more
than one processing element sharing the same bus, the speed-up is restricted by bus traffic, since
only one processing element per bus can access main memory at a given time. For that reason, only
parallel algorithms with a high computation intensity compared to data traffic are suitable to run
efficiently on the APP. In earlier papers[11, 8, 7], which report on APP performance, the speed-up
was mainly limited by the number of buses rather than by the number of processing elements. Here,
we concentrate on such parallel applications, for which we actually obtain speed-ups higher than the
number of buses. For that purpose we introduce the bus speed-up being a function of the execution
time on B buses with one processor and that on B buses with P processors. Moreover, we consider
the scalability of the APP, and we discuss the influence on the performance in case the speed of the
processing elements or the speed of data transfer increases. Finally, we consider the bus performance
as a function of the cache contents.

The matrix-matrix multiplication serves as a key in the first part of the paper dealing with the APP
and its suitability for this operation. The Cholesky factorization, considered in the second half, is based
on the matrix-matrix multiplication as well. Its speed is mainly determined by the multiplication’s
speed. The factorization can easily be parallelized, but during the progress of the factorization the
level of parallelism decreases. We have found that it is difficult to predict how a given matrix should
be divided into blocks to achieve optimal performance. Two Cholesky factorizations are compared: a

Report NM-R9425

ISSN 0169-0388

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Up ta 12 Processing Elements per bus

EOEPEFRRGBRE

A

Precsssing
Elanents

Figure 1: CRAY APP Architecture

left- and a right-looking algorithm. Though solving the same decomposition within the same number
of steps, their performance differs significantly on a 28 processor CRAY APP.

The organization of the paper is as follows. In Section 2, we describe the CRAY APP configuration.
In Section 3, we focus on the block matrix-matrix multiplication; it is performed in such a way that
data traffic is minimal resulting in a high performance. The scalability of the CRAY APP is discussed
in Section 4. In Section 5, two block Cholesky factorizations are described; much attention is paid to
reduce the number of synchronization points leading to an increase of the performance. Finally, in
Section 6, some conclusions are drawn.

2. THE CRAY APP CONFIGURATION

The CRAY APP, a multiple-bus, parallel processor, can be used in two modes: the client server
programming model and the computer model. In the first model, the main program runs on the front
end machine and highly parallel time consuming parts of the program are run on the CRAY APP. In
the latter model, which we consider in this paper, all operations are performed on the CRAY APP.

Its architecture, as illustrated in Fig. 1, consists of 4 to 84 processing elements and one to seven
buses. The buses are connected to the main memory by a crossbar. This main memory is shared by
all of the processing elements. An important restriction in bus traffic is that at a given time only one
processing element on each bus can access memory. As a consequence, for optimal use of the CRAY
APP it is necessary to take care of a balanced bus traffic. An example of efficient bus usage is shown
in Fig. 2. Due to the short load time compared to the computation time in cache, seven processing
elements can be used efficiently. The addition of one or more processing elements to the bus will not
result in a higher performance; several elements must wait to use the bus for loading. Obviously, the
desired number of processing elements on a bus depends on the application.

There are two ways in which parallelism can be exploited on the CRAY APP:

e by using the auto-parallelizing feature of the compiler and insert directives for parallel processing
wherever possible;

¢ by “bus-handoff” computing. Hardware features are available for loading data into caches and
for storing updated values into the main memory.

In this paper, we focus on the optimization of bus traffic and the reuse of data wherever possible. To
this aim, we will investigate on the application of ”bus-handoff” computing.

computation

P s
B - — i >
4 > - > e

o= data transfer

Figure 2: Efficient Bus Usage of 7 processors sharing the same bus

2.1 Some characteristics of the CRAY APP

The CRAY APP at CWI, Amsterdam consists of seven buses, each with four processing elements.
The data cache of each processing element is a 8 Kbyte memory chip so that for DOUBLE PRECISION
arithmetic only 1Kwords can be stored. This implies that for a matrix-matrix multiplication in cache
involving two operand matrices and one result matrix, the block size for square matrices is restricted
to 18. The processing elements, based on the Intel 1860 64-bit microprocessor, can reach a peak
performance of 60 Mflops for DOUBLE PRECISION operations. However, when performing an equal
number of DOUBLE PRECISION multiples and adds, as in the matrix-matrix multiplication case, the
maximum possible performance is 40 Mflops (not including data transfer). In addition, each bus
provides a peak bandwidth of 160 Mbytes/second, i.e., 20 Mwords DOUBLE PRECISION words can be
transferred per second. So, two flops and one data transfer can be done simultaneously.

2.2 Some remarks on the software available on the CRAY APP

From the previous section it seems easy to predict the performance of a parallel application, since
everything needed for a good and reliable analysis is available, such as, the data cache size, a per-
formance peak of 40 Mflops as well as the data transfer time. Moreover, the CRAY APP has a very
accurate clock, and timing results for a parallel application on the APP appear to be reproducible.
On the CWTI's configuration a peak Mflop-rate of more than 1 Gflops should be possible. However,
only a reasonable performance can be obtained by using cache programming and for this it is nec-
essary to use the Extended Math Library routines [1]. Unfortunately, this has only a small set of
appropriate routines for numerical programming. It would be helpful if at least a set of Level 1 BLAS
[9] routines were included in this library, but even common-used operations like inner products and
daxpy operations are missing. In fact, only a limited set is available, and its usability for a simple
user is restricted by incomprehensible rules.

