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Abstract

It is proved that finite elasticity of language classes is preserved under the inverse image of
a finite-valued relation, extending results of Wright’s and of Moriyama and Sato’s.

CR Subject Classification (1991): 1.2.6, F.4.3.

Keywords and Phrases: finite elasticity, identification in the limit, inductive inference, learn-
ability.

Note: In preparing the present note, the author was sponsored by project NF 102/62-356
(‘Structural and Semantic Parallels in Natural Languages and Programming Languages’),
funded by the Netherlands Organization for the Advancement of Research (N.W.0.). The
material presented here is based on Chapter 3 of [3].

1 Introduction

Let S be some set of objects. A subset £ of pow(S) is said to have infinite elasticity if there
exist an infinite sequence (sp),cN of elements of S and -an infinite sequence (Ly), N of sets in
L such that for all n € N,

Sn gLn;
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and
{30’ s 7s'n} Cc Ln+1-

If £ does not have infinite elasticity, it is said to have finite elasticity. The notion of finite
elasticity was introduced by Wright (1989) in connection with inductive inference of formal
languages from positive data (Gold 1967, Angluin 1980), where elements of S are strings over
some finite alphabet, and subsets of pow(S) are classes of languages. The interest of finite
elasticity lies in the fact that if {L;};cy is a uniformly recursive class of languages, then finite
elasticity of {L;};cy implies that it is identifiable in the limit from positive data. (Gold 1967).1
The main result of Wright 1989 is that finite elasticity is preserved under pointwise union: if £
and M are two classes with finite elasticity, then the class {LUM | L € LA M € M} also has
finite elasticity. Wright’s proof of this result uses Ramsey’s Theorem.? Recently, Moriyama and
Sato 1993 shows that finite elasticity is preserved under many other operations as well, including
pointwise concatenation and pointwise Kleene closure.

In this note, we prove a theorem on finite elasticity, which generalizes the essence of Wright’s
Theorem and many of Moriyama and Sato’s results. The method of my proof is essentially the
same as the one used by Moriyama and Sato, but these authors do not state their result in the
general form given here.? The theorem has a number of applications; it is used extensively in
my dissertation (Kanazawa 1994).

2 The Main Theorem

Let S and U be two (not necessarily distinct) sets of objects. A relation R C S x U is said to
be finite-valued iff for every s € S, there are at most finitely many u € U such that Rsu. If M
is a subset of U, define a subset R™![M] of S by R~![M] = {s | Ju(Rsu Au € M)}.

Theorem 1 Let M be a subset of pow(U) that has finite elasticity, and let RC S x U be a
finite-valued relation. Then L= { R M]| M € M} also has finite elasticity.

PROOF. Suppose that £ = { R™![M]| M € M} has infinite elasticity. Then there is an infinite
sequence of elements sg, 51, 52,... of S and an infinite sequence of sets Lg, L1, Ly, ... from £ such
that for each n, s, € L, and {sg,...,Sn} C Lp41. For each n € N, take an M,, € M such that

!Moreover, as Kapur (1991) emphasizes, given the indexing of a uniformly recursive class of languages that
has finite elasticity, one can synthesize a learning algorithm for that class.

*Unfortunately, Wright’s original definition of finite elasticity was in error, and was later corrected by Motoki,
Shinohara and Wright (1991). .

31 came up with my proof in November 1993, before I became aware of Moriyama and Sato 1993. In their
proof, Moriyama and Sato essentially reproduce the proof of Konig’s Lemma, which I explicitly rely on in my
proof.



