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Abstract

We consider the partial real symmetric matrices X whose diagonal entries are
equal to 1 and whose off-diagonal entries are specified only on a subset of the
positions. The question is to determine whether X can be completed to a
positive semidefinite matrix. Extending a result of [BJT93], we give a set of
necessary conditions for X to be completable and show that these conditions
are also sufficient if and only if the graph coresponding to the positions of the
specified entries is series-parallel (i.e., has no K4-minor).
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1 Introduction

A positive semidefinite matrix whose diagonal entries are all equal to 1 is called a
correlation matrix. Let £,x,, denotes the set of n X n correlation matrices, i.e.,

Enxn = {X = (2;;) symmetricn X n | X = 0,z;=1foralli=1,...,n}.

The notation: X > 0 means that X is positive semidefinite, i.e., zT Xz > 0 for
all z € R™. Let G = (V, E) be a graph, where V = {1,...,n}. (All the graphs
considered here are simple, i.e., have no loops, nor parallel edges.) Then, the set
&(G) is defined as the projection of £,x» on the subspace RF indexed by the edge
set of G, i.e.,

E(G) = {z € RF | 34 = (aij) € Enxn such that a;; = z;; for all ij € E}.
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In particular, £(K,) consists of the projections of the correlation matrices on their
upper triangular part. The convex sets &,x, and its projection E(G) are called
elliptopes.

The problem of characterizing the elliptope £(G) has been studied in [GJ SWs4)
for chordal graphs, and in [Fie66, BJT93] for cycles. Our work is, in a sense, a
continuation of these papers. Using the result of [BIT93], we derive a set of
necessary conditions for membership in the elliptope £(G) of an arbitrary graph
G. Furthermore, we characterize the graphs for which these conditions are also
sufficient as the class of graphs with no K,-minor (i.e., the simple series-parallel
graphs). In fact, a much stronger set of necessary conditions for membership in
the elliptope £(G) can be derived from a result of [GW94]; it turns out that these
conditions are sufficient for the same class of graphs. We show, moreover, that the
elliptope £(G) coincides with the convex hull of its rank one matrices if and only
if the graph G is acyclic.

The problem of characterizing the members of the elliptope £ (G) is also known
in the literature as the positive semidefinite completion problem, which is
defined as follows.

Consider a partial real symmetric matrix X whose entries are specified on
the diagonal and on a certain subset E of the off-diagonal positions, while the
remaining entries of X are free. The question is to determine whether the free
entries can be chosen so as to make X positive semidefinite. If this is the case, we
say that X is completable.

An easy observation is that it suffices to consider the positive semidefinite
completion problem for matrices whose diagonal entries are all equal to 1. (Indeed,
if X is completable, then its digonal entries are nonnegative. Moreover, we can
suppose that all diagonal entries are positive as, otherwise, the problem reduces to
considering the submatrix of X with positive diagonal entries. Finally, if D denotes
the diagonal matrix whose i-th diagonal entry is 7—1——- then the matrix X/ := DXD
has diagonal entries 1 and is completable if and oni‘y if X is completable.)

Suppose X has diagonal entries 1 and let z := (2i;)ijeg € R denote the
vector whose components are the specified entries of X. Moreover, let G denote
the graph with edge set E. Then, by definition of the elliptope £ (G), the following
equivalence holds:

z € £(G) <= X is completable.

The set .4y of correlation matrices has also been studied in [CMT79, Loe80,
GPW90, LT94], where is mainly considered the question of determining the pos-
sible ranks for extreme elements of &,x,. The set Enxn has been recently re-
introduced in [PR92, LP93, GW94] as a nonlinear relaxation for a hard combi-
natorial optimization problem, namely, the max-cut problem. Indeed, the rank
one matrices of €nxn, Which are of the form ae” for a € {—1,1}", play a special



role in discrete optimization as they corespond to the cuts of the complete graph.
A result of [GW94] shows, moreover, that by optimizing over the elliptope one
obtains a very good approximation for the max-cut problem. Several results are
given in [LP93, LP94] on the faces of &uxn. In particular, the vertices of &,xn are
described in [LP93]; they are precisely the rank one matrices. The possible dimen-
sions for the faces (and the polyhedral faces) of £nxn are described in [LP94]. For
the graph K, which is the smallest graph for which the parametric description
does not apply, a description of the faces of its elliptope £4x4 can be found in
[LP94].