Consider, for instance, the routine _dvsvma , which performs the following operation on DOUBLE
PRECISION data:

D(i)=A(G)+BxC(i); fori=1,---,n. (2.1)

The first restriction is that the vectors A and D may not share the same memory locations as
they do in a daxpy operation. Therefore, this routine cannot be used as a simple daxpy operation
without an extra vector copy neither can any other Extended Math Library routine. Secondly, the
elements of A, C and D must be consecutive elements in memory; an increment parameter is not
allowed. The third restriction gives rise to most complications: A, C and D must be quad-word
aligned. Operations can only be carried out in pipelined mode if the initial elements of the input
data are stored on quad-word boundaries in cache. A word in the w-th position in cache is quad

MB NB

A(m,k) B(k,n) C(m,n)

Figure 3: Matrix-matrix multiplication A x B = C; the matrices A, B and C are partitioned into
blocks of order MB x KB, KB x NB and MB x NB, respectively.

word aligned, or on a quad word boundary if w mod 4 = 1, as is described in [11]. For the DOUBLE
PRECISION case either the odd or the even vector elements can be quad-word aligned; for SINGLE
PRECISION case only each fourth element of a vector satisfies this restriction.

Finally, we mention the DOUBLE PRECISION matrix-matrix multiplication routine _dmmm which has
a speed of more than 25 Mflops on a single processor. This routine computes in cache

C=r*xC+sxAxB,
where r and s may be —1,0, or 1. Besides the restriction that the memory occupied by C should not
intersect that occupied by A or B, we must take into account that this routine is parameterized: all
cache loads and stores are internal to the routine and all preloaded data in the cache will be lost. As
a consequence, it does not seem to be possible to reuse the data, since each time the routine is called
the cache will be refreshed. However, in section 3.4 we show results of experiments where in certain
cases data are still reused by this routine.

The absence of a good compiler for cache programming and the large number of restrictions makes
programming very complicated and reduces the readability of programs enormously. Most executions
do not achieve the performances claimed in the specifications. In section 5.1.2, we return to this point.

3. THE MATRIX-MATRIX MULTIPLICATION

The matrix-matrix multiplication can be considered as one of the most suitable applications to run
on the CRAY APP. Firstly, the multiplication is highly parallel; it can easily be divided into (many)
parts which can run in parallel. Secondly, the (compute) intensity, defined by the ratio of the num-
ber of floating point operations to the number of words of data, is high. For a real matrix-matrix
multiplication of the form C = C + A * B, the intensity is given by

#Flops 2n3 1 (3.1)
= —— = —7n. .
#Data Words Transferred 4n? 2

Intensity =

3.1 Parallelism

Let the real matrices A, B and C of Fig. 3 have orders m x k, k X n, m x n and assume that KB,
MB and NB are proper divisors of k, m and n, respectively, such that K x KB = k, M x MB = m
and N x NB = n. Then, A can be partitioned into a block matrix of M x K blocks of order MB x KB.
Matrices B and C can be partitioned analogously. An example of a block algorithm to perform the
matrix-matrix multiplication C = C + A x B is given by Fig. 4. The inner loop is not particularly
suitable for parallel processing, since for each ! the same submatrix C;,; is updated. Introducing
parallelism on the level of the j loop results in updating the N block columns of C in parallel. The

DO =1 M
DO j=1,N
Ci; = 0.0d0
DO =1,K
Cij =Ci;+AyB;
END DO
END DO
END DO

Figure 4: Block Matrix-matrix algorithm.
Each block A;;, Bi ; and C; j is of order MB x KB, KB x NB and MB x NB, respectively.

introduction of parallelism on the outer loop level leads to concurrent computation of the block rows
of C and a level of parallelism equal to M. Note, that if loops ¢ and j are interchanged parallelism over
the block columns changes to parallelism over the block rows. However, there will be a significant
difference in how operations are scheduled to the processing elements. The order of the operations
will differ as well as the idle pattern if M or N are not a multiple of the number of processing elements.
In [8], a block row and a block column scheme are considered and experiments on the CRAY APP
display that the idle time becomes significant due to a lack of parallelism.

A higher level of parallelism and a possible reduction of idle time can be achieved by collapsing the
middle and the outer loop. As a consequence, all computations on submatrices C; j,i =1, ---,M,j =
1,---,N can be carried out independently, resulting in a level of parallelism of M - N. Since each
submatrix C;; is stored once, the number of stores is minimal. On the other hand, the number of
loads is high, since all submatrices of A and B are loaded K times.

3.2 Granularity

Assume that parallelism is exploited on submatrix level rather than block row or block column level.
One way to enlarge the degree of parallelism is to change the block size. A reduction of the block
size leads to a higher level of parallelism, but not automatically to a higher performance on a parallel
machine. A reason for this is that the intensity per block operation — which is of order NB for square
blocks — decreases, whereas M and N increase.

Let the cycle time for one floating point operation be 7y, then for each block C; ; the computation
time T, _piock Will be

T, s10ck(k,MB,NB) =2-K -KB-MB-NB - 75 = 2k-MB - NB - 7¢.

Define 7; being the time to transfer one datum word from main memory to cache or vice versa. To
compute one block C; ; requires K-KB-MB + K -KB:-NB + MB - NB loads and MB - NB stores. So,
the transfer time T} _piocx Will be

Ti_btock(k, MB,NB) = [k(MB + NB) + 2 - MB - NB]|r,.
The total time needed for computing one block, including loads and stores, Thiock is given by
Tblock(ky MB, NB) = T block + T ptock = 2k-MB-NB - Tf + [k(MB + NB) +2-MB- NB]Tt.

The APP’s uniprocessor time needed to carry out the matrix-matrix multiplication C = A x B will
be

CAB
LITT

111
LTI
LTI

R N

[0 Load or store submatrix
O CompueC=C+AxB

Figure 5: The load/store and computation process
for the matrix-matrix computation C = C 4+ A x B on 4 processors sharing the same bus.