L, = R71[M,]. For each k € N, let
U, = {('u,o,...,’u,k) [ Rsgug A--- A Rspug /\an({'U,o,...,uk} CM,) }
Note that each Uy is non-empty, and U; and Uj are disjoint if 7 # j. Let

U= J Uk
keN

By the preceding remarks, U is infinite. U has the form of a tree: the mother of (ug, ..., uk, ugt+1) ¢
U is (ug,...,uk), which is also in U. Since R is finite-valued, U is finitely branching. Since U

is an infinite tree, by Konig’s Lemma, U has an infinite branch. Let ug, u;,u, ... be an infinite se-

quence of strings over Y that corresponds to an infinite branch of U; i.e., (ug), (uo, u1), (uo, u1, uz2),
are the nodes on this branch. Note that s, € L, implies

Un & M,. (1)

For each n, let f(n) be such that {uo,...,un} € My(,) and for all j < f(n), {uo,...,un} € M;.
By (1), n < f(n) for all n. For each n, let g(n) = f*(0) = f(...(f(0))...). Note that g is
———r

n times
monotone increasing. We claim that

ug(o),ug(l), e ,ug(n), e

and ,
Mg(o), Mg(l), ceey Mg(n), ce e

witness the infinite elasticity of M. We have (1), so it is enough to observe that by the definition
of g,

{ug(0)> -+ ugtm)} € My(n+1)
for all n € N. .

Note that an analogue of Theorem 1 does not hold of ineffective identifiability in the limit
from positive data (Gold 1967), which is a property of language classes.* For instance, let S = N,
the set of natural numbers, and take M = {E} U{{L,3,...,2n+1} | n € N}, where E is the set
of even numbers. M is (ineffectively) identifiable in the limit from positive data. The relation
R defined by Rzy & y = 2z Vy = 2z + 1 is finite-valued. But £ = {R7}[M] | M € M} =
{N}uU{{0,1,...,n} | n € N} is not ineffectively identifiable in the limit from positive data.

“Ineffectively identifiability is just like identifiability, except that the requirement that the learning function
must be effectively computable is dropped. For ineffective identifiability, the indexing of the give language class
{L,—}'. eN is irrelevant; thus ineffectively identifiability is purely an extensional, set-theoretic property, just like

finite elasticity.



3 Examples

Below we list some applications of Theorem 1.

Example 1 Let M and N be two classes of languages with finite elasticity. Let 0 and 1 be
symbols that do not appear in M and NV, and let MW N = {u0|ue M}U{vi|veEN}

It is easy to see that the class {M W N | M € M AN € N} also has finite elasticity.
For, suppose that it has infinite elasticity. Then there exist an infinite sequence of strings
Wo, W1, W2, ... and infinite sequences of languages My, My, Ms,... and Ny, N;, N,, ... from M
and N respectively, such that for each n € N,

Wn € My W Ny,
and
{'w0; s )wn} Cc Mn+1 Han+1,
There must be an infinite subsequence wj,, i, , wi,, ... of wo,wy,ws, ... such that either (i) for

all n € N, w;, is of the form 0, or (ii) for all n € N, w;, is of the form v1. Assume (i), and
let w;, = u;,0. For each n € N, since u;,0 € M;, W N;,, u;, € M;,. Since {u;,0,...,u;, 0} C
M, ¥ Nii1s {uio, ceyui, } C M;, . Thus,

Uigy Uiy y Uggy e e o y Uiy

and ‘
M;,,M;, , M;,,....M;_,...

witness the infinite elasticity of M, contradicting the assumption. The case where (ii) holds is
similar.

Let R be the finite-valued relation such that Rsw iff w = s0 orw =s1. Let L={R[M v
N||M € MAN € N'}. Note that L={MUN|M € MAN €N}. Since {MWN | M €
M AN € N} has finite elasticity, by Theorem 1, so does £. Thus, Wright’s (1989) theorem
follows as a special case of Theorem 1. ‘ nmm

Example 2 Let M be a class of languages over Y, and let h: T* — T* be a non-erasing
homomorphism,; i.e., h is the unique homomorphism that extends some hg: Y — X*. The
relation R C T* x Y* defined by Rsu < s = h(u) is finite-valued, for, if s = h(u), |u| < |3,
where |v] is the length of v. Let L= {Ah[M]|M € M} ={R™'[M]| M € M}. By Theorem 1,
L has finite elasticity if M does. "nm

Example 3 Let M be a class of languages with finite elasticity. Then, the class £ of per-
mutation closures of languages in M also has finite elasticity. In general, take any relation
R C ¥* x £* such that Rsu only if |s| = |u|. If a class M of languages over ¥ has finite
elasticity, then £ = { R"1[M] | M € M} has finite elasticity. amm
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Example 4 Assume that an ordered pair (u,v) of strings u and v is encoded as a string <u,v>,
where <, ,, > are new symbols. If M and N are languages, let M XN = {(u,v) |u € MAv € N }.