The paper is organized as follows. In Section 2, we introduce some polytopes
related with the elliptope, that we will need in the sequel. In Section 3, we recall
the characterization of [GISW84] for the elliptope of chordal graphs and we give
a short proof for one of the key lemmas needed for establishing the result. In
Section 4, we present some necessary conditions for membership in the elliptope
£(G) and show that they are sufficient if and only if the graph G is series-parallel.
In Section 5, we show that the elliptope £(G) coincides with the cut polytope
if and only if the graph G is acyclic. We group in Section 6 several additional
remarks. In particular, we formulate a result of [GW94] on the inequalities that
hold for the pairwise angles between any set of unit vectors.

2 Related polytopes

We introduce here several polytopes related with the elliptope £(G) and with the
max-cut problem. Let G = (V, E) be a graph with node set V := {1,...,n}. Let
ng denote the projection from the space SYMyxn of the symmetric n X n matrices
to the subspace RF indexed by the edge set of G. We consider the following
polytopes:

CUTZL, := Conv(z2” | z € {0,1}"),

METz, = {X € SYMpyn | Xi=1 fori=1,...,n,
Xij— X — Xjie 2 -1 for1<i,j5,k<m,
Xij + Xae+ Xje 2 -1 for1<4,5,k< n},

which are called, respectively, the cut polytope and the metric polytope. The

vertices of the cut polytope CUTLL  are the matrices zzT for z € {-1,1}",

which are called cut matrices. We also consider the projections of CUTLL, and
METZ!, on RE:

CUT*Y(GQ) := ng(CUTLL,), MET*(G) := n5(METZ;,).

In fact, using a result of [Bar93], one can give an explicit description of the polytope
MET#(G) by linear inequalities. Namely, MET*!(G) consists of the vectors
z € R¥ satisfying the inequalities:



(2.1) -1<2. <1 fore€ E,
’ | 2(F)-=2(C\F)>2-|C| for FCC, C cycleof G, |F|odd.
It is easy to check that

CUT*(G) C MET#!(G).

Hence, the metric polytope MET*!(@) is a linear relaxation of the cut polytope
CUT*!(G). Moreover, equality: CUT*!(G) = MET*'(G) holds if and only if the
graph G has no Ks-minor [BM86]. :
Every matrix zzT obviously belongs to the elliptope &,y for each vector = €
{-1,1}*. Therefore,
CUTH(Q) C £(Q).

In other words, the elliptope £(G) is also a (in general, nonpolyhedral) relaxation
of the cut polytope CUT*(G). This fact (combined with the additional property
that one can optimize a linear function over the elliptope in polynomial time)
was the essential motivation for considering the elliptope in the papers [PR92,
LP93, GW94]. We will characterize in Section 5 the graphs G for which equality:
CUT*(G) = £(G) holds. ‘

We also need in the paper the analogues of the polytopes CUT*'(G) and
MET*}(G) in the 0-1 variables. For this, let f : RF — R¥ denote the linear
mapping defined by f(z) = y, where

1-2 for e € E.

Ye =
Hence, f maps (1, —1)-vectors to (0,1)-vectors. Set
CUT™(G) := f(CUT*(G)), MET"(G) := f(MET*Y(Q)).
Therefore, MET® (G) consists of the vectors y € RE satisfying the inequalities:

(2.2) 0<y.<1 fore€ E,
) Yy(F)—y(C\F)<|F|-1 for F CC, C cycle of G, |F| odd.