Tnatriz = M- N - Thiocr(k,NB,MB) = 2kmn7s + k(m - N + M - n)7, + 2mnr,. (3.2)

A change of block size effects (i) the time required to load the matrices A and B and (ii) the maximum
degree of parallelism. For the given algorithm, halving the block size causes a doubling of the load
time for A and B and a change of 22 in the degree of maximum parallelism. From (3.2) we may
conclude that the uniprocessor time for a matrix-matrix multiplication is minimal for M and N as
small as possible. In other words, as the cache contents increases the processing time will decrease.
Given the cache size, we can create a matrix-matrix multiplication of maximal performance. On the
other hand, (3.2) does not indicate for a fixed m and n, and a given number of processors, for which
block size the lowest wall clock time can be reached.

3.3 Bus-configuration

Till now, we have not considered the important restriction of the bus-configuration: Processors on
the same bus can not communicate with the main memory, concurrently. If the computation time is
much larger than the transfer time the consideration will have a very limited effect. If not, processors
will become idle because the required data are not available. For simplicity, we assume that there are
P Processors p;,pa,- -, Pp on one bus and that to each processor exactly one block C;,; is assigned.
The process of computation and load/store traffic on a processor is shown in Fig 5.

The process on processor p; computing C;, j, can be described as follows:

e load block matrix Cj, ;,,
e load block matrices A;,,; and By j,,

¢ compute C;, ;, = Cj, j, + A1 X By j,.

In the next step, data of C;, j, can remain in cache, and therefore, only 4;, 2 and B, ;, must be
loaded. After K steps the process ends by storing the final Ci,.;; data. The computation of submatrix
Ci,,j, on processor p; requires three blocks to be loaded, too. The best solution is to load Ciy iy
Aiy 1 and By j, on p; and then, simultaneously, p; starts executing C;, ;, = Cj, j, + Ai;1 X By j,
and p; is loaded with data of Cj, j,, Ai,,1 and By j,. Processor p, starts updating Ci,,j; as soon as
all data required are available in cache. The overhead of computing Cj, ;, and Ci,,j, simultaneously,
on two processors sharing the same bus, is equal to the time required for loading 4;, 1, B, ;, and
Ci,,j, under the restriction that the time needed for loading is less than the computation time for
Cil,jx = Cil.jl + Ail,l X Bl,jl'

We can expand this process to p processors sharing the same bus. The overhead can be expressed
by

(p — 1) Ti_ptock (KB,MB,NB) = (p— 1) [KB-MB + KB -NB + MB - NB] - 7. (3.3)
If this time exceeds

T: biock =2-KB-MB - NB - 7y, (3.4)
then more than one processor will try to communicate with the main memory at the same time and

processors will become idle. Note the significance of the ratio 7¢ : 7;.

The maximum useful number of processors on a bus can be reflected in the leverage value, which is
the ratio of the compute time to data transfer time. A leverage value ! indicates that ! 4 1 processors
can share the same bus, effectively. In other words, the wall clock time can not be reduced using more
than ! 4+ 1 processors. For the matrix-matrix multiplication we obtain

Time spent computing in cache
Time spent transferring across the bus

Leverage =
(3.5)
2-k-NB-MB -7y
[k((MB+NB)+2-MB-NB| 7~

We remark that for the example shown in Fig. 5, four processors can share the same bus efficiently.
The addition of a fifth processing element on the bus, will not improve efficiency. It is worth noting,
that when the computation starts all values must be available on the on-chip cache, for instance not
only the submatrix elements, but also the block size must be known. Since the CRAY APP can be
considered as a shared memory machine, all processors have access to the main memory. In case of
values being not available on the on-chip cache, a processor will try to load them from main memory.
This action will disturb the bus traffic, and processors can become idle resulting in a longer execution
time.

3.4 Numerical experiments with matriz-matriz multiplication

In this section, the effect of data traffic on the performance is illustrated by means of the matrix-
matrix multiplication. The multiplication has a high compute intensity and, therefore, it is possible
to increase the performance by using several processors on the same bus.

It is not our intention to develop the most efficient matrix-matrix multiplication - there exists
already a very efficient implementation, i.e., rgmmul appropriate for all kinds of matrix shapes -
but in this paper we focus on the performance loss due to bus traffic for some fixed block sizes. A
high computation speed is needed in order to demonstrate accurately the influence of data traffic.
Therefore, we would like to develop a fast implementation for the matrix-matrix multiplication and
to control data traffic explicitly, using APP routines to move data from memory into processor cache
and vice versa. It appears that the highest possible performance for a matrix-matrix multiplication in
cache can be obtained using the routine _dmmm. Unfortunately, all data traffic is governed internally
by the routine (see subsection 2.2). We use the routine in order to achieve a high computational
efficiency and can only speculate on how the routine manages bus traffic.

To get a clear view on the efficiency we have chosen timing experiments on matrices with sizes
depending on the configuration chosen. This enables us to avoid idle time due to a lack of parallelism.
For a partitioning of the matrices A, B and C into square blocks of order b we choose

m = b X # procs/bus, (3.6a)

n = b X # buses, (3.6b)

»
7
A—4—4—41 processortus A—4—4—4] processortus » 4—4—4—Al processorbus /"
400 4] ;
e—e—ens2 processorius 0 eea 2 processortus S 004 a2 processonbus x
F—t—4—4 3 processorfbus F—#—+—4 3 processorfbus bt 3 processorfbus /
7
#8884 processorhus ®-%-8-84 processorus »-—8-=-84 processorbus /J/ o
300 300 300- 7 //
/"/ »
/7
Mtlops MBops Mflops
]
o -
200 A o 200 4 200
100 4 100 1004
i
! 10 20] 0 10 3 0 0 X
Processors * P&mn » ! * Amn »

