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Abstract

sd out that a strong law of large numbers for L-statistics established by van Zwet (1980) for i.i.d.
remains valid for stationary ergodic data. When the underlying process is weakly Bernoulli, the
nds even to generalized L-statistics considered in Helmers et al. (1988).
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... denote a (real-valued) ergodic stationary process (ESP) defined on a single proba-
, A, P). The marginal distribution of the ESP is the common distribution function (df)
To begin with define (ordinary) L-statistics by

n ifn
v Xin / Jn(s)ds
(i-1)/n

—
=1

1) = R, n = 1,2,... are Lebesgue-integrable functions and for n = 1,2,..., X <
note the ordered Xi,...,Xn. For a Lebesgue-integrable function J : (0,1) — R, define

F) = /0 J(s) F~(s)ds

= inf{z : F(z) > s}, for 0 < s < 1. Our first main result - Theorem 1 below - asserts
law of large numbers for linear combinations of order statistics L, obtained by van Zwet
case of i.i.d. processes X, Xz,..., remains valid (with essentially the same proof) if the
ion is replaced by the much weaker requirement that X;, X»,... is an ESP. Formally,
sllowing SLLN for L-statistics with dependent data which complements Theorem L of
1. (1994):

Let {Xn}n>1 be an ESP. Let 1 < p< oo, p~' + ¢! =1, and suppose that J, € L, for
nd F~' € L,. If there is a function J € L, such that

t t
To(s)ds = / J(s)ds

) 0

0,1) (i.e. Jo — J weakly in L, (for 1 <p < o) and weak® in Lo (for p= )}, end
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oo and

p ”Jﬂ“P < 0,
3

d {Jn,n=1,2,...} is uniformly integrable.

oof follows exactly the argument given by van Zwet (1980) (cf the proofs of his Lemma
%.1 and Corollary 2.1) without any changes. We only have to recall the well-known fact
godic theorem the SLLN and the Glivenko-Cantelli theorem is not only true for i.i.d.
remains valid for ESP.O

‘heorem 1 to generalized L-statistics (GL-statistics), their definition, as in Helmers et
first be reviewed. For a positive integer m, let h (the kernel) be a measurable function
cand let Wy, <.+ < W(n),.:n denote the ordered values of h(X;,,- -, X;, ) taken over
n—1)---(n —m+ 1) m-tuples (i1, -,im) of distinct indices from {1,---,n}. Given
:(0,1) = R (n = 1,2,---), of Lebesgue-integrable functions, form the sequence of

(7)m i/ (7)m
GLy =Y Win / Jo(s)ds .
i=1 (i-1)/(n)m

1m =1 and h(z) = z, GL, reduces to the ordinary L-statistic L,,.

m of the limiting value of GL,, (to be proved to exist a.s. under appropriate conditions)
:d. To this end, let ¥7,Y5, - - be independent F-distributed random variables. For the
—+ R consider the distribution function '

sgue-integrable function J : (0,1) — R, form the parameter

1
0 =1, (F) = /0 J(s)H7(s)ds

before, Hy'(s) = inf{y : Hr(y) > s}.
1at for m = 1 and h(z) = z, the parameter 7 reduces to the previous §. For interesting
orm 7, obtained by appropriate choices of J and h, see the examples in Helmers et al.

an Zwet’s argument in the extension of Theorem 1 to GL-statistics, a strong law for

< 1

P Wi = .(—T_L)_ Z h(XiU"-inm)

1 ™ 1<iiFig# Fim<n

rtunately no such strong law is available for general ESP’s (see example 4a in Aaronson
Thus a more stringent mixing condition than mere ergodicity has to be imposed on

2,°-+. Recall that the stationary sequence {X,}n>1 is called weakly Bernoulli (WB)
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absolutely regular)’if d(m) = sup {d(m,k) : k > 1} — 0 as m — oo, where d(m, k) is
of

> |P(4: 0 B;) — P(A:)P(B)]

g=1
:of disjoint sets A;NB;,i = 1,---,n, where A; € 6(X3,---Xi) and B; € 0(Xprm+1,°-°)-
1s to be also somewhat restricted: For data with marginal distribution F, it is required
lh: R™ — R be bounded by an F-integrable product, i.e. that |h(z1,...,Tm)| <
where f: R — Ry and [ f(z)dF(z) < oo.
| (Theorem U(iii) in Aaronson et al (1994))
e a weakly Bernouilli ESP with marginel F and let h : R™ — R be measurable and
F-integrable product. Then:

- > hXy,...,Xi,) = Eph(Yi,...,Yn)
1<is,menyim<n

v 1.

Inder the conditions of the Proposition:

= > h(Xi,,..., X)) = Eph(Y1,...,Ym)
™ 1<iy #ig A FimSn

1.