3 The elliptope for chordal graphs

Let X be a partial real symmetric matrix with ones on the diagonal. An obvious
necessary condition for X to be completable to a positive semidefinite matrix is that
every principal minor of X composed of specified entries be nonnegative. In fact,
as shown in [GJSW84], this condition is also sufficient if the graph corresponding
to the specified entries of X is chordal. Theorem 3.1 below is a reformulation of
this result. We recall that a chord of a cycle C is any edge between two nodes of
C which is not an edge of C. Then, a graph G = (V, E) is said to be chordal if
every cycle of G of length > 4 has a chord.



THEOREM 3.1 [GISWS84] Let G = (V, E) be a chordal graph and let z € RE. The
following assertions are equivalent.

(i) = belongs to £(G).

(#) For each cliqgue K = (V(K), E(K)) of G, the projection zx := (2¢)ecE(k) of
z on REX) pelongs to £(K).

The proof of Theorem 3.1 is by induction on the number of edges; it is based on
the following three lemmas.

LEMMA 3.2 Let G be a chordal graph and let u,v be two nonadjacent nodes of G.
Then, the graph G + (u,v) has a unique mazimal clique containing both nodes u
and v.

LemMA 3.3 Let G = (V, E) be a chordal graph. Then, there exists a sequence of
chordal graphs G; = (V, E;) (0 < i < 8) such that Go = G, G, is the complete
graph, and G; is obtained by adding one edge to G;—4 fori=1,...,s.

LEMMA 3.4 Theorem 3.1 holds for the complete graph with one deleted edge.

Lemma 3.2 is given in [GTSW84], Lemma 3.3 follows from [LRT76], while Lemma 3.4
follows from [DG81]. Dym and Gohberg show, in fact, that Theorem 3.1 holds for

all band graphs; a graph with node set V = {1,...,n} is a band graph if, up

to permutation of the nodes, its edges are the pairs (7,j) with 1 < ¢ < j <

min(i + p,n), for some 1 < p < n. Dym and Gohberg’s result has a quite tech-

nically involved proof. For this reason, we give here a short and easy proof for

Lemma 3.4. It uses the following well known result.

A B
BT ¢
Then, det(M) = det(A) det(C — BT A~1B).

LEMMA 3.5 Let M = ( be a symmetric matriz where A is nonsingular.

Proor. The proof follows from the identity:

M= I 0 A 0 I A'B
"\ BTA ' T 0 C—BTA'B 0o I :

ProoF ofF LEMMA 3.4. Let G = (V, E) denote the graph on V' = {1,...,n}
whose edges are all pairs of nodes except the pair (n — 1,n). Hence, G has two
maximal cliques K; and K, with respective node sets {1,...,n — 2,7 — 1} and
{1,...,n — 2,n}. Let z € RF such that its projection zk; belongs to £(K;) for



t = 1,2. We show that z € £(G). Let X denote the partial symmetric matrix
corresponding to ; hence, X is of the form

Alalbd
X=]|d'[1]z2
vlz|1

where A is a symmetric (n — 2) X (n — 2) matrix, a,b € R®2 and z is a free entry
of X to be determined. Then, for i = 1,2, the matrix X; corresponding to zk; is

given by
Ala Ald
Xl.z(?-l—l—),xz.—(b 1).

By assumption, X; > 0 and X, > 0; we have to show the existence of a scalar z
for which X > 0. As shown in [GISW84], it suffices to show this statement under -
the stronger assumption that both X; and X, are positive definite. So, we supose
that X; > 0 and X, > 0; we show the existence of a scalar z such that X > 0.
For this, it is enough to find z such that det(X) > 0. By assumption, det(4) > 0
and, from Lemma 3.5, we obtain:

det(X;) = det(A)(1 — aTA ™ a) > 0, det(X;) = det(A)(1 - 5TA15) > 0,

det(X) = det(A4)- det(( i : ~(a b)TA(a b))

1-aTA'a z—aTA %
z—bTAla 1-bTA b
= det(4) ((1 - a" A" a)(1 - T A1b) - (2 - aTA715)?) .