K=t K=$§ K=10

Figure 6: Floating-Point Rate in Mflops achieved for the matrix-matrix product
for orders defined by (3.6a-c), where b = 18, the maximum attainable block size.
K corresponds with the number of block matrix multiplications per resulting block C; ;.

k=bxK, (3.6c)
forK =1,---,10 (cf. Fig. 3). This implies that for a fixed K the wall clock time for each configuration
will be approximately the same. However, the more processing elements involved the higher the Mflop
rate will be. Since all cache loads and stores are internal to .dmmm we did not expect any performance
improvement by increasing K. Instead of one load and one store for each submatrix C;,; K loads
and K stores are required when preloaded data are lost when _dmmm is called. Fig. 6, however, shows
that in practice the performance depends on K. Probably, it is recognized during execution, that the
elements of C; ; are already in cache.

We have chosen to present the speed-up in two ways:

Execution time on 1 processor

(3.7a)

Sproce =
processor ™ Execution time on B X P processors’

S, = Execution time on B buses with 1 processor (3.7b)
bus = Execution time on B X P processors '

For K=10 and block size b = 18 a processor speed-up close to 18 is reached for the full configuration.
The bus speed-up lines in Fig. 7 are nearly horizontal, which implies that the gain of adding more
processing elements to a bus does not depend on the number of buses already involved. In other
words, in that direction the configuration is scalable. The effect of adding more processing elements
to a bus is less obvious. Fig. 8 clearly displays that an increase in cache contents corresponds with
an increase of bus speed-up and thus the performance will grow. In practice, it does not pay to use
more than three processing elements per bus in case b = 10 for this application.

4. SCALABILITY OF THE CRAY APP

From the previous section it is known that when the number of buses increases the speed-up will
increase linearly. In contrast, adding more processing elements to a bus will not lead to the same
speed-up. Only a few applications have such a high compute intensity that they can use the APP-
configuration with four processors per bus efficiently. At least three other characteristics of the APP
can be distinguished which determine the ultimate performance result:

4—a—-4—4 1 processorbus
25 4
o—w—e--e 2 processor/bus
p~t—4—4 3 processorbus

20{ m—=—8—-84 processorhus

A--4-4-41 processor/bus
e-—e-w—e2 processor/bus
}-+-+4-43 processoribus
u-8-8-84 processor/bus
34
-8
. e
L e L T
Bus
- Speed 24
u .
14 & A
0
EJ ? LI

Figure 7: Processor and bus speed-up for the matrix-matrix product

with K=10 and a block size b = 18

processor/bus
processor/bus
processor/bus
processor/hus

g

L N
S S—

g || T Rt S)
L S S S S
I e n S I | [et S e B 4
1
1
t+— — T ¥ % 33—+ — 34—+
Buses

Figure 8: Influence of bus traffic for the matrix-matrix product.

From left to right the results of the bus speed-up for block sizes b = 10,12, 14, 16, 18.

10

o the speed of a processing element
o the speed of data transfer

e the cache size of a processing element.

For the matrix-matrix multiplication (cf. Fig. 3) with m = n = k, block size KB = MB = NB = b
and K x b = k the number of floating point operations (flops) per block is given by

flops = 2Kb® = 2kb? (4.1)
and the number of data transfers by
transfers = 2(K + 1)b%. (4.2)

Let o be the ratio of transfer time 7; to the time 7; needed for one floating point operation in DOUBLE
PRECISION arithmetic, then the transfer time can be written as

T, = ary. . (4.3).

The processor performance can be expressed by

-

o _ # flops _ 2kb? _ k 1 (4.4)
Processer ™ execution time 2kb2rs + 2(K + 1)b21; k + (K+1a 75 ’
The leverage of the matrix-matrix multiplication (3.5) is denoted by
Leverage 2kb2Tf k (4.5)
e = = . .
T MK+ P, | K+ 1)a
The performance per bus ¥,,, is defined by
k2
Upus = Leverage - ¥processor = ! (4.6)

k+EK+1a)(K+1)a 74

If the block size b is chosen such that the data cache is (nearly) fully occupied, the smallest possible
value of K is obtained. This value results in a maximum processor performance and the leverage is
maximal, too, and so is the bus performance ¥p,,.

Let us return to the APP characteristics which influence the bus performance. First, we assume
that it is possible to increase the speed of a processing element by a factor B,8 > 1. At the same
time we assume that the data transfer time remains invariable. In formula,

= _ 1 ~
Tf‘ﬂ”}a=2=a-ﬁ. (4.7)

’f‘t =T 7:f

The ratio of the improved computation speed’s bus performance and the actual speed’s bus performance
becomes

Vs k+ (K +1)a
‘I’bus - k + (K + I)QIB

<1;for 8>1. (4.8)

11

As a very undesirable effect, we get a decrease in the bus performance and the corresponding APP
performance when the speed of the individual processing element increases.

Secondly, we assume that the transfer rate can be accelerated by a factor v, v > 1, and the
computation speed will be unaltered. Then we get

QA

t

“Qm

} (4.9)

f=Tf

and the bus performance becomes

- k2 ,),2
Wpys == - — 4.
b [vk+ (K +1)a)(K+1)a 7¢ (4.10)
Compared to the original situation we get an acceleration of
s k+(K+1
bus — + (K + Lo >«; fory > 1. (4.11)

Voo K+ (K+1)E

Without doubt a reduction of the transfer rate will improve the performance of the APP.