Let M and NV be classes of languages with finite elasticity. It is easy to see that the class
MXN={MxN|Me MAN € N} also has finite elasticity. For, suppose not. Then
there exist infinite sequences of strings ug, u;,ug,... and vo,v1,v2,... and infinite sequences of
languages My, M1, Ms, ... and Ny, N1, Na,... such that for each n € N,

(Un,vn) € Mp X N, (2)

and
{{uo0,v0),- .., (tn,vn)} © Mny1 X Npyi. (3)

By (2), for each n € N, either u, € My, or v, € N,. Thus, either for infinitely many n, u, ¢ M,,
or for infinitely many n, v, € N,. Assume the former, the latter being symmetric. Thus, there
is an infinite subsequence u;y, u;,, Ui,, ... Of ¥, u1,usg,... such that for each n, u;, ¢ M;,. By
(3), {wigs--->uin} € M;,,,. This means that wu;y, u;,, u;,,... and My, M;, M;,, ... witness the
infinite elasticity of M, contradicting the assumption.

Let shuffle(M,N) =

{w | Juo, u1,...,Un, V0, V1, ..., Va(wW = upVou1v; . ..

e UnUn AUQUL ... Up € M Avguy...vn € N) }.

shuffle(M, N) is the set of strings that can be obtained by interleaving a string from M and a
string from N. One can now apply Theorem 1 to show that the class £ = { shuffle(M,N) | M €
M AN € N} has finite elasticity. To see this, take the relation R such that Rsw if and only

if for some ug, U1, ..., Un, V0, V1,---,VUn, S = UQUOUIV] - - . UnUpn aDd W = (UQU] - .. , Up, VU] - - - Up)-
R is a finite-valued relation, for, if Rs(u,v), then |s| = |uv|. It remains to note that £ =
{R_l[MXN]IMGM/\NEN}. nmm

Example 5 If s is a string over 3, let 15 be that initial segment of s such that |1s| = [3]s]]. Let
1L ={%s|s €L} If Misa class of languages with finite elasticity, then L= {{M | M € M}
also has finite elasticity. To see this, take the finite-valued relation R such that Rsu if and only

ifs=%u. . amm

Example 6 Let M be a class of e-free languages with finite elasticity. Let M™ = { M; x --- X
M, | My,...,M, € M}, where M X --- X Mp = {(u1,...,un) | u1 € M1 A---ANu, € M, },
assuming a suitable encoding of ordered n-tuples. As in the case of Example 4, it is easy to
see that M™ has finite elasticity. Since every language in M? is disjoint from every language

in M7 if i # j, U, M™ must also have finite elasticity. Let R be such that Rsu if and only
if for some non-empty strings si,..., S, such that s = s1...8,, v = (81,...,8,). Then R is



a finite-valued relation. Let £ = {R™[M] | M € U, M"}. L consists of languages that are

concatenations of languages from M. By Theorem 1, £ has finite elasticity. (This does not

in general hold without the assumption that M consists of e-free languages. Let M = {¢,a}.

Then {M}" = {M"}, where M® = M x --- x M. R™![M"] = {¢,a,aa,...,a"}. { R"}[M"] |
N e’

n times

n€N}={RN]|N € U,{M}"} has infinite elasticity.) mnm

Example 7 Let G be a class of context-free grammars over ¥ that do not contain unit pro-
ductions (production rules of the form A — B) or € productions (A — €). Let M be the class
consisting of the sets of skeletal phrase structures (Levy and Joshi 1978) generated by the gram-
mars in G. Let £ be the class of languages generated by grammars in G in the usual sense. Then,
if M has finite elasticity, so does £. To see this, take the finite-valued relation s = yield(T)
between strings and skeletal phrase structures of the appropriate sort. L

See Moriyama and Sato (1993) and Kanazawa (1994) for further examples of easy conse-
quences of Theorem 1.
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