Hence, for z := aT A~1b, det(X) > 0 holds. |

= det(A4) det (

As observed in [GJSW84], Theorem 3.1 does not hold for nonchordal graphs.
For instance, consider the cycle Cp, = (1,2,...,n) of length n > 4. Let 2z € RE(Cn)
be defined by 213 = @33 = ... = Zpn-1n = 1 and 23, = —1. Then, z does not
belong to the elliptope £(C.,), as there exists no matrix of £,x, having ones on the
positions (1,2),(2,3),...,(n — 1,n) and value —1 at position (1,7). On the other
hand, the projection of z on each edge of C,, belongs trivially to £(K;). Hence,
stronger conditions are necessary for characterizing membership in the elliptope
of a cycle. Such conditions are discussed in the next section.

4 The elliptope for series-parallel graphs

For the characterization of the elliptope for series-parallel graphs, we use as an
essential tool the following parametrization for members of the elliptope; it was
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introduced in [BJT93]. Let z € £(G). As each component z, of z
—1 < 2, £ 1, we can parametrize it as

ze = cos(wa)
for some scalar a., 0 < a. < 1. For short, we write
(4.1) z = cos(wa),

which means that the relation holds componentwise.

The elliptope of a cycle has been characterized in [BJT93], using tt
tion from (4.1). An equivalent result is given in [Fie66], but the fi
[BIT93] turns out to be more convenient for our purpose of finding a ¢
to a larger class of graphs. The result of [BJT93] basically says that
of a cycle C is the image of the metric polytope MET®!(C) (scaled
x) of C under the cosine mapping.

THEOREM 4.2 [BIT93] Let C = (V, E) be a cycle. Then,

£(C) = {cos(ra) | « € MET®(C)}.

An immediate consequence of Theorem 4.2 is:
PROPOSITION 4.3 Let G be a graph. Then, we have the inclusion:

£(Q) C {cos(wa) | « € MET?}(G)}.

In fact, the following stronger result can be derived from [GW94].
proof in Section 6 as it is very simple and beautiful.

THEOREM 4.4 Let G be a graph. We have the inclusion:
£(G) C {cos(wa) | a € CUTY(G)}.



Therefore, we have the following chain of inclusions:
CUT*(G) C &(Q) C {cos(wa) | a € CUT®(G)} C {cos(wa) | a € MET®Y(G)}.

We shall see in Section 5 that equality holds in the left most inclusion for acyclic
graphs. Equality is known to hold in the right most inclusion for graphs with no
Ky-minor. Let Gp,: denote the class of graphs G for which

£(G) = {cos(wa) | a € MET?(G)}.
Similarly, let G.,; denote the class of graphs for which

£(G) = {cos(wa) | a € CUT(G)}.
Clearly,

gmet g gcut .

In fact, we show below that both classes coincide, with the class of graphs with no
K 4-minor. '

By Theorem 4.2, we already know that cycles belong to the class Gpe:. Note
that K4 does not belong to G,;. For this, consider the vector z € RE(K4) defined
by z = cos(ra) = (-3},...,—3), where a = (£,.. ., 2). Hence, a € MET?(K,) =
CUT®(K,). But # does not belong to £(K4) as the matrix

1 % 1 _1
-1 12 _i _i
=11 1 2 1
_i __i -1 12

2 2 2

is not positive semidefinite. (Indeed, Xe = —1e, where e = (1,1,1,1)T.)

Before proceeding further with the description of the classes G and Gy, we
recall some definitions. A graph H is said to be a minor of a graph G if H can be
obtained from G by repeatedly deleting and/or contracting edges. Deleting an
edge e in G means simply discarding it from the edge set of G. Contracting an
edge e = uv means identifying both endnodes of e and discarding multiple edges
if some are created during the identification of nodes u and v.

Let G1 = (4, E1) and Gy = (Va, E;) be two graphs such that the set K :=
Vi NV, induces a clique (possibly empty) in both G; and G, and there is no
edge between a node of V; \ K and a node of V3 \ K. Then, the graph G :=
(V1 U V3, By U E,) is called the clique sum of G; and G,. We also say that G is
their k-clique sum if k = |K]|.