Thirdly, we consider the bus performance as a function of the cache contents. If the data cache size
is enlarged by 6, then the new block size b can be enlarged to

b=V6-b (4.12)
and for a fixed problem the new K will become

K =6"*K. (4.13)
The bus performance will increase then by a factor

Vpus _ k+ (K +1)a K+1
Upus k+(6"iK+1)a 6 2K+1

>1; for 6§ > 1, (4.14)

since both the leverage and the performance per processing element grow. Notice that the gain is less
spectacular than obtained for a reduced transfer speed.

Summarizing, from the possibilities to improve the bus performance described above the largest
gain can be expected by an increase of the transfer speed, whereas a decrease of the cycle time for a
floating point operation will even result in a lower bus performance.

5. THE CHOLESKY FACTORIZATION

The block Cholesky matrix-factorization has a computational complexity which is comparable to that
of the matrix-matrix multiplication. In this section we describe two variants: the block left-looking
factorization and the block right-looking factorization. A third variant, the block top-looking, is not
considered: for this we expect a similar behavior as for the left-looking variant. All variants have
exactly the same number of floating point operations. The major steps are described in terms of the
BLAS [4, 5, 9] and the organization is such that each processor will perform BLAS operations on
single block matrices only.

The Cholesky factorization of a symmetric matrix A is given by

12
A=L-LT (5.1)
where L is a unique lower triangular matrix. Assume A can be partitioned into K2 square blocks of

order b such that k, the order of A, is equal to K x b. We first derive the block left-looking variant
which is block column oriented. Next, the right-looking algorithm is considered.

5.1 Left-looking algorithm
This well-known factorization can be derived from the following block-matrix product

Au Lll L'lrl L2Tl Lgl
An Ag = | Lu L . L 1% |. (5.2)
A3 A3y Asz L3y L3z Lag LY

We assume that in the previous ! — 1 steps the block matrices Ly, La; and L3; — each consists of
(I = 1) x b columns — have been computed. In the current step /, the block matrices Ly and L3s,
with a column width of b columns, must be updated. Then from the block matrix equality, we obtain

Loy . L], + Lay . LY, = Apy

Ly . LY, + Las . LY, = Agy (5.3)
The computation of the diagonal block La; consists of two steps:
A'ys « Agy — Ly L7, - (54)
or, in Level 3 BLAS terms, a DSYRK operation, followed by
Loy - Cholesky(A’'s3), (5.5)

which can be performed by a Level 2 BLAS algorithm. We refer to this algorithm as DLLT. The block
column matrix L3 can be obtained by first computing

A'zp « Agp — L3y LY, (5.6)
a straightforward matrix-matrix multiplication and subtraction, and then afterwards L3, becomes
L32 — A'32.L.2_2T. (57)

In (5.7) a triangular system is solved with a multiple right hand side, which can be performed by
the Level 3 BLAS routine DTRSM. In the next step another block column of L is updated, and after
precisely K steps the factorization is completed. This algorithm is known as a left-looking algorithm
because the data referred to is mainly on the left-hand side of the current block column.

5.1.1 Ezplicit parallelism by operating on single blocks The BLAS operations can be parallelized
either implicitly or explicitly. In case of implicit parallel processing the BLAS are parallelized such
that within a BLAS operation the work is equally divided over several processors. In case of explicit
parallel processing, calculations on a single block — both input and output matrices consist of single
blocks of dimension b — are not parallelized; however, these block operations themselves, scheduled
more or less arbitrarily (taking into account the data dependencies) can be performed in parallel.

In Louter-Nool [10] parallelism is exploited in a dynamic way. Before the computation starts
the dependencies between single block operations are uniquely described and when a processor has

13

accomplished some single block operation then it "looks” for another operation in a queue of "ready-to-
start” processes. After completion of a block operation other processes can become ”ready-to-start”.
This asynchronous approach makes it possible to reduce idle time substantially and, therefore, a
highly efficient method is obtained. An important disadvantage of this method, however, is that an
extensive administration of the state of the processes and the dependencies is required. SCHEDULE
[3], the package that was used for that purpose in [10], is not available on the CRAY APP. Therefore,
parallelism is considered at a lower level: a simpler static scheduling of operations is applied, although
reduction of idle time is still one of the main issues.

To start with we discuss how the multiple block operations (5.4, 5.6, 5.7) can be written as single
block operations and how parallelism can be introduced explicitly. The symmetric rank-k update can
be rewritten as [— 1 single block DSYRK operations. Since all of the operations write to the same data
block A’9; they cannot be carried out concurrently. Furthermore, the matrix-matrix multiplication
can be split up into (K — 1) x (I — 1) single block DGEMM multiplications of which the explicit level of
parallelism is only (K — [). Finally, the multiple block operation DTRSM (5.7) can be partitioned into
(K —) single block operations to be performed simultaneously.

5.1.2 Implementation and performance of single block BLAS Programming the CRAY APP has
been reduced to implementing the four basic single block operations: DSYRK, DGEMM, DTRSM and DLLT.
As mentioned in subsection 2.2, local BLAS implementations as described in [6] are not available,
but it is possible to get pipeline rather than scalar performance by means of a very restricted set of
Extended Math. Library routines [1].

Both the matrix-matrix product DGEMM and the symmetric rank-k update DSYRK are performed by a
call to _dmmm (see section 2.2). For the latter this implies that the symmetry of the resulting matrix is
not taken into account and twice as many floating point operations are performed as actually required.
Other attempts to get a better performance for DSYRK failed. Considerable effort has been put in the
efficient implementation of DTRSM and DLLT, although we consider our ultimate performance given in
Table 1 rather disappointing.