= — 1asn — oo (m fixed), it suffices to prove that lim, .o = 3. A(Xi,,..., Xi,) =
V' indicates summation over all m-tuples (i1, ...,%m,) With 4; = i), for some j # k.
{h(z1,- .. 2m)] < flz1) ... flzm), so it suﬁices to establish

lim n_z Ziy ... Z;, =0a.s.

= {f(Xn)}n>1 is a nonnegative integrable ESP.
ient in the proof of (*) is a very special case of a result of Aaronson (1981). This special
'd here (with a simplified proof) for the sake of completeness.

ipose {Zn}n>1 is @ nonnegative integrable ESP and let a > 1. Then: =3 0", 2% — 0
1.

> 0, choose M > 0 sufficiently large for U; = ZZ#I{Z; > M} to satisfy EU,-I/ * < € (this
20 < Z; and EZ; < c0).
Y; = Z§I{Z; < M}. Then both {Up}n>1 and {V,}n>1 are nonnegative ESP’s with

mly bounded by M. Consequently,
1 (1
i=1

1 « 1< IS 1/a)
a'——.._._ - — . — la
,’1.__na§U,+na§V,§(n§Ui )

=1 =1 =1

Now, by the ergodic theorem, the second term tends to zero a.s. and the first term
sure limit smaller than €* (by the choice of M). Since ¢ > 0 is arbitrary, the lemma

e proof of (*), hence of the Corollary, let S, = Z1 + ...+ Z,, Snj = Sn—Z; (j =
1 Z5; > 0, it is evident that

NNZi ... Z;,

E’Ma

iZfs;':, :



iz’z,- 2 <L i 1y Z’F(E"i)m—’“.
nm™ 1 m = = nk = J n

|2 <k <m,

';-‘ — 0 a.s. by the Lemma; for each fixed j > 1 and 2<k<m
— (EZ;1)™F a.s. by the ergodic theorem.

y seen from (i) and (ii) that foreach k =2,...,m

’,’:j’k — 0 a.s., hence so does the sum of m— 1 (k =2,...,m) such terms O

on of Theorem 1 to GL-statistics is now readily available.

Suppose {X,}n>1 is a weakly Bernoulli ESP with marginal F and let h,Hf, J,,J,GL,
efined above. Suppose h is bounded by an F-integrable product. If J,, and J satisfy the
Theorem 1 and if H;l € L,, then

lim GL, =7
n—oo
y 1.

rgument is completely analogous to the proof of Theorem 1. Note that the only prob-
dient in the proof of Theorem 1 is the strong law and the Glivenko-Cantelli theorem
ce of empirical distributions based on observations from the stationary ergodic process.
urely function-analytic. The function-analytic part of the proof of Theorem 2 is ex-
> as in van Zwet (1980). Since the appropriate strong law has already been established
xy, the only missing link is an appropriate Glivenko-Cantelli type result. To state it,
ribution-function Hp(y) = Pp{h(Yl,---,Ym) < y} (here as before Y7,Y3,--- are in-
distributed r.v.’s) corresponding to the kernel h, and consider the associated empirical
inction

1
Hn(y) = '(_T— Z 1{h(Xi""’Xim) Sy} .
TIm 3 <iy igorim<n

fixed y, Hp(y) is a U-statistic based on the indicator-kernel
defined by ’

1 h’(zl,:mm)sy

0 otherwise .

unded and the underlying ESP is assumed to be WB, it follows by the Corollary that
y) a.s. as n — co. That this almost sure convergence is uniform in ¥ over R, i.e. that

hy(xla Tt 13:111.) =

lim sup lHn(y) - HF(y)l =0 as.
n—00 yeR

shed by a purely analytic argument as in the standard proof of the classical Glivenko-
zm.[]

of Example 4a in Aaronson et al. (1994), Theorem 2 is false for general ESPs, even if
el h is bounded.

ur from van Zwet (1980) that the L-statistic L,, in Theorem 1 (similarly for GL, in
t 2; cf Corollary 4.1 of Helmers et al. (1988)) can be replaced by the more general

n i/n
Zg(Xi:n) Jn(s)ds s
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orel measurable function g : R — R, provided the assumption F~! € £, is modified
! € £4, and the limiting parameter 6 (n for Theorem 2) is adjusted accordingly. Note
i.d. sequences X;, X3 ... Theorem 2 can also be inferred from Corollary 3.1 of Helmers
38).

ment. The idea for this note was generated while D. Gilat was visiting the CWI,
1is author would like to thank Professor M. Keane and his group at the CWI for their
support. Both authors wish to thank Jon Aaronson for pointing them to reference [1]
2 simple proof of Lemma 1.
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