We will use the following well known characterization for graphs with no K-
minor (it can be derived from [Duf65]). Let G be a graph. Then, G has no



K 4-minor if and only if G = K3, or G is a subgraph of a k-clique sum (k = 0,1,2)
of two smaller (i.e., with less nodes than G) graphs each having no Ks-minor.
Such graphs are also known as the (simple) series-parallel graphs. (We stress
“simple” as series parallel graphs are, in general, allowed to have loops or multiple
edges. But, here, we consider only simple graphs.)

We show now that the classes G,,.: and G..; are composed precisely of the
graphs with no K4-minor. In view of the above result, the key steps consist of
showing that G,,.; and G,; are closed under taking minors and clique sums.

ProrosITION 4.5 Each of the classes Gper and Geyy 8 closed under taking minors.

ProoF. Let G be a graph in G,,.t. Let e = uv be an edge of G and let G’ denote
the graph obtained from G by deleting or contracting the edge e. We show that
G' € Gmet- For this, let a € MET?(G'). We show that cos(ra) € £(G'). As
a € MET (@), it is not difficult to construct b € MET?(G) whose projection on
the edge set of G’ is a (see [LP92]). Then, cos(wb) € £(G) as G € G. This implies
that cos(ma) € £(G’).

Suppose now that G € G.,;. We show that the graph G’ obtained from G by
deleting or contracting the edge e belongs to Geys- Let a € CUT?Y(G'). Again,
it is easy to construct b € CUT®}(G) whose projection on the edge set of G’ is
a. Hence, cos(wb) € £(G), which implies that cos(wa) € £(G'). This shows that
G' € cht- I

PROPOSITION 4.6 The class Gpe: is closed under taking clique sums.

ProoF. Let Gy = (Vi1,E1), G2 = (Va, Ez) be two graphs in Gp,.; such that
K := V1 N V3 induces a clique in both G; and G and there are no edges between
anode from V; \ K and a node from V2 \ K. Let G = (V := V,UV,, E := E;UE,)
denote their clique sum. We show that G € G,,¢:. For this, let a € METM(G'); we
show that cos(wa) € £(G). Let a; denote the projection of a on R¥ for i = 1,2.
So, a; € MET®(G;), which implies that cos(7a;) € £(G;). Hence, there exists
a matrix A; € L, (n; := |V;|) whose entries indexed by the edges e € E; are
precisely cos(wa.). Consider the following partial n x n (n = |V|) matrix M,
where the entries (u,v), for u € V3 \ K,v € V3 \ K, remain to be specified.



V. -K K V,-K

1 2
V,-K 9
L
K
V,-K 2 A,

Let H denote the graph on V whose edges are all pairs contained either in V; or
in V2. So the entries of M are determined on all edges of the graph H. As H is a
chordal graph, we deduce from Theorem 3.1 that M can be completed to a matrix
of &nxn- In other words, values can be found for the unspecified entries of M that
make M positive semidefinite. This shows that cos(xa) belongs to £(G). 1

THEOREM 4.7 Let G be a graph. The following assertions are equivalent.
( Z) G € gmet.
(#) G has no K4-minor.

Proo¥. Clearly, (i) == (i). The implication (i¢) = (ii%) follows from the fact
that Gyt is closed under minors and K4 ¢ Geus. We show (44i) == (i). Suppose
G is a graph with no K4-minor. We show that G € Gpe: by induction on the
number of nodes. If G = K3 then G € Gpet by Theorem 4.2. Otherwise, G can be
obtained as a subgraph of a clique sum of two smaller graphs G; and G having no
K4-minor. By the induction assumption, G; and G, belong to Gpe;. Therefore,
G € Get by Proposition 4.6. |

As an example of application, we have the following result.

CoroLLARY 4.8 Suppose G = (V, E) has no Ky-minor. Let z € RE such that
z. = cos(wa) for all e € E, for some scalar a.

(i) If G is bipartite, then z € £(G) if and only if 0 < a < 1.