Block routine | Performance # flops
DGEMM 25.6 Mflops 263

DSYRK 13.6 Mflops b3

DTRSM 6.7 Mflops b3

DLLT 4.0 Mflops | (2b% + 3b% +b)/6

Table 1: Performance results and number of Floating-Point operations
of local BLAS operations for a block size b = 18

5.1.3 Parallel implementation A straightforward implementation of the block left-looking factor-
ization is given in the left column of Fig. 9. Obviously, the load balancing is far from optimal. The
DSYRK operations are carried out by a single processor just as the DLLT operation on the diagonal
blocks. A better balancing is achieved by performing the matrix-matrix multiplication DGEMM and
the symmetric rank-k update DSYRK simultaneously. These processes are data independent: DSYRK
updates the diagonal blocks whereas DGEMM writes to off-diagonal blocks. So, one processor updates
the diagonal block, whereas the other processors perform single block matrix-matrix multiplications
as is illustrated in the right column of Fig. 9. This approach is satisfactory if the execution time of
a block multiplication is comparable with the execution time for a single block symmetric rank-k up-
date. If not, then a better solution can be achieved when a “WHILE” construction is applied, especially
when the number of blocks in the I-th column is larger than the number of processing elements p.

14

SUBROUTINE LLCHOL (...)
Left-looking Block Cholesky

For Column L do

aoaaoaa

D0I=1, L-t
C Compute A[L,L]=
C A[L,L]-A[I,L].Transpose(A[I,L])
CALL DSYRK(...)
END DO
c
CPCF PARALLEL
CPCF PRIVATE I, J

CPCF PDO
DO J = L+1, K

(o

C

[

(o

[

c .
Cc

DOI-=1, L-1

C Compute A[J,L]=
[+ A[J,L]-A[J,I].Transpose(A[I,L])
CALL DGEMM(...)
END DO
c
END DO
c

CPCF SINGLE PROCES
C Compute Cholesky
(o factorization of A[L,L]

CALL DLLT(...)
CPCF END SINGLE PROCES
c
CPCF PRIVATE J
CPCF PDO

DO J = L+1, K
C Solve A[J,L]=
c A[J,L].Inverse(Transpose(A[L,L]))

CALL DTRSM(...)
END DO
C
CPCF END PARALLEL
C
RETURN
END

SUBROUTINE LLCHOL (...)
c Improved Left-looking Block Cholesky
c ce
c For Column L do
c
c
c
[4
c
c
c
CPCF PARALLEL
CPCF PRIVATE I, J
CPCF PDO
D0OJ=1L, K
IF(J.EQ.L)THEN
DOI-=1, L-1

C Compute A[L,L]=
c A[L,L]-A[I,L].Transpose(A[I,L])
CALL DSYRK(...)
END DO
ELSE
DO I =1, L-1
C Compute A[J,L]=
c A[J,L]1-A[J,I].Transpose(A[I,L])
CALL DGEMM(...)
END DO
END IF
END DO
C
CPCF SINGLE PROCES
C Compute Cholesky
c factorization of A[L,L]

‘CALL DLLT(...)
CPCF END SINGLE PROCES
C
CPCF PRIVATE J
CPCF PDO

DO J = L+1, K
C Solve A[J,L]=
c A[J,L].Inverse(Transpose(A[L,L]))

CALL DTRSM(...)
END DO
C
CPCF END PARALLEL
C
RETURN
END

Figure 9: Two parallel implementations of left-looking Cholesky factorization. The straightforward
implementation shown in the left column has a substantially lower level of parallelism than the right

column’s implementation.

15

SUBROUTINE LLCHOL (...)
c Left-looking Block Cholesky with ‘‘WHILE’’ comstruction
C s e
c For Column L do
C ..
JJ=L-1
c
CPCF PARALLEL
CPCF PRIVATE I, J
C
10 CONTINUE
c
CPCF CRITICAL SECTION
JJ=J1+1
IF(JJ.LE.K)THEN
J=13]
ELSE
CALL MCP_ECS()
GOTO 20
END IF

CPCF END CRITICAL SECTION
IF(J.EQ.L)THEN
DOI =1, L-1
C Compute A[L,L]=A[L,L]-A[I,L].Transpose(A[I,L])
CALL DSYRK(...)
END DO
C Compute Cholesky factorization of A[L,L]
CALL DLLT (...)
ELSE
DOI-=1, L-1
C Compute A[J,L1=A[J,L]1-A[J,I].Transpose(A[I,L])
CALL DGEMM(...)
END DO
END IF

GOTO 10
20 CONTINUE
CALL MCP_BARRIER()
C
CPCF PRIVATE J
CPCF PDO
DO J = L+1, K
C Solve A[J,L]=A[J,L].Inverse(Transpose(A[L,L]))
CALL DTRSM(...)
END DO
C
CPCF END PARALLEL
C
RETURN
END

Figure 10: Parallel implementation of the left-looking Cholesky factorization with the “WHILE”
construction. The update of the diagonal block and those of the off-diagonal blocks are carried out
concurrently. As soon as either a diagonal or an off-diagonal block update is terminated, the processor
may continue with updating another off-diagonal block.

16

400 400
&-A-&-Al processorfbus
....... 2 processorhus

-~4--4 3

100 [e et | processor/us 100
®-8-8-84 processorhus

Mflops 200 Mfops 200

100 100 4

0 %% 0 34—
Buses # Buses

Figure 11: Performance results of two left-looking block Cholesky factorizations.
The left figure corresponds to the implementation of the right column of Fig.9,
whereas the right figure shows the Mflop-rate achieved for the “WHILE” construction of Fig. 10.

The “WHILE” construction, illustrated in Fig. 10, consists of an endless loop and the operations are
performed as long as a logical expression — here, (JJ.LE.K) — is true. A critical section is used
to allow processors to update the shared variable JJ. The loop is terminated when all processors have
found a value JJ which is larger than K. The MCP_BARRIER is called to guarantee that all operations are
finished when the final update of the off-diagonal blocks, performed by DTRSM, starts. This “WHILE”
construction makes it possible to execute processes asynchronously. As soon as a sequence of DSYRK
or DGEMM is terminated, the processor starts with another operation. Moreover, the sequence of DSYRK
operations can immediately be followed by a call of DLLT, since its input is independent of the opera-
tions on the off-diagonal blocks in column I. We remark that the idle time can be reduced even more
by performing the DTRSM immediately after the (I — 1)-th DGEMM contribution under the condition that
the DLLT on the diagonal block has been completed. However, a comprehensive registration of the
status of the processes will be required then.

5.1.4 Performance of left-looking implementations Fig. 11 shows the performance results obtained
for two left-looking variants: the left figure for the left column of Fig. 9, the right figure for the
implementation presented in Fig. 10. So, for the left-looking block Cholesky factorization, with its
decreasing amount of computational work per block column, asynchronous job scheduling can im-
prove the performance substantially. Moreover, the performance gain obtained by going from 3 to
4 processors per bus is less obvious than from 1 to 2 processors per bus. However, an increase of
the total number of processors may not result in a performance increase. For instance, the execution
time achieved on 14 processors (viz., 7 buses X 2 processors/bus) is less than the time achieved on 15
processors (viz., 5 buses x 3 processors/bus) for both implementations. In Fig. 12, we present the bus
efficiency, defined by the ratio of bus speed-up (3.7) to the number of processors per bus. Although
the same steps are performed, we observe that due to a better job scheduling the bus efficiency for
the full configuration has been raised from less than 30 % to nearly 40 %.

5.2 Right-looking algorithm

The block right-looking algorithm has an updating pattern which significantly differs from the left-
looking algorithm. The latter does not perform operations before they are actually needed; information
from the past — at the left side of the current column — is used to update that column. The right-

084

064

Efficiency

044

0.24

Buses

08

06

Efficiency

044

0.2

i

Figure 12: Bus efficiency
for the two left-looking block Cholesky factorizations of Fig. 11.

Buses

17

] Cholesky

DTRSM
DGEMM
DSYRK

Figure 13: Update scheme for the first two steps of right-looking block Cholesky factorization.

18

= Cholesky
= DSYRK
= DTRSM
= DGEMM

Figure 14: Right-looking block Cholesky factorizations on 5 processors.
The upper pattern illustrates the parallel execution of Fig. 13’s implementation.
A combination of DSYRK and DTRSM and the Cholesky operations can reduce idle time
as is illustrated by the lower pattern.

looking algorithm, however, processes information as soon as is becomes available. If, for instance,
the first block column of L has been computed, then all blocks at the right-hand side can be updated
with contributions from the first block column: the diagonal blocks by a DSYRK operation and the
off-diagonal matrices by a matrix-matrix multiplication.

We prefer to describe the right-looking implementation in terms of single block operations directly.
Again it is assumed that A (and L) are of order k and k = K x b, where b denotes the block size. In
the first step the factorization can be performed analogously to the left-looking algorithm:

L[1,1] < Cholesky(A[1,1]), (5.8)
L[i,1] « A[3,1).L[1,1)7 T, (5.9)

for ¢ = 2,---,K. For the remaining part of A the diagonal blocks A[3,i], i = 2,---,K, are updated
with respect to the first block column of L :

Ali,i] = A[i,4) — L[i,1).L[i, 1)7, (5.10)
and the off-diagonal elements by a matrix-matrix multiply and add operation

fori=3,--- K, j=2,---,i — 1. As soon as the first step is completed, the same operations can be
applied on the recently updated submatrix of A. The operations of the first two steps are illustrated
by Fig. 13. In Fig. 15 the implementation of the computation of the I-th block column and the update
of its remaining right-hand part is given. Note that all updates of the right-hand side of the I-th block
column can be done in parallel. Fig. 14 shows that some idle time can be saved by combining the
symmetric rank-k update and the Cholesky factorization of the current block. Actually, the reduction
of idle time will be larger than shown, because relatively expensive operations are combined.

SUBROUTINE RLCHOL(...)
c Right-looking Block Cholesky
C PR
c For Colummn L do
C
C Compute Cholesky factorization of A[L,L]
CALL DLLT(C ...)
C
IF(L.LT.K)THEN
CPCF PARALLEL
CPCF PRIVATE J
CPCF PDO
DO J = L+i, K
C Solve A[J,L]=A[J,L].Inverse(Transpose(A[L,L]))
CALL DTRSM(...)
END DO
C
CPCF PRIVATE J
CPCF PDO
DO J = L+1, K
C Compute A[J,J1=A[J,J]1+A[J,L].Transpose(A[J,L])

CALL DSYRK(...)
END DO
c
CPCF SINGLE PROCESS
C
NUMBER = (K -L-1)* (K-L) /2
JJ =1L
KK = K
c

CPCF END SINGLE PROCESS
CPCF PRIVATE I, I1J, J
CPCF PDO

DO IJ = 1, NUMBER
c
CPCF CRITICAL SECTION
C Determine the block matrix on which the matrix-matrix multiply
C routine DGEMM must be performed ‘

IF(KK.EQ.K)THEN

JJ=J) +1
KK = JJ +1
I = KK
J =JJ
ELSE
KK = KK + 1
I = KK
J =3
END IF
CPCF END CRITICAL SECTION
C
C Compute A[I,J]=A[I,J]+A[I,L].Transpose(A[J,L])
CALL DGEMM(...)
C
END DO
CPCF END PARALLEL
C
END IF
C
RETURN
END

Figure 15: Parallel implementation of the right-looking block Cholesky factorization.