(%) If G is not bipartite and if k denotes the smallest length of an odd cycle in G,
then z € £(G) if and only if 0 < a < "k;l
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ProOF. By Theorem 4.7, z € £(G) if and only if a satisfies (2.2),ie,0<a<1
and a < m.ln(flll,ﬁ,ll% | F C C,C cycle, |F| 0dd,2|F| — |C| > 0). The result
follows. i

5 The elliptope for acyclic graphs

As mentioned in Section 2, the elliptope £(G) is a (in general, nonpolyhedral)
relaxation of the cut polytope CUT*(G), i.e.,

CUTH (@) C £(B).
This inclusion is strict, for instance, for G = K3; indeed, the vector z := (—%, - %, —%
belongs to £(K3)\ CUT!(K3). We show that equality holds in the above inclusion
precisely for the acyclic graphs. A graph is acyclic if it contains no cycle, i.e., it
is a forest or, equivalently, it has no Ks-minor. '

THEOREM 5.1 Let G = (V, E) be a graph. Then, £(G) = CUT*(G) if and only
if G is acyclic, i.e., G is a forest.

ProOF. If G is acyclic, then G has no K4-minor and, thus, by Theorem 4.7, £(G) =
{cos(wa) | a € MET®Y(G)}. But, MET®(G) = [0,1]® = CUT®(G). Hence,
£(Q) = [-1,1)F = CUT*(G). Conversely, suppose that £(G) = CUT*(G). We
show that G is acyclic. For this, it suffices to show that the property: £(G) =
CUT**(G) is closed under taking minors, as this will indeed imply that G has no
Ks-minor. So, let G be a graph such that £(G) = CUT*'(G) and let e be an edge
of G. Let us first consider the graph G’ obtained from G by deleting the edge e; we
show that £(G") C CUT*(G"). For z € £(G') there exists a matrix A € Enxn (n =
[V'|) whose ij-th entries are z;; for ij € E\{e}. Let y € R¥ whose ij-th coordinate
is a;; for ij € E. Hence, y € £(G) = CUT*!(G). This implies that its projection
z on REMe} belongs to CUT*(G'). Let now G’ denote the graph obtained from
G by contracting the edge e; we again show that £(G") C CUT*!(G'). Say, the
endnodes of e are v,_; and v, and the node set of G’ is V' \ {v,}. For z € £(G’)
there exists a matrix A € £(n—1)x(n—1) Whose ij-th entries are z;; for 75 € E(G").
Let B denote the n X n matrix obtained from A by duplicating its last column
and its last row and setting the (n — 1,7n),(n,n — 1),(n,n)-entries equal to 1.
Clearly, B € Euxn- Let y € R whose ij-th coordinate is b;; for ij € E. Then,
y € £(G) = CUT*Y(G). This implies easily that z € CUT*(G'). |
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6 A geometrical result

Let G be a graph. By Theorem 4.4, we know that
{% arccos(z) | z € £(G)} C CUT'Y(G).

In fact, the polytope CUT®(G) is the smallest convex set contammg the set
{1 a.rccos(z) | 2 € £(G)}. In other words,

CUT™(@) = Conv({;t—arccos(z) | z € £(G)}).

(Here, “Conv” denotes the operation of taking the convex hull.) This follows from
the fact that the mapping @ — cos(wa) maps every vertex of CUT?(G) to an
element of £(G). In particular, by Theorem 4.7, the set {1 arccos(z) | z € £(G)}
is convex if and only if the graph G has no Kj-minor.

For any graph G, we have the following situation: The elliptope £(G) contains
the cut polytope CUT*!(G) (in the +1-variable) and is contained in the image of
the cut polytope CUT?(G) (in the Ol-variable) - scaled by the factor 7 - under
the cosine mapping. Recall that CUT?(G) is the image of CUT*!(G) under the
mapping z — 1—'2'”- This permits to derive that

{cos(ra) | a € CUT™(G)} = {sin(gb) | b € CUTEY(G)}.
Therefore, we have the inclusions:
CUT¥{(G) C £(@) C {sin(gb) | b € CUTYY(G)},

with equality in the right most inclusion if and only if G has no K ;-minor. As an
illustration, compare the polytope CUT**(K3) (which is a 3-dimensional simplex)
and the elliptope £(K3) (whose picture can be found in [LP93)).