19

20

S-&-4&-41 processorhus

038 B/E—B_‘B\Q\a\g

] 3 e,
——
S — Ty
\’\-\\'
" 0.6
Bus L _““%‘4‘_1 .
Mfops 200 Speed 24 us
wp Efficiency

g8 BB —Bg-_ g
044

100
0.2

T E
Buses # Buses # Buses

Figure 16: Results of the right-looking block Cholesky factorization.
From left to right: the Megaflops, the bus speed-up and the bus efficiency for b = 18, respectively.

5.2.1 Performance of right-looking implementation The main difference in performance for the left
and right-looking implementations comes from the level of parallelism. For the left-looking algorithm
the number of independent processes for the I-th block column is equal to the number of blocks in
that column, viz., K — , in case diagonal and off-diagonal blocks are updated concurrently. For the
right looking algorithm this number is much higher, viz., ‘

% (K - 1).(K —1+1), (5.12)

since all DSYRK and DGEMM updates are data-independent.

Fig. 16 displays performance results of the block right-looking variant. The results for a small
number of processors are comparable to the left-looking implementations, but for a larger number of
processors we see that the right-looking implementation performs much better due to the higher level of
parallelism. The speed-up pattern approximates the one achieved for the matrix-matrix multiplication
(cf. Fig. 8). We also refer to [2] and [10] for similar experiments.

It is worth noting, however, that for the left-looking algorithm the data reuse is better: only data
from the current block is updated and can be kept in cache and as we have seen in section 3.4: this
will probably happen. For the right-looking algorithm no data can be reused and, consequently, more
bus traffic takes place. Apparently, this disadvantage does not play an important role.

Finally, we discuss performance results for different block sizes. In Fig. 17 all lower lines correspond
to a block size of 10, the upper lines to a block size of 18, the third line in each picture corresponds
to a block size of 16. Horizontally, the order of the matrix is displayed. For a fixed matrix order a
decrease of the block size delivers a higher level of parallelism, which is not translated into a higher
efficiency. From Fig. 17 it is clear that for a block size of 10 the bus traffic negatively influences the
performances, whereas a larger block size with a corresponding higher matrix-matrix multiplication’s
leverage value takes care of a high speed on the full bus configuration.

6. CONCLUSIONS
We have shown the influence of bus traffic on the performance by means of simple block matrix-matrix
products. A bus speed-up of nearly three was achieved for matrix-matrix multiplication and optimally

21

Figure 17: Performance of the right-looking Cholesky factorization for block sizes: b = 10, 16, 18.
From left to right the Mflops obtained for runs on 7 X 1,7 x 2,7 X 3,7 X 4 processors

filled cache. We do not expect that better results can be gained with the addition of more processing
elements on the same bus.

For the Cholesky decomposition a reasonable efficiency was achieved, not only because of the high
matrix-matrix multiplication performance but also because of the choice of algorithm. The right-
looking implementation with its higher level of parallelism performs significantly better than the
left-looking implementations. For both algorithms the number of synchronization points is signifi-
cant. By means of taking different jobs together with the so-called “WHILE” construction considerable
execution-time reduction can be achieved. the best results for the APP configuration were obtained
for partitionings with cache contents as large as possible. A partitioning into smaller blocks with a
corresponding higher level of parallelism does not lead to a better performance (as is shown by Fig. 17)
because of increased data traffic.

ACKNOWLEDGEMENTS
The author wishes to thank Alan Stewart and Herman J.J. te Riele for their constructive comments.

REFERENCES -

1. Cray Research Superservers, Inc. CRAY APP Programmer’s Reference, April 1992. Extended
Math. Routines.

2. Krister Dackland, Erik Elmroth, Bo K&gstrém, and Charles Van Loan. Parallel Block Matrix Fac-
torizations on the Shared-Memory Multiprocessor IBM 3090 vi/600j. The International Journal
of Supercomputer Applications, 6:69-97, 1992.

3. F.B. Hanson and D.C. Sorensen. The SCHEDULE parallel programming package with recycling
job queues and iterated dependency graphs. Technical Report ANL-MCS-P22-0189, Argonne
National Laboratory, 1989.

4. J.J.Dongarra, J. Du Croz, I. Duff, and Hammerling S. A set of level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 16(1):1-17, 1990.

5. J.J.Dongarra, J. Du Croz, S. Hammerling, and R.J. Hanson. An extended set of Fortran Basic
Linear Algebra Subprograms. ACM Trans. Math. Soft., 14(1):1-32, 1988.

6. S. Lennart Johnsson and Luis F. Ortiz. Local Basic Linear Algebra Subroutines LBLAS for
distributed memory architectures and languages with array syntax. The International Journal of

22

10.

11.

Supercomputer Applications, 6:322-350, 1992.

C.-H Lai and H.J.J. te Riele. Some experiences of solving 1-D semiconductor device equations on
a matrix coprocessor by a domain decomposition method. Technical Report NM-R9304, CWwI,
February 1993.

C.-H Lai, H.J.J. te Riele, and A. Ualit. Parallel experiments with simple linear algebra operations
on a Cray S-MP System 500 matrix coprocessor. Technical Report NM-N9301, CWI, June 1993.

C.L. Lawson, R.J. Hanson, D. Kincaid, and F.T. Krogh. Basic Linear Algebra Subprograms for
FORTRAN usage. ACM Trans. Math. Soft., 5:308-323, 1979.

M. Louter-Nool. Block-Cholesky for parallel processing. Applied Numerical Mathematics, 10:37-
57, 1992.

A. Stewart, M. Louter-Nool, H.J.J. te Riele, and D.T. Winter. An Investigation of Data Reuse
on the Cray S-MP System 500. Technical Report NM-R9415, CWI, July 1994.