We now state a result of geometrical flavour, which shows how to derive valid
relations for the pairwise angles between any set of unit vectors.

THEOREM 6.1 [GW94] Let vy,...,v, be unit vectors in R®. Let a € REE»),
a €R such that the mequalzty aTz < ag is valid for the cut polytope CUTol(K,,)
(i-e., a¥z < ag holds for all z € CUTOI(K,,)) Then,

To:
Z ai; arccos(v; v;) <
1<i<i<n ”

12



Proor. The proof is based on the following randomized procedure, described in
[GW94]:

- Select a random unit vector » € R™.

- Set S, := {ie {1,...,n} | vFr > 0}.

Then, the expected weight E(S;) (with respect to the weights a;;) of the cut in
K, determined by S, is equal to

_arccos(v]v;)

E(S,) = E ai;

1<i<j<n L

Indeed, the probability that the edge ij belongs to the cut determined by S, is
equal to the probability that a random hyperplane separates the two vectors v; and
T,,.
v;, which is equal to E—"“’#‘—”L) But, E(S,) is less than or equal to the maximum
weight of a cut, which is less than or equal to a9 by assumption. This shows that
T,,.
Elsi<jsn aij arccot:&v v5) < ao. I

Theorem 4.4 can now be derived in the following way. Let z € £(G). We
show that % arccos(z) € CUT?(G). Let X € &,x, whose projection on R¥ is z.
As X > 0 with diagonal entries 1, it is the Gram matrix of a set of unit vectors
Viye.oyUn, ie, Xj5 = v,.Tv,- for all 2,7 = 1,...,n. By Theorem 6.1, the vector
(%;a.rccos(v? ;))1<i<j<n belongs to the cut polytope CUT®(K,). Therefore, its
projection (2 arccos(v v;))ije E(G) on the edge set of G' belongs to the polytope
CUT®(G). This shows that X arccos(z) € CUT?(G).

Theorem 6.1 contains as a special case the well known relations:

> arccos(vi v;) < 2,
1<i<i<3
arccos(vI v;) < arccos(v¥ vs) + arccos(vT vg)

which hold for any three unit vectors v;,vs,vs in the 3-dimensional space (see
[Ber87],Corollary 18.6.12.3). They follow from the valid inequalities:

> 25 <2, 212 < 213+ 223
1<i<j<3

for the polytope CUT?(K3). But Theorem 6.1 gives a whole wealth of other
inequalities. Indeed, every valid inequality for the cut polytope CUT(K,) yields
some inequality for the pairwise angles among any set of n vectors.

For instance, the inequality

Z z;; < k(k+ 1)
1<i<j<2k+1
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is valid for CUT®(Kzp41) (k > 1). This implies that

Y arccos(vfv;) < k(k+ 1)
1<i<j<2k+1

holds for any 2k + 1 unit vectors vy, ...,vsk41. Similarly, the inequality

Y. arccos(vfv;) < k*x
1<i<i<2k

holds for any 2k unit vectors. As another example, let b;,...,b, be integers whose
SUM 0 := 37y i<, b; is odd. Then, the inequality

2
72
Z b,-bjz,-_.,- <

1<i<jsn

is valid for CUT®!(K,). Therefore,
-1

o?
Y bbjarccos(vfv;) <
1<i<j<n

holds for any n unit vectors.

Many other inequalities valid for the cut polytope are known; see, e.g., [DL92a,
DL92b). Most of them have, in fact, a quite complicated form. As a last example,
let us mention the following relation (which follows from a valid inequality given
in [Gri90]) which holds for any seven unit vectors vy, ..., vs:

Y1<icj<a arccos(v ’”:) 2 Y1<i<4 arecos(vg v;)
— arccos(v] vg) — arccos(v3 vg) — arccos(v3 vr) — arccos(vlvy)
+ arccos(vf vg) + arccos(vf v7) — arccos(vd vr) < 0.
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